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Highlights 

 

 A CFD model is developed to simulate microwave heating in a millifluidic channel. 

 The effect of process parameters on the temperature profile are investigated. 

 Satisfactory agreement between modelling and experiments is obtained. 

 

 

Abstract 

Microwave technology is gaining popularity as a tool for chemical process intensification and 

an alternative to conventional heating. However, in flow systems non-uniform temperature 

profiles are commonly encountered and hence methods to characterise and improve them 
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are required. In this work, we studied the effects of various operational parameters - 

microwave power, inlet flow rate, tube orientation and pressure - on the electric field and 

temperature profiles of water flowing in a PTFE tube (2.4 mm internal diameter), placed in a 

commercial single-mode microwave applicator. A finite element model was developed to 

estimate the longitudinal temperature profiles and the absorbed microwave power, while in 

situ temperature monitoring was performed by a fibre optic probe placed at multiple locations 

inside the tube. The water temperature inside the tube increased by increasing the 

microwave power input and temperature profiles stabilised beyond 20 W, while the 

percentage absorbed microwave power showed the inverse trend. When changing the tube 

orientation or decreasing the inlet flow rate, microwave absorption decreased significantly. 

When the pressure was increased to 2.3 bara, water temperature increased by ~ 20 oC. 

Results from this study provide valuable insights on achievable temperature profiles and 

energy efficiency of microwave-assisted flow synthesis systems. 

 

Keywords: Microwave heating, Continuous flow, Heat transfer, Modelling 

 

 

 

1. Introduction 

Microwave heating has been studied over the past decades as an alternative to conventional 

heating. The main advantages of microwave technology are rapid heat transfer, selective 

heating (depending on the dielectric properties of the medium), superheating of the solvents 

and providing a renewable and sustainable heating source, since electricity can be sourced 

from renewable means [1]. These advantages have made microwave heating attractive in 

various areas including organic and polymerisation reactions [2-4], bioelectromagnetic 

studies [5], food processing [6], nanoparticle synthesis [7, 8], catalytic processes [9, 10], 

adsorption processes [11], reactive distillation [12] and microreactor processing [13-15]. 

Microwave heating is generally described as volumetric heating in nature, as it usually takes 

place over the entire workload volume and depends on the dielectric properties of the 

medium, which are also a function of  temperature and frequency [16]. Therefore, for certain 

conditions and dielectric property values, microwave energy is deposited directly into the 

entire workload volume and the mechanism is not driven by conduction and convection, as 

in conventional heating [8, 17]. Microwave and conventional heating can be combined by 

exploiting the rapid energy transfer of microwave power and the readily-controllable heat 

exchange by conventional heating to maintain the targeted temperature [10]. An interesting 

feature of this technology is the inverse temperature profile inside the heated medium [2], 

which  is due to the temperature gradient between the medium and the container and the 

heat loss to the surrounding medium. When the container dimensions are smaller or 
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comparable to the microwave penetration depth, the cross sectional temperature distribution 

could be uniform. Microwave heating has also received attention for large-scale or industrial 

systems, aiming to intensify chemical processes [11, 18]. This task requires optimisation of 

the microwave cavity for the targeted application, along with the microwave generators and 

the available reactors, to couple the electromagnetic phenomena with the heat generation in 

the scaled-up system [18].  

 

Temperature distribution in a medium subject to microwave heating depends on the 

electromagnetic field. In the case of micro-reactors and milli-reactors, the penetration depth - 

the distance from the medium surface, to the point where the microwave power drops to ~ 

37 % of the initial value at the surface - is much larger than the tube diameter [19]. Thus, 

microwave heating can be assumed to be homogeneous in the cross section and the spatial 

distribution of the electromagnetic field is described by Maxwell’s equations. Several studies 

were conducted in the past implementing computational modelling in order to simulate the 

temperature profile of solid materials [6], liquids (in batch or in flow) [17, 20] and liquid-solid 

particle systems [21]. Modelling studies of microwave heating use either the finite element 

method (FEM) [17, 20, 22-24] or the finite-difference time-domain (FDTD) [25, 26] 

techniques to couple and simultaneously solve the electromagnetic field, heat transfer and 

fluid flow to describe the system.  

 

Salvi et al. [22] compared results obtained by FEM modelling with experimental results for 

continuous flow of water in a PTFE tube placed inside a TE10 microwave applicator. 

Modelling overestimated the temperature of the medium, resulting in 5 – 20 oC discrepancies 

between experimental and computational results at the edges of the tube. These 

discrepancies were attributed to the no-slip boundary conditions resulting in zero fluid 

velocity at the tube walls, intensifying the electric field and thereby, the final temperature. 

However, another possible reason explaining those discrepancies was the insufficient 

meshing of the domains [22, 27]. Yousefi et al. [28] simulated the temperature profiles of 

water under continuous flow conditions in a vertical tube, undergoing microwave heating 

through a rectangular waveguide. They coupled heat transfer and fluid flow physics and 

discussed the effects of the inlet water velocity and applicator dimensions on the 

temperature profiles. Tuta and Palazoǧlu [24] coupled Maxwell’s equations, Fourier’s heat 

transfer equation and Navier-Stokes equation to optimise the microwave energy uptake to 

achieve greater and more uniform temperature increase of fluids in a pilot-scale, continuous 

flow, coiled PTFE tube under microwave heating. Varying dielectric properties and the 

presence of secondary flow were included in their studies. Robinson et al. [29] investigated 

the microwave dissipation on the walls of a microwave absorbing vessel (such as silicon 

carbide), resulting in elevated temperatures in the medium, as opposed to “microwave 
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transparent” vessels. From previous studies [17, 23, 30, 31] it is evident that the temperature 

profile depends on the geometry, dimensions and materials of the reactor, as well as reactor 

position and flow rate of the medium. Morgan et al. [31] described the presence of electric 

field depolarisation on a Teflon microfluidic chip on horizontal and perpendicular orientation, 

focussing on the reactor and medium characteristics rather than liquid flow. In their analysis 

they altered the orientation of the chip and observed higher heating efficiency when the 

electric field was parallel to the long dimension of the straight channels of the chip. 

 

In this work, we investigated numerically and experimentally the effects of various 

operational parameters on the temperature profile in a milli-scale tube placed in a 

commercial single-mode microwave applicator. We developed an FEM model that simulated 

the temperature and electric field profiles along the tube length and the absorbed microwave 

power and used it to study the effect of various operating parameters. 

 

2. Experimental section 

2.1 Experimental setup 

A commercial single-mode microwave applicator (Discover SP, CEM) was used for 

microwave generation. A U-shape tube of total volume 0.75 ml (inner diameter, I.D. 2.4 mm, 

outer diameter, O.D. 3.175 mm, length: 165 mm) on a flat-plate support structure was placed 

into the microwave cavity, allowing entrance and exit of the flowing medium from the top. 

The tube and the support structure were made of polytetrafluoroethylene (PTFE), which is 

considered a “microwave transparent” material due to its low dielectric loss factor. The input 

power ranged from 5 W to 35 W. The effect of the U-shape tube orientation on the 

temperature profile was studied by placing the support structure parallel and perpendicular 

to the microwave port, hereafter referred as “parallel-to-port” and “perpendicular-to-port”, 

respectively. The flow rates of water were 0.5 ml/min, 0.7 ml/min and 1.5 ml/min, resulting in 

mean residence times of ca. 0.5-1.5 min, and were controlled using syringe pumps (Legato 

270P, KD Scientific) with 25 ml glass syringes (25MDR-LL-GT, Scientific Glass 

Engineering). The pressure inside the tube was regulated with a backpressure regulator 

(maximum 4 barg, Swagelok). Immediately after switching on the microwave power, the 

temperature rapidly increased and reached the target temperature, but we allowed extra 

time before taking the temperature readings (5 min) in order to ensure there were no 

temperature fluctuations over time. Temperature was monitored via a fibre optic temperature 

sensor (O.D. 1.7 mm, T1s, Neoptix) with direct temperature measurements at 5 different 

positions throughout the tube length. The fibre optic sensor was inserted from the tube 

outlet, to avoid flow disturbances and measurement inaccuracy [17]. Temperature 
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measurements were performed at 36 mm (point 1), 70 mm (point 2), 83 mm (point 3), 95 mm 

(point 4) and 135 mm (point 5) from the tube inlet (point 0) (see Figure 1).  

 

2.2 Materials and methods 

Ultra-pure water (15 MΩ·cm) was used for all experiments. PTFE tubes (1 mm I.D., VICI 

Jour) were used for all fluidic parts and polyether ether ketone (PEEK) ferrules and fittings 

were used for all connections. Dielectric constant and dielectric loss of water were 

experimentally evaluated for the temperature range 20-95 oC at atmospheric pressure, 

following the methodology previously described in literature [32], and are shown in Table S1 

(Supplementary Information). The measurements showed that the water dielectric properties 

were almost constant for each measured temperature between 2.45 GHz and 2.47 GHz, 

which is within the magnetron specifications. PTFE was assumed to be microwave 

transparent in the studied conditions (𝜀𝑟,𝑃𝑇𝐹𝐸 = 2.1 − 0𝑗) [16]. 

 

3. Mathematical model development 

3.1 Geometry and discretisation of the cavity 

The model geometry is a representation of the geometrical features of the single-mode 

microwave applicator, as shown in Figure 1. The microwave generator utilised a magnetron 

set at 2,460 MHz (+/- 10 MHz) having microwave power range 1-300 W. The computational 

modelling considered only the cavity and the tube with the support structure. The cavity was 

made of stainless steel and contained a PTFE protective ring. Within the metallic cavity there 

were 6 rectangular ports, providing uniform electromagnetic field to the load placed in the 

cavity. The geometry of the applicator and the tube are displayed in Figure 1. 

 

The analysis of the electromagnetics and heat transfer in the system was carried out in 

COMSOL Multiphysics software (v.5.3a, COMSOL Inc.), similar to the methodology 

described by Sturm et al. [20], and computational analysis was divided into two steps. A 

diagram of the interconnected computational steps is shown in Figure 2. In the first step, the 

Electromagnetic Waves module was solved for the electric field throughout the length of the 

tube, by keeping the dielectric properties (dielectric constant 𝜀′ and dielectric loss 𝜀′′) of 

water constant at 20 oC (Figure 2, Step 1) including all domains (the metal cavity, the 

contained PTFE protective ring, air, the PTFE support structure, the PTFE tube and the 

water flowing inside the tube). No fluid flow was taken into account at this stage. Due to the 

difference in transmitted and reflected microwave energy [20] and the lack of control over 

matching impedance, a parametric sweep over the magnetron frequency was conducted 

under the respective experimental conditions. The parametric sweep was performed over 

the frequency of the magnetron which varied between 2,450 MHz and 2,470 MHz at a 5 
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MHz step, for each microwave power. In the second step, the Heat Transfer and the Laminar 

Flow modules were coupled for the computation of the temperature profile of water in the 

tube, for the corresponding laminar flow conditions (Figure 2, Step 2). Heat losses via 

conduction from the water to the tube wall and support structure, as well as via radiation and 

natural convection were also taken into account. The heat source across the tube length was 

calculated based on the electric field profile evaluated in the Electromagnetic Waves module 

(Step 1). Varying electric field profiles for each set of microwave power and respective 

magnetron frequency (from the parametric sweep) were obtained in Step 1 and used in Step 

2. The magnetron frequency which resulted in the highest power absorption was estimated 

by comparing the experimental and computational results of the temperature for each set of 

frequencies; the frequency value at which we observed maximisation of the absorbed 

microwave power and minimum discrepancy between experimental and computational 

results was denoted as the optimum magnetron frequency, and was found to be 2.47 GHz 

for all cases. For the three different flow rates studied, the Reynolds number for water at 20 

oC was in the range 4.96-14.9, confirming the existence of laminar flow in the U-shape tube. 

 

 

Figure 1. (Left) schematic of inner parts of the CEM Discover SP microwave applicator. (Right) the 

tube with the PTFE support structure. The tube is displayed in grey colour and the fibre optic 

temperature probe is displayed in yellow colour. The blue mark indicates the tube inlet (point 0) and 

the red marks indicate the points of temperature measurements made by inserting the probe from the 

tube outlet (point 1: 36 mm, point 2: 70 mm, point 3: 83 mm, point 4: 95 mm, point 5: 135 mm from 

tube inlet). Images are not to scale. 

 

Meshing for Step 1 was set at “Coarse” (element size max: 16.5 mm, min: 5.07 mm) for the 

metal cavity, the contained PTFE protective ring and the air domains, “Fine” (element size 

max: 6.71 mm, min: 1.27 mm) for the PTFE support structure and the PTFE tube, and “Extra 

fine” (element size max: 2.91 mm, min: 0.19 mm) for the water flowing inside the tube, 

resulting in 1,442,208 elements. The simulations were carried out in “Frequency Stationary” 

mode, as steady state conditions were assured during the experimental procedure. Meshing 
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for Step 2 was set at “Fine” (element size max: 6.71 mm, min: 1.27 mm) for the PTFE 

support structure and the PTFE tube, and “Extra fine” (element size max: 2.91 mm, min: 

0.19 mm) for the water flowing inside the tube, resulting to 356,826 elements. The computer 

used was equipped with an Intel® Xeon® CPU E5-2637 V3, at 3.50 GHz (2 processors), with 

192 GB RAM, running on 64-bit Windows® Server 2016. Total simulation time was ca. 26 

min for both Step 1 and Step 2. Calculations using finer meshing showed that results were 

mesh-independent.   

 

  

Figure 2. Diagram of the interconnected modules and variables for the two steps of the Finite 

Element Method model developed in COMSOL Multiphysics. In Step 1, the Electromagnetic Waves 

module computed the electric field profile throughout the tube length. In Step 2, the Heat Transfer and 

Laminar Flow modules were coupled for the computation of temperature profile. The microwave 

power density in Step 2 was calculated as a function of the electric field output from Step 1.  

 

3.2 Electromagnetic Waves module 

The temperature distribution in a material that is being subject to microwave heating 

depends on the electromagnetic field. The electric field profile given by the Helmholtz 

representation of Maxwell’s electromagnetic field equations is described by [33]: 

 ∇2𝜠 + 𝜀𝑟 (
2𝜋𝑓

𝑐
)

2

𝜠 = 0 (1) 

where 𝜠 is the electric field vector of the time-harmonic oscillating microwave field, 𝑓 is the 

frequency of the electromagnetic field, 𝑐 is the speed of light in vacuum and 𝜀𝑟 is the relative 

complex permittivity, which consists of the dielectric constant 𝜀′ and dielectric loss 𝜀′′ (𝜀𝑟 =

𝜀′ − 𝑗𝜀′′). 𝜀′ is dependent on the material and describes its potential to store the microwave 

energy and thus be polarized by the electromagnetic field. 𝜀′′ describes the efficiency of the 

material in converting electromagnetic energy into heat. The higher the dielectric loss, the 

higher is the amount of electromagnetic energy which is converted into heat (i.e., leading to 
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a higher final temperature). The microwave power density in the medium is described by [16, 

20]: 

 𝑃𝑑 = 2𝜋𝑓𝜀𝜊𝜀′′|𝜠|2 (2) 

where 𝜀𝜊 is the electric permittivity of vacuum and |𝜠| is the electric field intensity. 

 

The input parameters for the Electromagnetic Waves module were the input microwave 

power and the magnetron frequency and the output was the electric field profile. The model 

assumptions and boundary conditions for Step 1 are included in Section 3 in the 

Supplementary Information. 

 

3.3 Heat Transfer module 

The heat transfer in the medium (workload) was calculated using the Heat Transfer module 

in Step 2 (Figure 2). Temperature rise in the medium depends on the coupling of Maxwell’s 

equations and Fourier’s heat transfer equation [26, 28]: 

 𝜌𝐶𝑝(𝒖 ∙ ∇𝑇) = ∇𝑄 + 𝑃𝑑  (3) 

The term on the left hand side describes the contribution of convection to heat transfer. The 

first term on the right hand side describes the contribution of conduction to heat transfer and 

the second term is the heat generation in the medium. The heat flux through the tube wall 

and support structure is given by Equation 4, while the heat loss to the ambient environment 

due to natural convection and radiation is given by Equation 5: 

 𝑄 = 𝑘∇𝑇 (4) 

 𝑄 = ℎ𝑎𝑖𝑟(𝑇𝑎𝑖𝑟 − 𝑇) + 𝜀𝜎(𝛵4
𝑎𝑖𝑟 − 𝛵4) (5) 

where 𝜌 is the density, 𝐶𝑝 is the specific heat capacity,  𝑄  is the heat flux, 𝒖 is the fluid 

velocity field vector inside the tube, 𝑇 is the temperature, 𝑃𝑑 is the microwave power 

density, 𝑘 is the thermal conductivity, 𝑇𝑎𝑖𝑟 is the air and ambient temperature, ℎ𝑎𝑖𝑟 is the heat 

transfer coefficient for natural convection, 𝜀 is the surface emissivity and 𝜎 is the Stefan–

Boltzmann constant. The water thermal properties and other parameters used in the model 

are provided in Tables S3 and S4 in the Supplementary Information.  

 

3.4 Laminar Flow module 

The fluid flow profile was computed using the Laminar Flow module, as shown in Step 2 

(Figure 2), by solving the momentum balance equation (incompressible Navier–Stokes 

equation) described by [34]: 

 𝜌[𝒖 ∙ ∇𝒖] − 𝜂∇ ∙ [∇𝒖 + (∇𝒖)𝑇] + ∇𝑝 = 0 (6) 
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and the continuity equation for incompressible fluids: 

 𝜌(∇ ∙ 𝒖) = 0 (7) 

where 𝜌 is the density of the medium, 𝜂 is the  dynamic viscosity, 𝒖 is the fluid velocity field 

vector and 𝑇 is the temperature. The first term in the momentum balance equation is the 

inertial forces, the second term is the viscous forces and the third term is the pressure 

gradient. No slip boundary condition was set on the inner tube wall in contact with the liquid. 

Temperature and fluid velocity were obtained via the coupled calculation in Step 2 between 

Heat Transfer and Laminar Flow module (Figure 2). The values of the various parameters 

used in the simulations are given in Table S3 in the Supplementary information. 

 

4. Results and Discussion 

4.1 Influence of process parameters on temperature profile 

The microwave field is influenced in general by the dielectric properties of the materials 

used, the level of the microwave power and the flow conditions. These interactions result in 

different temperature profiles throughout the tube length which affect the reaction rates of 

reactive processes. Microwave heating is related to the workload inside the cavity, therefore 

microwave power and flow rate were investigated for their effect on the temperature profile 

over the tube length. Due to the perturbation of the electric field by the geometrical 

characteristics of the cavity and the tube, we varied the orientation of the tube with respect to 

the microwave port of the applicator. Finally, the effect of system pressure on dielectric 

properties and temperature profiles was investigated, since elevated pressures, commonly 

used in chemical syntheses, increase the boiling point of the liquid in the system.  

 

4.1.1 Effect of microwave power on temperature profile 

Figure 3 shows the temperature profile in the centre of the tube along its length, at different 

input microwave powers. All experiments were conducted at atmospheric pressure and for 

that reason maximum temperature achieved experimentally was around 100 oC (boiling point 

of water). For the cases of 25 W, 30 W and 35 W, the maximum temperature reached 100.8 

± 0.5 oC, exceeding that of water boiling point. This could be attributed to the superheating 

effect of water under a microwave field, due to lack of bubble nucleation sites [35, 36]. 

Increasing microwave power from 5 W to 35 W resulted in temperature profiles with similar 

trends, despite the higher energy intensity. Comparing the experimental temperature profiles 

between 5 W to 15 W, an upward trend for the same measurement positions can be 

observed (Figure 3a). Close to the outlet of the tube (at point 5), there was a ~ 30 oC 

increase when the microwave power increased from 5 W to 15 W. However, when 

increasing microwave power from 20 W to 35 W, there was no further temperature increase 
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at the same measurement positions (Figure 3b). This behaviour can be explained by the 

absorbed microwave power being similar at different microwave power inputs, as described 

in Section 4.2.2. Note that for 15 – 35 W input power, the temperature at point 5 varied 

between 87-89 oC and it was lower than the maximum temperature measured in the middle 

of the tube (Figure 3a and 3b). Reasons for the observed temperature drop were the heat 

losses via conduction (to the exterior of the PTFE tube and the support structure), radiation 

and natural convection, as well as the lower electric field intensity towards the outlet of the 

tube [37]. Another factor contributing to this temperature drop was phase change. As water 

reached the boiling point in the middle of the tube, vapour bubbles formed, which have 

different dielectric properties than liquid water [38], and reflected the microwave radiation, 

subsequently leading to perturbation of the electric field [31]. 

 

Although there was satisfactory agreement between experimental and computational results, 

discrepancies were observed. Following the parametric study on the magnetron frequency, 

the optimum magnetron frequency was 2.47 GHz, resulting in maximum microwave power 

absorbance and minimum difference between experimental and computational results on the 

temperature profile. The FEM model underestimated the temperature close to the inlet (point 

1) by ~ 2.5 oC up to 25 W and it increased in the middle of the tube (points 2 – 4) varying 

between 1.5 oC (30 W) to 25 oC (15 W). These discrepancies were not constant throughout 

the tube length, but varied with microwave power and position in the tube. They could be 

related to the characteristic non-uniform electromagnetic field scattering along the tube 

length inside the microwave cavity, which leads to non-isothermal heating. Additionally, they 

could be associated with unstable magnetron behaviour due to overheating and the effect of 

reflected microwaves on applicator cavity and the magnetron [20, 30]. Salvi et al. [22] 

observed that FEM modelling overestimated the temperature of the medium both at the 

centre and the walls of the tube, and attributed the latter to high electromagnetic density as a 

result of zero liquid velocity (no slip boundary condition) imposed on the walls. It is worth 

noting that the 3-dimensional electric field intensity inside the water phase was utilised in our 

analysis for improved prediction of the temperature profile. Regarding phase change and 

subsequently bubble formation, Salvi et al. [22] modified their model to account for this 

phenomenon and their model seemed to over-predict the temperature at higher temperature 

regions. In our study, we accounted for phase change by assuming the dielectric loss of 

water 𝜀′′ = 0 when the temperature reached 100 oC at 1 bara, and therefore no microwave 

absorption occurred. Experimentally, bubbling was observed from 95 oC and hence 𝜀′′ 

values were measured only up to 95 oC (see Table S1), and for the FEM modelling a linear 

interpolation between 𝜀′′ at 95 oC and 𝜀′′ = 0 at 100 oC was performed by COMSOL.  
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Cherbański and Rudniak [23] also discussed the sources of the discrepancies between 

experimental and computational results. According to their study, the shift in the magnetron 

frequency was the primary parameter affecting the experimental results. The type of the fibre 

optic sensor and the assumption of constant dielectric properties could enhance the 

observed discrepancies. However, Robinson et al. [32] examined the effect of a fibre optic 

probe in batch conditions, showing negligible changes on electric field distribution because 

of the probe. We compared the simulated temperature profiles with and without the fibre 

optic, and even though the fibre optic affected the electric field intensity locally, the 

temperature profile was not affected (see Figures S2 – S3, Supplementary Information). 

 

 

Figure 3. Experimental and computational results of the temperature profile inside the tube, when 

varying microwave power (a) 5-35 W, (b) 20-35 W. Flow rate, 0.7 ml/min; tube orientation: parallel-to-

port; system pressure, 1 bara; frequency, 2.47 GHz (marks: experimental results; lines: computational 

results). Error bars correspond to the standard deviation of three experimental measurements at each 

point. Computational results correspond to the temperature profile in the centre of the tube (water 

domain). 
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4.1.2 Effect of tube orientation on temperature profile 

Tube orientation was studied by placing the tube assembly parallel (parallel-to-port) and 

perpendicular (perpendicular-to-port) to the microwave port, as shown in Figure 4. 

 

 

Figure 4. Experimental and computational results of the temperature profile inside the tube, when 

varying the tube orientation. Flow rate, 0.7 ml/min; microwave power, 35 W; system pressure, 1 bara; 

frequency, 2.47 GHz (marks: experimental results; solid lines: computational results). Error bars 

correspond to the standard deviation of three experimental measurements at each point. 

Computational results correspond to the temperature profile in the centre of the tube (water domain). 

 

The temperature profile inside the tube was affected by the orientation of the tube with 

respect to the microwave port, leading to a 50 oC difference in the maximum temperature 

reached (Figure 4). Morgan et al. [31] discussed the effect of the depolarisation of the 

electric field when the microwave radiation crosses the boundaries of materials of different 

dielectric properties, as well as its dependence on the material geometry and orientation in 

the cavity. In our study, the maximum unperturbed electric field intensity was observed in the 

centre of the applicator (Figure 5a) and for this reason the tube was placed in the centre of 

the cavity, similar to previous studied microwave-assisted syntheses for maximum 

microwave power absorbance [5]. Due to the geometrical characteristics of the cavity of the 

Discover SP – considering the 6 rectangular ports on the metallic cavity – both the straight 

inlet and the outlet parts of the U-shape tube were always parallel to the sidewalls of the 

cavity whereas a minor area of the curved part was parallel to port. Therefore, the observed 

differences on the temperature profile and heating rate were the result of the interaction of 

the U-shape tube with the minima and maxima of the resonant electric field. These 

interactions of the tube with the electric field affected the temperature profile experienced by 
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the liquid. Figure 5b and 5c show the different electric field profiles inside the tube when 

placed in parallel-to-port and perpendicular-to-port orientation, respectively.  

 

The microwave power density was one order of magnitude higher when the tube was placed 

parallel-to-port (Figure 6a), instead of perpendicular-to-port (Figure 6b). In parallel-to-port 

orientation, the maximum power density was located at the curved part of the tube, which 

was parallel to the applied field, resulting in the maximum observed temperature. 

Considering the electric field profiles and the microwave power density along the tube, 

changing the tube orientation to perpendicular-to-port position resulted in significant 

depolarisation which lessened the heating efficiency, as described by Morgan et al. [31]. 

Experimental results of the temperature profile for perpendicular orientation showed a steep 

increase in the middle of the tube, while the temperature profile obtained from the 

simulations for the same conditions showed a steady temperature increase throughout the 

tube length (see Figure 4). The temperature difference between experimental and 

computational results in the perpendicular-to-port orientation, was between 0.3 – 19.0 oC, 

which was comparable to that in the parallel-to-port orientation (0.7 – 14.0 oC). 
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Figure 5. Electric field maps inside the (a) empty cavity and the tube for (b) parallel-to-port and (c) 

perpendicular-to-port tube orientation inside the microwave cavity. Flow rate, 0.7 ml/min; microwave 

power, 35 W; system pressure, 1 bara; frequency, 2.47 GHz.  
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 Figure 6. Microwave power density inside the tube for (a) parallel-to-port and (b) perpendicular-to-

port tube orientation inside the microwave cavity. Flow rate, 0.7 ml/min; microwave power, 35 W; 

system pressure, 1 bara; frequency, 2.47 GHz.  

 

4.1.3 Effect of inlet flow rate on temperature profile 

Microwave heating is related to the volume of the workload (volume of the medium) under 

the electromagnetic radiation and consequently the volumetric flow rate or the residence 

time of the medium [16, 19]. The effect of medium velocity was studied by varying the inlet 

flow rate from 0.5 ml/min to 1.5 ml/min and the results are shown in Figure 7. It has 

previously been shown that increasing the flow rate of the medium results in decreasing 

temperature at the outlet, due to the volumetric nature of the microwave heating [28]. Salvi et 

al. [37] increased the tap water flow rate by 2–fold in a vertical tube, resulting in a gradually 

decreasing temperature in the centre of the tube. Our study examined the effect of residence 

time on the axial temperature profile by increasing the flow rate of water by 3-fold at 

atmospheric pressure, under constant microwave power at 35 W and parallel-to-port 

orientation. Decreasing the flow rate from 0.7 ml/min to 0.5 ml/min, we observed a small 

difference in the experimental results on the water temperature profile (Figure 7). This could 

be related to the similar electric field profile and consequently same microwave power 

density in the tube for these two conditions. On the other hand, decreasing the flow rate from 

1.5 ml/min to 0.7 ml/min, the experimentally measured temperature at points 1- 3 increased 

by ~ 10 – 20 oC. With regards to the 1.5 ml/min flow rate experiment, the temperature close 

to the outlet (point 5) remained close to 100 oC, which is higher compared with the results 

obtained for 0.5 ml/min and 0.7 ml/min. The absorbed microwave energy was used to 

maintain the temperature near the boiling point and overcome the temperature drop 
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associated with heat losses due to conduction, radiation and microwaves reflection due to 

bubble generation. 

 

The FEM model enabled us to trace the temperature profile at different flow rates. We also 

note that the difference between experimental and theoretical temperature profiles obtained 

at 0.5 ml/min and 0.7 ml/min flow rates was similar, further validating the model. For all flow 

rates studied, the temperature discrepancies between experiments and simulations were of 

the same order of magnitude, similar to the previous cases (Sections 4.1.1 and 4.1.2).   

 

 
  

Figure 7. Experimental and computational results of the temperature profile inside the tube, when 

varying the flow rates. Microwave power, 35 W; tube orientation, parallel-to-port; system pressure, 1 

bara; frequency, 2.47 GHz (marks: experimental results; lines: computational results). Error bars 

correspond to the standard deviation of three experimental measurements at each point. 

Computational results correspond to the temperature profile in the centre of the tube (water domain). 

 

4.1.4 Effect of operating pressure on temperature profile 

The temperature profile inside the tube was examined at higher pressure, 2.3 bara, and 

various microwave input powers. An important parameter which defines the dielectric 

properties is relaxation time and describes the rate of increase and collapse of polarisation 

[39, 40]. For polar liquids, relaxation time is a function of temperature and viscosity, as 

dipoles are affected and oriented by the random molecular movement due to the thermal 

motion [19]. Researchers developed empirical formulas describing the dielectric properties 

and relaxation times of water as a function of temperature for given microwave frequencies, 

while studies on polar solvents considered pressure as another variable [41-45]. The effect 

of pressure on the dielectric constant of polar solvents was attributed to the increased 

compression of the liquid under pressure [41, 45]. The study of Schornack and Eckert [41] 

showed the importance of system pressure on the dielectric properties of polar solvents. 
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Bradley and Pitzer [46] and Floriano and Nascimento [47] developed empirical correlations 

to relate the dielectric constant of water to the system temperature and pressure. These 

correlations show that there is an insignificant increase in the dielectric constant when 

increasing the pressure to 2.3 bara (see Table S2, Supplementary Information). Increasing 

the system pressure the boiling point increases; the boiling point of water is 125 oC at 2.3 

bara. In order to simulate the system at 2.3 bara, the dielectric constant and dielectric loss of 

water were extrapolated from the experimentally measured properties at atmospheric 

pressure (see Figure S1, Supplementary Information). As described in Section 4.1.1, to 

account for the phase change above boiling point conditions, we assumed that the dielectric 

loss of water became zero, when the temperature reached 125 oC at 2.3 bara pressure. As 

bubbling was observed from 120 oC at 2.3 bara, the experimentally measured 𝜀′′ values 

were extrapolated only up to 120 oC. A linear interpolation was then performed between 𝜀′′ 

at 120 oC to 𝜀′′ = 0 at 125 oC by COMSOL. 

 

Figure 8 shows computational results of the temperature profile throughout the tube length at 

2.3 bara pressure. Although there was limited quantitative agreement between model and 

experiments for 5 W and 15 W under pressure, there was satisfactory agreement for 25 W. 

A temperature drop was observed at the tube outlet, similar to the results obtained at 

atmospheric pressure (1 bara). Comparing the experimental results shown in Figures 3 and 

8, for the same input microwave power, there was a 3-15 oC temperature increase at 5 W 

and up to 20 oC increase at 15 W and 25 W, when increasing the pressure to 2.3 bara. The 

temperature difference was higher towards the middle and near the outlet of the tube, where 

rapid temperature increase and higher temperatures were observed. Nevertheless, the 

temperature profile remained qualitatively similar.  
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Figure 8. Experimental and computational results of the temperature profile inside the tube at 2.3 

bara pressure, when varying microwave power in the range 5-25 W. Flow rate, 0.7 ml/min; tube 

orientation, parallel-to-port; frequency, 2.47 GHz (marks: experimental results, lines: computational 

results). Error bars correspond to the standard deviation of three experimental measurements at each 

point. Computational results correspond to the temperature profile in the centre of the tube (water 

domain). 

 

 

4.2 Modelling of the electric field and absorbed power under microwave 

irradiation 

The electric field inside the tube under microwave heating was simulated using the FEM 

model. The temperature profile was conjugated with the electric field profile, as the 

electromagnetic field governs the microwave absorbance and the observed temperature 

profile and vice versa, due to the dependency of the dielectric properties on temperature. 

Therefore, the developed model could offer an insight on the electromagnetics inside the 

tube and the energy balance of the system. A detailed discussion on the electric field profile 

and the absorbed microwave power is presented in the following sections. 

  

4.2.1 Electric field and temperature profile in the tube 

The electric field profile inside the cavity and tube is of major importance, as it is directly 

related to the microwave power density (Equation (2)). When the tube was placed in the 

cavity, it caused perturbation of the electric field. This perturbation was dependent on the 

geometry of the cavity and the dielectric properties of the materials, as well as the tube 

orientation, as previously discussed is Section 4.1.2. Figure 9 shows the electric field 

throughout the tube length, for parallel-to-port and perpendicular-to-port orientation. For 

parallel-to-port, there was an electric field maximum close to the middle of the tube. 

However, when the tube was placed perpendicularly to the applied field, the field fluctuated 
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around an average value (1 kV/m), affected by the field perturbation [31]. The electric field 

profile is also affected by the input microwave power. Figure 9 shows the electric field and 

theoretical temperature profile along the tube length for two input microwave powers (5 W 

and 35 W). For both cases, the temperature profile was not uniform (non-isothermal 

conditions) along the tube length, while water temperature increased rapidly and reached its 

maximum value around the middle of the tube, at ca. 90 mm, corresponding to the point 

where the curve of the tube was located and maximum electric field intensity was observed. 

Increasing the microwave power from 5 W to 35 W for parallel-to port orientation, the electric 

field intensity increased from 3.4x103 V/m (5 W) to 9x103 V/m (35 W) and the maximum 

temperature increased from ~ 55 oC (5 W) to ~ 100 oC (35 W).  

  

Figure 9. Computational results of the electric field and temperature profiles inside the tube for 

parallel-to-port orientation for 5 W and 35 W and for perpendicular-to-port orientation for 35 W. Flow 

rate, 0.7 ml/min; system pressure, 1 bara; frequency, 2.47 GHz (solid lines: temperature profile, dash 

dotted lines: electric field profile). Computational results correspond to the electric field and 

temperature profiles in the centre of the tube (water domain).  

 

4.2.2 Effect of the process parameters on absorbed microwave power 

The developed model allows the estimation of the power absorbed by the continuous flow 

system and evaluation of the desired process parameters for achieving the targeted 

temperature profile and minimising energy usage. The lack of monitoring of reflected power 

in the microwave cavity makes the computational model a necessary tool to estimate the 

energy required. The absorbed microwave power was calculated via volume integration of 

the tube [25], in the Step 2 of the computational methodology : 

 

 

 𝑃𝑡𝑜𝑡𝑎𝑙 = ∭ 𝑃𝑑

𝑉

𝑑𝑥𝑑𝑦𝑑𝑧    (8) 
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where 𝑃𝑑 is the microwave power density generated inside the tube and 𝑥, 𝑦, 𝑧 are the 

respective coordinates. 

 

Increasing the input microwave power to 20 W, the absorbed power reached 4.6 W. Further 

increase of the input power up to 35 W led to plateauing of the microwave absorption at 5 W, 

as it is a function of both the electric field intensity and the dielectric properties, which are 

temperature dependent. Therefore, given the temperature profile results in Figure 3a and 

Figure 3b, in which temperature increased by increasing the input power up to 20 W and it 

remained constant up to 35 W, increasing the input microwave power led to an excess of 

microwave power which could not be absorbed by the system (Table 1). 

 

There was a dramatic decrease on the microwave absorbance from 8.7 W to 5 W, 

corresponding to 25 % and 14 % of absorbed over input microwave power, respectively, 

when decreasing the flow rate from 1.5 ml/min to 0.7 ml/min at 35 W microwave power. 

Decreasing the flow rate further to 0.5 ml/min resulted to further drop to 12 % in the 

absorbed over input microwave power ratio. These results demonstrate the enhancement of 

the microwave efficiency at higher flow rates which could be a result of water dielectric 

properties change and possible bubble formation due to evaporation, causing perturbation to 

the electric field. Increasing the water temperature, the dielectric properties decrease 

causing alterations to the field perturbations, while water at lower dielectric loss values 

couples weakly with the applied microwave field. On the other hand, for the case study of 

tube orientation (D in Table 1) the absorbed microwave power for perpendicular-to-port 

orientation shows a 80 % decrease, as compared to parallel-to-port orientation, since parts 

of the U-tube coinciding with the minima and maxima of the applied electric field in resonant 

mode, affected the electric field profile and thereby the power density inside the tube. By 

increasing the pressure from 1 bara to 2.3 bara, the absorbed microwave power was 

unaffected, despite the significant temperature increase (E in Table 1), indicating the need 

for accurate dielectric data of water under pressure.  
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Table 1. Absorbed microwave power by water inside the tube for different experimental 

conditions (values in parentheses display the percentage of the absorbed over the input 

microwave power). 

Input microwave 

power, 𝑃𝑖𝑛 

 

  Absorbed microwave power 𝑃𝑡𝑜𝑡𝑎𝑙 (W) 

A B C D E 

5 W 

- 

1.9 (38 %) 

- - 

1.9 (38 %) 

10 W 3.1 (31 %) - 

15 W 4.0 (27 %) 4.0 (27 %) 

20 W 4.6 (23 %) - 

25 W 4.8 (19 %) 5.8 (23 %) 

30 W 4.9 (16 %) - 

35 W 8.7 (25 %) 5.0 (14 %) 4.1 (12 %) 1.0 (3 %) - 

A: Flow rate, 1.5 ml/min; tube orientation, parallel-to-port; pressure, 1 bara; frequency, 2.47 GHz 

B: Flow rate, 0.7 ml/min; tube orientation, parallel-to-port; pressure, 1 bara; frequency, 2.47 GHz 

C: Flow rate, 0.5 ml/min; tube orientation, parallel-to-port; pressure, 1 bara; frequency, 2.47 GHz 

D: Flow rate, 0.7 ml/min; tube orientation, perpendicular-to-port; pressure, 1 bara; frequency, 2.47 GHz 

E: Flow rate, 0.7 ml/min; tube orientation, parallel-to-port; pressure, 2.3 bara; frequency, 2.47 GHz 

 

5. Conclusions 

In this work, microwave heating of water continuously flowing in a small diameter tube was 

investigated. Microwave power played a significant role in the temperature profile and 

temperature increase throughout the tube length. When increasing the input microwave 

power up to 20 W, the longitudinal temperature increased for the same axial position, due to 

the increasing absorbed microwave power. Further increase of the input microwave power 

up to 35 W, resulted in an insignificant increase in the temperature profile, since the electric 

field intensity increased only to a low extent and the absorbed power remained constant. 

Changing the orientation of the tube from parallel to perpendicular position towards the 

microwave port led to 50 oC decrease of the maximum temperature and 80 % reduction of 

the absorbed microwave power, due to perturbation of the electric field. Decreasing the 

water flow rate from 1.5 ml/min to 0.5 ml/min resulted in the same final maximum 

temperature; however, the microwave absorbance reduced dramatically by 53 % due to the 

volumetric nature of the microwave heating. Increasing the pressure from 1 bara to 2.3 bara, 

which raised the water boiling point to 125 oC, resulted in higher temperatures for the same 

microwave power, despite the same qualitative temperature profile. The results of the 

developed computational FEM model showed sufficient qualitative and quantitative 

agreement with experimental data, thereby establishing a robust methodology for tuning the 
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operating conditions of microwave-assisted reactors to trace the temperature and electric 

field profiles and calculating the power absorption. 
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