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Abstract

Large majority of control methodologies used in traffic applications require short-time
prediction of the environment. For instance, in widely-used Model Predictive Control [1]
employed to reduce fuel and energy consumption of vehicles in a platoon, information
about future velocity profiles of leading vehicles is necessary. In such case, the dynamic
model should provide information more detailed than prediction of averaged and global
quantities. Additionally, if the control input is to be applied at high-frequencies, traffic
model must be solved in a short period of time.

We propose a novel framework which addresses aforementioned problems by estimating
the vehicle velocity at any location in the domain based on the real-time information from
induction loops downstream. Additionally, our formulation is linear and low-dimensional
(i.e. consists of few degrees of freedom) meaning that the estimation can be executed
at high frequencies. First a mapping is constructed from velocities at discrete locations
to the smooth continuous field, which is subsequently projected onto its most significant
principal components. Next, current state of such system is estimated using Kalman
filter by combining the linear, wave-like dynamics of the traffic with the instantaneous
information provided by induction loops. Short-term traffic prediction is then achieved by
integration of the model forward in time.

The proxy methodology is validated using SUMO simulation on the test case of the
vehicles approaching a traffic junction. The performance is evaluated based on sampling
reconstructed continuous waveform at the locations and timestamps of the vehicles in the
reference data and calculating velocity errors. Separate cases are considered where drivers
follow Intelligent Driver Model perfectly and with varying levels of uncertainty.

1 Introduction

Dynamic prediction is vital for construction of velocity profiles that can be used for encouraging
eco-driving to reduce travel time, pollution and fuel consumption [2, 3, 4]. Travel prediction
methodologies can be in general categorised based on the frame of reference relative to the
driver or to the side of the road. In the first case, models are largely based on the car following
models and deal with platoon dynamics. The latter case aims to describe traffic using quantities
such as density and flow, and models inspired by fluid dynamics. The reconciliation of both is
non-trivial. Some attempts in this regards are summarised and compared in [5].

Traffic data can be collected through various methods (e.g., loop detectors, GPS) with
various spatio-temporal granularity. In traffic data analysis, one of the challenges is to map
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traffic data collected from stationary detectors to a continuous field. In scientific investiga-
tions, isotropic smoothing and anisotropic kernel-based smoothing are common approaches for
processing and reconstructing velocity data collected from stationary detectors. Treiber and
Helbing [6] proposed a kernel-based traffic-adaptive smoothing method to produce a detailed
reconstruction of traffic conditions between stationary loop detectors, and to combine different
data sources. Various studied demonstrated that a kernel-based interpolation is an accurate
and robust approach in comparison to isotropic data smoothing methodologies [6, 7, 8, 9, 10].
Another challenge in traffic data analysis is to decompose the high-dimensional traffic data into
principal variables that approximate different classes of traffic. Principal Component Analysis
(PCA) [11, 12] is commonly used for traffic matrix analysis [13, 14, 15, 16]. Previous studies
have shown that PCA can provide a good approximation of traffic classes with few principle
components, however, its accuracy and efficiency decreases in the presence of large anomalies
in the system [16, 17].

In this paper, we propose a proxy method which estimates full velocity field based on
induction loop measurements and subsequently uses wave-like dynamics for velocity prediction.
In the first step continuous data is constructed using weighted average of vehicles present in the
link. The dimension of resulting data is dependent on the discretisation level set by the user,
and can lead to high-dimensional data. Low-dimensional state is constructed by a projection of
continuous velocity-density field onto few principle components. Subsequently, an estimation
using the Kalman filter is performed.

The paper is organized as follows: Sections 2 and 3 explain the proposed methodology
and the case study in-details. The results of the proposed framework on the case studies are
presented in Section 4. The conclusions are summarised in Section 5.

2 Problem Formulation

Fixed point sensors such as inductive loop detectors allow collecting speed data at constant
spatial locations. In order to construct a velocity field based on real-time traffic measurements
from inductive loops, we analyse the system using an Eulerian reference frame. The network is
therefore discretised into a series of spatial locations with the objective of estimating velocity at
each grid point. Given such an estimated state, a model is constructed to dynamically predict
the evolution of the high-dimensional velocity field forward in time.

In order to achieve this objective, state-space formulation of the dynamical system is utilised

at+1 = A(at), (1a)

yt = C(at). (1b)

In such a framework, a ∈ Rr is a state vector which consists of variables representing some
information about the system. Here, those quantities relate to the velocity field and can, for
example, denote velocities at different locations. The values of yt ∈ Rp represent observables
of the system. In traffic modelling those can represent some measurements corresponding to a
vehicle driving through the network or information from induction loops such as mean speed
or flow. In this study, yt is a function of velocity measurements from induction loops at time
t. The function A : Rr → Rr describes dynamics of the system, whilst C : Rr → Rp is mapping
between state and observations. The broad aim of the proposed estimation methodology is to
infer current state at given, usually imperfect, forms of yt, A,C.

The estimation framework is constructed using the following steps:
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• Constructing continuous velocity fields on the analysed network from discrete measure-
ments associated with vehicles in the system (see Section 2.1).

• Reducing the number of degrees of freedom by projecting data onto low-dimensional vector
space in order to make the problem tractable for larger networks (see Section 2.2).

• Defining a linear dynamic model on the low-dimensional state together with linear map
between the state. Subsequently, combining both models together through a Kalman
filter (see Section 2.3).

Detailed description of each step is given in the following subsections.

2.1 Construction of a continuous velocity field

The availability of a continuous form of the velocity field allows us to assign the speed at
any point in the domain for a certain prediction horizon and consequently reconstruct future
velocity profile of a vehicle. Nonetheless, traffic data is given in the discrete form, where vehicles
speed is associated with only one spatial location. In order to map discrete measurements into
continuous domain we use modified Adaptive Smoothing Method (ASM) [6].

For a given link at time tj , there exist n(tj) ∈ N measurements zi,j = z(xi, tj) representing
a characteristic quantity and acquired at irregular locations xi for i ≤ n(tj). For example, they
can be obtained using induction loops, where zi,j could denote average velocity or flow. In the
analysed case, zi,j represent instantaneous velocity of the vehicles in the system. Note that
n(tj) is not time-invariant and depends on the number of vehicles on the lane at each instance.

The ASM maps zi,j to a regular grid space using the weighted average of the measurements
close to each grid point such that

z(x, t) =
1∑n(tj)

i=1

∑jmax

j=jmin
Φ(∆x,∆t∗)

n(tj)∑
i=1

jmax∑
j=jmin

Φ(∆x,∆t∗)zi,j , (2)

where weights are generated by a nonlinear kernel Φ(∆x,∆t∗), the appropriate form of which
will be discussed later. The values of ∆x = xi − x and ∆t∗(c) = tj − t − ∆x

c correspond
respectively to spatial and temporal distances of measurement zi,j at xi, tj from grid point
at x, t. Note that ∆t∗ depends on speed c which defines a rate at which measurements are
propagated in the spatio-temporal domain. The ASM is based on the assumption that a traffic
perturbation will either propagate downstream at free flow speed cfree or upstream at congested
speed ccong. Consequently, two interpolated quantities are obtained zfree(x, t) for ∆t∗(cfree)
and zcong(x, t) for ∆t∗(ccong).

The final interpolated value zinterp is calculated as

zinterp = w(Vcong, Vfree)zcong + (1− w(Vcong, Vfree))zfree.

Here, the weight w(Vcong, Vfree) is a function of smoothed velocities, i.e. Vfree = zfree if zi,j
denote speed measurement (with equivalent definition of Vcong), and is given by

w(Vcong, Vfree) =
1

2

[
1 + tanh

(
Vc −min(Vcong, Vfree)

∆V

)]
,

where Vc and ∆V are re-scaling parameters. Note when ∆V → 0, w → 1/2 such that Vcong and
Vfree have equal weighting. Table 1 shows a summary of the values assigned to the parameters
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Parameter Description Assigned Value (km
h )

cfree Propagation velocity of perturbations in free traffic 80
ccong Propagation velocity of perturbations in congested traffic -15
Vc Crossover from free to congested traffic 60
∆V Width of the transition region 20

Table 1: A summary of the parameters and their typical values in the Adaptive Smoothing
Method as defined in [6].

in the ASM in [6]. It is noted that the methodology is robust with respect to small changes in
those parameters [6].

The final mapped quantity heavily depends on the choice of kernel Φ(∆x,∆t∗). In [6],

Φ(∆x,∆t∗) = exp

(
−|∆x|

σ
− |∆t

∗|
τ

)
(3)

is used for spatial and temporal smoothing parameters σ and τ . In this study, the smoothed
velocity field should take the same value as zi,j when x = xi and t = tj , i.e.

lim
∆x→0,∆t∗→0

Φ(∆x,∆t∗)→∞.

This is not the case in (3) and consequently the exponential kernel is replaced with

Φ(∆x,∆t∗) =

( |∆x|2
σ

+
|∆t∗|2
τ

)−1

. (4)

The relative decay of measurements in space and time can be regulated through appropriate
choice of the smoothing parameters σ and τ . In the following analysis σ = τ = 1, however,
further investigation is required to determine what values are the most beneficial for dynamic
modelling purposes.

Note that Φ = 0 only when either ∆x → ∞ or ∆t → ∞. Here, the modified ASM is
applied separately for each edge and consequently if vehicle is outisde of the spatial domain of
interest, it is automatically assigned Φ = 0. Furthermore, note that temporal summation in
(2) is bounded by hard limits jmin and jmax thus ignoring zi,j corresponding to large values of
∆t∗.

2.2 Dimensional reduction

In order to design an estimator, it is necessary to express a system in the state space formulation.
Given continuous velocity field, a natural choice for a state space is to discretise every link in
the network and set quantity corresponding to each spatial location to be one of the states.
Nonetheless, in a network with multiple links, the dimension of the problem can be too large
for real-time applications and it is necessary to reduce the number of degrees of freedom.

The velocity field u(x, t) is therefore defined as a sum of time-invariant structures Φi(x)
such that

u(x, t) ≈ ū(x) +

r∑
i=1

ai(t)Φi(x), (5)

where the scalar coefficient ai(t) is associated with Φi(x) and describes its evolution in time.
The term ū(x) is a time-constant part of the dynamics and can represent, for example, mean
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flow or steady-state solution to the underlying equations. Given (5), in order to reduce the
dimension of the problem, ai is set to be variables in state vector a. Note that now the size r
of a ∈ Rr can be set freely allowing for drastic dimensional reduction.

There exists a large variety of possible choices for Φi(x) [18]. In the following analysis,
Φi(x) will be set to the output of Principal Component Analysis (PCA) [11]. The PCA is a
widely used technique which produces structures Φi(x) that give the optimal approximation of
(5) with respect to l2-norm and which are orthonormal (i.e. Φi(x)>Φj(x) = δij where δij is the
Kronecker delta). The orthonormality of Φi(x) is beneficial as it allows us to obtain projection
coefficients ai(t) in a straightforward manner where ai(t) = Φi(x)>u(x, t). Furthermore, prin-
cipal components are ordered with respect to explained variance making it easy to select the r
most important structures.

2.3 Dynamic model and estimator

In order to obtain the velocity field in the network, live information about PCA projection
coefficients ai(t) are necessary. This can be obtained using the Kalman filter [19], which is
state-space model-based estimation technique. Given imperfect dynamic model and some noisy
measurements, Kalman filter can produce a state estimate which is more accurate based on a
single set of measurements or integration of the dynamic model.

The estimated dynamical system is expressed in the linear state space formulation such that

at+1 = Aat (6a)

yt = Cat (6b)

where at = [a0(t), . . . , ar(t)]>. Note that functions in (1) are replaced with matrices A ∈ Rr×r,
C ∈ Rp×r. The Kalman filter works by recursively applying a two-step procedure: prediction
and update. In the prediction step, the values at the next step are obtained by propagating a
current state forward in time using dynamical model, i.e. by applying (6a). Subsequently, once
a new measurement is available the predicted step is updated based on the difference between
acquired and predicted measurements, i.e. yt −Cat.

The Kalman filter algorithm was originally formulated for linear state dynamics and obser-
vation mappings (with nonlinear extensions such as Extended Kalman Filter [20] or Unscented
Kalman Filter [21] developed later). Due to simplicity and low-computation cost, a linear form
will be utilised here. The values of A and C are obtained using a solution to least squares
problem on some training data, i.e.

A = arg min
A∗

∑
t

||at+1 = A∗at||2, (7a)

C = arg min
C∗

∑
t

||yt = C∗at||2. (7b)

Furthermore, the accuracy of Kalman filter estimates increases if the relative inaccuracies in
the dynamical model and observation mapping are provided through process and observation
noise covariance matrices, Q and R respectively. Using the same training data as in (7), Q and
R are defined as

Q = epe
>
p (8a)

R = eme>m (8b)
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Figure 1: Test case of vehicles approaching a junction is used to analyse the methodology
presented in Section 2.

where

ep =
[
a1 −Aa0 . . . aN −AaN−1

]
em =

[
y0 −Ca0 . . . yN −CaN

]
and N is the size of the training data.

3 Case Studies - Cars approaching a traffic junction

The methodology outlined in Section 2 is analysed on the simple test case of the vehicles
approaching a junction on a link with single lane. The analysed scenario will be referred to as
Test Case 1 and corresponding SUMO network is presented in Figure 1. The investigated lane
is 95.25m long and 3.20m wide. The induction loop is placed at x = 89.25m. The routes are
generated such that the car enters the lane approximately every 10s leading to congested traffic
conditions. First, it is assumed that each vehicles has identical parameters given in Table 2
and is driving according to Intelligent Driver Model (IDM) without any driver imperfections.
Test Case 1 is simulated using SUMO 0.32.0 [22] for t ≤ 2h. Data is sampled with the constant
timestep of δt = 0.1s, resulting in 72,000 sets of measurements.

In order to test the robustness of the estimation approach Test Case 2 is constructed which
consists of multiple separate simulations. In this case, every vehicle is assigned with a certain
degree of imperfection. For desired speed u∗(t) given by IDM, the speed of each vehicle is
modified such that u(t) = ku∗(t). The value of k is chosen using the following procedure: 1)
first, k is drawn from Gaussian distribution, k ∼ N (1, σ2); 2) subsequently, in order to avoid
excessively slow and fast vehicles in the network, lower and upper caps are introduced such
that 0.2 < k < 2. Separate simulations are performed for σ2 = {i ∈ N|i ≤ 4}. It is noted that
since the upper and lower caps are introduced, distribution of k is no longer Gaussian and as
σ2 →∞ it will converge to Bernoulli distribution. Consequently, σ2 does not describe variance
of k in a strict sense.
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Length Minimum headway Acceleration ability Deceleration ability Maximum velocity
5.0 m 2.0 m 0.8 m/s2 4.5 m/s2 25 m/s

Table 2: Vehicle parameters used in the simulation of Test Case 1.

4 Results

In order to prevent over fit in the model construction, the data-set is split into two equal subsets
corresponding to t ≤ 1h and t > 1h. The latter set is used to perform principal component
analysis and obtain the dynamical model (see Section 4.2-4.3) whilst the first half is used to for
estimation (see Section 4.4).

4.1 Modified ASM analysis

The modified ASM methodology outlined in Section 2.1 is applied to data corresponding to all
aforementioned Test Cases. The lane is discretised into 100 points and the temporal window
in (2) is set such that jmax and jmin always satisfy jmax − jmin = 10s and t = 1

2 (jmax +
jmin). The value of 10s is chosen so that weight Φ(0,∆t∗) generated using kernel (4) associated
with measurements temporally furthest away satisfies Φ(0,∆t∗) < 0.05. The spatio-temporal
diagram of obtained from the modified ASM together with temporal and spatial snapshots at
fixed locations are presented in Figure 2.
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Figure 2: (a) Spatio-temporal diagram obtained from the modified Adaptive Smoothing
Method, (b) spatial snapshot at t = 200s, and (c) temporal snapshot at x = 48m. Note
that locations of the snapshots are represented on the spatio-temporal diagram.

Figure 2a shows that the vehicles enter the lane initially at high speeds until the lane becomes
saturated, and congested traffic conditions develop. This can be observed especially well in the
temporal snapshot in Figure 2c where the regular wave-like structure is visible travelling in
time. The regularity of this feature implies that there are vehicles present in the lane at every
change of traffic light. It is noted that associated timescale is controlled by the length of the
traffic light stages. Furthermore, a waveform with a wave number corresponding to the vehicle
length can be observed in the spatial snapshot in Figure 2b, implying that vehicles occupy the
whole length of the lane.

7



Low-dimensional estimation and prediction framework Krol, Anvari and Lot

0 50 100
Distance (m)

0.08

0.10

Φ
(x

)
Principal Component 1

(a)

0 50 100
Distance (m)

−0.1

0.0

0.1

Φ
(x

)

Principal Component 2

(b)

0 50 100
Distance (m)

−0.1

0.0

0.1

Φ
(x

)

Principal Component 3

(c)

100 200 300
Time (s)

0

10

20

30

a
(t
)

Principal Component 1

(d)

100 200 300
Time (s)

0

20

a
(t
)

Principal Component 2

(e)

100 200 300
Time (s)

0

20

a
(t
)

Principal Component 3

(f)

Figure 3: Three principal components of the data are presented in (a), (b) and (c), and their
corresponding projection coefficients are illustrated in (d), (e) and (f) respectively.

4.2 PCA analysis

Principal components of the data presented in Figure 2 are calculated in this section in order to
obtain the separation of variable of the form (5). Note that, usually (5) contains a time-constant
structure ū(x). However, here, ū(x) = 0 is chosen based on the assumption that if other form
of ū(x) is significant, it will emerge as Φi(x) for which ȧi(t) ≈ 0.

The first three principal components Φi(x) and their corresponding projection coefficients
ai(t) are presented in Figure 3. Although, principal component decomposition should be anal-
ysed taking into account all components at the same time, a certain level of interpretation
can be achieved by investigating each component individually. The shape of the first principal
component in Figure 3a demonstrates that the maximum velocity in the link is achieved in the
middle of the lane. The second principal component in Figure 3b shows vehicles departing from
the analysed lane in the situation where traffic light stage changes to green. When its projec-
tion coefficient becomes negative in Figure 3e, an increase in velocity downstream is observed.
Subsequently, when its coefficient becomes positive, upstream velocity field increases implying
that the vehicles in the back of the queue start to accelerate. It should be noted that projection
coefficients exhibit progressively higher frequencies for higher orders of principal components,
representing harmonics of the system.

In order to choose the appropriate size of the low-dimensional space (r in (5)) singular values
si of the principal components are investigated. Singular values give us information regarding
the explained variance σ2

i of each principal component such that σ2
i = s2

i /
∑

i s
2
i . The total

explained variance, σ2(r) =
∑r

i=1 σ
2
i as a function of r is analysed and presented in Figure 4a.

It can be seen that the value approaches σ2(r) → 1 at fast rate and σ2(r) > 0.99 for r ≥ 6.
Consequently, r = 6 is chosen for further analysis.
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Figure 4: (a) Shows the explained variances of the principal components corresponding to the
data in 2a, and (b) is the R2 corresponding to linear model applied over a range of prediction
horizons.

4.3 Dynamical modelling

Linear model required in Kalman filter is obtained by solving (7a) on the training data set.
Figure 4b shows the values of R2 for each of the projection coefficients when linear model is
applied in order to predict state values over a range of future prediction horizons th. It is showed
that over a short period of time linear model provides a good description of the dynamics, where
first four of the projection coefficients exhibits R2 > 0.6 for th > 20s. It can be also seen that
as the order of the projection coefficients increases the relationship between R2 and th becomes
more irregular. This is due to the fact that PCA in many cases is able to separate noise and
coherent structures into separate principal components, so that noise is primarily contained in
higher order components. This feature is also visible in the analysed system where higher order
projection coefficients contain high frequency oscillations.

In addition to dynamical model, it is necessary to provide measurements y which will be
used to update state a. Using instantaneous velocity, u(t) from induction loop obtained directly
from SUMO simulation, time-delayed valued are introduced in the construction of y such that
yt = [u(t), u(t−δt), . . . , u(t−nδt)]> for n delayed measurements. The mapping C is obtained by
solving (7b). Noting that measurements are not available when there are no vehicles occupying
the induction loop, (7b) is only solved for t when ‖yt‖0 = n+ 1. The value of n is chosen based
on solution to the inverse problem

min
C−1

∑
t

||C−1yt − at||2

and investigation of R2 corresponding to estimate of each state in at. It was observer that
relative increase in value of R2 for n = 6 is less than 5% and consequently n = 5 is chosen.
Despite omitting measurements where yt is not a full vector, N ≈ 30, 000 samples are used to
solve (7b).

Given A and C obtained on the training data, noise covariance matrices are obtained using
(8).
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Figure 5: Estimation results for first three principal components.

Principal Component 1 2 3 4 5 6
εi 0.242 0.284 0.382 0.584 0.856 0.789

Table 3: The relative squared errors (10) corresponding to results presented in Figure 5.

4.4 Estimation results

4.4.1 Test Case 1

Using model obtained in Section 4.3 Kalman filter is applied to measurements y outside the
training domain, covering initial portion of the data. Standard Kalman filter is modified to
take into account the fact that y is not available at every timestamp. Recalling that Kalman
filter consists of prediction and update stages, here, when there are no vehicles occupying
the induction loop only the prediction step is applied and the update stage is omitted. The
estimated coefficients together with the reference data are presented in Figure 5.

At the initial stage of the simulation vehicles enter the analysed domain for the first time,
and the system is converging towards congested condition. The dynamics at that stage is highly
nonlinear and such phenomena are not included in the training data. On the other hand for
t > 150s, the system exhibits oscillatory wave-like behaviour, where the linear Kalman filter
formulation provides accurate estimates. The relative squared error,

ε2i =

∑
t>150(ai(t)− âi(t))2∑

t>150(ai(t))2
(10)

is calculated for each of the estimated projection coefficients âi with the values shown in Table
3. It is observed that dynamics of the first three principal components is estimated accurately
with εi < 0.5. The errors are larger for components of the higher order which correspond to
frequencies higher than those which characterise the induction loop measurement. In those
cases nonlinear mapping between state and measurement might be necessary. Nonetheless, it is
noted that the contribution of the higher order components to explained variance is relatively
small (see Figure 4a) and the estimate errors should have significantly smaller impact on the
accuracy of the reconstructed velocity field û(x, t).

Although analysis of (10) gives a beneficial insight into the accuracy of the estimation, the
accuracy of the reconstructed velocity field û(t) and its similarity to actual velocity profiles of
the vehicles in the network should be used as the key performance metric. Consequently the
following discrete error metric is defined. Given û(x, t) and set of 3-tuples (vi, xi, ti) containing
respectively velocity and location of the vehicle and time at which measurement is obtained,

10
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Figure 6: The scatter plot of velocities vi and corresponding reconstructed velocity field û(xi, ti).
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Figure 7: The error metrics for estimation framework applied to data with imperfect drivers
for a range of σ2.

the error metric is given by

ε2v =

∑
i(û(xi, ti)− vi)2∑

i v
2
i

. (11)

It is noted that the same vehicle is used multiple times in the error calculation but for different
values of xi and ti.

The scatter plot of velocities vi and corresponding reconstructed velocity field û(xi, ti) for
t > 150s is given in Figure 6. Note that, for the visualisation purposes, data in Figure 6 was
subsampled and only randomly chosen 10% of all datapoints are presented. It is shown that
the on average estimated velocity is in the same range as the reference value. The values of εv
and R2 associated with results in Figure 6 are 0.286 and 0.907 respectively.

4.4.2 Test Case 2

The results in Section 4.4.1 were obtained based on an idealistic scenario where every driver
perfectly follows the IDM car-following model. The framework designed in Section 4.3 is sub-
sequently applied to more realistic Test Case 2. Recall that in this case each driver in the
SUMO simulation is associated with imperfection factor chosen using methodology described
in Section 3. Four scenarios are analysed for different values of σ2. The equivalent error metrics,
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i.e. error in estimation coefficients εi (10) and error against discrete measurements εv (11), are
presented in Figure 7. It is showed that the estimation of the first three projection coefficients
is robust with respect to σ2. On the other hand, higher order estimates give error of εi > 1
for σ2 > 2. Such values of εi implies that estimate of the coefficients is on average worse than
a constant model, and estimation of those dynamical features in fact reduces accuracy of the
reconstructed velocity field. This phenomenon is reflected in the rapid decrease of R2 in Figure
7b.

5 Conclusions

The methodology which estimates velocity profiles based on the real-time information from in-
duction loops was presented. The current implementation is linear and low-dimensional making
the demonstrated approach suitable in situations where computational cost and simplicity are
of high importance. The system was analysed on a simple problem of vehicles approaching
the traffic junction in a congested traffic. Such a system exhibits semi-linear dynamics and
can be well estimated using projection onto few structures and linear formulation of Kalman
filter. Additionally, model calculated based on a perfect data was applied to dynamics with
driver imperfections, where the estimation of key dynamical features corresponding to first few
principal components was showed to be robust.

The future work will involve the application of the developed methodology to more realistic
test cases; first with smaller and variable levels of congestion and second with traffic perturba-
tions. In those cases non-linear effects are expected to be of significance and will need to be
implemented in the dynamical model (1). The exact form of nonlinearity will be either obtained
from detailed analysis of car-following models or from data-driven model inference techniques.
Additionally, the network level test case will be developed and examined, because it is believed
that proposed technique is more suitable in systems with multiple road link since it allows for
radical reduction of degrees of freedom.
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