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ABSTRACT 

 

Objectives: Alcohol dependence (AD) commonly co-occurs with bipolar disorder (BP) and 

schizophrenia (SZ). Together these heritable (and cross-heritable disorders) account for significant 

morbidity and mortality. The genetic comorbidity between AD, BP, and SZ was investigated to find 

genetic factors affecting risk for developing AD. 

Methods: Subjects were from the UCL AD (n=586), BP, and SZ samples and supernormal controls 

(SNC; up to 603 subjects). The BP and SCZ subjects were further categorized as having comorbid AD 

(BPALC n=143; SZALC n=77) or without AD comorbidity (BPnonALC n=367; SZnonALC n=384). 

The following single gene association study or Genome-Wide Association Studies (GWAS) of the 

above phenotypes were performed:  

i) Seven SNPs previously associated with AD in the GABRA2 gene were genotyped in 

the AD cases and SNCs. 

ii) GWAS of BPALC vs SNC; and BPALC vs BPnonALC.  

iii) GWAS of SZALC vs SNC; and SZALC vs SZnonALC.  

iv) Meta-analysis of BPALC and SZALC GWAS data. 

Single marker tests, and gene-based permutation tests on all SNPs within a 50kb region flanking each 

gene, were performed. Genes previously implicated with AD and related phenotypes were tested for 

association in the datasets. Pathways analysis were performed on all genes uncorrected p<0.01. 
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Results:  i) None of the GABRA2 SNPs showed association with AD. ii-iv) No GWAS SNP met the 

genome-wide significance threshold. Several gene wide tests with CNS genes suggested replication of 

prior AD findings. AD implicated pathways included neuronal generation; inflammation; reaction to 

inorganic substance; transportation; and tyrosine metabolism. 

Conclusions:  No significant single marker associations were detected in the AD sample or comorbid 

AD groups. Potential candidate genes were suggestively implicated by gene-based analysis and 

literature replication. Possible mechanisms for AD susceptibility genes in affective/psychotic disorders 

are discussed. This exploratory study was underpowered to detect genome wide significance and larger 

studies are needed. 
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1 CHAPTER 1: INTRODUCTION 

 

“When I had my first drink, I was thirteen… something just 

clicked in my brain... it just felt right” 

- UCL AD sample, male subject (45) 

 

Humans have a long and complicated relationship with alcohol. 

While the majority of humans drink alcohol within lower risk limits, a minority develop problems with 

ethanol use. These harms can be in the domains of physical health, mental health, social, legal or 

economic. Ongoing problematic alcohol use has attracted various terms including “alcohol abuse”, 

“harmful use” and “alcohol misuse”.  When over time physical or psychological dependence develops, 

this is termed “alcohol dependence” (AD). AD is often used interchangeably with the term “alcoholism” 

in the literature, and I am using the term AD in this thesis as the main phenotype of interest. Where 

another term is used, it is because the linked literature has used that term. Alcohol use disorders (AUD) 

under the most modern diagnostic system refers to a quantitative spectrum of severity including harmful 

use and dependence.  

AD is a complex disorder affected by genetic and environmental factors (Schuckit 2014). In this thesis I 

hope to contribute to the understanding of the genetic risk factors for developing alcoholism both as a 

standalone disorder, and also in the context of two commonly co-occurring major psychiatric disorders, 

i.e. bipolar affective disorder (BP), and schizophrenia (SZ). By having either of these severe mental 

illnesses, a person’s risk of developing alcoholism (or indeed any addictive disorder) is significantly 
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increased. Having a comorbid disorder (“dual diagnosis”) is common in mental health services, and 

appears to affect clinical features, response to treatment, and outcomes. Understanding more fully the 

risk factors for developing alcohol dependence in the context of two severe and enduring mental 

illnesses may better enable researchers and clinicians to diagnose and treat these disorders. 

In this thesis I will review the epidemiology and global impact of alcoholism to justify why this is a 

public health problem worth addressing. I will then explore the rationale for studying the genetics of 

alcoholism by summarizing a) the evidence for a genetic contribution to alcoholism, and b) the current 

literature on alcoholism genetics. I will also discuss issues around phenotype. I will give a brief 

overview of bipolar disorder and schizophrenia from a clinical and genetic perspective, and where they 

overlap clinically and genetically both with each other, and with alcoholism. 

I will approach the new research component from three angles using an association study method from 

the University College London (UCL) psychiatric genetics samples. This collection comprises subjects 

with one or more well-defined diagnoses: alcohol dependence/alcoholism, bipolar disorder, and/or 

schizophrenia. 

I will firstly use a candidate gene approach on the UCL Alcohol Dependence (AD) sample, which I 

collected in part. The GABA beta receptor 2 gene (GABRB2) has previously been implicated in 

alcoholism aetiology, biology and pharmacology. Involvement of the GABA cluster in general, and the 

GABRB2 gene, makes plausible biological sense for contributing to alcoholism genetic risk, yet 

GABRB2 has a number of seemingly contradictory positive and negative published studies of varying 

strengths.  
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Secondly, I will perform a series of Genome Wide Association Studies (GWAS) on subjects with either 

BP or SZ and comorbid alcoholism diagnoses, and then a meta-analysis. In each case, the controls will 

be firstly unaffected individuals (normal controls); and a second analysis will be done by using the 

remaining BP/SZ individuals who have no diagnosed AD comorbidity. In this way, I will look at the 

genetics of comorbid disorders vs normal controls; and vs the single disorders to attempt to tease apart 

different genetic effects. 

Specifically I will compare the genetic signals of patients with comorbid bipolar alcoholism (BPALC) 

with: 

• patients with non-alcoholic bipolar disorder (BPnonALC), and 

• supernormal controls. 

I will also examine the genetics of patients with schizophrenia and comorbid alcoholism (SZALC) vs: 

• patients with schizophrenia without alcoholism (SZnonALC), and 

• supernormal controls. 

To increase power, I will perform a meta-analysis of (BPALC + SZALC) vs: 

• (BPnonALC + SZnonALC), and 

• supernormal controls. 

 

Then, for each GWAS dataset, I will perform a series of gene-wise tests in order to evaluate 

significance at the level of the gene. Significant findings will be compared with the literature as a 

replication analysis. Then I will perform a pathway analysis of the whole genome data. 
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Finally I will discuss the findings with respect to the literature, the implications, strengths and 

limitations of these approaches, and aims for future work. 

During this piece of work I have been fortunate to publish the first GWAS approach using samples of 

bipolar alcoholics, and bipolar non-alcoholics, compared with normal controls (screened for major 

mental illness and substance misuse in the subjects and their first degree relatives) ( Lydall et al. 2011a).  

I have also published a negative replication study on GABRA2, a candidate gene for alcoholism 

( Lydall et al. 2011b). 
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2 CHAPTER 2: WHAT IS ALCOHOL DEPENDENCE? 

“But the physical influence of custom, confirmed into habit interwoven with the actions 
of our sentient system, and reacting on our mental part have been entirely forgotten. 

The perfect knowledge of those … causes which first induced the propensity to vinous 
liquors, whether they sprung from situation in life, or depended on any peculiar 

temperament of body, is also necessary for conducting the cure” 

- Trotter (1813), “On Drunkenness” 

Alcohol is a commonly used psychoactive and addictive drug. Along with caffeine and nicotine, it has a 

high population prevalence of use (Fitt et al. 2013; HSCIC 2015). Although alcohol is freely available 

in most countries, problematic alcohol use appears only to affect a minority of the population. Not all 

people who drink alcohol do so excessively, and not all of those who enjoy it in excess develop harmful 

use of alcohol; a further minority develop alcohol dependence (AD). 

2.1 HISTORICAL PERSPECTIVES 

Early hominids are thought to have evolved alcohol dehydrogenase class IV (ADH4), the first enzyme 

exposed to ethanol in the digestive tract that is capable of metabolizing ethanol, around the time that 

they began using the forest floor about 10 million years ago. The ADH4 enzyme however in our more 

ancient and arboreal ancestors did not efficiently oxidize ethanol according to the growing field of 

palaeogenetics (Carrigan et al. 2015).  

The production of an ethanol beverage requires only a very simple organic process – that of 

fermentation, by which sugar is transformed by the action of yeast to produce ethyl alcohol. Homo 

sapiens have been fermenting produce containing starch into various forms of ethanol, and imbibing this 

for thousands of years at least.  The right conditions for harnessing the fermentation process are thought 

to have first existed only among the early Bronze Age cultures of the Eastern Mediterranean and 
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Mesopotamia between the eighth and fourth millennia BC. On the basis of archaeological records, it is 

thought that beer production provided the earliest source of widely available alcohol (Rudgley 1994). 

The first documentary evidence of alcoholic beverages was written in either Egyptian or Sumerian 

around 3200 BC, and included a recipe for making beer (Katz & Voigt 1986). Some 1500 years later is 

the first record of prohibitionist teaching, by an Egyptian priest, who wrote to his pupil: “I, thy superior, 

forbid thee to go to the taverns. Thou art degraded like beasts” (Crafts et al. 1900). Archaeobotanical 

studies have revealed evidence of beer-brewing in Mediterranean France and the consumption of 

alcoholic beverages during the 5th century BC (Bouby et al. 2011). Wine, and the potential problems 

related to too much wine, were written about extensively by the ancient Greeks and Romans. The 

Roman philosopher Seneca, for example, classified entrenched drunkenness as a form of insanity, 

linking the concept to a diseased state.  

Libations have been used by virtually all cultures through most of their recorded history, and the 

commonality across societies suggests a role for positive, culturally adaptive mechanisms. Where 

alcohol was traditionally consumed, production of alcoholic beverages commonly occurred on a small 

household scale. Drinking alcohol was thus often an occasional and communal activity, associated with 

particular communal festivals. In societies where there was no indigenous alcohol consumption, their 

modern age encounter with alcoholic beverages was often problematic (McGovern 2009). Dietary 

alcohol has played and continues to play important social roles in human society. Alcohol, and other 

psychoactive chemicals, has played a role in cultural rituals, and in modern times drinking alcohol is 

largely a social activity in most countries.  

In Europe in the sixteenth century, alcohol (called “spirits”) was used largely for medicinal purposes. At 

the beginning of the eighteenth century, the English Parliament passed a law encouraging the use of 

grain for distilling spirits. Cheap spirits flooded the market and reached a peak in the mid-eighteenth 
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century. In Britain, gin consumption reached 18 million gallons and alcohol-related problems became 

widespread, inspiring Hogarth’s 1751 classic etching, “Gin Lane” which vividly depicts London’s poor 

grappling with gin misuse. The years of the Industrial Revolution then brought a marked reduction in 

alcohol consumption, followed by a renewed upturn towards the end of the 19th century and another 

decline continuing into the second half of the 20th. From the 1950s England witnessed its most recent 

increase, particularly in per-capita wine consumption (Withington & McShane 2009).   

Before the ready availability of clean water, the antiseptic and acidic power of alcohol in beverages may 

have killed pathogens and thus been a safer alternative to drinking water. This view is by no means 

uncontroversial and for brevity will not be explored further in this work (Phillips 2014). 

2.2 PHYSIOLOGY OF ALCOHOL 

Ethanol (alcohol) is a colourless liquid found in all alcoholic beverages. Besides ethanol, other 

fermentation products are found in alcoholic beverages, and these affect the taste of different beverages. 

Examples include sugars, aldehydes, histamine, phenols methanol, butanol, iron, lead, and cobalt.  The 

chemical equation for ethyl alcohol (ethanol) is C2-H5-OH. Ethanol is a simple, highly water- and lipid-

soluble molecule that can easily move across cell membranes, and quickly reaches equilibrium between 

blood and tissue. Ethanol penetrates the blood-brain barrier and inhibits central nervous system (CNS) 

functions; it is directly toxic to the brain. 

Ethanol is mainly absorbed in the proximal small intestine, but also in the colon, and stomach, and also 

minimally in the mucous membranes of the mouth and oesophagus. Absorption is increased in the 

presence of carbonation, and reduced in the presence of proteins, fats, carbohydrates and other products 

of the fermentation of alcohol. 
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Metabolism of ethanol occurs mainly in the hepatic cytosol and mitochondria and is enzymatically 

mediated. Some 2% to 10% may be excreted directly by the lungs, or though urine or perspiration. Here 

alcohol dehydrogenase (ADH) produces acetaldehyde, which is rapidly broken down by aldehyde 

dehydrogenase (ALDH). In high doses, aldehyde may produce histamines, which may reduce blood 

pressure, and lead to nausea and vomiting. 

When there is a high blood-ethanol concentration, a second metabolic pathway activates in the smooth 

endoplasmic reticulum of the microsomal ethanol oxidizing system (MEOS), which is responsible for 

approximately 10% of the oxidation of ethanol. 

2.3 EFFECTS OF ALCOHOL ON THE BODY 

Lower risk alcohol consumption (one to two drinks per day) causes peripheral vasodilation and 

decreases contractility of the heart, resulting in a mild decrease in blood pressure (Krenz & Korthuis 

2012). Increases in high-density lipoprotein and clotting mechanisms alterations have been reported in 

people who typically have one or more drinks per day.  This may even confer a cardio-protective effect 

(Roerecke & Rehm 2012) although the 2016 UK Department of Health guidelines suggest that these 

have been overestimated in the past and may now apply only in older age groups. Furthermore the 

guidelines note that any level of drinking increases health related risks (Department of Health 2016).  In 

otherwise healthy people, alcohol is toxic to nearly all the organ systems at doses above one to two 

drinks per day (Guo & Ren 2010). Cellular toxicity can be initiated by the metabolism of ethanol and 

subsequent accumulation of acetaldehyde, a metabolite that can damage intracellular proteins and 

induce cell death through apoptosis, and changes in oxidation–reduction and cellular respiration (Guo & 

Ren 2010; Manzo-Avalos & Saavedra-Molina 2010).  
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Chronic intake of alcohol generally increases the risk of damage to the gastrointestinal, cardiovascular, 

immune, nervous, and other systems. Gastro-oesophageal bleeding, acute pancreatitis, fatty liver, 

alcohol-induced hepatitis, cirrhosis, hepatic cancer and hepatocellular carcinoma are all more prevalent 

in alcoholics than in the unaffected population (Nitsche et al. 2011; Gao & Bataller 2011).  Depression, 

epilepsy and haemorrhagic stroke can occur secondary to high alcohol consumption, and alcohol is 

involved in a high proportion of road accidents and episodes of violence (Rehm et al. 2009). Alcohol 

and its metabolite acetaldehyde are carcinogens, and excessive alcohol consumption is associated with 

increased risk for many cancers including oral, oropharyngeal, breast, pancreas, stomach, and liver.  

Alcohol consumption by pregnant mothers can result in birth defects that comprise the foetal alcohol 

spectrum syndrome (Sulik 2005).  

Consuming three or more drinks per day is a factor in mild-to-moderate hypertension and heavy 

drinkers are at increased risk for coronary artery disease and cardiomyopathy. The effects of heavy 

drinking can range from left ventricular impairment and arrhythmia to heart failure as a result of limited 

contractility of heart muscle. Binge drinking (e.g. a single exposure to 90 mL of 80-proof whiskey) can 

produce atrial or ventricular arrhythmias, even in individuals who have no other evidence of heart 

disease (Greenspon 1983).  

Alcohol-dependent individuals may experience peripheral neuropathy characterized by tingling or 

numbness, especially in the hands and feet. A progressive neurologic syndrome that affects gait and 

stance, often accompanied by nystagmus, can result from atrophy of the cerebellum due to alcohol 

toxicity (Chopra & Tiwari 2012). Less common are neurologic syndromes that result from thiamine 

deficiency secondary to heavy drinking: Wernicke’s syndrome consists of encephalopathy, 

uncoordinated muscle movement, and eye muscle weakness; and Korsakoff’s syndrome is characterized 

by amnesia. 
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Molecular determinants of excessive alcohol consumption are difficult to study in human brains for 

obvious reasons, and most work has focused on animal brains (e.g. Mulligan et al. 2006). Neural cell 

adhesion molecules (NCAMs) have been implicated in rodent studies of in utero ethanol exposure 

(Miñana et al. 2002).  Studies of human post-mortem (PM) brain samples of people with AD or alcohol 

misuse diagnoses have reported altered gene, microRNA and transcriptome profiles. Specific reported 

genes were involved in myelination, ubiquitination, apoptosis, cell adhesion, neurogenesis, and neural 

degeneration (Sokolov et al. 2003; Liu et al. 2006).  Similar findings of altered expression have been 

found in PM samples of people with BP and SZ. (Iwamoto et al. 2004; Moreau et al. 2011; Mirnics et 

al. 2001). 

2.4 DIAGNOSTIC CRITERIA AND CLASSIFICATION 

The term 'alcoholism' was first coined by Magnus Huss in 1849 to describe the persistence of drinking 

despite adverse effects on the drinker’s health. Huss described alcoholism as, “as a conjunction of 

pathological manifestations of the central nervous system, in psychic, sensory, and motor spheres”. 

Huss noted that alcoholism was found in people who consumed alcoholic beverages in a continuous 

manner, in excess, and over a longer period than others. 

In 1960, Morton Jellinek added the concept of alcoholism causing personal harm to the drinker and to 

wider society. He categorized alcoholism as a disease based on the quantities of alcohol consumed 

(Jellinek 1960). Today the World Health Organization (WHO) defines an “alcoholic” as an excessive 

drinker, whose dependence on alcohol is accompanied by mental disturbance, poor physical health, 

poor social relations, as well as poor social and economic behaviours (WHO 2014). 
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Edwards & Gross in their classic 1976 paper on the “alcohol dependence syndrome” (ADS) which 

informed modern diagnostic criteria included a number of elements: narrowing of repertoire; increased 

salience of alcohol over other things; tolerance; withdrawal (which was relieved by drinking); 

awareness of compulsion to drink; and reinstatement after abstinence (Edwards & Gross 1976). 

The two main diagnostic systems used by psychiatry during my research for this thesis were the 

American Psychiatric Association’s (APA) Diagnostic and Statistical Manual of Mental Disorders, 

Fourth Edition (DSM-IV) (APA, 2003) and the World Health Organization’s (WHO) International 

Classification of Diseases, Tenth Revision (ICD-10)  (WHO, 1992). These provide accepted diagnostic 

criteria for the phenotypes “alcohol abuse/harmful use” and “alcohol dependence” under the category of 

Addictive Disorders. These two distinct categories have replaced the term, ”alcoholism,” which was 

first discarded in DSM-III (APA, 2003). The ICD-10 definition of AD is broadly similar to that of 

DSM-IV.  “Harmful use” (ICD-10) and “abuse” (DSM-IV) refer to substance use resulting in physical 

or mental harm in the absence of dependence. 

Alcohol dependence (syndrome) is commonly defined as a disorder characterized by physiological, 

behavioural and cognitive effects in individuals who consume large amounts of alcohol.   AD is 

diagnosed in ICD-10 as follows: 

“A definite diagnosis of dependence should usually be made only if three or more of the following seven 

criteria have been present together at some time during the previous year: 

(a) a strong desire or sense of compulsion to take the substance; 

(b) difficulties in controlling substance-taking behaviour in terms of its onset, termination, or levels 

of use; 
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(c) physiological withdrawal state when substance use has ceased or been reduced, as evidenced 

by: the characteristic withdrawal syndrome for the substance; or use of the same (or a closely 

related) substance with the  intention of relieving or avoiding withdrawal symptoms; 

(d) evidence of tolerance, such that increased doses of the psychoactive substances are required in 

order to achieve effects originally produced by lower doses (clear examples of this are found in 

alcohol and opiate-dependent individuals who may take daily doses sufficient to incapacitate or 

kill nontolerant users); 

(e) progressive neglect of alternative pleasures or interests because of psychoactive substance use, 

increased amount of time necessary to obtain or take the substance or to recover from its 

effects; 

persisting with substance use despite clear evidence of overtly harmful consequences, such as 

harm to the liver through excessive drinking, depressive mood states consequent to periods of 

heavy substance use, or drug-related impairment of cognitive functioning; 

 

Narrowing of the personal repertoire of patterns of psychoactive substance use has also been described 

as a characteristic feature (e.g. a tendency to drink alcoholic drinks in the same way on weekdays and 

weekends, regardless of social constraints that determine appropriate drinking behaviour). ” (WHO, 

2014). 

Alcohol dependence was until recently classified separately in the DSM-IV, which was the prevailing 

North American system in use at the time of this research. The DSM-IV criteria for AD are: 

“A maladaptive pattern of alcohol use, leading to clinically significant impairment or distress, as 

manifested by three (or more) of the following, occurring at any time in the same 12-month period: 

1. Tolerance, as defined by either of the following: 
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a. A need for markedly increased amounts of alcohol to achieve Intoxication or desired 

effect 

b. Markedly diminished effect with continued use of the same amount of alcohol 

2. Withdrawal, as manifested by either of the following: 

a. The characteristic withdrawal syndrome for alcohol 

b. Alcohol (or a closely related drug such as valium) is used to relieve or avoid 

withdrawal symptoms 

3. Alcohol is often used in larger amounts or over a longer period than was intended 

4. There is a persistent desire or unsuccessful efforts to cut down or control alcohol use 

5. A great deal of time is spent in activities necessary to obtain alcohol, use alcohol, or recover 

from its effects 

6. Important social, occupational, or recreational activities are given up or reduced because of 

alcohol use 

7. Alcohol use is continued despite knowledge of having a persistent or recurrent physical or 

psychological problem that is likely to have been caused or exacerbated by alcohol (e.g. 

continued drinking despite recognition that an ulcer was made worse by alcohol 

consumption).” 

The current fifth version of the DSM (DSM-5) has consolidated the separate DSM-IV (substance-

specific) categories of dependence and abuse into a single Substance Use Disorder (SUD). The criteria 

for SUD merge the previous lists of 7 criteria for dependence and 4 criteria for abuse into a single list of 

11 criteria. SUD is now additionally defined by the presence of craving, while the criterion of recurrent 

legal problems has been discarded, largely because legal and cultural differences made the criteria 

difficult to apply internationally. Severity of SUD is graded by the number of criteria met: 0–1 (no 

diagnosis); 2–3 (mild SUD); 4–5 (moderate SUD); 6 or more (severe SUD). Thus, a quantitative 
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spectrum disorder has replaced the dichotomous harmful use/abuse vs dependence classification of 

ICD-10/DSM-IV in DSM-5 (APA, 2013). Interestingly some 35 years prior, Edwards and Gross had 

also described alcohol dependence as a graduated syndrome (Edwards & Gross 1976). 

The DSM and ICD definitions of AD/SUD are broad and potentially include diverse sub-phenotypes, 

all of which may contribute to the range of presentations observed in clinical practice.  For example, a 

patient may have alcohol dependence without significant tolerance or withdrawals by fulfilling 

sufficient other criteria. 

Alcohol dependence (Online Mendelian Inheritance in Man reference #103780) is considered the most 

severe psychiatric alcohol-use phenotype, and has been the focus of most of the studies considered in 

this chapter. Earlier studies may have used other/current at the time definitions of alcoholism. Many 

source papers refer to ‘alcoholism’, ‘alcohol dependence’ and ‘alcohol dependence syndrome’ 

interchangeably. In this thesis, I have used AD, ADS and ‘alcoholism’ interchangeably. I have used 

DSM-IV and ICD-10 definitions of alcohol dependence (AD) as the main phenotype. This is because 

these were the diagnostic systems in use during the bulk of the research project and writing and they 

allow meaningful comparisons with the bulk of the literature. 

2.5 EPIDEMIOLOGY- WHY ARE ALCOHOL USE DISORDERS IMPORTANT? 

Alcohol use disorder (AUD) is a severe and common disorder occurring worldwide. It is responsible for 

significant global morbidity, mortality and economic loss, and has contributed directly and indirectly to 

immeasurable human suffering. Excessive alcohol consumption is associated with violent crime, 

aggression and increased risk of accidents, injury and death. 
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AUD is a serious global public health concern (Room et al. 2005). According to the World Health 

Organization (WHO) 2 billion individuals worldwide consume or misuse alcohol. Alcohol misuse 

causes up to 2.5 million deaths per year globally. WHO has also estimated that approximately 20%–

30% of oesophageal cancer, liver cancer, cirrhosis of the liver, homicide, epilepsy, and road traffic 

accidents worldwide result from the harmful use of alcohol.  Alcohol consumption has been identified 

as an important risk factor for more than 200 different disorders and injuries (World Health 

Organization 2014).  An estimated 3.8% of all global deaths and 4.6% of the global burden of disease 

(measured in disability-adjusted life-years) are attributable to alcohol (Rehm et al. 2009).  UK data 

suggests that there were a million alcohol-related hospital admissions in 2013 and over 6 thousand 

alcohol-related deaths in England alone (Health and Social Care Information Centre 2014).  

Point prevalence of alcohol use disorders (AUDs, harmful use and dependence) in adults has been 

estimated to be around 1.7% globally according to WHO Global Burden of Disease 2000 analysis. The 

rates are 2.8% for men and 0.5% for women. The prevalence of alcohol use disorders varies widely 

across different regions of the world, ranging from very low levels in some Middle Eastern countries to 

over 5% in North America and parts of Eastern Europe (WHO 2014). 

Twin data suggest that more than 40% of the societal burden of brain disorders is likely to be genetically 

mediated. Most of this disease burden arises from complex multi-gene genetics as well as from 

environmental influences (Uhl & Grow 2004). 

Despite the known harmful effects of chronic alcohol consumption, our understanding of the aetiology 

of alcohol misuse is incomplete. This limits opportunities for development of preventative and 

therapeutic strategies.  
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2.6 AD AS A COMPLEX PSYCHIATRIC DISORDER 

Alcohol dependence represents a complex and heterogeneous phenotype, with behavioural, as well as 

psychological, pharmacological, and medical components. AD belongs to a group of conditions known 

as complex genetic disorders which include BP and SZ (Heath et al. 2012).  By way of illustration, the 

genes contributing to another complex disorder like diabetes are likely to vary across families through 

various vulnerability and protective factors, for example insulin tolerance, weight gain, hypertension, 

cholesterol, etc.  

In AD, as with other complex disorders, it is likely that multiple genes influence a range of intermediate 

characteristics that subsequently interact with the environment to produce the condition (McGue 1999; 

Hyman & Malenka 2001; Kendler 2008; Edenberg et al. 2010a; Dick et al. 2011). Therefore, any gene 

that affects a specific intermediate characteristic or phenotype, such as insulin sensitivity, is likely to 

contribute to the vulnerability toward diabetes, but may explain only a small proportion of the 

vulnerability. AD can thus be thought of as a clinical outcome that has been generated by a combination 

of many genetic and environmental risk and protective factors.  It is commonly thought that many genes 

are involved in each disorder with each gene conferring only a small effect on the phenotype. The 

individual risk variants are thus without diagnostic predictive value, and any estimations of risk are 

probably going to change in the future as large epidemiological samples become available for analysis 

(Gejman et al. 2010). 

Our understanding is now shifting from single gene models to a polygenic model of alcoholism, but 

despite the wealth of research, its genetic architecture still remains largely unknown (Kraft & Hunter 

2009). The concept that complex disorders result from dysfunction of entire molecular networks, i.e. 

system disorder, as opposed to single genes, is gaining traction in the literature (Schadt 2009). Whether 

this applies to AD is still an empirical question that remains to be addressed.  
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Hopefully this work will contribute meaningfully to that debate. 

2.7 MOLECULAR GENETIC STUDIES  

 

Prior to discussing the findings from the genetic studies of AD, I will discuss some of the components 

contributing to the complexity of psychiatric disorders in general, using AD and other illnesses as 

illustrations. Although numerous studies have been published on genetic associations with several 

mental disorders, there is evident inconsistency of the results among these results. Outcome divergence 

in genetic studies, particularly of complex phenotypes, may be largely ascribed to inadequate sample 

sizes, phenotypic heterogeneity, locus heterogeneity (Schulze & McMahon 2003) and pleiotropy 

(Solovieff et al. 2013). As the late Prof. Hugh Gurling said in 1986: “Specific strategies will need to be 

adopted to overcome uncertain modes of inheritance, incomplete or non-penetrance of disease alleles 

and disease heterogeneity” (Gurling 1986). 

2.7.1 Challenges of genetic studies in general 

Sample size 

Until recently a significant challenge in both linkage and association studies of complex disorders has 

been inadequate sample size for statistical power to detect genetic differences. Several international 

meta-analyses of genome-wide scans have been published in the last decade, resulting in the detection 

of weak, and at times inconsistent, signals across studies (Craddock & Sklar 2009). This may be 

explained by the work of Suarez & Washington (1994) who found that for an oligogenic trait simulated 

under reasonable parameters, when sampling families sequentially, the first true linkage to be detected 

is unlikely to be replicated until many generational samples have been studied. Thus the power to 

replicate the first linkage is achieved only when multiple samples several times larger than the initial 

sample have been collected and analysed (Badner & Gershon 2002). 
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Consortia combining genome wide data for meta-analysis, or replication studies, have come a long way 

in increasing sample sizes. The largest group is the Psychiatric Genetics Consortium (PGC, 

http://www.med.unc.edu/pgc ) of which UCL is a member. This group has published on BP, SZ, major 

depression, and cross-disorder studies, with sample sizes in the tens of thousands. The largest AD 

GWAS contained over 16,000 subjects. As a result, novel markers have revealed new pathways and 

understanding of the biology of these complex disorders.  

Phenotypic heterogeneity 

Psychiatric disorders do not yet have reliable biomarkers, so we use diagnostic or research criteria 

typically based on interview, clinical record and collateral history. Diagnosis in psychiatry, despite our 

best efforts at improving validity and reliability, is still subject to human bias and error. At the present 

time, a clear phenotype that best captures the underlying mechanism of AD or other psychiatric disorders 

has not yet been defined. Identification of the affected phenotype for AD is however considered accurate 

and reliable (Bucholz et al. 1994; Üstün et al. 1997; Hasin et al. 2006). I discuss one way of approaching 

this for AD by using endophenotypes in section 2.7 below. 

Locus heterogeneity 

Locus heterogeneity describes a state when mutations at more than one gene locus cause the same 

phenotype. Allelic heterogeneity is a phenomenon when more than one allele at a specific gene locus 

results in the same phenotype (McClellan & King 2010). While linkage analysis is immune to allelic 

heterogeneity, locus heterogeneity reduces the power of association analysis in detecting disease 

variants. Ascertaining study samples from genetically isolated populations and using strict reliable 

phenotyping (or sub-phenotyping) could help alleviate the issue with locus heterogeneity to some extent, 

by reducing the number of different susceptibility genes (Heutink 2002). The main downside is that 

http://www.med.unc.edu/pgc
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variation found within one population may not apply to other humans – for example Chapter 6.2.6 on 

taste receptors. 

Cross phenotype associations and pleiotropy 

Pleiotropy occurs when a genetic locus genuinely affects more than one trait and is one possible 

underlying cause for an observed cross-phenotype (CP) association (Solovieff et al. 2013).  A recent 

evaluation of genome-wide-significant SNPs listed in the National Human Genome Research Institute 

(NHGRI) Catalogue of Published Genome-Wide Association Studies found that 4.6% of SNPs and 

16.9% of genes have CP effects (Sivakumaran et al. 2011).  Pleiotropy can occur at the gene (or region) 

level, at which multiple variants in the same gene (or region) are associated with different phenotypes; or 

the allelic level, where a single causal variant is related to multiple phenotypes.  Distinguishing the 

associations that represent genuine shared effects of single variants from those that represent the effects 

of co-localizing but independent variants is key. Statistical and fine mapping approaches to discover and 

address CP associations as well as ensuring the highest standards for GWAS studies are adhered to 

should reduce the bias introduced by these effects (Solovieff et al. 2013).  

2.7.2 Alcoholism-related endophenotypes 

Although the diagnoses for alcohol use disorders are based on a range of reported symptoms, they are 

typically treated as a binary outcome (affected or unaffected). As early as the 1960s, it was 

conceptualized that alcoholism was not a single entity and that various “types” of alcoholism were noted 

clinically.  Jellinek for example originally identified five “species” of alcoholism characterized by 

psychological and physiological dependence (Jellinek 1960). 

An endophenotype is a biological or a psychological characteristic transmitted with a disease, with a 

strong biological substrate and a higher heritability than the disease itself. Researchers have utilized and 

refined such endophenotypes order to identify more aetiologically homogeneous subtypes as a means for 
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studying, diagnosing, and treating alcoholism, for example Cloninger’s classic paper on predisposition to 

petty criminality in Swedish adoptees (Sigvardsson et al. 1982). With reference to schizophrenia 

research genetic theories, Gottesman and Shields originally described endophenotypes as internal 

phenotypes, not obvious to the unaided eye, which can fill the gap between the gene and the available 

descriptors of disease (Gottesman & Shields 1973).  Subsequently, Tsuang et al suggested the following 

criteria for evaluating endophenotypes in psychiatric genetics research: biological plausibility, 

specificity, state independence (stable over time), heritability, familiality, and cosegregation (Tsuang et 

al. 1993).  The main benefit of using endophenotypes is that the number of genetic and environmental 

factors that contribute to these should be reduced compared to the full clinical syndrome and thus easier 

to classify (Carlson et al. 2004). 

A number of endophenotypic traits that influence susceptibility to AD have been investigated. These 

include variation in hangover symptoms (Piasecki et al. 2010), alcohol consumption, level of response 

(LR) to alcohol, endocrine measures, electrophysiology, personality traits, and drinking behaviour 

(Hines et al. 2005). Schuckit proposed that the majority of genetically related markers of AD risk were 

represented by five relatively independent main endophenotypes, including: metabolizing enzymes; LR; 

major psychiatric disorders (e.g. BP, SZ); the opioid system; and neuronal or behavioural disinhibition 

(Schuckit 2002).  

Alcohol-related phenotypes are typical quantitative traits, with population variation attributable to 

multiple segregating loci with effects that are sensitive to environmental exposures. Below I discuss the 

more relevant endophenotypes. 
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2.7.3 Low response to alcohol 

A low level of response (LR)  to alcohol refers to a relatively mild objective or subjective state of 

intoxication following alcohol challenge (assessed by self-report,  including subjective “high”/”buzz” 

effects and objective body sway (Schuckit 1994). An estimated 40% of children of alcoholics have a LR 

to alcohol, and prospective studies have shown that it may be a predictor of future development of 

alcohol use disorders among offspring (Schuckit et al. 1996; Pollock 1992).  In a longitudinal study of 

young men, the presence of the LR trait at age 20 years was associated with a fourfold increase in the 

risk of AD in later life (Schuckit et al. 1997).  People who are at high risk of developing AD (e.g. having 

a parent with AD) report having to consume greater amounts of alcohol to get the same effects as other 

people (Schuckit et al. 2001). Offspring of parents with alcohol problems generally report greater 

hangover symptoms than do those of non-alcoholics in some groups e.g. (Slutske et al. 2003) although 

differences were not found by other groups, e.g. (Span & Earleywine 1999).  

Candidate genes for alcohol response include the opioid and serotonin systems, cyclic AMP (cAMP), 

and the alcohol metabolism enzymes. For example, Ray and Hutchison found an association between 

sensitivity to the effects of alcohol and the A118G allele of the μ-opioid receptor gene (Ray & Hutchison 

2004). A polymorphism in the promoter region of the serotonin transporter gene (5′HTLPR, locus ID 

SLC6A4) has been associated with self-reported feelings of intoxication during an alcohol challenge 

protocol in a non-psychiatric sample (Fromme et al. 2004). Further information is needed regarding 

familial association and cosegregation applied to alcohol response endophenotype. 

2.7.4 MaxDrinks 

Twin studies have that demonstrated a moderate genetic influence on the maximum number of drinks a 

person consumes in 24 hours (MaxDrinks). The COGA studies reported that the rate of alcoholism 

increased with increasing MaxDrinks. For instance, among participants who reported drinking 9 or more 
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drinks in a 24–hour period, 65 percent of men and 53 percent of women were diagnosed with alcohol 

dependence (Saccone et al. 2000). 

2.7.5 Electrophysiological phenotypes 

Several brain electrophysiological measures, such as EEGs and event related potentials (ERPs), are 

altered in people with various psychiatric disorders, including AD (Begleiter et al. 1998). For example, 

the P300 ERP brain wave has a lower amplitude in people with AD than those without. Research also 

suggests that the variations in brain electrophysiological activity predate the development of alcoholism. 

For example, compared with people without a family history of alcoholism, alterations in EEGs and 

ERPs exist both in alcohol–dependent people and in non- alcoholic relatives of alcoholics – i.e. those at 

risk for alcoholism because they are genetically related to the person with AD. These 

electrophysiological measures therefore represent biological markers that are related to a predisposition 

for developing AD and have been used to identify two genes in the COGA study [GABRA2 (Edenberg 

et al. 2004) and CHRM2 (Wang et al. 2004)]. 

2.7.6 Alcohol expectancies 

Alcohol expectancies (AE) —i.e. Beliefs about a drug’s impact on behaviour—and subjective 

experience of alcohol’s effects have been shown to be a genetically influenced characteristic.  AEs have 

estimated heritability factor between 0.4 and 0.6 (Heath et al. 1999; Schuckit et al. 2001) with greater 

alcohol consumption found for high-risk (e.g. sons of alcoholics) compared to low-risk families (Newlin 

& Thomson 1999). 

2.7.7 Craving 

Alcohol craving has been defined as a strong desire to consume alcohol and has been associated with 

loss of control over drinking, which is part of the alcohol dependence syndrome, as defined in the DSM-
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IV.  Although there has been some disagreement about the definition of the term, the endophenotype of 

craving is a construct that is central to alcohol dependence and is often a target of treatment.  

Measuring subjective “craving” is challenging in humans, however craving and loss of controlled 

drinking have been biologically linked to the actions of alcohol on the brain mesolimbic and 

mesocortical dopamine pathways. These are the neural pathways that may underlie the attribution of 

incentive salience to alcohol. Individual variation in the ability to stop drinking and loss of control may 

be related to genetic factors that influence the effects of alcohol on craving and the linked neural 

substrates. For example, a study by Hutchison et al found that individuals with the long variant of the D4 

dopamine receptor gene (DRD4 VNTR) showed higher craving after consumption of alcohol, compared 

with a placebo drink (Hutchison et al. 2002). This same variant affects response to the atypical 

antipsychotic olanzapine in reducing alcohol cravings (Hutchison et al. 2003).  

2.7.8 Personality/temperamental factors 

Personality or temperament is a complex multi-dimensional construct and not the primary focus of this 

work. However it would be remiss not to mention personality factors concisely. Personality is often 

described as is the characteristic manner in which one thinks, feels, behaves, and relates to others, and it 

tends to remain constant throughout life.   

Several studies suggest that genetic susceptibility to AD may be expressed, at least in part, through an 

individual's temperament. Tarter and Vanyukov (1994), for example, proposed a temperament model of 

alcoholism risk based on five traits that increase an individual's AD risk burden . These heritable traits 

include behavioural activity level, sociability, attention span/persistence, emotionality, and 

"soothability." An individual's liability is altered by the deviation of each trait from the population norm. 
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Each of these trait clusters that may  represent a "difficult" temperament relate to an increased risk for 

developing a problem with substance use (Tarter et al. 1990; Ohannessian & Hesselbrock 2008).  

Personality traits can also be used as genetic endophenotypes of the risk for SUD (Belcher et al. 2014). 

Measures of risk-taking, novelty seeking, reward dependence, and low conscientiousness are all 

associated with increased risk for developing a SUD (see Widiger 2011 for a review).  For example, self-

reported impulsivity, a form of novelty-seeking was associated with more pleasurable drug effects and 

consequent increased use in a cross-sectional sample of adolescents (Bidwell et al. 2015).  People with 

personality traits which are closer to the population norm are thought to have more control over their 

own behaviour; conversely people with behavioural and emotional regulation challenges may be at 

higher risk of AD. These traits may in turn affect environmental influences and stressors, for example 

seeking out environments conducive to alcohol and drug use. 

Antisocial behaviour, and the closely related personality traits, behavioural disinhibition and emotional 

dysregulation, are closely linked to development of all SUDs (Baker et al. 2004; Iacono et al. 2008; 

Tarter et al. 2003). The combination of antisocial behaviour and disinhibited personality traits (termed 

“externalizing” or “behavioural disinhibition”) is associated with a higher familial loading, earlier onset, 

and a more severe and persistent course in adulthood (Hicks et al. 2010; Iacono et al. 2008). Diverse 

personality traits may also predict different patterns of substance use (Conrod et al. 2013; Elkins et al. 

2006).  

One example of the interplay between personality factors and substance misuse comes from a 

longitudinal twin study by Hicks et al (2013). The authors found that genetic risk in socialization 

contributed to substance misuse indirectly via increased exposure to contextual risk. In addition, the 
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“boldness“ trait appeared to index an independent and direct genetic risk factor for adolescent substance 

misuse (Hicks et al. 2013). 

Variation in personality traits is attributed to genetic influences in the region of 30–60% (Power & 

Pluess 2015). Identification of associated genetic variants has however remained elusive. Consequently, 

knowledge regarding the molecular genetic architecture of personality and to what extent it is shared 

across the different personality traits is limited.   

Verweij et al in the first genome-wide association study of Cloninger's temperament scales in a sample 

of 5117 individuals, found no association between subjects’ scores on harm avoidance, novelty seeking, 

reward dependence, and persistence and testing of over a million SNPs, as well as gene-based 

association tests and biological pathway analyses (Verweij et al. 2010). 

In contrast, another measure of personality – the Big Five Inventory, consisting of metrics named 

openness to experience, conscientiousness, extraversion, agreeableness and neuroticism – was recently 

explored using genomic-relatedness-matrix residual maximum likelihood analysis (GREML) in >5000 

people by Power and Pluess (Power & Pluess 2015). They found significant and substantial heritability 

estimates for neuroticism and openness, but not for extraversion, agreeableness and conscientiousness.  

Closely related to personality traits are affective temperaments. Affective temperaments are also a set of 

biologically determined and heritable characteristics thought to shape the way a person views and acts by 

interacting with environmental factors to shape personality (Moore et al. 2005).  Sometimes the terms 

personality traits and affective temperaments are used interchangeably in the literature (Greenwood et al. 

2013).  Specific affective temperaments may be characteristic of certain personalities, or serve as a 

starting point for an episodic affective illness (Blöink et al. 2005).  Affective temperaments are often 
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considered along a spectrum at the extremes of which are diagnosable mental disorders (Rihmer et al. 

2010; Harnic et al 2013).  

Affective temperaments may also refer to subaffective trait expressions representing the earliest 

subclinical phenotypes of affective disorders which are present during euthymic periods of affective 

disorders (Maremmani et al. 2005). They are thought to increase risk of mental illness or SUD (or 

pleiotropically, both). For example, high trait anxiety and hyperthymic temperament are commonly 

found in in people with BP and AD (Levander et al. 2007; Azorin et al. 2010; Harnic et al.) 

Affective temperaments are also increasingly being recognized as important risk factors for developing 

SUDs. For example, Pacini et al (2009) found higher scores for depressive, cyclothymic and irritable 

temperaments in patients with AD compared to controls. Irritable temperament may also be a risk factor 

for drug misuse disorders in patients treated for alcohol dependence (Khazaal et al. 2013). Vyssoki et al. 

(2011) found that higher cyclothymic scores influenced the age of onset of alcohol misuse and AD. 

Maremmani and colleagues (2009) found that methadone-treated individuals with heroin dependence 

had significantly higher cyclothymic and irritability scores compared to unaffected controls (Maremmani 

et al. 2009; Vyssoki et al. 2011).  Maremmani and colleagues further commented that these results, 

“could represent the temperamental profile of heroin addicts, largely irrespective of comorbidity, and 

tend to cohere with previous conceptualizations hypothesizing "sensation-seeking" (and "novelty-

seeking") as the main personality characteristics of addiction.” 

Most recently, Singh et al (2015) in a study of subjects from the Bipolar Disorder Research Network 

(BDRN) compared measures of temperament in subjects with and without alcohol misuse diagnoses. 

They found that mean scores for four affective temperaments (hyperthymic, cyclothymic, depressive and 

irritable) were higher in cases (BP+AD) than controls (BP only) (p<0.001). Hyperthymic and irritable 
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temperaments in particular significantly increased the odds of concomitant alcohol misuse within the BP 

sample after adjustment for potential confounders.  

2.7.9 Psychiatric comorbidity  

Psychiatric comorbidity is a commonly occurring feature that is not consistently considered an 

endophenotype but is an established risk factor for developing AD and other SUDs. In this thesis I have 

examined two sets of patients with psychiatric comorbidity and I have attempted to separate the genetic 

influences of the co-morbid psychiatric illness and the alcoholism.  Psychiatric disorders have generally 

higher heritability estimates than AD, although these do vary. Heritability of BP is discussed in Chapter 

7 and of SZ in Chapter 8. Both chapters include discussion on overlap with AD. 

2.8 CONCLUSIONS 

This chapter highlights the complexity of phenotype classification in psychiatric genetic research, which 

I take further in the Discussion section. In the next session, I explore the evidence for a genetic influence 

in the development of alcoholism.  
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3 CHAPTER 3: HERITABILITY - IS ALCOHOLISM A “GENETIC” 

DISORDER? 

 

“Ebrii gignunt ebrios” (Drunks beget drunkards) 

—attributed to Plutarch, c110AD 

 

It has long been recognized that a tendency towards AD runs in families, with the quote above being one 

of the better known early records. Whether this is nature or nurture has been the subject of much debate. 

Genetic effects in alcoholism were first established using classical quantitative genetic family, twin and 

adoption studies (Kaij, 1960; Bohman, 1978; Sigvardsson et al. 1996; Sigvardsson et al. 1982; Ball 

2005). These methods each have their strengths and limitations. I have summarized these approaches and 

the evidence supporting the heritability of alcoholism in this chapter. 

3.1 WHAT IS HERITABILITY? 

Heritability is a measure of genetic influence. Specifically it is the degree of variation in a population 

attributable to genetic variation. The heritability of alcohol dependence is well recognized, with higher 

alcoholism rates occurring among blood relatives of affected individuals compared to non-relatives. AD 

heritability estimates range between 40 and 70%. Research establishing the heritability of AUDs 

primarily utilizes three research designs: twin studies, adoption studies, and family studies. 
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3.2 ANIMAL STUDIES 

Before considering human family and related studies, I will briefly mention the importance of animal 

models in understanding AD. Much data supporting significant genetic contribution to alcohol 

dependence comes from animal research. Although many of the genes/regions of interest have also been 

studied in animal models, these will not be extensively reviewed here except where relevant to this 

thesis.  

In selectively bred rodent lines, a considerable proportion of heritability in the development of addiction-

related behaviour has been reported, including preference for alcohol over water, willingness to work for 

alcohol, sensitivity to the hypnotic or activating effects of alcohol and alcohol withdrawal, and 

demonstrations that alcohol is rewarding even in the presence of food and water (Buck et al. 1997; 

Crabbe et al. 1999; McBride & Li 1998; Murphy et al. 2002; Whatley et al. 1999). 

In a fascinating UCL mouse study, Anstee et al found that alcohol consumption increases following 

mutations to the murine γ-aminobutyric acid A receptor (GABAAR) β1 subunit gene (Gabrb1). The 

mutation causes spontaneous GABA ion channel opening and increases GABA receptor sensitivity 

linked to increased tonic currents in the nucleus accumbens, a region long-associated with alcohol 

reward. Mutant mice also work harder to obtain ethanol, and are more sensitive to alcohol intoxication 

(Anstee et al. 2013). Murine genes are largely homologous with human genes, and thus allow for 

meaningful comparisons across species.  

Animal models have thus been useful in characterizing alcohol related behaviours, the effects of alcohol 

on organisms, and in understanding biological pathways for the development of AUDs, although clearly 

they cannot model the entire psychobiological diagnostic construct of alcoholism seen in humans 

(Lovinger & Crabbe 2005). 
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3.3 FAMILY STUDIES 

Family studies of alcohol use disorders have clearly demonstrated familial aggregation for alcohol 

dependence and for comorbid disorders such as substance use disorders and mood and anxiety disorders 

(Bucholz et al. 1996; Nurnberger et al. 2004; Slutske et al. 2008; Todd et al. 1996; Davis et al. 2008; 

Winokur et al. 1993; Cotton 1979). Alcoholism is strongly recurrent in both the first and second degree 

relatives of alcoholic probands (Cotton, 1979). Although family studies have demonstrated that AD runs 

in families, this approach cannot tell us whether familial transmission is caused by environmental or 

genetic factors, since family members share some of their genes as well as important aspects of their 

environment. To distinguish between environmental and genetic factors, adoption and twin studies are 

conducted. 

3.4 TWIN STUDIES 

Twin studies have also been performed to investigate the extent to which shared environmental and 

nonshared environmental factors contribute to the development of AD. Monozygotic (MZ) twins share 

100% of the same DNA, whereas dizygotic twins (DZ) have approximately 50% of the same DNA. 

Differences in prevalence between MZ and DZ twins can help us estimate the heritability of a 

phenotype. Twin studies also take advantage of the fact that pairs of twins are born at the same time and 

usually raised together, subsequently experiencing major life events in childhood at the same ages.   

Heritability estimates for human diseases have inherent limitations but one twin study of alcohol 

dependence estimated heritability to be between 50% and 61% (Hansell et al. 2008; Kendler et al. 1997; 

McGue et al. 1992).  The largest twin study, of 9,000 male pairs, found that alcoholism was 53% 

heritable (Kendler et al. 1997).  However, twin studies do not always show substantial heritability or 

increased concordance for alcoholism in MZ compared to DZ female twins (Gurling et al. 1984, Pickens 
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et al. 1991, Prescott et al. 2007, Prescott et al. 2005). In the Australian twin sample study, the estimated 

contribution to the variance of liability to AD was 1% for shared environmental factors and 35% for non-

shared environmental factors (Heath et al. 1997). Stronger and more consistent evidence supporting 

genetic influences for AUDs has been found for males, but several twin studies support similar 

conclusions for females   (Cadoret et al. 1987; Cadoret et al. 1995; Kendler et al. 1992).  

Longitudinal formal genetic studies have shown that the relative influence of genetic and environmental 

risk factors on AD and alcohol-related phenotypes fluctuates over time. Research has revealed 

alternation between periods in which genetic influences predominate and periods in which 

environmental influences are more dominant. A detailed longitudinal study by Kendler et al. (see Kuo et 

al. 2006; Kendler et al. 2011) showed that environmental influences on alcohol consumption were 

highest in adolescence. This finding suggests that adolescence may be the optimal time point for 

educational interventions. 

The early twin and adoption studies can be interpreted as suggesting that there is a higher heritability for 

alcoholism combined with criminality than for other subtypes of alcoholism (Kaij, 1960, Gurling et al. 

1984, Gurling and Cook, 1999). Men with alcohol dependence have much higher rates of dissocial 

personality disorder and criminality than women with alcoholism (Cloninger et al. 1978, Cloninger et al. 

1986). 

Women with alcohol dependence have higher rates of depression and anxiety than men, and the 

heritability of AD may be higher in women (Bierut et al. 1999; Gurling and Cook 1999; Klerman et al. 

1996; Kuo et al. 2006a; Merikangas et al. 1985; Merikangas et al. 1994). The relationship between 

anxiety disorders and alcoholism seems to be very similar to the relationship between alcoholism and 

depression (Merikangas et al. 1994; Mullan et al. 1986). 
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Twin studies have demonstrated that the amount of alcohol one consumes has a genetic influence 

(Kendler et al. 2011). Age at first drink appears to be associated with alcohol-related problem behaviour, 

but progression to alcoholism is under stronger genetic control than initiation, and the effect of early 

exposure to predict outcome is genetically mediated (Prescott & Kendler 1999). 

3.5 ADOPTION STUDIES 

The second approach for separating the impact of genes from that of the environment uses adoption 

studies.  Unlike twin studies, in adoption studies individuals are exposed to a different environment to 

their biological or genetic relatives.  Both a study of half siblings as well as evaluations of adopted-away 

children of  people with AD support  the conclusion that genes impact the  risk for alcoholism (Goodwin 

et al. 1973; Schuckit et al. 1972). An early comparison of the drinking patterns of sons of alcoholic men 

raised by their fathers versus those of their full brothers who had been adopted away indicated that genes 

may be a more robust predictor of alcoholism than being raised by an alcoholic (Goodwin 1974). 

Based on adoption studies, Cloninger et al. (Cloninger et al. 1981) suggested the existence of two types 

of alcoholism: type 1 was a mostly environmentally triggered “milieu limited”, late-onset type. Type 2 

was male-limited type associated with a high genetic loading, early onset, higher risk of legal problems 

and moderate alcohol consumption. Type one alcoholism showed lesser genetic transmission and a 

greater environmental component and is described as “milieu limited”. Type one alcoholism was 

associated with depression and anxiety in both men and women (Bohman, 1978; Sigvardsson et al. 1996; 

Sigvardsson et al. 1982). This dichotomy has been critiqued on the basis that the distinction between 

type 1 and type 2 alcoholics no longer offered clinical subtypes with distinct severity once patients with 

comorbid antisocial personality disorder were excluded (Irwin et al. 1990). An alternative sub-

categorization was suggested based on age of onset, the presence of childhood risk factors such as 

hyperactivity, and severity of alcoholism (Schuckit et al. 1995; Johnson et al. 1996). Alcoholism types 
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may thus vary on a continuum of severity, rather than represent distinctly different disease entities 

(Bucholz et al. 1996). 

Two important adoption studies from Sweden found replicated evidence for genetic effects associated 

with criminality and male alcoholism, known as type two alcoholism, which had  an early age of onset 

and strong genetic transmission (Sigvardsson et al. 1982).  The largest published adoption study of 

alcoholism, the Stockholm Adoption Study (Sigvardsson et al. 1996), illustrates these findings. The 

study included 862 men born in Stockholm, who had been adopted in infancy and both their adoptive 

and biological parents. Alcohol misuse among the study participants was assessed by the number of 

registrations with local Temperance Boards — local agencies that document how often a person has been 

treated or cited for alcohol misuse. In this study, the rate of alcohol misuse among the adoptees was 

proportional to the number of alcoholic parents: alcohol misuse was 33.3% if both biological parents 

misused alcohol; 26.0%/22.4% if only the biological mother/father misused alcohol respectively; and 

14.7 percent if neither biological parent misused alcohol. Thus, adoptees with one or two alcohol-

misusing parents had a significantly greater risk of alcohol misuse than did adoptees with no alcohol-

misusing parents.  

Family, twin, and adoption studies do not indicate that simple Mendelian dominant or recessive factors 

are major contributors to the AUD risk. Rather, similar to what was described regarding heart attacks, 

alcoholism might be best viewed as a disorder influenced by multiple genes (i.e. it is polygenic), 

reflecting multiple characteristics (i.e.  the causes  are  heterogeneous), and  whose  causes include both 

genes and environment (i.e. it is multifactorial). 
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3.6 HERITABILITY OF CO-OCCURRING PSYCHIATRIC DISORDERS 

Emil Kraepelin noted a co-occurrence between alcoholism and bipolar disorder in his classic 

phenomenological work which also introduced the “Kraepelinian dichotomy” that SZ and BP were 

separate disorders (Kraepelin 1921). Psychotic disorders including SZ and BP co-occur commonly with 

alcohol and other substance use disorders (Buckley 1998; Dixon 1999; Clark 2011).  

Bipolar disorder and schizophrenia for example carry a two- to four-fold higher prevalence of number of 

substance use disorders, including alcoholism. Bipolar disorder is sometimes grouped into Bipolar 1 

(BP1, the more severe phenotype) and Bipolar 2 (BP2, a less severe phenotype) (APA 2000). The 

prevalence rate of bipolar illness and concurrent substance use disorders, by naturalistic studies, has been 

estimated to be 21–58% (Brady & Lydiard 1992), and  the ECA Study reported a 60.7% lifetime 

prevalence rate for substance use disorders in BP1, with alcohol as the most common substance abused  

(Regier et al. 1990). In this study, people with BP1 and 2 had the highest lifetime prevalence rate of 

alcohol abuse or dependence (46.2% and 39.2%, respectively) followed by individuals with 

schizophrenia (33.7%), compared to the general population without a major mental disorder (13.8%). In 

addition, patients with mania were six times more likely to have an alcohol use disorder compared to 

those without a mental disorder.  Similarly, in the National Comorbidity Survey, respondents with a 

lifetime diagnosis of alcohol dependence had a significantly increased likelihood of having co-occurring 

lifetime diagnosis of mania, which was much higher for men [odds ratio (OR) -12.03] than for women 

(OR -5.3) (Kessler et al. 1997). 

There is also considerable cross-heritability between many psychiatric and addictive disorders. Genetic 

studies have suggested the existence of a common genetic influence for alcohol 

dependence/consumption and several diagnostic categories. For example, Preissig & Rigby reported the 
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risks of comorbidity of alcoholism in relatives with mood disorders including BP (Table 3.1, (Preissig & 

Rigby 2009)). 

Table 3.1. Comorbidity of Alcoholism and Mood Disorders in relatives: Adjusted Odds 
Ratios (95% Confidence Limits) Controlled for Sex, Age, and Interview Status 

 Alcoholism 

Relatives Dependence Abuse 

Mood disorders (all) 4.6 (3.1-6.9) 1.9 (1.1-3.2) 

Bipolar 8.1 (2.7-24.0) 14.5 (3.7-57.6) 

Major depressive disorder 3.2 (2.0-5.0) 1.7 (0.9-3.3) 

(From Preissig & Rigby 2009) 

 

3.7 GENES AND ENVIRONMENT 

Environmental factors and Gene x Environment (GxE) interactions are not the focus of this thesis, but a 

discussion would be incomplete without mentioning these.  

Environmental factors include cohort of birth and ethnicity that affect the risk for developing AD. 

Recent birth cohorts have higher prevalence rates of alcoholism than birth cohorts from the earlier part 

of the twentieth century (Reich et al. 1988; Grant & Dawson 1997). The differences in prevalence rates 

are thought to be due to variations in the availability of beverage alcohol resulting from Prohibition, 

economic depression, or wartime shortages, rather than significant changes in the human genome. 

Differences in prevalence rates and the course of alcohol dependence have also been noted in relation to 

ethnicity. For example, there appears to be little difference among ethnic groups with regard to first age 

of the early stages of alcoholism, but differences in first age begin to appear with later stages of the 

disorder (Ulloa et al. 2014; Chartier et al. 2009; Hesselbrock et al. 2003). 
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The variability in apparent vulnerability to alcoholism is thought to be due to biological differences as 

well as social factors (e.g. involvement in religion, family relations, social acceptability of alcohol, 

poverty, and so on), and the effect sizes of these vary from adolescence to adulthood. Kendler and 

colleagues in a landmark study of Virgina male twins demonstrated variation at different time points for 

psychoactive substance use.  They showed that at age 14 years, genetic factors have no influence on the 

level of alcohol consumption. From ages 15 to 23 years, we see a steady rise in the importance of genetic 

influences, which reach a heritability level of approximately 40% through age 35 years with the 

exception of a “dip” in the mid-30s that reverses itself by age 40 years. For familial environment, at age 

14 years, the familial resemblance for alcohol consumption results entirely from familial environmental 

influences, accounting for 40% of the variance. The importance of the familial environment declines 

steadily until age 23 years. From then until age 35 years, familial environmental influences on alcohol 

consumption are modest except for a brief “burst” in the mid-30s that disappears by age 40 years. 

(Kendler et al. 2008). Furthermore, Kendler’s group reported that age at first drink appears to be 

associated with alcohol-related behaviour, that the effect of early exposure is genetically mediated, and 

that progression to alcoholism is under stronger genetic control than initiation (Kendler et al. 2011). 

While quantitative genetic studies implicate genetic factors in the development of alcoholism, their 

findings also indicate that the genetic factors are not deterministic. If certain polymorphisms were highly 

penetrant then all alcoholics would have a genetically close relative with alcoholism; the concordance 

rates for monozygotic twins would approach 100%; and almost all offspring of an alcoholic parent-

including adoptees-would eventually develop an alcohol use disorder. Since this clearly is not the case, 

environmental and other biological factors must also play an important role in alcoholism susceptibility. 
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Many researchers have noted the importance of the interaction between an inherited biological 

vulnerability and environmental risk factors for developing alcohol use disorders (Kendler et al. 1995; 

Slutske et al. 1998; Cadoret et al. 1995). This assumes a synergy between genetic and environment 

factors that may contribute either to an increased susceptibility for developing an alcohol use disorder or 

attenuate possible genetic risk by producing a level of protection for vulnerable individuals, and is 

termed the gene-environment interaction (G x E) model (Dick et al. 2006). A striking example of gene x 

environment interaction are the Sigvardsson Swedish adoption studies, referenced above, which showed 

that high genetic risk alone is insufficient to activate expression of the alcoholism phenotype. 

Environmental effects (for example, coming from parenting style, adverse childhood experiences, etc) in 

children with genetic loading (as defined by a having a first degree relative with alcoholism) are 

necessary to develop alcoholism.  This work suggests that without the genetic risk factors, the phenotype 

will not present any more than the population rate, despite adverse life experiences usually associated 

with developing addictions. 

I have thus far focused on genetic risk factors, as the building blocks of biological susceptibility. While 

again not within the scope of this work, I have commented briefly on epigenetic factors as an important 

concept in many psychiatric disorders. 

3.8 A NOTE ON EPIGENETICS 

In addition to environmental effects, recent work has highlighted an additional role for epigenetic 

processes in mediating susceptibility to major mental illness. Epigenetics refers to heritable changes in 

gene expression that do not involve changes to the underlying DNA sequence; a change in phenotype 

without a change in genotype. Epigenetic change is a common and natural process and can also be 

influenced by several factors including age, environment, nutrition, substance use, and disease state. I 

will briefly mention a relevant example. 
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Since monozygotic (MZ) twins share a common DNA sequence, their study represents an ideal design 

for investigating the contribution of epigenetic factors to disease aetiology. Georgiades and colleagues 

(2011) performed an innovative genome-wide analysis of DNA methylation on peripheral blood DNA 

samples obtained from a unique sample of MZ twin pairs discordant for major psychosis. Numerous loci 

demonstrated disease-associated DNA methylation differences between twins discordant for SZ and BD 

individually, and together as a combined major psychosis group. Pathway analysis of their top loci 

highlighted a significant enrichment of epigenetic changes in biological networks and pathways directly 

relevant to psychiatric disorder and neurodevelopment.  Their top psychosis-associated, differentially 

methylated region, which was significantly hypomethylated in affected twins, was located in the 

promoter of ST6GALNAC1, an area overlapping a previously reported rare genomic duplication 

observed in SZ. The mean DNA methylation difference at this locus was 6%, but there was considerable 

heterogeneity between families, with some twin pairs showing a 20% difference in methylation 

(Georgiades et al. 2011). 

In the next chapter I approach the commonest method for tackling AD genetics in the 1990s-2000s: 

linkage studies. 
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4 CHAPTER 4: MAPPING AD & ALCOHOLISM: LINKAGE STUDIES 

This chapter aims to summarize the state of knowledge of linkage studies with reference to 

“alcoholism”. 

4.1 GENETIC MARKERS 

The genome among humans is approximately 99.5% identical, with the remaining difference among 

people due to polymorphisms and sequence variations – and a key mission in genetic research is to differentiate 

normal variation from disease-related genetic change. Genetic markers are an essential component used in any 

disease gene mapping study. Single nucleotide polymorphisms (SNPs) are most commonly used at 

present. SNPs are bi-allelic markers that are densely spread throughout the human genome, occurring 

approximately once every 1000 base pairs (bp) (Levy et al. 2007). SNPs have been widely used for fine 

mapping of positional and functional candidate genes. Sets of over a million of SNPs on a single array 

chip have been used for GWAS to screen the whole human genome and for phenotypes of interest. Copy 

number variations (CNVs) are being increasingly recognized and identified as both genetic markers and 

in psychiatric illness.  I discuss CNVs in more detail for BP in Chapter 6 and in SZ in Chapter 7.  

Other markers now used less commonly include Short tandem repeats (STRs) or microsatellites, which 

are short di-, tri-, or tetra-nucleotide tandem repeat sequences widely distributed in the genome, and are 

highly polymorphic among individuals. Microsatellites were initially described by Weber and May 

(Weber & May 1989) and Litt and Luty (Litt & Luty 1989), and have traditionally been the most utilized 

markers for linkage studies although latterly SNPs are also being used (Venken et al. 2008; Han et al. 

2013). SNPs have the disadvantage of being bi-allelic and are thus not as highly polymorphic as STRs. 

However, they represent the most frequent type of polymorphism and their detection can be automated 

(Wang 1998). 
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4.2 LINKAGE STUDIES 

Genetic linkage analysis is a useful technique to detect the chromosomal location of disease –related 

genes. It is based on the observation that genes that reside physically close on a chromosome tend to 

remain linked during meiosis i.e. that traits did not assort or segregate independently, but that traits 

encoded by these linked genes were inherited together.  

A measure for the likelihood of linkage is the logarithm of the odds (lod) score. The lod score Z is the 

logarithm of the odds that the loci are linked divided by the odds that the loci are unlinked (Morton 

1955).  Expression of the likelihood as a logarithm allows summation of likelihoods observed in 

different pedigrees. Since the true genetic distance between two loci is frequently unknown, the lod 

score is calculated for different recombination fractions providing a maximum likelihood estimate for 

the recombination fraction (θmax) at which the greatest lod score (Zmax) is observed.  

A lod score higher than 3.0 is generally accepted as evidence for linkage, when the human genome is 

screened with 100 to 300 markers. A lod score lower than −2 is accepted as evidence against linkage. 

Lod score analysis requires the assumption of precise genetic models, including penetrance, disease gene 

frequency, and the clear classification of individuals as affected or unaffected. 

Linkage studies are a type of genome wide analysis used to identify specific chromosomal regions 

implicated in a disease or trait of interest (Pulst 1999). 

4.2.1 Advantages and disadvantages of linkage studies. 

Linkage studies are useful for studying multiple markers simultaneously and for localising areas of 

disease risk across the genome. Disadvantages include needing a large number of families and family 

members containing several affected generations. If the disease is of late-onset with a high mortality, 
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finding families with more than one affected generation will be difficult. Linkage studies are considered 

less helpful for complex traits, such as diabetes where multiple genes are important in disease causation. 

For polygenic disorders it is highly unlikely that every family will have the same collection of 

underlying genetic factors and so linkage results will conflict and the LOD scores will be reduced.  

4.3 LINKAGE STUDY FINDINGS IN AD 

Genetic linkage studies on large samples of families have been carried out by several research groups in 

European and Native American populations (Cook et al. 1996; Guerrini et al. 2005; Kendler et al. 2006; 

Kuo et al. 2006b; Hesselbrock et al. 2001; Ehlers et al. 2004). The most important have been those from 

the USA Consortium on the Genetics of Alcoholism (COGA) (Foroud et al. 2000). For example a lod 

above 3.00 for linkage with alcohol dependence syndrome (ADS) was found on chromosome 3. Another 

lod above 3.00 with ADS was found on chromosome 6 (Cantor and Lanning 1999). Lods above 3.00 

were found with alcoholism on chromosome 11 and 4 in Native American families (Long et al. 1998). 

Some of these positive findings were replicated in a linkage study in Ireland (Prescott et al. 2006).  

In the USA COGA study a combined ADS and conduct disorder (Dick et al. 2004) phenotype showed 

positive lod scores over a region of chromosome 2 that includes the Tachykinin A Receptor 1 (TACR1) 

locus. The TACR1 locus was later reported to be associated with bipolar disorder and attention deficit 

hyperactivity disorder (ADHD) (Perlis et al. 2008; Ferreira et al. 2008; Yan et al. 2009; Sharp et al. 

2014). Lod scores greater than 3.0 were found on chromosomes 7, 2, 3, 5, 9, and 14 when antisocial 

families were selected to achieve greater homogeneity (Jacobson et al. 2008).  Replication of the linkage 

to alcoholism on chromosome 1 originally found by the USA COGA study (Dick et al. 2002) has been 

achieved in Finland (Lappalainen et al. 2004) with further support from a linkage study in the UK 

(Guerrini et al. 2005). This locus appears to be showing linkage to a combined depression and 

alcoholism phenotype (Nurnberger et al. 2001).  
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Several  studies have reported evidence for linkage of substance dependence to a broad area on distal 

chromosome 1 (Reich et al. 1998a; Foroud et al. 2000; Nurnberger  Jr. et al. 2001; Dick et al. 2002; Hill 

et al. 2004; Lappalainen et al. 2004; Guerrini et al. 2005; Ehlers & Wilhelmsen 2006).   

A site for AD on chromosome 4 near a GABAA receptor gene cluster was found by the COGA team 

(Reich et al. 1998b and Long & Goldman 1998) in a southwest Indian tribe. This chromosomal region, 

which also contains genes coding for receptor subunits GABRG1, GABRA2, GABRA4, and GABRB1, 

was also linked to an electrophysiological phenotype (EEG beta activity) that characterizes individuals 

at risk for alcoholism in the COGA study (Porjesz et al. 2002), heavy drinking in the Framingham study 

(Wyszynski et al. 2003), cannabis dependence in the nicotine addiction genetics project (Agrawal et al. 

2008), and “addiction phenotype” haplotypes in substance misusers (Drgon et al. 2006). A site on 

chromosome 7 has also been found by the COGA study but is yet to be duplicated (see Saccone & Rice 

2005; Dick et al. 2008). 

More recently, Han and colleagues performed ordered subset linkage analysis in 384 African American 

families using “admixture proportion” as a covariate to identify a more homogeneous subset of families 

and determine whether there is increased evidence for linkage with AD. Statistically significant 

increases in lod scores in subsets relative to the overall sample were identified on chromosomes 4, 12, 

15 and 22. In a subset of 44 families with African ancestry proportions ranging from 0.858 to 0.996, Han 

et al observed a genomewide significant linkage at 180 cM on chromosome 4 (lod = 4.24) near a 

candidate gene GLRA3, which encodes a subunit of the glycine neurotransmitter receptor (Han et al. 

2013).  

Pertinent linkage findings are summarized in Table 4.1 which is adapted from Gizer’s summary (Gizer 

et al. 2011). 
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In summary, linkage approaches have found replicated evidence for numerous regions linked to AD and 

related phenotypes in different ancestral groups. The next stage is to map these regions more finely 

using association studies, which is the theme of Chapter 5. 
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Table 4.1 Chromosomal Regions with Evidence of Linkage to AD and related phenotypes 

(adapted from Gizer et al. 2011). 

Phenotype 

Chromosom

al Region 

c

M 

LO

D 

Nearest 

Marker

s 

Previous evidence for linkage to 

alcohol dependence (within 40 cM) 

Alcohol 

Dependence 

with 

clustering 

1p36.31–

p36.22 

1

1 

1.4 D1S214

/D1S45

0 

- 

2q37.3 2

8

7 

1.2 D2S140 Prescott et al. 2006 (265 cM)*,2; Kuo et 

al. 2005 (250 cM)*,3 

 
1

8

0 

4.2

4 

- Han 2013 

8q24.3 1

6

3 

1.5 D8S174

3/D8S1

836 

- 

10q23.3 – 

24.1 

1

7

2 

3.3

2 

- Gelernter 2009 

18p11.21–

p11.2 

4

8 

1.3 D18S45

3/D18S

1107 

Kuo et al. 2005 (83 cM)4; Schuckit et 

al. 2005 (21 cM)5; Hill et al. 2004 (41 

cM)1; Wilhelmsen et al. 2003 (70 cM)5 

Alcohol 

Dependence 

without 

clustering 

1p22.3 1

1

4 

1.2 D1S276

6 

Reich et al. 1998 (121 cM)*,1; Corbett 

et al. 2005 (99cM)*,1; Foroud et al. 

2000 (120 cM)*,1; Guerrini et al. 2005 

(121 cM)1; Kuo et al. 2006 (141 cM)6; 

Hill et al. 2004 (90 cM)1 

2p24.3–p24.1 3

2 

2.4 D2S149

/D2S30

5 

Wilhelmsen et al. 2005 (43 cM)7 

9p24.1–p23 1

8 

1.7 D9S286

/D9S16

8 

Long et al. 1998 (42 cM)1 

22q12.3–

q13.1 

3

6 

1.8 D22S28

3/D22S

423 

Prescott et al. 2006 (8 cM)*,1; Kuo et al. 

2005 (8 cM)*,8; Bergen et al. 2003 (33 

cM)4; Foroud et al. 2000 (58 cM)1; 

Wilhelmsen et al. 2003 (25 cM)5 

Abbreviations: cM – centimorgans  

Notes: 
*studies indicated by an asterisk within a chromosomal region were conducted using overlapping 

datasets, numbered superscript indicate the trait studied: 
1Alcohol Dependence/Alcoholism, 2Alcohol Dependence symptom count, 3withdrawal symptoms, 
4maximum drinks in 24 hours, 5body sway following exposure to alcohol, 6initial sensitivity to alcohol, 
7average drinks/week, 8tolerance. 
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5 CHAPTER 5: MAPPING ALCOHOLISM: ASSOCIATION STUDIES 

5.1 APPROACH 

Whereas linkage analyses can identify a broad chromosomal region that is likely to contain a gene 

contributing to an endophenotype or disease, association studies can locate the gene or genes that 

influence an outcome with higher accuracy (Lewis & Knight 2012).  

One of the most commonly used experimental designs to identify genetic variation contributing to a 

disease is that of candidate gene analysis. This approach seeks to test the association between a 

particular allele of the candidate gene and a specific outcome by comparing the frequencies of alleles in 

a population of unrelated cases (e.g. AD) and a population of control subjects (e.g. non-AD). 

A candidate gene normally is chosen based in a biological hypothesis involving gene function or 

because the region has been implicated in prior linkage studies.  Many candidate gene studies use 

population–based association methods which compare the genes of groups of people, cases and controls.  

Ideally, the two groups would be matched with respect to as many factors as possible (e.g. age and 

ethnicity) so that they differ only in disease status. The investigators would then compare the frequencies 

of various alleles of a marker (e.g. a SNP) within or near the candidate gene. Differences in allele 

frequencies between the two groups may indicate that the genetic variant is important in disease 

susceptibility. It may also represent population stratification, Type 1 error, or LD between the candidate 

gene and the true disease susceptibility gene, which is located within the chromosomal neighbourhood, 

but is discrete from the candidate gene. This means that the candidate gene is not actually the causative 

mutation, but is sufficiently close to the disease–causing mutation that the candidate gene and the 

disease mutation tend to be inherited together during gamete formation.  
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Population–based association studies of candidate genes have been widely used but the approach has 

drawbacks: there is a growing number of numerous biochemical pathways being categorized which 

means candidate genes numbers increase rapidly; in polygenic disorders such as AD, the effects of each 

gene are probably small and large sample sizes in multiple populations are often required to detect such 

genes. Specious associations between the disorder and certain alleles and the disorder are likely to show 

up if the cases and controls are not well matched with respect to important genetically linked 

characteristics such as ethnicity.  

Family–Based Association Studies (FBAT) were thus developed to address some of these pitfalls. A 

family–based association test—the transmission disequilibrium test (TDT) – was published by Spielman 

and Ewens (Spielman et al. 1993). The TDT tests the hypothesis that a particular marker allele is more 

frequently transmitted to affected offspring from heterozygous parents and analyses a nuclear trio 

consisting of an affected person and their parents. Using the information on the transmission of various 

alleles from many families, investigators can conduct statistical analyses to determine if a particular 

allele of the marker being tested is associated with disease development. Using a “within–family” 

design, the control sample of alleles is perfectly matched to the affected sample of alleles because both 

samples are transmitted from the same two parents, and no matched unrelated control sample is needed. 

Scientists have built upon the TDT using other designs, that include data from both affected and 

unaffected siblings or from even more extended pedigrees, and quantitative traits in addition to 

qualitative traits (Laird 2001). 

5.2 CANDIDATE GENE STUDY FINDINGS IN AD 

Numerous genes involved in the metabolism of alcohol, brain learning and reward systems, and 

ethanol’s varied effects on the brain have been studied as candidate genes for AD. However association 
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studies have not often given consistent results. For example, I noted in the GABRB2 paper that there 

were 5 positive and 5 negative association studies of the gene. 

According to the HUGE Navigator, at time of writing, 724 genes have been implicated with the 

“alcoholism” phenotype (https://phgkb.cdc.gov/HuGENavigator/home.do ). The following section offers 

a summary of selected positive and replicated associations with AD and related phenotypes. 

5.2.1 The GABA system 

The gamma aminobutyric (GABA) system has been implicated in alcoholism, substance misuse, 

externalizing behaviours and electroencephalogram (EEG) beta-activity. GABA is the principal 

inhibitory neurotransmitter in the central nervous system (CNS). A number of biological and genetic 

findings in human and animal models support GABA receptor genes as good candidates.  

In rats, GABA-A antagonists decrease ethanol intake (Boyle et al. 1993; Nowak et al. 1998; Tomkins 

and Fletcher, 1996) and GABA agonists increase ethanol intake.  GABA alpha receptor subtype 2 

(GABRA2) has been associated with alcoholism and ethanol-conditioned taste aversion in rodents 

(Hood and Buck, 2000). 

Linkage was found by Goldman and colleagues in a sample of US Indians for  D4S3242 (P = 0.0002, 

lod = 2.8) which is located near GABRB1 (Long et al. 1998). The Collaborative Study on the Genetics 

of Alcoholism (COGA), using linkage scans implicated markers D4S3242, D4S2393 which are near 

GABRB1 on chromosome 4p.  A linkage disequilibrium analysis of 69 SNPs across the GABA gene 

cluster in the family-based COGA sample found allelic and haplotypic association between alcohol 

dependence and GABRA2. 

https://phgkb.cdc.gov/HuGENavigator/home.do
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In humans, several alcohol effects, including anxiolysis, sedation, motor incoordination, some 

withdrawal symptoms, and ethanol preference, are mediated by GABA transmission (Buck, 1996; 

Grobin et al. 1998; Korpi et al. 1998).  Cross tolerance is shown between alcohol and GABA-A 

receptor-modulating drugs like benzodiazepines which are used to treat alcohol withdrawal (Kumar et al. 

2009). 

GABAA receptors are involved in mediating both the acute and chronic effects of alcohol, and markers 

in GABA system genes have been associated in a number of studies with AD and other alcohol-related 

phenotypes (Cui et al. 2012),  the most replicated being the GABAA receptor α2 subunit gene 

GABRA2. GABRA2 is thought to contribute to sensitivity to alcohol intoxication (Haughey et al. 2008; 

Pierucci-Lagha et al. 2005) and to a common genetic vulnerability to alcohol and drug misuse (Agrawal 

et al. 2006).  The SNP rs279858, though lying in exon 5 of the gene, is a synonymous substitution 

(Covault et al. 2004). It has been associated, either individually or as a member of multi-SNP 

haplotypes, with AD and other alcohol related phenotypes, such as alcohol sensitivity, more often than 

any other marker.  

Reanalysis of the COGA sample revealed that the association between GABRA2 and AD was strongly 

dependent on illicit drug dependence (Agrawal et al. 2006).  The opposite effect was noted in the 

Covault study (Covault et al. 2004) where removal of drug dependent subjects increased the association 

between GABRA2 and AD.  GABRA2  may also contribute to alcoholism through effects on psychiatric 

co-morbidity (Dick et al. 2006; Enoch et al. 2006) although other studies contradict this: one study found 

a strong GABRA2 association in an AD sample without depression (Covault et al. 2004) while another 

observed no association in a sample with low psychiatric and substance misuse co-morbidity  (Matthews 

et al. 2007). 
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 Bierut et al’s 2010 AD GWA of predominantly European- and African-Americans also evaluated 

GABRA2 independently as a candidate gene.  Five SNPs in this GWA at GABRA2 yielded a nominal 

(uncorrected) P < 0.05 (Bierut et al. 2010). GABRA2 and GABRA6 have, separately, also been 

associated with alcoholic Korsakoff's psychosis (Loh et al. 1999). 

At the time of writing (final literature search 1 November 2015) five association studies have implicated 

GABRA2 in alcoholism samples (Bierut et al. 2010; Covault et al. 2004; Fehr et al. 2006; Lappalainen et 

al. 2005; Soyka et al. 2008) while five studies, excluding ours, have found no association (Drgon et al. 

2006; Enoch et al. 2010; Lind et al. 2008; Matthews et al. 2007; Onori et al.).  

To reconcile these conflicting data, Li and colleagues performed a meta-analysis of variants in the 

GABAA receptor genes (GABRB2, GABRA6, GABRA1, and GABRG2 on chromosome 5q and GABRA2 

on chromosome 4p12). Using a Bonferroni-corrected threshold of 0.007, they found strong associations 

between GABRA2 and AD, rs567926, and rs279858; and between GABRG2 and AD and heroin 

dependence. Significant association was also observed between GABRA6 rs3219151 and AD (Li et al. 

2014). 

Kosubud et al recently reported an association between the GABRA2 SNP rs279858 and higher recent 

drinking history (p = 0.01) in a group of non-AD moderate to heavy drinkers. A recent drinking history 

× genotype interaction (p = 0.01) were significantly associated with acute adaptation of the subjective 

responses to alcohol. Higher recent drinking was found to be associated with reduced acute tolerance to 

the stimulating effects of alcohol in carriers of the rs279858 risk allele. The authors postulated that 

GABRA2 effect on alcohol dependence may, in part, be due to its effect on subjective responses to 

alcohol (Kosobud et al. 2015).  
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5.2.2 Alcohol metabolism genes 

In Homo sapiens, alcohol is metabolized by the liver enzymes alcohol dehydrogenase (ADH) into 

acetaldehyde, and aldehyde dehydrogenase (ALDH) into acetate, at the rate of about one standard drink 

per hour (Li 2000). At the usual blood alcohol concentrations, the acetaldehyde is then quickly broken 

down by the mitochondrial form of the enzyme aldehyde dehydrogenase (ALDH2).  Genes coding for 

these enzymes are thus of great interest as candidate genes for AD. 

Genetic polymorphisms in the genes encoding ADH and ALDH are associated with alterations in 

enzyme kinetics, which determine the rates of manufacture and elimination of the toxic intermediate 

metabolite acetaldehyde.  This has led to the widely accepted hypothesis that genetic factors which alter 

the metabolism of ethanol are important aetiological risk factors for ADS (Quertemont 2004; Schuckit et 

al. 1996; Whitfield et al. 2001). 

Genetic variation among alcohol-metabolizing genes has been well studied with respect to their role in 

affecting predisposition to alcohol dependence (Way et al. 2015).  The ALDH2*2 functional variant in 

aldehyde dehydrogenase type 2 (ALDH2), predominantly found among Asian populations, produces a 

reduced capacity to metabolize acetaldehyde and a physiologic flushing response, nausea and 

tachycardia are may create an aversion to alcohol consumption.  

The Australian Alcohol Challenge Twin Study, started over 20 years ago, has provided impressive 

contributions to understanding the genetics of alcohol metabolism in relation to alcohol use disorders, 

such as pharmacokinetic measures, alcohol consumption, and heritability of various alcohol-related traits 

(Martin, Perl, et al. 1985; Martin, Oakeshott, et al. 1985).  Studies have been published on genetic 

influences on peak blood alcohol concentrations, rate of decrease in blood alcohol concentration, and 

AD. (Whitfield & Martin 1994). Whitfield et al observed a two- to threefold increased AD risk in 

individuals who demonstrated blood or breath alcohol concentrations after a challenge in the highest 

quartile of values compared with those in the lowest at 10 year follow-up (Whitfield et al. 2001).  These 
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adverse effects significantly affect drinking behaviour; in doing so they protect against the development 

of alcohol misuse/dependence and the medical consequences of harmful drinking, including alcohol-

related cirrhosis and pancreatitis (Cichoz-Lach et al. 2007). 

The involvement of the alcohol dehydrogenase (ADH) gene cluster has been reinforced by linkage 

studies repeatedly implicating chromosome 4 (Luczak et al. 2006; Edenberg et al. 2006) and by several 

allelic association studies (Kuo et al. 2008; Edenberg et al. 2006; Ball 2005). In a GWAS of German 

men, only one SNP, rs1789891 (located between the ADH1B and ADH1C genes), achieved genome-

wide significance for AD (Frank et al. 2012).  The major allele of rs1789891 was found, based on 

imputed genotypes, to be in LD (D′=1.0, r2=0.27) with the major allele of rs1693482, encoding the high 

activity (Arg272) variant in ADH1C (Edenberg 2012; Lee 2014).  However, comparisons with the 

results of three other GWAS undertaken in individuals of European origin or ancestry have produced 

conflicting results (Macgregor et al. 2008; Frank et al. 2012; Edenberg et al. 2010b).  Thus, in one 

GWAS rs1789891 showed nominal but not genome-wide significance with ADS (Edenberg et al. 2010b) 

while no significant association was found in the other two studies.  Further, conditional analysis of the 

German GWAS data indicated that partly independent signals from other markers also contributed to the 

observed associations supporting the role of other variants in the ADH cluster affecting ADS risk. 

Recently, Holmes and colleagues reported on a protective association of the ADH1B rs1229984 A-allele 

variant in reducing weekly alcohol intake, and better cardiovascular measures, suggesting that reducing 

alcohol even for light to moderate drinkers is beneficial for cardiovascular health (Holmes et al. 2014). 

In 2015 I was part of the UCL group which found at least two genetic effects from the ADH cluster on 

chromosome 4 which impact on ADS risk in a British and Irish population. Way and colleagues from 

our group observed a highly significant protective association with the rare missense Arg48His mutation, 

rs1229984, in ADH1B and AD risk (allelic P 8.4 x 10-6, odds ratio [OR] 0.26, 95% confidence interval 

[CI] 0.14, 0.49).  A significant independent association with AD risk was also observed with the more 
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common intergenic variant, rs1789891, (allelic P 7.2 x 10-5, OR 1.4, 95% CI 1.2, 1.6) and with three 

non-synonymous SNPs in ADH1C, rs698, rs1693482, rs283413 and ADS risk although their effects 

were not completely independent from those of rs1229984 and rs1789891 (Way et al. 2015). 

5.2.3 The Dopamine system and COMT 

Dopamine (DA) signals via D1-like (D1, D5) and D2-like (D2, D3, D4) receptors, which have opposite 

effects at the cellular level, respectively stimulating or inhibiting, adenylate cyclase (Caspi 2002) 

(Girault & Greengard 2004). Thus, by differentially affecting D1-like versus D2-like receptors, DA can 

activate or inhibit regional brain activity. Alcohol and drugs of abuse, which stimulate brain DA 

signalling (Koob & Bloom 1988), could therefore result in inhibition or activation of regions of the 

mesolimbic and mesocortical DA pathways, depending on the balance of D1-like versus D2-like 

receptors. This in turn enhances neurotransmission in the nucleus accumbens (Di Chiara & Imperato 

1988; Weiss et al. 1993; Anon n.d.; Tanda et al. 1997)and affects the motivational and reward properties 

of addictive drugs (Koob 1997; Tanda et al. 1997). Deficiencies in dopaminergic tone have also been 

linked to addictions and termed the “reward deficiency syndrome” (Koob & Volkow 2010) .  

The Taq1A polymorphism (located in the gene cluster ANKK1/DRD2) in AD has been the focus of 

much research and AD. In 1990 Blum and colleagues first reported that the DRD2 receptor A1 allele 

was associated with an OR of 8.7 for developing AD compared to controls (Blum et al. 1990), a 

replicated association. Others have shown that gene polymorphisms that inhibit the expression of the D2 

receptor are associated with increased risk of AD (Berggren, 2006; Krachewski, 2009). In support of this 

hypothesis is a study which found increased alcohol intake among D2 receptor knock-out mice (Bulwa 

et al. 2011). In contrast, other studies failed to find any association between the D2 receptor and AD 

(Gelernter & Kranzler 1999; Blomqvist et al. 2000).  A large-scale meta-analysis confirmed both allelic 

and genotypic associations between the Taq1A polymorphism and the risk for AD in over 18,000 

subjects included in 61 case–control studies that were published up to August 2012 (Wang, 2013). 
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Dopamine is linked to cravings (see endophenotypes, Section 2.7.8 above). Reduced prefrontal cortical 

dopamine transmission has been reported in AD, among many other neurobiological findings involving 

dopamine (Narendran et al. 2014). Dopamine is also linked to the opioid system (see below) and many 

other addictions- and psychiatric disorder-related brain circuits beyond the scope of this thesis. 

Dopamine metabolism is also of interest in AD risk. Catechol-O-methyl transferase (COMT) is an 

enzyme involved in the breakdown of dopamine (Axelrod & Tomchick 1958) and is encoded by the 

COMT gene, located on chromosome 22q11 - a region that has been strongly implicated in 

schizophrenia, anxiety and  mood disorders (Bassett & Chow 1999; Bassett et al. 1998; Gothelf et al. 

1997; Abdolmaleky et al. 2006; de Chaldée et al. 1999; Egan et al. 2004; Goghari & Sponheim 2008; 

Kremer et al. 2003; Li et al. 1996; Wonodi et al. 2003; Hettema et al. 2008; Hamilton et al. 2002; Massat 

et al. 2005; Mandelli et al. 2007).  Rs4680 is an intriguing COMT polymorphism that encodes either 

methionine or valine at amino acid position 158, which modifies COMT enzyme activity (Chen et al. 

2004). Other COMT SNPs, rs165774 and rs6267 have also been associated with SZ (Hong et al. 2008; 

Lee et al. 2005). In addictive behaviours, rs4680 has been found to contribute to the development of AD 

(Voisey et al. 2011), late-onset alcohol dependence (Tiihonen et al. 1999), alcohol intake in alcoholics 

and the general male population (Kauhanen et al. 2000), smoking cessation, (Omidvar et al. 2009), and 

opiate dependence (Oosterhuis et al. 2008). However there have been conflicting studies for COMT 

including a study that did not observe association with alcohol dependence or nicotine dependence 

(Foroud et al. 2007). Genome-wide association studies of nicotine and alcohol dependence have not as 

yet found association with COMT (Caporaso et al. 2009; Edenberg et al. 2010a; Lind et al. 2010; 

Treutlein et al. 2009). 
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5.2.4 The Serotonin system 

Serotonin (5-HT) is a key neurotransmitter in the regulation of reward-related behaviours, from eating 

and drinking to sexual activity, and is strongly implicated in mood and anxiety disorders. Serotonin-

containing neurons project diffusely to various areas known to be involved in the reward system, 

including the nucleus accumbens, ventral tegmental area, substantia nigra, hippocampus, amygdala, and 

prefrontal cortex. Nearly all of the serotonin receptor subtypes have been linked to areas in the brain 

associated with addiction and reward (Hayes & Greenshaw 2011).  

Presynaptic serotonin transporter (5-HTT) polymorphisms have been investigated as an important 

regulator of addiction risk and drinking behaviour (Heinz et al. 2000). The serotonin transporter, 

encoded by the SLC6A4 gene, influences the synaptic actions of serotonin and is responsive to stress 

hormones. The 5-HTT-linked polymorphic region [5′-HTTLPR; long (L) and short (S) alleles] is a 

functional SLC6A4 promoter polymorphism and widely studied. Ait-Daoud et al have shown that cue-

induced alcohol craving and propensity for higher drinking are modulated by allelic differences in 

SLC6A4 and by the serotonin transporter gene polymorphism rs1042173 (Ait-Daoud et al. 2012). The 

same authors reported on genotype combinations that may predict the outcome of the treatment of 

alcohol dependence using the 5-HT(3) antagonist ondansetron (Johnson et al. 2013), and also interactive 

effects among variants in SLC6A4-HTR3A-HTR3B affecting AD risk (Seneviratne et al. 2013).The 

serotonin receptor genes HTR2A, HTR1A and TPH2 have also been associated with suicide attempts in 

alcohol dependence (Wrzosek et al. 2011). 

5.2.5 The opioid system 

The opioid system is composed of numerous receptors expressed mainly in the central nervous system. 

Three types of opioid receptors (mu, delta and kappa) represent the respective targets of the major opioid 

peptides (β-endorphin, enkephalins and dynorphins, respectively). As discussed above, the mesolimbic 

dopamine “reward” system ascends from the ventral tegmentum of the midbrain (VTA) to the nucleus 
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accumbens (NAC). One model proposes that reward results from activation of mu-opioid receptors in 

the VTA and/or delta receptors in the NAC; both these nuclei are targets of endogenous β-endorphin. In 

contrast, activation of κ-receptors appears to cause dysphoria.  

Models of high preference for alcohol also support the view that alcohol induces opioidergic activity 

(and thus reward) and/or that ethanol intake relates to the tone of the endogenous opioid reward system – 

so that alcohol consumption may serve to compensate for inherent deficits in this system  (Giannoulakis 

1996). One biomarker study found lower cerebrospinal fluid (CSF) levels of β-endorphin in AD subjects 

than those of the controls (Genezzani, 1981). Whether this is causal or effect is unclear. It is suggested 

that alcohol itself interferes with this reward pathway either directly or indirectly by affecting binding 

properties of opioid receptors, as well as modulation of opioid peptide synthesis and secretion (Herz, 

1997).  

Opioid polymorphisms have been linked to including alcohol use (Bart et al. 2005; Francès et al. 2015), 

alcohol cravings (van den Wildenberg et al. 2007), and response to naltrexone (a mu opioid receptor 

antagonist and a medication used in relapse prevention for AD) (Chamorro et al. 2012; Rösner et al. 

2010). For example, upon treatment with naltrexone, 87% of rs1799971(G) carriers had fewer heavy 

drinking days and more days abstinent, than 55% of individuals with the (A;A) genotype (Anton et al. 

2008). This SNP may also influence the response (analgesia, nausea and vomiting) to opioids such as 

morphine, codeine or heroin. A 2015 meta-analysis (totalling 5,902 patients) concluded that the carriers 

of a rs1799971(G) allele consumed more opioids for analgesia  (Lu 2015).  

Opioids themselves are potentially addictive in susceptible individuals, and cross-addiction between 

opioids, alcohol and other substances is well described clinically (Laudet, 2008; Langas, 2011). Several 

studies have found mixed evidence for an association between receptor polymorphisms and addiction 

vulnerability (e.g Hoehe 2000; Crowley, 2003). For example, a study of 200 Chinese heroin dependent 

people reported a higher frequency of the rs1799971(G) allele compared to non-dependent people (40% 
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vs 29%) (Szeto, 2013), but this was not replicated in another study of the same population (Shi, 2002). 

Tentative new point mutations have recently been identified in an Iranian opioid-dependent subjects 

(Dinarvand, 2014). 

In summary, the opioid system is closely linked to the reward system, response to alcohol, and risk of 

AD and related phenotypes including other addictions. 

5.2.6 Taste receptors 

The flavours in ethanol have sweet and bitter taste components. Variation in bitter and sweet taste 

receptors is associated with perception of ethanol flavour and consumption of alcoholic drinks as well as 

food preference (Bachmanov et al 2003). The 25 human genes coding for bitter taste receptors (TAS2Rs) 

contain high levels of allelic diversity. Since bitter taste is hypothesized to reduce the intake of toxic 

substances, variation at TAS2R genes could reflect the action of natural selection on the ability to 

recognize some bitter compounds rather than others. Whether species-specific variation in TAS2R genes 

is solely the result of genetic drift or whether it may have been influenced by selection due to different 

feeding behaviours is a matter of debate (Risso et al. 2014).  

The most studied taste endophenotype is propylthiouracil (PTC) bitterness, which is mediated primarily 

by the TAS2R38 gene.  In a laboratory-based study, TAS2R polymorphisms appeared to influence the 

intake of alcohol (Hayes et al 2010). Individuals carrying one or two sensitive alleles of TAS2R38 

reported lower yearly consumption of alcoholic beverages than did individuals homozygous for the 

insensitive allele (Duffy et al 2004).  An association has been found between AD and polymorphisms in 

TAS2R16 (another bitter taste receptor): the less sensitive K172N allele is appears to heighten AD risk 

(Hinrichs et al 2006). This allele on Chr 7q, a region implicated in ADS by multiple linkage studies (see 

Linkage section above). However, this risk allele is uncommon in European Americans (minor-allele 

frequency [MAF] 0.6%), whereas 45% of African Americans carry the allele (MAF 26%), which 

arguably makes it a more significant risk factor in the African American population. 
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Bitter taste receptor gene polymorphisms are also an important factor in the development of nicotine 

dependence (ND) in African Americans in whom reduced bitterness sensitivity represents a risk factor 

for ND, and increased oral sensitivity confers protection against ND (Mangold, 2008). 

5.2.7 The endocannabinoid system 

Since the first protean sea slug evolved a cannabis receptor (CB1), the cannabinoid system has been 

found in many descended animals including humans, who discovered the mind altering properties of 

herbal CNR1 agonists some 12,000 years ago (McPartland, 2002). In humans the genes coding for 

cannabinoid receptors are termed CNR1 and CNR2. The endocannabinoid system is the main site of 

action for the rewarding and pharmacological responses induced by cannabinoids (Ledent, 1999; 

Lichtman, 2005). However, this system plays an overall modulatory effect on the reward circuitry and 

also participates in the rewarding and addictive properties of most typical drugs of abuse (Maldonado, 

2008). 

Alcohol and cannabinoids appear to activate similar reward pathways, and CB1 receptors also seem to 

regulate the reinforcing properties of alcohol in rodent models although human data are limited. In a 

study of 550 AD or SUD subjects, Zuo et al found that the risk for each SUD subtype significantly 

increased with the number of “G” alleles at rs6454674 in European Americans (Zuo, 2012). One recent 

postmortem brain study of AD subjects demonstrated hyperfunctional CB1 receptors in the caudate 

nucleus compared to the non-AD groups; and non-suicidal AD subjects showed hypofunctional receptors 

in the cerebellum. No changes were found in the CB1 protein expression in either region (Erdozain, 

2015).  

5.2.8 Miscellaneous and meta-analyses 

Many small and medium scale case control genetic association studies have already shown that genetic 

effects on susceptibility to alcoholism are partly derived from neurotransmitter receptor variants 

(Kohnke, 2008), from alcoholism metabolism genes (Dick et al. 2007, Kuo et al. 2008, Luo et al. 2005) 
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and from other central nervous system (CNS) related genes. A recent large meta-analysis found no 

significant associations for SNPs in six otherwise strongly implicated genes (BDNF, DRD1, DRD3, 

DRD4, GRIN2B and MAOA) (Forero et al. 2015). Carmiol et al. showed that the clock gene D-box 

binding protein (Dbp) appears to influence the risk for both bipolar disorder and AD (Carmiol et al. 

2014). 

Coded by Calcium/calmodulin-dependent protein kinase II (CAMK2A) the Alpha Ca(2+)/calmodulin-

dependent kinase II (alphaCaMKII) enzyme plays a key role in controlling plasticity in the brain. It is the 

major synaptic protein in the forebrain and can switch into a state of autonomous activity upon 

autophosphorylation. It has been proposed that alphaCaMKII autophosphorylation mediates long-term 

memory (LTM) storage. The autophosphorylation of αCaMKII works as a 'molecular memory' for  

transient calcium activation, thereby accelerating learning (Irvine et al. 2006).  Easton and colleagues in 

a series of mouse-human translational studies found seven significant associations between CAMK2A 

SNPs and alcohol dependence, one of which was in an autophosphorylation-related area of the gene 

(Easton et al. 2013). In another rodent-human study, Easton and colleagues confirmed that human 

carriers of the CAMK2A rs3776823 TT-allele carriers display a faster transition to severe cocaine use 

than C-allele carriers, and delayed conditioned place preference in mice given cocaine (Easton et al. 

2014). They suggest that CAMK2A autophosphorylation as a facilitating mechanism in the 

establishment of alcohol drinking and cocaine use behaviour. 

5.2.9 Summary 

 

Numerous candidate genes have been proposed, and some fewer replicated, for development of AD or 

related traits. Biological AD risk appears to be mediated by taste, metabolism, reward, and 

neurotransmitter pathways. 
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5.3 GENOME WIDE ASSOCIATION STUDIES 

In contrast with candidate gene studies, Genome-wide studies (GWAS) investigate single markers of 

common variation across the human genome, investigating both known genes and the bulk of the non-

genic regions, whether they were previously associated with pathophysiological hypotheses or not, and 

without needing to understand the functions of associated genes. A number of catalogues of published 

GWAS are available (for example at http://www.ebi.ac.uk/gwas/ ). Due to their extensive coverage of 

the human genome, GWAS, in combination with systems biology approaches, have yielded wide-

ranging data about complex disorders psychiatric like AD, BP and SZ amongst others. According to the 

NHGRI-EBI Catalog of published genome-wide association studies (http://www.ebi.ac.uk/gwas/ ) as of 

20/11/2015, 183 genes were reported associated to SZ (139) , BP (36) and AD (8) at genome-wide 

significant levels (p<5×10−8) and many of these associations have been replicated or are replications. 

Additionally another 519 genes were implicated at suggestive p values (p<5 x 10 -6).  

5.3.1 GWAS methodology 

GWAS are based on the theory of linkage disequilibrium (LD), which is defined as a non-random 

statistical association of alleles at two or more loci, and which is characteristically associated with short 

physical distance between genetic markers.  A GWAS involves a comprehensive interrogation of the 

common variations across the entire human genome. In a GWAS, researchers search for statistically 

significant differences in the frequency of genetic variants between cases and controls at hundreds of 

thousands (or more) loci (McCarthy et al. 2008). This allows us to identify genetic associations with 

observable traits, without the need for an a priori hypothesis about the location or function of the 

variants. Due to the extensive correlation or LD between SNPs, the majority of all common genetic 

variation is captured by genotyping only a small proportion of the total number of known SNPs using 

this technique. The genetic architecture of psychiatric disorders has proven to be complex resulting in 

two contrasting hypotheses: the Common Disease Common Variant (CDCV) and Common Disease Rare 

Variant (CDRV) theories.  

http://www.ebi.ac.uk/gwas/
http://www.ebi.ac.uk/gwas/
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According to CDCV, the genetic risk in an individual and in the population is attributable to many high-

frequency variants, each conferring modest level of risk (Risch & Merikangas 1996). Alternately, the 

CDRV hypothesis states that a large number of rare variants with relatively large effects contribute to the 

disease risk, such that hundreds of genes, each with many rare variants, contribute to the phenotype 

(Pritchard 2001; Reich & Lander 2001). Based on the concept that psychiatric disorders have a negative 

effect on fecundity, natural selection would prevent the causal alleles from reaching common frequencies 

in a population. This assumption would support the CDRV hypothesis (Alaerts & Del-Favero 2009).  

GWAS combines the merits of association studies in the power to detect small effects with that of 

linkage studies because they do not require any knowledge of the disease  pathogenesis. In addition, the 

GWAS approach requires correction for extensive multiple testing and for population stratification. The 

large samples required for performing GWAS provide power to detect variants with small or large 

effects. 

GWAS was largely made possible by the Human Genome Project 

(www.ornl.gov/sci/techresources/Human_Genome/home.shtml ). Advances in SNP genotyping and 

DNA sequencing were offshoots of the Human Genome Project, and microarrays made possible rapid 

and accurate genome-wide genotyping resulting in a map of common genetic variation in a reference set 

of individuals of European, Asian, and African descent: This map was called the HapMap project (an 

abbreviation of “haplotype mapping”). HapMap defined “blocks” of the human genome which were 

relatively free from the linkage.  Such blocks were tagged with polymorphic genetic markers – hundreds 

of thousands of them across the genome. This massive project was followed by translational activities by 

private sector firms (e.g. Affymetrix Inc. and Illumina Inc.). This output resulted in the introduction of 

genome-wide scans based on hundreds of thousands of SNPs. These scans were based on common 

genetic variants in human populations, in which the frequency of minor alleles is still greater than 5% in 

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
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the population. The common variants were specifically chosen for scans to "tag" the "blocks" of the 

genome separated by "recombination hot-spots" (Wellcome Trust Case Control Consortium 2007). 

Because most of the markers used for GWAS are tag SNPs, the most significant associated SNP may 

reflect a direct or an indirect association. The SNP may thus be in LD with a causative variant, and LD 

can occur hundreds of kb-pair away from the marker. The   most   commonly   used   criterion   for   SNP   

chip evaluation is global coverage, defined as the fraction of common SNPs that are tagged by the SNPs.  

For example the Affymetrix 6.0 and Illumina 1M SNP arrays include ~1M common SNPs and probes for 

analysis of copy number variants  (CNVs) reportedly assay  some 80% of the common variation in the 

genome (Li et al. 2008). 

The estimated number of common (minor allele frequency, MAF>1%) SNPs is ~10M, but our 

genotyping capabilities are not (yet) sufficiently developed to genotype every SNP in huge clinical 

samples (deep re-sequencing technology and new arrays may soon overcome this difficulty). In the 

meantime, imputation, the computational prediction of genotypes from non-genotyped SNPs, is used to 

extend GWAS map coverage. 

Recent complex disorders GWAS show two main characteristics: First, common loci with small effects 

are typically reported (ORs=1.1–1.5). This may be an empirical confirmation that a large body of 

epidemiological studies predicting multiple small common genetic effects for complex disorders were 

correct since loci with larger effects are rapidly eliminated from the population through natural selection. 

Second, most studies have tended to detect new susceptibility loci, and only very large samples obtained 

from combining studies are powered to show robust replication. This is because the power to detect one 

out of many possible risk loci is much larger than the power to detect specific disorder alleles 21. 

Furthermore, if only small effects are found, many genes would be predicted to underlie the 

pathophysiology of most complex genetic disorders. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R21


      73 

 

Meta-analyses of bipolar disorder GWAS (Chen et al. 2011) can focus on lower- or higher- status  

signals which may suggest risk loci, rather than on the usual 'top hits' of individual studies. Locus and/or 

allelic heterogeneity will continue to play an important role in diluting true signals, even with larger 

samples (Pritchard and Cox 2002). A disadvantage of using large samples is that the LD variation 

between populations could be confounded with disease associations (Frazer et al. 2009). Population 

structure/stratification is routinely assessed and corrected for in GWAS, using various methods, 

including principal component analysis methods (Price et al. 2006), logistic regression, identical by 

state (IBS) clustering (Purcell et al. 2007), and linear mixed models (Alaerts and Del-Favero 2009). 

Imputation methods are used in modern GWAS to improve the coverage of the human genome across 

different genotyping platforms. Imputation methods (Marchini et al. 2007; Purcell et al. 2007) attribute 

and test ungenotyped SNPs for association in a sample, thus, adding to the information content. 

Analysis of GWAS data using more sophisticated statistical methods may provide additional power 

leading to updated results and a better understanding of the best ways for interpretation of GWAS data. 

One of the alternative methods previously employed in the analysis of GWAS data include multipoint 

methods combining information across markers with more powerful tests for indirect association with 

untyped variants. Other methods include simultaneous analysis of all SNPs to identify the subset that 

the best predictor for disease outcome, and weighted analyses incorporating prior information and 

pathway-based approaches, which jointly consider multiple variants in interacting or related genes 

(Alaerts and Del- Favero 2009). 

5.3.2 Limitations of GWAS 

While GWAS are useful for signalling candidate loci they are usually unable to ascertain disease 

causality or to differentiate between the effects of variants in LD. Additionally, some GWAS loci might 

contain multiple causative variants or genes that contribute to the overall disease susceptibility at a 
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single locus. However, the majority of current GWAS lack the statistical power to test whether multiple 

causative genes underlie the same locus. This has been addressed by Flister and colleagues in 2013 by 

testing multiple GWAS genes empirically, by using gene targeting in a disease-susceptible rat model of 

genetic hypertension (Flister et al. 2013).  There are a number of further important limitations. 

Firstly, the large number of statistical tests makes the method vulnerable to false positive hits (Type 1 

error) (George 2013); therefore, the estimation of an appropriate genome-wide significance threshold is 

fundamental. The genome-wide significance threshold, for a value of 5% significance assuming tests for 

all common SNPs, has been estimated to be around p<5×10−8 (Pearson & Manolio 2008).  Secondly, the 

statistical power of GWAS to detect an association with rare alleles (i.e. SNPs or CNVs with MAF<1%) 

is very limited (Lee et al. 2014). GWAS are designed to identify relatively common polymorphisms 

associated with the risk for a disease. Rare genetic variants with a potent influence on individual risk 

might thus be unnoticed by GWAS, but can be still detected by linkage studies (Samochowiec, 2014). 

For the detection of rare variants re-sequencing is considered more useful than GWAS (Owen, 2014). 

Third, the study of gene-gene interactions (epistasis) is strictly limited by the statistical power of 

currently existing samples contrasted to the large number of such tests – despite expectations that 

epistasis is a significant source of heritability (Hu et al. 2011).  Fourthly, large data sets as found in 

GWAS bring statistical, computational and technical challenges, all of which can contribute to 

confounding. Factors that may contribute to confounding include: 1) with increased power to detect true 

effects comes increased potential for the introduction of bias to affect results; 2) non-random genotyping 

failure where a person’s SNP genotype that is either not called or called incorrectly; 3) undocumented 

relatedness can be another source of bias, although modern whole-genome data analytic tools can be 

used to detect closely related people (Solovieff et al. 2013). 

GWAS for complex disorders have demonstrated that a typical susceptibility locus has an odds ratio 

(OR) of c1.1 – 1.3, which often means extremely large samples are required for detection. For example, 
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the Molecular Genetics of Schizophrenia (MGS) EA sample (N = 5,334) has adequate statistical power 

only to detect very common risk alleles (with 30–60% frequency, log additive effects) with genotypic 

relative risks ~1.3 (Shi et al. 2009). To reach sufficient statistical power, the combined analysis of 

independent datasets is useful, as in the various collaborations including the Psychiatric Genetics 

Consortium (PGC) of which UCL is a small part. Collaborative joined up datasets have been reasonably 

successful in the search for a number of complex disorders, including SZ and BP, although the risk is 

that the diagnostic range is wider (Shi et al. 2009; Purcell et al. 2009; Stefansson et al. 2009). 

A further issue posed by GWAS is due to finding of multiple extragenic or poorly characterized loci in 

strong genome-wide association. Assuming there is no Type 1 error, and accepting that our knowledge 

base is limited, it can thus be helpful to try and understand the biological processes that underlie the 

observed associations. One can thus try to characterize the impact of the identified variants at both the 

molecular and system levels. At a molecular level, expression quantitative trait locus studies allow the 

identification of both cis and trans regulatory associations of genetic variations with gene expression 

levels (Zuo et al. 2011). 

Whole genome sequencing (GWS) technology and new arrays may soon overcome many of these 

limitations, though no doubt they have their own limitations (Ott et al. 2015).  

5.3.3 GWAS findings in AD and related alcohol use disorder phenotypes 

At time of writing, numerous GWAS on AD have been published. These will be summarized here. The 

initial GWAS of AD was published by Johnson et al in 2006 from the COGA samples. They used a 

hundred thousand SNP markers in 120 patients and 160 healthy controls. Fifty-one clusters of 

polymorphisms were identified including genes involved in brain development, cell adhesion and 

signaling, and gene regulation. Among these were the genes coding for the cell adhesion molecules 

cadherin 11 and 13 (CDH11 and CDH13). Following on from this pioneering work are numerous 

GWAS which have been conducted to identify risk factors for alcohol dependence. Further studies have 
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examined associations with alcohol-related phenotypes, including behavioural and neurophysiological 

measures, and also clinical features. Other studies have explored genetic adjusters of alcohol 

consumption in non-clinical/healthy samples. 

Genes coding for alcohol metabolism are the most replicated biological function in AD GWA studies. 

In summary, Frank et al. reported a genome-wide significance for  marker  rs1789891 (P = 1.27E–8, 

odds ratio (OR) = 1.46 ) in  the ADH gene cluster on chromosome 4q in a sample of 1,333 patients and 

2,168 controls (Frank et al. 2012). This region has been replicated in further GWAS by Park et al. 

Takeuchi et al. and Quillen at al (Park et al. 2013; Takeuchi et al. 2011; Quillen et al. 2014). These 

findings confirm previous linkage findings discussed above and reviewed recently (Samochowiec et al. 

2014). 

GWAS of endophenotypes have been published. For example, a GWAS directed at alcohol 

dependence symptom count, found converging evidence for a role of the thus far poorly characterized 

C15ORF53 gene in the aetiology of alcohol dependence-related phenotypes (Wang et al. 2013). Other 

endophenotypes show statistical, albeit weaker, association with the clinical phenotype of interest. For 

example, novelty-related brain oscillations in the theta band were associated with variations in the 

ARID5A gene (rs4907240) and the serotonin  receptor  7 (HTR7, rs7916403) (Zlojutro et al. 2010). 

Expression quantitative trait locus (eQTL) studies allow the identification of regulatory associations of 

genetic variations with gene expression levels. For example, a combined GWAS-eQTL approach on 

data from 2,090 alcohol-dependent patients and 2,026 controls found associations of variants in the 

PHD finger protein 3 gene (PHF3), protein  tyrosine phosphatase type IVA, member 1 gene (PTP4A1) 

region,  and KIAA0040  gene with AD; transcriptome-wide expression analyses confirmed that the 

transcripts of these genes were involved in regulatory mechanisms  of other  alcohol-related candidate 

genes (Zuo et al. 2011; Zuo et al. 2012).   
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In addition to these expected findings, GWAS have also helped to identify new risk loci for AD and 

related phenotypes, although with less confidence in the results.  None of the SNPs achieved genome 

wide significance in a Australian/Dutch meta-analysis in the same paper, but a gene network analysis 

based on the top results revealed in this study overrepresentation of genes coding for ion-channels and 

cell adhesion molecules (Lind et al. 2010). Additionally a genome-wide association of pooled DNA 

from alcoholics was compared to quantitative trait loci implicated in mouse addiction phenotypes. This 

convergent strategy identified brain-expressed susceptibility genes involved in cell adhesion, enzyme 

activity, protein and transcriptional processes, neuroreceptors, ion channel and transport processes and 

cell structure. The set of proteins concerned was described as a “connectivity constellation” for 

susceptibility to addiction (Liu et al. 2006, Uhl et al. 2008a, Liu et al. 2005). Important members of this 

constellation are the cadherins (CDH), which I discuss later. An association between AD and CDH13 

has been reported in a number of GWAS  (Treutlein et al. 2009; Johnson et al. 2006). CDH11 has been 

implicated by an association with rs35164 (just downstream of CDH11) in early onset alcoholism 

(Edenberg et al. 2010).  Cell adhesion molecules (CAMs). CAM gene products are preferentially 

involved with stereotyped and morphologically identifiable connections between cells (e.g. adherens 

junctions, gap junctions) and are over-represented in addictions genetic studies (Zhong et al. 2015). 

Latterly, meta-analytic approaches have been used to increase power. For example, Wang et al. 

combined data from the SAGE, the COGA and the OZALC GWAS and found numerous signals for 

loci which not reported in these samples’ initial publications (Wang et al. 2011).  A further study by 

Gelernter et al. (with an impressive sample size of 16,087 subjects) demonstrated strong genome-wide 

associations with ADH gene cluster variants, and additionally identified a possible regulatory variant  

rs1437396, located between the MTIF2 and CCDC88A genes as a novel risk variant with replicated 

genome-wide significance (Gelernter et al. 2014). Further work by the Luo’s group published this year 

in a meta-analysis of European American and European Australian cohorts, reported 10 top-ranked 

single nucleotide polymorphisms (SNPs) (p < 10−6) that were associated with alcohol dependence. They 
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included 6 SNPs at SERINC2 (3.1 × 10−8 ≤ p ≤ 9.6 × 10−8), 1 at STK40 (p = 1.3 × 10−7), 2 at KIAA0040 

(3.3 × 10−7 ≤ p ≤ 5.2 × 10−7), and 1 at IPO11 (p = 6.9 × 10−7) (Zuo et al. 2015). 

As a side note it is interesting that key SNP rs7590720 implicated in the Beiruit GWAS did not 

replicate in a 2011 study of people who had sent their DNA to the company 23andme.com for 

genotyping and who completed a self-assessment questionnaire, including an assessment of “alcohol 

abuse” (Tung et al. 2011). Disappointingly, for our field of all the disease classes reported in this study 

(cancer, neurological, etc) psychiatric conditions were the least replicated (0/10 replications) compared 

to cancer (27/64 replications). There may be a number of reasons, but to me this emphasizes the 

importance of reliable diagnostic and phenotypic classification in psychiatric studies. 

Finally, in a much publicized finding this year, Sulovari et al found evidence of association between 

AD and blue eye colour (P =  0.0005 and odds ratio = 1.83 (1.31–2.57)), supporting light eye colour as a 

risk factor relative to brown eye colour in people of European-ancestry. Their network-based analyses 

revealed a statistically significant (P = 0.02) number of genetic interactions between AD-associated 

genes and eye-colour genes. They found evidence of LD between an AD-associated GABA receptor 

gene cluster, GABRB3/GABRG3, and eye colour genes, OCA2/HERC2, as well as between AD-

associated GRM5 and pigmentation-associated TYR (Sulovari et al. 2015). These findings may be of 

interest to researchers with similar ancestral samples. 

5.3.4 CNVs in AD 

CNVs are structural variations of the DNA that include insertions, deletions, inversions, and duplications 

that may vary in length from a few kilobases to several megabases (Lee et al. 2012). Two human 

chromosomes in a population differ at a rate of 0.1%, according to the early surveys of genetic variation 

(International Hapmap Consortium 2005; Marian 2012). Although SNPs account for the most numerous 

variants in the genome, CNVs have been reported to involve up to 12% of the human genome, 
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contributing to a sizeable amount of phenotypic variation within normal individuals and complex 

diseases, including psychiatric disorders like schizophrenia and bipolar disorder. CNVs are classified as 

inherited and de novo. De novo CNVs can occur at a rate of up to four folds greater than single 

nucleotide substitution rates (Lupski 2007). In comparison to SNPs, the overall genomic change, as 

measured in nucleotides, is high in the case of CNVs and can be in the order of 1000 bp per generation, 

leading to a larger functional impact per site (Malhotra and Sebat 2012). 

CNV deletions and duplications possibly interfere with the regulatory regions or coding sequences of 

various genes, thereby altering their genetic makeup and biological functions. Additionally, the presence 

of CNVs can result in the up- or down-regulation of dosage sensitive genes, thereby contributing to 

disease susceptibility variation (Lee et al. 2012). Based on the sheer size and potential to impact genes 

or multiple genes, structural variations are considered more pathogenic on average, and de novo CNVs 

might be more enriched in variants that have a large effect on disease risk (Malhotra and Sebat 2012). 

CNV studies are a formal test of the CDRV hypothesis. A widespread distribution of submicroscopic 

variations (<500 kb in size) in DNA copy numbers in normal human genomes was demonstrated in two 

landmark studies conducted in 2004 (Iafrate et al. 2004; Sebat et al. 2004). In addition, CNV deletions 

may account for the variations in intermediate phenotypes within complex neuropsychiatric illnesses, 

such as cognitive impairment or physiological measures (Friedman et al. 2008). 

While the literature on CNVs in AD is somewhat behind that for SZ and BP there are some findings to 

report. In a sample from the Study of Addiction: Genetics and Environment (SAGE) study, CNVs in 

6q14.1 and 5q13.2 were significantly associated with AD after adjusting for multiple tests. On 

chromosome 5q13.2, there were multiple candidate genes previously associated with various 

neurological disorders including SMA4, SERF1, SERF1B, SMN2, SMA3, NAIP, GTF2H2, GTF2H2D, 

and OCLN. The region on chromosome 6q14.1 is a gene desert that has been associated with mental 
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retardation and language delay but for technical reasons the authors suggest less confidence in the CNV 

result in this region (Lin et al. 2012). A more recent association was found with CNVs at 11 q14.2 and 

brain regional volume differences in a group with alcohol use disorder (AUD). Deletion carriers were 

found to have smaller cerebral cortex, cerebellar, caudate and larger cerebral white matter and 5th 

ventricle volumes than insertion carriers or subjects with no variation in this region. Similarly, deletion 

carriers also demonstrated higher AUD severity scores than insertion carriers or subjects with no 

variation (Boutte et al. 2012). 

5.4 SUMMARY 

Alcohol dependence is a severe brain-based medical disorder responsible for significant morbidity, 

mortality and economic loss worldwide. Heritability estimates are in the 50-60% region and 

environmental influences are complex including availability, price, cultural norms, type of alcohol and 

age. No single genetic cause has been found and candidate gene studies have been ambiguous with the 

exception of the alcohol dehydrogenase cluster on chromosome 4. GWAS have confirmed the ADH 

cluster involvement and identified novel candidate genes for further study.  In the next section I cover 

the genetic background of bipolar disorder, a commonly co-occurring disorder with alcohol dependence.   
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6 CHAPTER 6: BIPOLAR DISORDER  

6.1 CLINICAL FEATURES 

Bipolar disorder, otherwise known as manic depression, is a severe mental illness also thought to have a 

significant genetic aetiology. Bipolar disorder is characterized by periods of abnormally elated (manic) 

or depressed mood along with accompanying biological and psychological symptoms. The current 

diagnostic criteria for bipolar disorder require at least one episode of mania, hypomania, or a mixed 

episode (with both symptoms of depression and mania occurring within the same episode) and one 

other separate episode of abnormal mood (either depression or mania). Severe episodes at either pole 

may include psychotic symptoms. These may be experienced as hallucinations (perceptions in any 

sense without a stimulus) and delusions (firmly held culturally unacceptable false beliefs). Patients may 

exhibit risky behaviour including overspending, disinhibition, risk taking, promiscuity, and suicide. 

Both manic and depressive episodes increase the risk of using drugs or alcohol, and of suicide. 

Bipolar disorder generally responds well to medication with mood stabilisers or antipsychotics. 

Biological differences are observed in structural and functional brain studies (Arnone et al. 2009) with 

substantial evidence for a biological aetiology. Details of treatment and brain studies are beyond the 

scope of this paper except where relevant to the findings. 

Again, researchers have used twin, family and adoption studies to unpick genetic from environmental 

influences. Then they have explored the molecular genetics, which I will cover in this chapter. 
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6.2 FAMILY, ADOPTION AND TWIN STUDIES  

Like alcoholism, BP has been noted to cluster in families. Falret (1854), for example, observed that 

“circular insanity” seemed to run in families (quoted in Maj et al. 2002).  However important 

environmental risk factors include child abuse, drug and alcohol misuse, and trauma (Alloy et al. 2005). 

Traditional family studies conducted during the 20th century based on clinically ascertained samples 

show substantial familial aggregation, with sibling relative risks of around 8–10 for bipolar disorder 

(Tsuang & Faraone 1990; Shi et al. 2008; Gershon et al. 1975; Gershon 1982; Tsuang et al. 1980; 

Maier et al. 1993). Considerably larger studies, based on Scandinavian national population registers, 

have substantiated the results of the earlier family studies.(Lichtenstein et al. 2009; Laursen et al. 2005; 

Mortensen et al. 2003; Mortensen et al. 2010; Gottesman et al. 2010).  

Family, adoption, twin, linkage and allelic association studies have contributed to the evidence for 

genetic susceptibility to bipolar affective disorder with markers at several genes showing replicated 

association with bipolar disorder  (Baum et al. 2008; Craddock et al. 2008; Moskvina et al. 2009; 

Ferreira et al. 2008; Askland 2006; Askland et al. 2009).  Heritability estimates for bipolar disorder are 

between 89% and 93% (McGuffin et al. 2003; Kieseppä et al. 2005). Thus, BP is more heritable than 

AD and similarly heritable to SZ. 

6.3 LINKAGE STUDIES 

There have been numerous genome wide linkage scans of BP, and signals from individual studies have 

been reported throughout the genome, including chromosomes 1, 4, 6, 10, 12, 13, 18, 21, 22, and X 
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(comprehensively reviewed by Hayden & Nurnberger 2006) . Consistent with other disorders of 

complex aetiology, independent replication of linkage signals for BP has not been consistent. 

McQueen and colleagues conducted a combined analysis using the original genotype data from 11 BP 

genomewide linkage scans comprising 5,179 individuals from 1,067 families (McQueen et al. 2005). 

Heterogeneity among studies was minimized in their analyses by using uniform methods of analysis 

and a common, standardized marker map and was assessed using novel methods developed for meta-

analysis of genome scans. This collaboration was the largest and most comprehensive analysis of 

linkage samples involving a psychiatric disorder at the time (a decade ago), and the collaboration was 

almost prescient given the evaluation of multi-centre GWAS mega analyses discussed later. 

6.4 ASSOCIATION STUDIES 

6.4.1 Candidate genes 

A number of genetic pathways have been proposed for the pathogenesis of BD. To remain focused, a 

comprehensive review of only the most replicated and consistent association findings will be discussed 

in the following sections.  

The serotonin (5HT) system is an obvious candidate gene because of the efficacy of serotonergic drugs 

in treating depression and the evidence implicating 5HT in mood disorders. One of the most widely 

studied genes in BD is the serotonin transporter, solute carrier 6A4 (SLC6A4), located on 17q, which 

has been reported significant in two linkage studies. Several association studies and four meta-analyses 

have also been published with associated findings (Serretti & Mandelli 2008). The tryptophan 

hydroxylase 2 (TPH2) gene encoding a rate-limiting enzyme in the biosynthesis of CNS serotonin has 
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been associated with BP in a number of independent studies, including a recent meta-analysis (Gao et 

al. 2016) although negative associations have also been reported in different populations  (Serretti & 

Mandelli 2008; Barnett & Smoller 2009; Choi et al. 2010; Baum et al. 2008). The serotonin receptor 

genes HTR1A, HTR2A, HTR2C and HTR7 have also been investigated in several of studies with some 

evidence of association (Serretti and Mandelli 2008).  

Dopamine (DA) is another obvious candidate supported by the involvement of the DA system in BP 

and SZ, and the response of BP to DA blocking medications (antipsychotics). The role of the 

dopaminergic pathway in the aetiology of bipolar disorder was first described by Murphy who 

provoked manic states in healthy subjects with psychoactive substances increasing activity of the 

dopaminergic system (Murphy et al. 1971). 

The dopaminergic genes DRD1, DRD3, DRD4 and SLC6A3 have been investigated in several studies 

in different populations. Positive reports for a promoter polymorphism and haplotype association along 

with negative SNP associations have been reported for DRD1 (Severino et al. 2005; Dmitrzak-Weglarz 

et al. 2006; Nöthen et al. 1992; Cichon et al. 1996). DRD3 has been reported to be positive in only one 

study. Several studies provide considerable support for the involvement of DRD4 and SLC6A3 genes 

in bipolar disorder (Serretti and Mandelli 2008). 

Catechol-O-methyltransferase (COMT) is another promising candidate gene for BP. COMT encodes for 

an enzyme catalysing the degradation of numerous key CNS catecholamine neurotransmitters including 

dopamine, epinephrine, and norepinephrine. The functional Val158Met polymorphism in this gene has 

been widely investigated with mostly negative results (Shifman et al. 2004; Serretti and Mandelli 2008). 

More recently, a study has reported interaction between DRD3 Ser9Gly polymorphism and COMT 
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Val158Met polymorphism in BP I patients (Lee et al. 2011), but this has not been replicated in other 

studies.  

Brain derived neurotrophic factor (BDNF) is a candidate gene selected based on evidence for both 

positional and functional involvement in BP. This gene is located at 11p13, a region consistently linked 

to bipolar disorder in previous linkage studies, which also contains the DRD4 locus (Pato et al. 2004; 

Craddock and Sklar 2009). BDNF codes for a survival factor induced by cortical neurons that is 

necessary for the continued existence of striatal neurons in the brain. Reports have been published that 

suggest effects of the Val158Met polymorphism on BDNF secretion and memory (Egan et al. 2001). 

Variants in BDNF have also been reported to be associated with working memory and schizophrenia 

(Diaz-Asper et al. 2008). Further, two meta-analyses have confirmed the association between BDNF and 

bipolar disorder, particularly in the Caucasian population (Serretti and Mandelli 2008; Craddock & Sklar 

2009). 

D-amino acid oxidase activator (DAOA) is a gene which degrades the gliotransmitter D-serine, a potent 

activator of N-methyl-D-aspartate (NMDA) type glutamate receptors, DAOA, and the glutamatergic 

pathway that have been associated with BP and SZ in several studies. Located in a positive linkage 

region, 13q33.2, DAOA plays an important role in the activation of NMDA receptors, which are 

implicated in schizophrenia and bipolar disorder (Chumakov et al. 2002; Williams et al. 2006). Several 

independent studies in the Caucasian population have reported positive associations with different 

DAOA SNPs in bipolar disorder (Hattori et al. 2003; Chen et al. 2004; Schumacher et al. 2004; Prata et 

al. 2008; Bass et al. 2009; O'Donovan et al. 2009; Cherlyn et al. 2010; Nothen et al. 2010). 

Disrupted in schizophrenia 1 (DISC1) was discovered in 2000 through the molecular cloning of a 

chromosomal translocation that co-segregated with a spectrum of major mental illnesses in a single 
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large Scottish family (St Clair et al. 1990). Through in vitro experiments and mouse models, DISC1 has 

been firmly established as a genetic risk factor for a spectrum of psychiatric illness (Lipina, 2014). 

DISC1 is widely expressed not only in the brain, most highly during foetal neurogenesis and in the 

adult hippocampus, but also in other tissues. As a consequence of its protein scaffold function, the 

DISC1 protein impacts on many aspects of brain function, including neurosignaling and 

neurodevelopment. Since then, multiple studies have confirmed associations between DISC1 and 

bipolar disorder; however, a pathogenic variant has yet to be detected (Serretti and Mandelli 2008; 

Craddock and Sklar 2009; Hennah et al. 2009; Porteous, 2011).  

Abnormalities in GABA function have been postulated for many years in bipolar disorder and are 

supported by the observation of alterations in GABA subunit ratios in the postmortem brain (Fatemi et 

al. 2013), and decreased CSF GABA in depressed patients where depression is a key “pole” of bipolar 

disorder (Mann et al. 2014). Benzodiazepines, which are positive allosteric modulators of GABAA 

receptors are also used adjunctively in the treatment of mania, a key aspect of BD.  

A random-effects meta-analysis of genetic association studies on all polymorphisms of bipolar disorder 

in three or more case- control studies was published by Seifuddin and colleagues (2012). The results 

from the meta-analysis were then compared with the findings from a mega-analysis of eleven GWAS in 

bipolar disorder (Sklar et al. 2011). Nominally significant associations (P<0.05) were found for 

polymorphisms in Brain derived neurotrophic factor (BDNF), Dopamine Receptor D4 (DRD4), D-

amino acid oxidase activator (DAOA) and Neuronal tryptophan hydroxylase (TPH1), although the 

findings did not survive correction for multiple testing.  

Several other genes with replicated positive findings have been identified, including TRPM2, GSK3β, 

DTN bipolar disorder1, NRG1, NCAM1, GRIN2B, MOAO, P2RX7, GABA receptor genes, and and 
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TACR1 (McQuillin et al. 2006; Lachman et al. 2007; Serretti and Mandelli 2008; Craddock and Sklar 

2009; (Sharp et al. 2014). Additionally, genes involved in circadian rhythms have been investigated, 

including CLOCK and BMAL1 (Barnett and Smoller 2009). 

The evidence for allelic association with bipolar disorder at various different genes is convincing. The 

problem of locus heterogeneity leads to a protracted time between initial discovery and replication (Zollner 

and Pritchard 2007). To alleviate the problem of locus and allelic heterogeneity, extremely large 

samples are required for robust identification of genes influencing risk and expression of bipolar 

disorder. Larger sample sizes combined with technological advances ushered in the era of the genome 

wide association study (GWAS), discussed in the next section. 

6.4.2 GWAS 

Numerous high quality GWAS on BP have been published in the last seven years revealing numerous 

interesting loci, some of which have been replicated. The first GWAS on BP was reported by Baum et 

al. (2008) using 461 BP I patients and 562 healthy controls of European Caucasian background from the 

NIMH. Over 550,000 SNPs were genotyped in the two samples.  Although pooling of DNA samples 

reduces the power to detect genetic association, this method was used to reduce the cost at that time of 

genotyping a large number of samples. The strongest association signal was detected within the first 

intron of DGKH (diacyl glycerol kinase) (P = 1.5 × 10
−8

, OR=1.59). 

The second consortium GWAS was reported by Sklar et al. (2008) and included non-overlapping 

Caucasian case-control samples from several research groups. The study sample consisted of 1461 BP I 

cases and 2008 controls from the Systematic Treatment Enhancement Program for Bipolar Disorder 

(STEP-BD) study and UCL. A total of 372,193 SNPs were genotyped in the study using Affymetrix 
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GeneChip Human Mapping 500K Array Set. This same dataset was used in this thesis. Again, none of 

the SNPs met genome-wide significance on association analysis, but the top SNPs associated with 

bipolar disorder were in genes MY05B (P = 1.66 x 10
-7

), TSPAN8 (P = 6.11 x 10
-7

) and EGFR (P = 3.26 

x 10
-5

). 

There have since been a number of GWAS by larger consortia including the Wellcome Trust Case 

Control Consortium (WTCCC) (2007); STEP-BD, University of Edinburgh, and Trinity College Dublin 

(ED-DUB-STEP2) (Ferreira 2008); Baum et al. 2008; Sklar et al. 2008; Cichon et al. 2011; Scott et al. 

2009; Smith et al. 2009; ). Methodology and sample sizes reflected not only the technology at the time 

but also the cost of genotyping. The number of markers has increased from 500 thousand to over a 

million SNPs (and similar numbers of CNVs) with the cost reducing dramatically. This has empowered 

researchers to perform ever-larger studies of ever more markers. 

Our UCL BP sample has been examined in several BP GWAS and have reported some evidence to 

implicate MYO5B, CACNA1C, and ANK3 (Ferreira et al. 2008; Sklar et al. 2008),  

Collaborative GWAS of bipolar disorder have identified genome-wide significant associations with 

markers in the genes encoding the alpha 1C subunit of the L-type voltage-gated calcium channel 

(CACNA1C) (12p13) and ankyrin 3 (ANK3) (10q21) (Ferreira et al. 2008) Subsequently, the Psychiatric 

Genomics Consortium (PGC) published the largest GWAS “mega-analysis” of bipolar disorder to date, 

involving over 60 000 participants. The CACNA1C association was further substantiated and there was 

a new genome-wide significant association with a marker in ODZ4 (11q14) (Sklar et al. 2011). These 

results strengthened the evidence of ion channelopathies being important in the pathogenesis of BP. 
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A novel bipolar disorder susceptibility candidate gene, Neurocan (NCAN) reached genome-wide 

significance (P=3.02 x 10
-8

, OR=1.31) in a GWAS conducted by Cichon et al. (2011) on European 

samples. A significant genome-wide association for NCAN was replicated in two follow-up steps and the 

combined analysis of all the samples which included 8441 cases and 35,362 controls also confirmed the 

association (P=2.14 x 10
-9

, OR=1.17).  

In other populations, there have been BP GWAS in Han Chinese (Lee et al. 2011a), Norwegian 

(Djurovic et al. 2010), Japanese (Hattori et al. 2009), and Bulgarian (Yosifova et al. 2011), although 

none of these studies achieved SNPs with genome-wide level significance. 

A meta-analysis of 5 European ancestry major mood disorder case-control samples, including bipolar 

disorder and MDD found genome-wide significant association at 3p21.1 (rs2251219, P = 3.63 x 10
-8

, 

OR = 0.87) (McMahon et al. 2010). Another meta-analysis of genome-wide association data of bipolar 

disorder and MDD was conducted by Liu et al. (2011). This study provided evidence for the role of 

CACNA1C variants in bipolar and unipolar major mood disorders, but failed to confirm the previous 

association of bipolar risk locus ANK3 in the meta-analysis. Even larger collections of bipolar disorder 

GWAS signals were analysed for age of onset and psychotic symptoms and two sub-phenotypes of 

bipolar disorder. These included GWAS data from GAIN-BP, BiGS, and a German study, but it failed to 

report any significant genome-wide associations (Belmonte Mahon et al. 2011). 

Another study comparing the marker allele frequencies between schizophrenia and bipolar disorder cases 

rather than normal controls reported a significant association for CACNG5 that supports the role of 

voltage-dependent calcium channel genes, such as CACNA1C, in the susceptibility to bipolar disorder 

(Curtis et al. 2011). 
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The most recently published BP GWAS was a family-based study of 229 small families with association 

analysis from over 950 cases and 950 ethnicity-matched controls from the UK and Canada, using 

imputation (Xu et al. 2014). No genome-wide significant markers were identified, however the 

combined GWAS findings suggested several genes of interest that support findings from other groups, 

such as at SYNE1 on 6q25, PPP2R2C on 4p16.1, ZNF659 on 3p24.3, CNTNAP5 (2q14.3), and CDH13 

(16q23.3). The family-based analysis also implicated regions on 1q21.2 (closest gene: sphingosine-1-

phosphate receptor 1 gene, S1PR1) and on 1q24.1 near the gene TMCO1, and at CSMD1 on 8p23.2. 

Pathway analysis suggested association of pathways involved in calcium signalling, neuropathic pain 

signalling, CREB signalling in neurons, glutamate receptor signalling and axonal guidance signalling. A 

more recent pathway analysis of NIMH BP GWAS data implicated interleukin pathways: the IL-6, IL-8 

and IFN related pathways held twice to thrice the number of expected variants associated with BP 

(Drago, 2015).  

In summary, SNP variants in ANK3, ODZ4, SYNE1, CACNA1C, DGKH, and C15ORF53 have 

consistently been associated with bipolar disorder in different GWAS.  

6.4.3 CNVs in BP 

A genome-wide survey of large, rare CNVs in a case-control sample from WTCCC (Grozeva et al. 

2010) found that the rate of CNVs was higher in controls than in bipolar cases. The absence of rare and 

large structural deletions associated with bipolar disorder and their presence in 5%-10% of schizophrenia 

cases suggests that the two disorders are genetically distinct for this type of genetic variation. Similar 

results were obtained in another study utilizing the UCL bipolar disorder research sample (McQuillin et 

al. 2011), in which the rare CNV burden was also slightly lower in the cases compared to controls. That 

http://www.sciencedirect.com/science/article/pii/S0165032715001718#200015063
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both studies found higher rates of CNVs in controls is difficult to explain, but it could be due to 

undiagnosed cases in the controls, or the presence of carriers of SZ CNVs.  

The effect of de novo CNVs on age-at-onset in bipolar disorder has consistently been nominally 

significant in several studies (Zhang et al. 2009; Malhotra et al. 2011; Priebe et al. 2012). This 

suggests that individuals with early-onset bipolar disorder may represent a subclass of the disorder in 

which there is a greater contribution from rare CNV alleles that have large effect. Support for the 

notion that segregation of early-onset bipolar disorder in families is consistent with major gene 

effects. However, familial segregation of bipolar disorder and unipolar disorders shows a wide range 

of ages of onset and it is not possible to identify clear cut differences in age of onset between 

families. The potential role of CNVs in BP is complicated with some studies reporting no link and 

others reporting an overrepresentation of CNVs (Zhang et al. 2009; Malhotra et al. 2011) in patients 

with bipolar disorder and other studies reporting no associations (Grozeva et al. 2010; McQuillin et 

al. 2011).  

In conclusion, several lines of evidence suggest that the overall rare CNV burden is more modest for 

bipolar disorder than for schizophrenia, with SZ showing a large increase in the number of CNVs 

found to be associated compared to controls (Girirajan and Eichler 2011). 

6.5 SEQUENCING 

Ament and colleagues (2014) sequenced the genomes of 200 BP patients and focused on over 3000 

candidate genes informed by previous research. They found that BP pedigrees had an increased burden 

of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and 

voltage-gated calcium channels. Targeted sequencing of 26 of these candidate genes confirmed rare 
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variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF 

(Ament et al. 2015).  

6.6 BP CO-MORBIDITY WITH ALCOHOLISM 

Alcohol problems are significantly more common in bipolar disorder than the unaffected population 

(range 13-25%). These studies show that about 30-50% of individuals with bipolar disorder also 

manifest alcohol misuse or dependence and altogether up to 75% of bipolar patients have any 

substance use disorder (Regier et al. 1990; Schuckit 2009; Kessler et al. 1997).  The lifetime 

prevalence of alcohol misuse or dependence in bipolar disorder (including types I and II)  is 43.6% 

and over 60% for bipolar type I (Regier et al. 1990). 

6.6.1 Heritability  

Comorbidity between bipolar disorder (BP) and alcoholism is well established from epidemiological, 

twin, family and linkage studies (O'Sullivan et al. 1988, Gurling et al. 1984, Merikangas and 

Gelernter, 1990, Preisig et al. 2001, Sonne and Brady, 2002, Berrettini et al. 1997, Winokur et al. 

1996).  For both alcoholism and bipolar disorders, co-transmission in families has been reported 

(Maier and Merikangas, 1996), particularly in subgroups of patients with familial comorbidity (Maier 

et al. 1995; Saunders et al. ; Schulze, 2006; Winokur et al. 1996) and suicidality (Potash, 2000).   

There may also be common neurobiological mechanisms crossing both disorders (Farren et al.,2012). 

For example, they have shared abnormalities within neuropeptide and neurotransmitter systems  

(Rakofsky & Dunlop 2013), and both groups have reduced grey matter volumes within the anterior 

cingulate gyri relative to unaffected controls (Nery et al. 2010). 
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Familial co-transmission could be either environmental or genetic. Two adoption studies favour the 

genetic hypothesis. Ingraham showed that substance misuse was more common in the biological 

relatives of affectively ill adoptees than in controls’ relatives (Ingraham and Wender, 1992). 

Relatives of early onset bipolar patients (earlier onset is thought to be more genetically influenced) 

have a prevalence of alcoholism two to three times higher than that reported in controls (Todd et al. 

1996). Cadoret showed that, on the basis of his adoptions studies, the depressive spectrum might 

represent a gene environment interaction involving the genetic diathesis for alcoholism (Cadoret et 

al. 1995). These findings suggest shared genetic factors being responsible for BP and AD or alcohol 

misuse. 

Several linkage studies have revealed that chromosomal regions associated with bipolar disorder 

overlap to some degree with those described for alcohol dependence. The overlapping regions 

involve chromosomes 1p, 6q, 9p, 14q  (Nurnberger  Jr. et al. 2001; Segurado et al. 2003; Hill et al. 

2004; McQueen et al. 2005). A genetic signal of comorbid disorder overlap was in a combined 

depression-alcoholism phenotype with a linkage peak on chromosome 1p in the Consortium on the 

Genetics of Alcoholism (COGA) (Dick et al. 2002). 

Johnson and colleagues found several overlapping clusters of single nucleotide polymorphisms 

(SNPs) when comparing the genome-wide findings of four studies on bipolar disorder and one on 

substance dependence, including alcoholism and illicit drug use (Johnson et al. 2009). 

Aside from our group’s work, there have been no other genome-wide association studies of bipolar 

disorder with co-morbid AD. 
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6.6.2 Clinical implications of co-morbidity 

Alcohol misuse in BD is important clinically because comorbid alcohol problems in people with BD 

are associated with poorer outcomes, treatment non-compliance, an increased suicide risk, and higher 

rates of other substance misuse problems (Baethge et al. 2008; Oquendo et al. 2010). 

Diagnosing bipolar disorder in alcohol-misusing patients can be clinically challenging. Numerous 

factors affect diagnostic precision, such as features common to both disorders (e.g. excessive 

involvement in pleasurable undertakings), the underreporting of symptoms (particularly symptoms of 

mania), and the complex bidirectional effects of alcohol on mood states. Bipolar patients are also 

likely to use drugs other than alcohol (e.g. stimulant drugs such as cocaine or methamphetamine), 

further complicating the diagnosis. One study suggested that about 60 percent of patients with both 

alcoholism and bipolar disorder started using alcohol before the onset of the mood episodes 

(Strakowski et al. 2000). Diagnostic accuracy can be improved by eliciting a careful history of the 

chronological order of both illnesses.  

Several potential mechanisms might explain the development of alcohol use disorders in people with 

BP. Alcohol use may also alter the same neurotransmitters or pathways as those involved in bipolar 

disorder, thereby “prompting” the symptoms of bipolar disorder (Tohen et al. 1998). The self-

medication hypothesis suggests that AD develops from the frequent use of alcohol to cope with the 

symptoms and distress associated with BD (Strakowski et al,2000). Plausible clinical relationships 

between the disorders have been described by Sonne and Brady and will not be explored further here 

(Sonne and Brady, 2002).   
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6.6.3 Dopamine in bipolar and alcoholism 

The dopaminergic pathway is implicated in the pathogenesis of SZ, BP and AD as in all three 

disorders, disturbances in dopaminergic neurotransmission have been observed. Molecular genetic 

analyses of the dopamine receptor genes revealed polymorphisms that may increase vulnerability to 

BP as well as alcoholism. The DRD1 gene −48 G/A polymorphism was found to be associated with 

sensation seeking in AD men (Limosin et al. 2003). Linkage studies localized the risk locus for 

bipolar disorder to the 5q chromosome, in the proximity to the DRD1 gene (Garner et al. 2001); 

(Schinka et al. 2002) and it was observed that this polymorphism is associated with bipolar disorder 

in a Sardinian population (Severino et al. 2005) and a Polish sample (Dmitrzak-Weglarz et al. 2006).  

A study by Gorwood et al. (2000) investigated possible role of the DRD2 gene TaqI A1 

polymorphism in the shared vulnerability to AD and BP. The researchers analysed four groups (AD, 

BP, BP+ALC and and controls) but no association was found (Gorwood et al. 2000). Studies on the 

relationship between the Taq1 A1 promoter polymorphism and alcoholism have shown both negative 

(Sander et al. 1999; Noble et al. 2000) and positive associations (Ishiguro et al. 1998; Samochowiec 

et al. 2000; Wodarz et al. 2003). For bipolar disorder, a positive Taq1A1 association was found in 

Chinese bipolar patients (Li et al. 1999), however this result was not replicated in other studies 

(Furlong et al. 1998; Stöber et al. 1998). 

For the DRD3 gene, several positive association studies were reported for 9 Ser/Gly and AD 

(Limosin et al. 2005; Sander et al. 1995; Thome et al. 1999). For bipolar disorder, the association 

studies involving this polymorphism were considered as suggestive (Parsian & Cloninger 1995) or 

negative (Rietschel et al. 1993; Piccardi et al. 1997; Elvidge et al. 2001).  

http://alcalc.oxfordjournals.org/content/42/2/70#ref-13
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Novelty seeking, alcohol and drug abuse and the DRD4 −521 C/T promoter polymorphism have been 

found (Schinka et al. 2002). Indirect support for a role for DRD4 in alcohol dependence is the 

location of this gene in one of the linkage regions in chromosome 11 (Long & Goldman 1998). 

However, these findings were followed by both positive and negative replication studies (Lusher et 

al. 2001; Preuss et al. 2002). For bipolar disorder, the recent meta-analysis performed by Leon et al. 

(López León et al. 2005) revealed the association of bipolar illness and the DRD4 gene 

polymorphism.  Szczepankiewicz and colleagues did not find an association with BP, AD and the 

dopamine receptor genes DRD1, DRD2, DRD3, and DRD4 (Szczepankiewicz et al. 2007) . 

My colleague Sally Sharp from UCL others published on tachykinin receptor 1 gene (TACR1) in 

multiple disorders: AD, BP, and attention deficit hyperactivity disorder (ADHD). She found that 

TACR1 SNP rs3771829 was associated with BP, AD and BPALCcompared with controls screened 

for the absence of mental illness and alcohol dependence. DNA sequencing in selected cases of 

BPAD and ADHD who had inherited TACR1-susceptibility haplotypes identified 19 SNPs in the 

promoter region, 5′ UTR, exons, intron/exon junctions and 3′ UTR of TACR1 that could increase 

vulnerability to all four phenotypes (Sharp et al. 2014).  

In summary, bipolar disorder is a complex illness of mood, with epidemiological, neurobiological 

and genetic overlaps with alcoholism. In the next chapter, a similar picture is drawn for 

schizophrenia, which also shares genetic and other factors with AD and BP. 
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7 CHAPTER 7: SCHIZOPHRENIA 

7.1 DEFINITIONS 

Schizophrenia (SZ) is a severe mental disorder marked by hallucinations, delusions, cognitive 

deficits and apathy with heritability estimated at 73-90%  (Sullivan et al. 2003). Inheritance patterns 

are complex and the number and type of genetic variants involved are not fully understood. 

7.2 FAMILY, ADOPTION AND TWIN STUDIES 

Adoption studies during the 20th century show familial aggregation of schizophrenia in biological 

relatives who were separated by adoption early in life, (Heston 1966; Rosenthal et al. 1971; Kety et 

al. 1994; Wender et al. 1974; Kendler et al. 1994; Tienari et al. 2003) consistent with genetic 

influences. 

7.3 MOLECULAR GENETIC STUDIES 

7.3.1 Linkage studies 

Over 20 genome linkage scans for schizophrenia have been published, although disappointingly with 

no strong evidence for a gene of major effect. To date, eight linkage regions have identified 

promising candidate genes: 22q12–q13, 8p22–p21, 6p24–p22, 13q14–q32, and 6q21–q22, reviewed 

by Riley and Kendler’s comprehensive textbook (Riley & Kendler 2005).  
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The classic Maryland family sample studies gave the first evidence of linkage to chromosomes 

22q12-q13.1 and 8p22–p21 (Pulver et al. 1995; Pulver et al. 1994). Following linkage evidence to 8p 

in Icelandic families, fine mapping identified two risk haplotypes spanning a region of 1 Mb within 

the gene for neuregulin 1 (NRG1) which was supported by further work but no linkage to the NRG 

region was found in an Irish cohort (Stefansson et al. 2002; Thiselton et al. 2004). Neuregulin is 

expressed in CNS synapses and appears to have a role in the expression and activation of 

neurotransmitter (including glutamate) receptors. Data from a mixed sample of UK and Japanese 

families initially suggested linkage to 13q14.1–q32 (Lin et al. 1995) an interesting region which 

contains the 5HT-2A receptor gene.  

Overall, the combined linkage reports are spread over a region of 60 Mb, containing 120 known 

or putative genes. Initial evidence for a susceptibility locus on 6q21–q22.3 came from a US family 

sample, and a collaborative study of this region was also significant (Cao et al. 1997; Levinson et al. 

2000). Interest in chromosome 1 in schizophrenia began with reports of a balanced 1:11 translocation 

segregating with serious mental illness in a large pedigree from Scotland (Blackwood et al. 2001). 

The chromosome 1 breakpoint lies at 1q42.1. A genome scan meta-analysis (GSMA) was carried out 

on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 

genotyped cases affected with SZ or related disorders. Suggestive evidence for linkage was observed 

on chromosomes 5q (142–168 Mb) and 2q (103–134 Mb) (Segurado et al. 2003).  

Given the evidence of linkage replication across several groups for regions on 22q, 8p, 6p, 13q, 5q, 

10p, 6q, 1q and 15q, and subsequent association replication for a number of genes including 

DTNBP1, NRG1, it would appear that the risk of consistent false positives is low. 
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7.3.2 Association studies 

For brevity, and because my focus is on AD, I will attempt to summarize the hundreds of studies of 

SZ candidate genes and GWAS, mentioning only the most relevant.  The interested reader may wish 

to consult the excellent recent review by Cardno and Owen (2014). 

Similar to BP, numerous candidate genes related to neurotransmitters and cell communication have 

been studied in SZ, and new pathways have been implicated by hypothesis-free GWA studies.   

In a comprehensive study of some of the most cited candidate genes (e.g. DISC1, DTNBP1, NRG1, 

DRD2, HTR2A (5-hydroxytryptamine [serotonin] receptor 2A), and COMT), each of 14 genes were 

tested by genotyping a sample of 1,870 cases and 2,002 screened controls of European ancestry (EA) 

(Sanders, 2008). A total of 789 (SNPs) including those located in functional domains of genes were 

genotyped, but no association was found. This appears to contradict ORs predicted from the analysis 

of smaller samples. The effect size is the strength of the association between a marker and the 

disorder, and it can be expressed as the odds ratio (OR). OR is the odds for an event, in this case, 

possessing a risk allele, in the risk group; i.e. cases, divided by the odds in the non-risk group, the 

controls.  

Three recent meta-analyses of COMT association with schizophrenia have provided mixed (though 

generally negative) results (Glatt et al. 2003; Fan et al. 2005; Williams et al. 2005).  

Brain-derived neurotropic factor (BDNF) has been implicated in numerous psychiatric disorders. A 

recent study found allelic association between two BDNF SNPs (rs6265 and rs7103411) and 

comorbid AD (P = 0.044) in a primary and replication schizophrenia sample. Additionally, they 
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reported association between both SNPs and risk-taking behaviour after drinking (rs6265, P = 0.005; 

rs7103411, P = 0.009). When these SNPs were tested in a non-schizophrenia alcohol-dependent 

group the researchers were unable to detect association (Cheah et al. 2014). 

7.3.3 GWAS of SZ and overlap with BP 

The first substantive GWAS result in schizophrenia found association with a marker in the zinc 

finger–binding protein 804A gene (ZNF804A) on chromosome 2q32  (O’Donovan et al. 2008). A 

bipolar disorder sample was added to the analysis and the effect size remained similar (OR = 1.12), 

while the P value became impressively more significant (P = 9.96 × 10− 9), consistent with the 

presence of a genetic variant that has a small effect on the risk of both disorders. These findings for 

ZNF804A have been further substantiated by larger meta-analysis (schizophrenia: P = 2.5 × 10− 11, 

OR = 1.10; schizophrenia and bipolar disorder combined: P = 4.1 × 10− 13, OR = 1.11)  (Williams et 

al. 2011). 

 As GWAS sample sizes increase, thanks to large-scale international collaborations, genome-wide 

significant associations have been found with markers in or near the major histocompatibility 

complex region on chromosome 6 (Shi et al. 2009) and the genes encoding neurogranin (NRGN) 

(11q24) and transcription factor 4 (TCF4) (18q21) (Stefansson et al. 2009).  

The UCL SZ sample has been used in several SZ GWAS and have implicated the human leukocyte 

antigen (HLA) region (Purcell, 2009). Our UCL BP and SZ samples have been used in association 

studies and resulted in identification of P2RX7 (McQuillin et al. 2009).for BP and shared risk genes 

including BRD1, DISC1, and DAOA (Bass et al. 2009; Hennah et al. 2009; Nyegaard et al. 2009) 
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whereas separately the schizophrenia sample has been reported to show association with epsin 4 and 

PCM1 (Pimm et al. 2005; Datta et al. 2008).   

A GWAS mega-analysis of schizophrenia, also from the PGC and involving over 50 000 participants 

(Ripke et al. 2011) found genome-wide significant associations at 7 loci, 5 of which were new 

(1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which had been previously 

implicated (6p21.32-p22.1 and 18q21.2). The strongest of the new findings was for a marker in the 

gene encoding microRNA 137 (MIR137), which has a role in the regulation of neuronal 

development. The study also reported analyses of combined schizophrenia and bipolar disorder 

samples, with associations at 3 loci, CACNA1C, ANK3, and ITIH3-ITIH4, being genome-wide 

significant and showing increased levels of statistical significance in the combined analysis, 

consistent with genetic variants in these regions influencing risk of both disorders.  

A subsequent review summarized the strongest published GWAS findings for schizophrenia, bipolar 

disorder, and both disorders combined (Sullivan et al. 2012). ). In keeping with the tradition of 

GWAS findings, the associations each involve a small effect on risk (ORs around 1.1) and are 

consistent with a partial overlap in genetic influences from commonly occurring genetic variants on 

the two disorders. There is also evidence that most of these associations occur in and around genes. 

(Moskvina et al. 2009; Schork et al. 2013).  

Recently, the PGC Cross-Disorder Group has published a broader investigation encompassing 5 

psychiatric disorders: schizophrenia, bipolar disorder, major depressive disorder, autism spectrum 

disorder, and attention-deficit hyperactivity disorder (ADHD) (Cross-Disorder Group of the 

Psychiatric Genomics Consortium 2013). In the primary analysis of all 5 disorders combined, 

markers in 4 regions achieved genome-wide statistical significance. In 2 cases (on chromosomes 
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3p21 and 10q24), the causal variant behind the marker association could be located in or between a 

number of genes within the region, while in the other 2 cases, the associations were in calcium 

channel signalling genes (CACNA1C on chromosome 12 and CACNB2 on chromosome 10), and 

additional pathway analysis further supported the role of calcium channel activity genes influencing 

all 5 disorders.  

The PGC group also investigated the diagnostic specificity of genome-wide significant associations 

for schizophrenia and bipolar disorder found in previous PGC analyses. In keeping with previous 

findings, the results ranged from associations confined to one disorder to associations encompassing 

all 5 disorders (Table 7.1). Lastly, the PGC CDG analysis confirmed genetic pleiotropy across many 

disorders and comorbid disorders. 

As GWAS sample sizes increase, thanks to large-scale international collaborations, genome-wide 

significant associations have been found with markers in or near the major histocompatibility 

complex region on chromosome 6 (Shi et al. 2009) and the genes encoding neurogranin (NRGN) 

(11q24) and transcription factor 4 (TCF4) (18q21) (Stefansson et al. 2009).  Further studies are 

looking at treatment response among other variables (Ripke et al. 2013; Hamshere et al. 2013; Green 

et al. 2013; Steinberg et al. 2014; Ruderfer et al. 2013).  

There has also been an initial GWAS directly comparing cases of schizophrenia and bipolar disorder, 

with a view to identifying genetic differences between the 2 disorders. (Ruderfer et al. 2013) The 

study was underpowered to achieve genome-wide significant results, but further larger studies are 

likely to follow soon.  
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Table 7.1. Genome-Wide Association Study Findings for SZ and BP from the 
review by Sullivan et al, combined with Specificity of Genome-Wide 
Association Study Findings for SZ and BP in the Psychiatric Genomics 

Consortium Cross-Disorder Group Study of 5 Psychiatric Disorders 

Phenotype 

Chromosome 
Where 
Marker Is 
Located 

Nearest 
Gene 

Odds 
ratio 
(OR)  

Disorders 
Showing 
Cross-
Disorder 
Association 

Schizophrenia 

1 MIR137 1.12 SZ, ASD 

2 VRK2 1.09   

2 ZNF804A 1.1   

2 PCGEM1 1.2 SZ, ASD 

6 MHC 1.22 SZ 

8 MMP16 1.1 SZ 

8 CSMD1 1.11 SZ 

8 LSM1 1.19   

10 CNNM2 1.1 SZ, MDD 

10 NT5C2 1.15 
SZ, BP, MDD, 
ASD, ADHD 

11 AMBRA1 1.25   

11 NRGN 1.12   

18 CCDC68 1.09 SZ, BP, MDD 

18 TCF4 1.2 SZ, ASD 

Bipolar 
disorder 

11 ODZ4 1.14 BP 

10 ANK3  BP 

19 NCAN 1.17 - 

  12 CACNA1C 1.14 BP, SZ, MDD 

  6 SYNE1   BP 

Schizophrenia 
and bipolar 

disorder 
combined 

2 ZNF804A 1.11   

3 
ITIH3-
ITIH4 

1.12   

10 ANK3 1.22   

12 CACNA1C 1.11   

Copyright (2012), Macmillan Publishers Ltd and Elsevier (2013) 

Key: SZ= schizophrenia; BP = bipolar disorder; MDD = major depressive disorder; ASD = austistic 
spectrum disorder, ADHD = attention deficit hyperactivity disorder. 
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Most recently, Johnstone and colleagues carried out CNV analysis of DISC1 and its binding partners 

PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish 

population-based samples using multiplex amplicon quantification. They reported finding rare CNVs 

in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including 

the overlapping MYH10 gene) and CITA (Johnstone et al. 2015). 

7.3.4 The Major Histocompatibility Complex (MHC) Locus 

The genes in the MHC region have many different biological functions, but genes with an immune 

function predominate. Histones regulate DNA transcription by chromatin modification through 

histone methylation or acetylation (Adegbola et al. 2008; Webb et al. 2008; Shi 2007), and have a 

role as antimicrobial agents. This raises the possibility that genetic variation in histones might 

underlie a differential placental susceptibility to infections and in turn they may alter the 

susceptibility to SZ through this mechanism.  Infections during pregnancy have long been postulated 

in schizophrenia given the seasonal variation of birth and risk of SZ. 

Confirmatory evidence of MHC involvement was only recently obtained from a combined analysis of 

GWAS data of three GWAS studies (Shi et al. 2009; Purcell et al. 2009; Stefansson et al. 2009). This 

meta-analysis combined the p-values for all imputed and genotyped SNPs from the most significant 

regions of each study and discovered a genome-wide significant association at the MHC region on 

chromosome 6.  

Another new schizophrenia susceptibility gene from schizophrenia GWAS is zinc finger protein 

804A (ZNF804A), which found an association with SNP rs1344706 (Shi et al. 2009; Purcell et al. 
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2009; Stefansson et al. 2009). Subsequently, rs1344706 in ZNF804A was reported to be associated 

with altered neuronal connectivity in the dorsolateral prefrontal cortex in a functional magnetic 

resonance imaging study of healthy controls (Esslinger et al. 2009). 

Other genes in the same region are involved in chromatin structure (i.e. high mobility group 

nucleosomal binding domain 4, HMGN4), transcriptional regulation (i.e. activator of basal 

transcription 1, ABT1; zinc finger protein 322A, ZNF322A; zinc finger protein 184, ZNF184), G-

protein-coupled receptor signalling (i.e. FKSG83), and the nuclear pore complex (i.e. nuclear pore 

membrane protein 121 -like 2, POM121L2).  Other samples and replication samples uncovered 

associations with neurogranin (NRGN) and with transcription factor 4 (TCF4). NRGN encodes a 

postsynaptic protein kinase substrate that binds calmodulin, mediating N-methyl-d-aspartate 

(NMDA) receptor signalling that is important for learning and memory, and relevant to the proposed 

glutamate pathophysiology of schizophrenia (Wang et al. 2008; Harrison & Weinberger 2005). TCF4 

is a neuronal transcriptional factor essential for brain development, specifically neurogenesis 

(Gulacsi & Anderson 2008). 

7.3.5 Rare CNVs and Schizophrenia 

A number of rare (<1%) and large (>100kb) CNVs have thus far been implicated in schizophrenia 

138–144, as reflected by overall CNV burden and individual CNV loci. Supporting evidence for 

association of specific rare and large CNVs with schizophrenia is emerging at 1q21.1, 2p16.3 

(NRXN1), 15q11.2, 15q13.2, 16p11.2, and 22q11.21 138–144. The 3 Mb deletion at 22q11.21 

(22qDS) has been known to cause velocardiofacial syndrome (VCFS), and increases the risk for 

schizophrenia 145–147. An epidemiological study found that more than 30% of 22qDS carriers 

develop psychosis, and approximately 80% of this manifesting as schizophrenia 147. This represents 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R138
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R144
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R138
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R144
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R145
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R147
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R147
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the largest known individual risk factor for the development of schizophrenia, aside from having an 

identical twin with schizophrenia. The 22q11.21 CNV was the only CNV reaching genome-wide 

significance in some schizophrenia GWAS 142 and the only one not found in controls 

(case%/control% was 0.30/0.00).  All the CNVs (except for 22q11.21) initially found only in 

schizophrenia cases were also found in healthy controls in later studies, suggesting that the 

penetrance of these rare CNVs may be relatively low. With the rest of the rare and large CNVs 

implicated in schizophrenia spanning multiple genes, specific gene effects, including the possibility 

of genes presenting pleiotropy, will be difficult to disentangle. 

Genes that are involved in the immune system and in brain development and activity – two functions 

that have evolved rapidly in humans – tend to be enriched in CNVs. By contrast, genes that play a 

role in early development and some genes involved in cell division – both critical to fundamental 

biology – tend to be spared. 

7.4 CO-MORBIDITY WITH BP AND AD 

SZ and BP appear to share common genetic risk factors. This is evidenced by family, twin and 

adoption studies. The largest of these, a Swedish population register-based study has shown 

significant familial coaggregation between schizophrenia and bipolar disorder in parent–offspring, 

sibling–sibling, and biological parent–adopted-away offspring pairs the adopted-away offspring of 

affected biological parents (Table 7.2, from Lichtenstein 2009). 

Several other family studies have supported similar findings. A meta-analysis of family studies 

published between 1980 and 2006 found evidence of familial overlap, with the first-degree relatives 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826121/#R142
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of probands who had schizophrenia showing a significantly elevated risk of bipolar disorder 

compared with relatives of controls (OR = 2.08, P = .01) . 

Data from risks of disorders in relatives have also been used to model the most likely mode of 

inheritance of schizophrenia (O’Rourke et al. 1982; Risch 1990) and bipolar disorder (Rice et al. 

1987; Craddock et al. 1995). For both disorders, this is likely to be multifactorial in most or all cases, 

with many genetic and environmental risk factors, each insufficient to cause the disorder on their 

own, but having a cumulative effect on risk when they occur together in the same individual.  

7.5 SUMMARY AND CONCLUSIONS 

These findings in the round suggest that schizophrenia, despite the very high reported heritability, is 

among the most complex of human genetic disorders. Analyses support Gottesman and Shields’s 

polygenic model for schizophrenia susceptibility, involving a set of hundreds of genes, each with 

unquantified but very small individual effects (Gottesman & Shields 1967). Further evidence 

suggests that cases have more rare (<1%) and large (>100kb) CNVs than controls. However despite 

substantial evidence of clinical co-morbidity there is little evidence of cross-heritability or significant 

common genes between SZ and AD. 
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Table 7.2 Relative risks for developing SZ and BP with affected probands (from Lichtenstein et al 
2009) 

Relationship to proband 

Relative risk of 
SZ when 
proband has SZ 
(95% CI) 

Relative risk of 
BP when 
proband has BP  
(95% CI)  

Relative risk 
of SZ when 
proband has 
BP disorder 
(95% CI) 

Relative risk 
of BP when 
proband has 
SZ  (95% CI)  

Family relationships with shared environment 

    Offspring 9.9 (8.5–11.6) 6.4 (5.9–7.1) 2.4 (2.1–2.6) 5.2 (4.4–6.2) 

    Sibling 9.0 (8.1–9.9) 7.9 (7.1–8.8) 3.9 (3.4–4.4) 3.7 (3.2–4.2) 

Adopted-away biological relatives 

    Adopted-away 
offspring 13.7 (6.1–30.8) 4.3 (2.0–9.5) 

4.5 (1.8–
10.9) 

6.0 (2.3–
15.2) 
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8 CHAPTER 8: STUDY AIMS 

 

The main aim of the thesis was to elucidate the genetic basis of alcoholism by employing two 

strategies: GWAS and LD mapping. The overall intention of the work was to identify novel AD loci, 

and to replicate previously implicated markers. Within this framework the aims were sevenfold: 

1) To replicate the association of GABRA2 with AD in the UCL AD case-control sample. 

2) To perform a GWAS analysis on the UCL BP+ALC (cases) vs BPNONALC (controls) samples 

3) To perform a GWAS on BP+ALC vs supernormal controls (SNC) 

4) To perform a GWAS analysis on the UCL SZ+ALC (cases) vs SZNONALC (controls) samples 

5) To perform a GWAS SZ+ALC vs supernormal controls 

6) To perform a meta-analysis of (BP+ALC)+(SZ+ALC) vs BP+SZ 

7) To perform a meta-analysis of (BP+ALC)+(SZ+ALC) vs supernormal controls 

Additionally, I aimed to perform a gene-based permutation test and pathway analysis for each GWA 

dataset.  
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9 CHAPTER 9: MATERIALS AND METHODS  

LD between alleles at DNA markers and BP was tested for using a population based case-control 

design. I will first describe the ethics, power considerations, case-control sample, genotyping, 

techniques and statistical analysis in a generic sense. 

9.1 ETHICAL APPROVALS 

U.K. National Health Service (NHS) multi-centre and local research ethics committee approval was 

obtained (Study title: Genetic case control and brain imaging studies of mental illness, autism and 

alzheimer's dementia, REC reference:03/11/090). Each volunteer was given an information sheet and 

description of the study. All volunteers signed an approved consent form.  

9.2 POWER CONSIDERATIONS 

It is not possible to calculate a priori the size of sample needed to detect association with a given 

allele, since the relative risk conferred by that allele in the population from which our sample is 

drawn is not known. This applies to loci in which replication of association is being attempted, and 

novel loci. Relative risk estimates conferred by a particular allele from previous studies will only 

apply to the populations which have been studied. Association studies in SZ and BP suggest that 

considerable variability in risk alleles exists across populations so it would seem imprudent to rely on 

power calculations based on such assumptions. 

It is well established that the larger the sample, the greater the power to detect allelic association 

(although the use of P-values in densely typed SNPs in genetic association studies may be 
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conservative if the assumption of independent tests does not hold - (Gao et al. 2010)). Thus the UCL 

laboratory has tried to maximise the size of the samples. By necessity, the collection of the UCL 

sample has run parallel to the association testing. Therefore, there is considerable variability in the 

total number of individuals genotyped for different markers, reflecting the point in time at which the 

genotyping was performed. However, no selection of cases or controls occurred for the association 

testing. At the point at which a particular marker was genotyped, the full sample that was available 

was used. Further controls were later genotyped in relation to an association study in schizophrenia 

and the control genotypes added into the bipolar analysis.  

Power calculation shows that a sample of 600 cases and 600 controls has 89% (2-sided) power to 

detect LD at the p<0.05 significance level when there is an allele frequency difference of 5% in the 

context of less common alleles - alleles present in 5% of controls and 10% of cases. To detect a 5% 

difference in a common marker allele which has a frequency of 45% in controls and 50% in cases, 

the power is only 38% (2-sided). 

9.3 UCL CASE-CONTROL SAMPLES 

9.3.1 Ancestry 

In order to reduce the chances of population stratification or heterogeneity between the case and 

control samples it is helpful to derive the case and control sample from the same ancestral population. 

Ancestry criteria for participation in our study had been set out a priori: Volunteers had to be of 

British, English, Scots, Welsh or Irish ancestry. This was defined as having at least three of four 

grandparents of such ancestry. Subjects with a grandparent of non-western European ancestry were 

excluded. All volunteers were screened with the UCL ancestry questionnaire. The validity of using 
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this questionnaire had previously been assessed within UCL. This approach applied to cases and 

controls in AD, SZ and BP samples. Clearly some subjects may be unaware of their lineage, and thus 

ancestral outliers were removed during quality control. 

9.3.2 UCL alcohol dependence research sample 

The AD sample consisted of 976 research subjects sampled in two cohorts and all of them gave 

informed signed consent. The first collection of subjects was recruited from the Centre for 

Hepatology at the Royal Free Hampstead NHS Trust between 1997 and 2008. The second wave of 

samples were recruited from several community substance misuse services including the Bexley 

Substance Misuse Service, South London and Maudsley Alcoholism Service, East Herts Community 

Drug Action Team and the Max Glatt Unit. We then extended recruitment UK-wide through the UK 

Clinical Research Network (UKCRN) under the UK-COGA project banner, conceptualized by Prof 

Hugh Gurling.  

All the patients fulfilled the criteria for a diagnosis of alcohol dependence using DSM-IV (APA 

1994) or ICD-10 (WHO 1993). None of the patients was currently misusing illegal drugs. The 

selection of the alcohol dependence subjects was also based on a strict ancestry questionnaire 

described in section 9.3.1 

The control subjects were recruited from London branches of the NHS blood transfusion service, 

from family doctor clinics and from university student volunteers. All control subjects were 

interviewed with the Schedule for Affective Disorders and Schizophrenia (SADS-L) (Spitzer & 

Endicott 1977)  to exclude all lifetime psychiatric disorders including alcohol dependence according 

to Research Diagnostic Criteria (RDC) and Diagnostic and Statistical Manual, III Edition Revised 
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(DSMIIIR) criteria. Control subjects were excluded if they reported drinking above the upper limit 

for safe drinking of 21 units per week for males and 14 units for females as defined by the Royal 

College of Physicians (Royal College of Physicians, 1987). The control subjects were further selected 

on the basis of not having a family history of bipolar disorder, schizophrenia or alcoholism. Use of 

controls is discussed further in Section 9.7 below. 

There was a separate EEG-based analysis in the GABRA2 study led by my co-author Sara 

Montagnese. I did not consider that I contributed sufficiently to that aspect of the work to include it 

in my thesis. 

9.3.3  UCL bipolar research sample 

The UCL bipolar research sample consisted of 506 BP I cases and 510 control comparison subjects 

(Sklar et al. 2008; McQuillin et al. 2011; Dedman et al. 2012). The sample of normal comparison 

subjects were screened for the absence of psychiatric disorders and with no known first-degree 

relatives with a psychiatric disorder. 

The cases were recruited from National Health Service (NHS) psychiatric services and from 

volunteers who were members of a support organization for sufferers of bipolar disorder living in 

South East England. The screened control subjects were recruited from London branches of the 

National Blood Service, from local NHS family doctor clinics and from university student volunteers. 

All case and control subjects were interviewed using the Lifetime Version of the Schizophrenia and 

Affective Disorders Schedule (SADSL) (Spitzer 1977). This information was supplemented by 

material from case-notes. Diagnoses were assigned using the Research Diagnostic Criteria (RDC) 

(Spitzer et al. 1978). Diagnoses were always assigned prior to genotyping and were made at the 
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“probable” level of the RDC. A second psychiatrist reviewed the diagnoses. Most of the cases had 

BPI (88%). All the bipolar research subjects were also rated with the 90-item OPCRIT checklist 

(McGuffin et al. 1991). Information regarding family history of mental disorder and drug treatment 

response was also collected. Phenotypic information was collated in a Microsoft Access database. 

The sample has been used for several previous allelic and haplotypic association studies as well as 

GWAS of bipolar disorder (Bass et al. 2009; Kandaswamy et al. 2013; Ferreira et al. 2008; 

McQuillin et al. 2011; Nyegaard et al. 2010; Dedman et al. 2012). 

The use of microarrays with up to 500,000 SNP markers in the GWAS allowed for an analysis of the 

genetic stratification between UCL cases and controls, which showed that no correction for 

population stratification was necessary (Ferreira et al. 2008; Sklar et al. 2008).  

9.3.4 UCL schizophrenia research sample 

The UCL schizophrenia research sample consisted of 617 affected research subjects recruited from 

NHS psychiatric services. The subjects were selected based on a strict ancestry questionnaire used for 

selecting UCL BP and AD cases described in section 3.1.1.1. All subjects signed an approved 

consent after reading an information sheet. All the schizophrenia cases were selected for having an 

ICD-10 (WHO 1993) diagnosis of schizophrenia recorded in the NHS medical case-notes. Research 

subjects with short-term drug-induced psychoses, learning disabilities, head injuries and other 

symptomatic psychoses were excluded. All the affected research subjects were interviewed by a 

psychiatrist using the Lifetime Version of the SADS-L (Spitzer 1977). The cases were also rated 

using the 90-item OPCRIT checklist (McGuffin et al. 1991). SZ subjects were then chosen on the 

basis of having received a diagnosis at the "probable level" of the Research Diagnostic Criteria 

(RDC) (Spitzer et al. 1978). Patients with schizoaffective bipolar disorder were not included. 
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9.4 GENOTYPING 

DNA was extracted from whole frozen venous blood using a cell lysis, proteinase K, 

phenol/chloroform method (Sambrook et al. 1989).  

9.4.1 AD sample 

For the AD sample, we genotyped two batches (total 586) of AD cases and 603 controls (Case Batch 

1 = 526, Control 1 =590; Case Batch 2 =586, Control 2 =603). Genotyping success rates were 90% or 

better.  For the GABRA2 study (results in Chapter 11), seven SNPs were selected from the literature 

as having previously been associated with alcoholism in GABRA2 and genotyped (Table 9.1.) 

 

Tab1e 9.1 GABRA2 SNPs genotyped 

# Marker Edenberg et al 

2004 Alcohol 

Dependence (p) 

Edenberg 

et al 2004 

EEG-b (p) 

Covault et al 

2004 Alcohol 

dependence 

(p) 

Soyka et al  

2007 Alcohol 

dependence  

(p) 

1 rs548583 .012* .028* - - 

2 rs279871 .0004* .049* - - 

3 rs279863 .017* .011* - - 

4 rs279858 .0087* 0.22 0.009* 0.79 

5 rs279836 .0071* .0066* - - 

6 rs279841 .038* .018* - - 

7 rs9291283 - - 0.06 0.006* 
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9.4.2 BP sample 

Genotyping was performed using the Affymetrix Gene Chip Human Mapping 500K Array Set, a first 

generation genotyping platform without specific copy number probes. This set is comprised of two 

high-density arrays, NspI and StyI. All genotyping was performed by the Genetic Analysis Platform 

at the Broad Institute of Harvard and MIT using standard protocols (Matsuzaki et al. 2004) as 

previously described (Saxena et al. 2007). Genotypes were called using the Bayesian Robust Linear 

Model with Mahalanobis distance classifier (BRLMM) (Rabbee & Speed 2006). A panel of 24 

markers present on the whole genome product as well as 25 SNPs previously genotyped in the UCL 

samples were used as genetic fingerprints to detect sample switches. 

9.4.3 SZ sample 

SZ samples were also genotyped using the Affymetrix Mapping 500K Array and the Genomewide 

Human SNP Array 5.0 as described elsewhere (Craddock & Sklar 2009; Ferreira et al. 2008; 

International Schizphrenia Consortium 2008). Genotypes were called from raw intensity data using 

the Birdseed component of the Birdsuite algorithm (McCarroll et al, 2008; Korn et al, 2008). 

Controls from UCL were previously genotyped at The Broad Institute as part of a published genome-

wide association study of bipolar disorder (Sklar et al 2008).    

9.5 DATA ANALYSIS AND QUALITY CONTROL (QC) 

BP and SZ: QC was completed using SNPs to remove duplicate samples, poorly genotyped and/or 

contaminated samples, as part of standard quality control metrics used for whole-genome association 

studies (Sklar et al 2008). This included individual exclusions (based on call rates <85%; 
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heterozygosity; outliers who appeared to be close relatives, sample duplications or non-Caucasian) 

and marker exclusions (call rate <95%; minor allele frequency (MAF) <1%; Hardy-Weinberg 

equilibrium p < 1 × 10−6 in controls  and differential rates of missing genotypes between cases and 

controls, using Fisher’s exact test, p <1 × 10−3). Because genotypes were called on a per-plate basis, 

we identified “bad plates” where SNPs showed grossly different allele frequencies to all other plates 

(p < 1 × 10 −10) and removed those SNPs. Following the exclusion there remained 372,193 SNPs for 

further analysis. 

9.5.1 Population Stratification and final dataset 

To control for possible effects of population stratification within panel, we matched cases and 

controls based on the proportion of alleles shared identical-by-state (IBS), using complete linkage 

hierarchical clustering. Within panel, individuals were clustered to ensure a) at least 1 case and 1 

control in clusters with 2 or more individuals; b) that no two individuals in the same cluster fail the 

population pairwise concordance test (PPC) with a p < 1 × 10−3). 

IBS clustering was then performed which indicated that the vast majority of individuals belonged to a 

single cluster; individuals who did not were removed, resulting in a final dataset of:  

i) 143 BP subjects and comorbid AD (BPALC) vs 510 SNC; and BPALC vs 367 BP 

patients without AD (BPnonALC).  

ii) 77 subjects with schizophrenia and comorbid AD (SZALC) vs  510 SNC; and vs  251 

SZ without AD (SZnonALC).  

iii) Meta-analysis of 220 BPALC+SCZALC vs 7510 SNC; and vs 751 

BPnonALC+SCZnonALC. 
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9.6 ASSOCIATION ANALYSES 

9.6.1 Primary Whole Genome Association Analysis 

The primary analysis was of single SNPs using the Cochran-Mantel-Haenszel (CMH) test to assess 

allelic association with disease conditional on the strata as defined by the stratification analysis. For 

each SNP, we also calculated standard, allelic association tests not conditioning on strata, based on a 

chi-squared test for independence. Because of the quality control steps outlined there was no genomic 

inflation (our lambdas were effectively 1) and it was not necessary to condition the allelic tests by 

population strata. In total, we performed 372,193 single SNP tests, 340,925 unique multi-marker tests 

of association with bipolar disorder, SZ and AD.  

9.6.2 Testing of allelic association 

I used PLINK (Purcell, 2007) is a free, open-source whole genome association analysis toolset for 

GWA analyses. Association between a SNP and a phenotype is generally accepted to be genome-

wide significant at α = 0.05 if the p value is 7.2 × 10−8 or smaller, as this corrects for the total number 

of independent tests (Dudbridge and Gusnanto, 2008).  

Use of control groups 

I used two approaches to controls: the first was to use supernormal controls (SNC) – a common 

approach in many GWAS. The control subjects were selected on the basis of not having a family 

history of bipolar disorder, schizophrenia or alcoholism. Thus the controls were termed “supernormal 

controls” (SNC) or “hypernormal controls” due to their low phenotypic and genetic loading for 

http://www.sciencedirect.com/science/article/pii/S0301051110002176#bib0085
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alcoholism and severe mental illness. It has been argued that use of “hypernormal controls” is more 

efficient (Morton and Collins 1998). Epidemiologists however would argue that such controls risk 

introducing new biases (e.g. through exclusion criteria that are different from, and stricter than, those 

applied to cases), that they do not necessarily allow straightforward epidemiological inferences, and 

they require more resources in recruitment and screening (Moskvina et al. 2005; Schwartz & Susser 

2011). 

The second approach was to use “severe mental illness without AD” as the control group. This 

second control group comprised of BP (vs BPALC), SZ (vs SZALC) or (BP+SZ) vs (BPALC + 

SZALC). The aim of this approach was to increase the power to detect a difference in the light of the 

small sample sizes by modern standards; and also to try and minimize the differences between cases 

and controls in order to elicit the phenotypes of interest – in this case AD (or AD in the context of 

severe mental illness).   

There is scientific precedent for the use of disease controls other than normal controls. Curtis et al’s 

work in our group in compared SZ with BP as controls (Curtis et al. 2011). Using this approach 

Curtis et al reported a suggestive marker at the calcium channel gene CACNG5 (p = 10-6.4). 

BP and SZ are increasingly understood to share overlapping genetic risk (Purcell et al. 2009; 

Ruderfer et al. 2014).  A recent large analysis of SZ versus BP revealed new loci contributing to our 

understanding of overlap and uniqueness of the disorders (Ruderfer et al. 2014).   Ruderfer 

commented that combining diseases with similar genetic risk profiles improves power to detect 

shared risk loci; and that future direct comparisons of BP and SZ are likely to identify loci with 

significant differential effects. By identifying these loci our understanding of how these diseases 

differ biologically should improve. 
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Curtis et al (2011) consider that there are theoretical advantages for this approach including that i) the 

samples might be better matched epidemiologically leading to patients suffering from either disease 

having similar genetic and non-genetic backgrounds; ii) recruitment will be from similar settings 

rather than the usual approach of recruiting unaffected controls from non-clinical settings; iii) having 

well-matched samples improves the signal–to-noise ratios and should improve both the power and 

specificity of the association studies; iv) case-case comparisons may “cancel out” common genetic 

vulnerability and highlight risk alleles unique to each disease, and thus actually reduce shared risk 

confounders.   

To my knowledge this “AD + mental illness versus mental illness controls” comparison combination 

has not been published before (although Kendler has published on a combined AD + SZ phenotype 

versus normal controls (Kendler et al. 2011).  I thus consider this a novel approach to try and 

“uncover” any underlying AD genes (or genes which may increase risk of developing comorbid AD) 

from “pure” BP/SZ/BP+SZ genes. 

9.7 GENE-BASED TESTING 

Genes are functional groups of nucleotides that code for proteins. Depending on the underlying 

genetic architecture, the gene-based analyses can be more powerful than traditional individual-SNP-

based GWAS (Liu et al. 2010). For example, if a gene contains more than one causative variant, then 

several SNPs within that gene might show marginal levels of significance that are often 

indistinguishable from noise in the initial GWAS results. A gene-based test might be better able to 

detect these effects by combining the effects of all SNPs in a gene into a test-statistic and correcting 
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for LD. A gene-based test thus detects genes which show a greater signal of association than 

expected by chance given the LD between the SNPs and the gene’s length. The relevance of the 

gene-based test depends on the underlying genetic architecture of gene which is unknown and which 

is expected to differ between genes.  

In order to determine if there are genes with a surplus of associated variants, we conducted a gene-

based test using the Versatile Gene-based Association Study-2 (VEGAS2, 

https://vegas2.qimrberghofer.edu.au/ ) (Liu et al. 2010). The VEGAS2 test summarises evidence for 

association on a gene by gene basis by considering the p-value of all SNPs within genes, while 

accounting for linkage disequilibrium (LD) and number of SNPs per gene. It then compares the 

resulting gene-based test statistic to a large number of simulated chi-square distributed gene-based 

test statistics. VEGAS2 uses 1000 Genomes Project (http://www.1000genomes.org/) populations to 

estimate patterns of LD for each gene, and we specified the British and Scottish sub-populations to 

match our research subjects.   The p-value resulting from this gene-based test is thus the proportion 

of simulated test statistics that exceed the observed test statistic. 

9.8 CORRECTION FOR MULTIPLE TESTING 

To determine which SNPs are truly associated with a trait, we need some measure of how often we 

would get this result given how many tests have been performed. One simple way to do this is using 

Bonferroni correction, which is simply dividing by the number of independent statistical tests 

performed. The human genome contains roughly 1 million haplotype blocks and therefore, even if 

one tests 6 million SNPs for association with a trait, that leads to about 1 million independent 

statistical tests. Therefore it is generally held that the threshold for genome-wide significance is 5 x 

10-8, which is a nominal threshold of p = 0.05 Bonferroni-corrected by dividing by 1 million. 

https://vegas2.qimrberghofer.edu.au/
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For gene based testing, VEGAS2 tests for 15,000 known genes, thus our gene-based significance 

threshold was set at a Bonferroni-corrected p = 0.05/15000 = 3.3 x 10-6 (Verweij et al. 2010). 

9.9 PATHWAY-BASED ANALYSIS WITH VEGAS2 AND PANTHER 

GWAS often highlight SNPs with the smallest p-values, paying less attention to lower ranked SNPs. 

Analysis of those gene pathways may contain valuable information that can enable identification of 

additional associations (Ngwa et al. 2011). Gene-based results also enable the subsequent use of 

network or pathway approaches to interpreting the findings from GWAS (Wang et al. 2007; Elbers et 

al. 2009; Jin et al. 2014).  In our study all genes with a p-value <= 0.01 from the VEGAS2 gene-

based analysis were used as input to perform a pathway analysis by VEGAS2Pathway 

(https://vegas2pathway.qimrberghofer.edu.au/ ). 

The VEGAS2Pathway approach aggregates association strength of individual markers into pre-

specified biological pathways.  It accounts for gene size and linkage disequilibrium between markers 

using simulations from the multivariate normal distribution. Pathway size is taken into account via a 

re-sampling approach. The current implementation uses gene-sets from the gene ontology (GO), 

curated gene-sets from MSigDB (containing canonical pathways and gene-sets from BIOCARTA, 

REACTOME, KEGG databases), and PANTHER and pathway commons databases, enabling 

analysis of a wide range of complex traits. The designers of VEGAS2 applied this method to a 

colorectal cancer GWAS meta-analysis data set (10934 cases, 12328 controls) from the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO) which implicated a number of 

biologically plausible pathways (Mishra & McGregor, paper in press, by personal communication). 

https://vegas2pathway.qimrberghofer.edu.au/
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All genes with a p-value <= 0.01 from the VEGAS analysis were used as input to perform separate 

pathway analysis by PANTHER. PANTHER is a publically-available database having Gene 

Ontology (GO) and functional annotation information. GO Pathways are available within the 

database and these pathways were used in our analysis to estimate pathways and molecular functions 

of nominally associated genes.  

9.10 THE LITERATURE AS CONTROL 

There have been no previous GWA studies on BPALC or SZALC as comparators for replication. 

Because AD was the main phenotype of interest, I carried out a systematic search for published 

association studies with AD and addiction phenotypes and endophenotypes, and plausibly linked 

phenotypes, where possible using the standards described by the NCI-NHGRI Working Group on 

Replication in Association Studies (Chanock et al. 2007).  I cross-referenced each of our tentative 

SNP and gene signals with the published literature (final search 1 November 2015). My database 

included results from dbGAP (http://www.ncbi.nlm.nih.gov/gap/ ), NHGRI-EBI Catalog 

(www.ebi.ac.uk/gwas/ ), OMIM, GADB, KARG, SNPedia, NCBI, EBI, DiscGeNET, GWASDB, 

HUGE database, and PubMed). I also manually searched the literature for selected genes and SNPs 

of interest. In total there were 354 unique gene symbols (including variations on gene names for 

maximum coverage) and nominally associated SNPs from across the literature in the database. This 

data was combined into a Microsoft Access database, cleaned, and the JOIN command used to search 

within each GWAS output for matching gene names, identifiers or SNPs.  

http://www.ncbi.nlm.nih.gov/gap/
http://www.ebi.ac.uk/gwas/
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9.11 GRAPHICAL TECHNIQUES 

For Q-Q and Manhattan plots, I used the R package qqman (Turner 2014) available from the 

Comprehensive R Archive Network (http://cran.r-project.org/package=qqman). I used HapMap 

(CEU) for LD mapping and LocusZoom (Pruim et al. 2010) to plot relevant regional association 

results. LocusZoom plots show not only the magnitude of association for each SNP, but also the 

pairwise LD pattern with the most strongly associated SNP or another user-specified SNP. Quick 

inspection can reveal the extent of the associated region and the location and number of SNPs in 

strong LD with the index SNP.  

I also used Ricopili from the Broad Institute to plot comparison regional loci from the Psychiatric 

Genetics Consortium. LD (r2 or D) estimates used by LocusZoom and Ricopili came from the 1000 

Genomes Project. The next chapters summarise my results.  

http://cran.r-project.org/package=qqman
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10 CHAPTER 10. RESULTS OF GABRA2 CANDIDATE GENE          

ANALYSIS IN AD 

In the present part I sought to clarify the role of the GABA receptor alpha-2 gene (GABRA2) in 

alcoholism using seven SNPs used in previous AD/alcoholism association studies. 

 All markers were in Hardy Weinberg equilibrium (HWE) in the controls.  HWE for marker rs279841 in 

the AD samples was p=0.0199 and combined p=0.0166. Linkage disequilibrium patterns (Figure 10.1B) 

appear to be very similar to that observed in the HapMap CEU data (Figure 10.1A.) 

None of the selected SNPs showed allelic or haplotypic association with AD in our white UK sample 

(Table 10.1).   This becomes a further negative study for GABRA2 and AD and was published in 2011 

(Lydall et al. 2011).  

10.1 GABRA2 SNP STUDY DISCUSSION 

This case control study of AD cases and ancestrally matched controls found no evidence for allelic or 

haplotypic association with selected GABRA2 SNPs previously implicated in alcoholism association 

studies.  This would be the sixth negative association study for this gene, while there are also five 

positively associated studies, all with varying methodological strengths and weaknesses. 

In previous studies, GABA system markers have been associated with a variety of phenotypes in a 

number of different contexts, many of which were not assessed in this study. For example, interaction 

may occur within and between GABA system genes, particularly among proximal or clustered genes 

(Uusi-Oukari et al. 2000). 
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There is evidence that the influence of polymorphisms in the GABA system may vary with age or 

across developmental stages (Dick et al. 2006; Dick et al. 2009), and be moderated by environmental 

factors (Enoch et al. 2010; Dick et al. 2009). Markers in GABA system genes have also been associated 

with less-complex biological markers such as Beta-frequency EEG (Edenberg et al. 2004) and event-

related potentials (Winterer et al. 2000)  that meet the criteria to be considered endophenotypes more 

directly reflecting underlying genetic liability than their complex behavioural correlates (Begleiter & 

Porjesz 2006). 

The absence of association in the present study does not invalidate previous positive genetic 

associations between GABRA2 and alcoholism. This is common for human genetic association studies 

where extensive locus heterogeneity is present with relatively low frequency susceptibility alleles. Other 

explanations include unknown bias in sample collection or phenotype heterogeneity. In our study, one 

weakness is that psychiatric comorbidity was not assessed beyond the four commonest co-occurring 

disorders (BP, depression, ADHD and antisocial personality disorder). Those with AD + comorbidity 

were not excluded due to high prevalence and the potential impact on sample size and thus power. The 

UCL team are about to publish evidence for phenotypic variation contributing towards the non-

replication of genetic association studies. This occurred in an alcohol dependence sample using an 

association study of the ZNF699 gene in a larger well-characterised UCL AD sample with low levels of 

psychiatric and addictive comorbidity (Ali et al. 2015). 

The strengths and weaknesses of case control studies have been discussed in Chapter 6, and all are 

possibly relevant here.  However in our defence, the samples were well characterised, ethnically 

homogeneous, we chose a severe phenotype (alcohol dependence) and this was a large sample size for a 
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relatively small number of markers, so it likely not to have been underpowered. Ancestral heterogeneity 

was reduced by the use of the ancestral questionnaire and QC removing non-Caucasian samples, and 

confounding further reduced by the use of well characterised AD samples and supernormal controls.  I 

consider it important to publish negative studies to reduce publication bias and contribute to the data for 

future meta-analyses. 

Future work in this direction may wish to ensure larger samples, or meta-analyses, and optimize the 

quality of AD phenotypes, also excluding as much potentially confounding psychiatric comorbidity as 

possible by optimising clinical phenotype data. 

The next chapter reports results of the first GWAS, that of BPALC vs BPnonALC. 
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Table 10.1. GABRA2 SNP results in the UCL AD sample 

# SNP 

Name 

Batch 

numbe

r 

Numbers Frequencies Chi 

square 

P 

value 
Case Contr

ol 

Case Contr

ol 

1 rs548583 1 474 549 0.44 0.419 0.910 0.34 

2 rs279871 2 524 568 0.442 0.43 0.331 0.57 

3 rs279863 2 528 552 0.438 0.432 0.089 0.76 

4 rs279858 1 471 582 0.427 0.425 0.005 0.95 

5 rs279836 1 496 564 0.572 0.567 0.038 0.85 

6 rs279841 1 454 552 0.437 0.425 0.313 0.58 

7 rs9291283 2 540 569 0.243 0.227 0.778 0.38 

 

Figure 10-1 GABRA2 comparison of A. HapMap CEU Linkage Disequilibrium (LD) and B. LD 

from the UCL AD data.  

A:      B: 

 

 

 

 

 

 

 

 

 

Figure legend:  D’ is shown by grades of colour, the numbers represent r2. 
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11 CHAPTER 11. RESULTS OF BPALC VS BPNONALC GWAS 

For this analysis of BPALC vs “pure” BP (without AD, i.e. BPnonALC), we examined 143 subjects 

with bipolar disorder and comorbid AD (BPALC) vs 350 with BPnonALC as controls. We analysed 

372,193 SNPs genotyped on the Affymetrix GeneChip Human Mapping Array in 506 BP patients and 

510 controls following the quality control and data cleaning procedure described in Methods, above. 

The overall genotyping call rate for analysed SNPs was 99.4%. Including the multimarker predictors, 

our data set is estimated to capture 78.7% of common variation (SNPs with minor allele frequency 

>=5%) in the CEPH HapMap (CEU) samples with r2 >0.8.   

No SNP achieved conventional genome wide significance levels. Quantile-Quantile (Q-Q) plots for 

each analysis, illustrating the observed p-values for he autosomal associations in relation to the expected 

p-values (based on the number of tests, under the null hypothesis of no association), are presented in 

Figure 11.1. A Manhattan plot of our association analyses is shown in Fig.11.2. The lack of SNP data 

points near the top of each panel (i.e. p ≈ 10−8) indicates that there were no strong association signals. 

SNPs in the top 40 with lowest p-values are presented in Table 11.1. 

I then checked whether any of the 40 SNPs with the lowest p-value for each analysis were in or close to 

a gene of known relevant function. None of the top SNPs were previously related directly to AD or 

alcoholism-related phenotypes, however a number of genes in or near these SNPs are briefly reported.   

Our strongest albeit non-significant SNP signal was near Shugoshin-Like 1 (SGOL1) which has been 

implicated in ethanol-related methylation, and as a risk gene for substance misuse (see Discussion for 

detail). Figure 11 -3 shows the LocusZoom plot of the strongest SNP and its relationship with the 

nearest gene SGOL1 - there is no evident LD between the two.  
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Our second highest-ranked SNP association was near Basic Leucine Zipper Transcription Factor, ATF-

Like (BATF) which has been associated with multiple sclerosis (Sawcer, 2011) and rheumatoid arthritis 

(Stahl, 2010).  Multiple high-ranked SNPs in gene GADL1 (6 SNPs in the top 40, Table 11.1) invited 

further investigation. However gene based analysis was not significant, and a LocusZoom regional plot 

shows no LD between the highest ranked SNP and the gene (Fig. 11-4).  

Of top SNP-implicated genes, only one (SEMA5A) was previously reported in linked phenotypes: 

autism (Weiss et al 2009) and smoking cessation (Uhl et al, 2008; Rose et al 2010). In our gene-based 

test the SEMA5A gene had an uncorrected gene wise p-value of .007 (ranked 6th gene by wise p). I 

have plotted SEMA5A markers from UCL (Fig. 11-5) and PGC Bipolar GWAS (Fig. 11-6) for visual 

inspection of signal in the region. 

In the gene-based tests, we found 255 genes with p <0.01, strongest p = 5 x 10-4. Cross referencing with 

the literature I noted 8 genes that were nominally associated (p<=0.01) that were in common with our 

VEGAS2 gene-based list. The top 40 of these are listed in Table 11.2.  

Aside from SEMA5A, the most notable gene wise result was the fifth-ranked (by gene based p-value) 

alcohol metabolism gene ADH5 p = 5.07 × 10−3 (Fig. 11-7). ADH5 has been implicated by region in a 

GWAS of AD in a Korean sample (Park, 2013) and also in AD symptom count in an African American 

sample (Kendler et al. 2011). Another top 40 SNP signal of interest is the cell-cell contact and 

scaffolding gene, discs large homolog 5 (DLG5) (p = 4.26 × 10−4), a gene that has previously been 

associated with variation in liver enzymes (Chambers et al. 2011) and childhood obesity (Comuzzie et 

al. 2012).  I have also plotted gene regions around CDH13 (gene wise non-significant, Fig. 11-8) 

because of numerous highly ranked SNPs in this gene in our GWA and previous strong literature 

associations with addictions and AD (Johnson et al. 2010; Uhl & Drgonova 2014; Treutlein et al. 2009).  



      131 

All gene replications of AD or related phenotypes and the top SNPs in that gene from our data are listed 

in Table 11.3.  

Pathway analysis using VEGAS revealed genetic pathways involving adenylate cyclase activity, 

tryptophan metabolism, solute carriers, voltage gated ion channels, and amino acid modification (Table 

11.4). 

PANTHER analysis of our top genes implicate in gene based analysis (P<001, n=255) revealed binding, 

catalytic, nucleic acid binding and receptor activity among the main molecular pathways (Fig. 11-9). 

In summary, this was the first small GWAS comparing patients with BP and comorbid AD with patients 

with BP without AD in an attempt to tease out the AD genetic effects. No marker achieved genome-

wise significance. However gene wise and pathway approaches offer a number of biologically plausible 

genes involving alcohol metabolism, cell signalling, and cell scaffolding. 

11.1 DISCUSSION 

No SNP achieved conventional genome wide significance levels. Our strongest GWA SNP was not in 

LD with its nearest gene despite SGOL1 being a risk gene for substance misuse. Our second strongest 

SNP association was near BATF, but gene based analysis was not even nominally significant. This is 

probably due to small sample size. Of SNP-implicated genes, only one (SEMA5A) was previously 

reported in linked phenotypes: autism (Weiss et al 2009) and smoking cessation (Uhl et al, 2008; Rose 

et al 2010). In our gene-based test the SEMA5A gene had an uncorrected gene wise p-value of .007 

(ranked 6th gene by wise p). This makes it a gene of interest but not involvement in AD in this study. 
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The tentative involvement of Tubulin tyrosine ligase (TTL) on chromosome 2 (uncorrected gene-based 

p =5.83 x 10-3) is interesting because TTL has been associated with AD, conduct disorder and suicide 

attempts (Dick et al, 2010).  Arguably, some of the features of bipolar overlap with AD, conduct 

disorder and self-harming behaviour. Perhaps TTL affects antisocial or risky behaviour in both people 

with BPALC and those with AD and other externalizing behaviours.  

A possible signal near the alcohol metabolism gene ADH5 (uncorrected gene-based p = 5.07 × 10−3) is 

interesting. ADH5 is not a leading alcohol metabolising gene in the AD literature, and in fact is 

remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary 

alcohols and glutathione. It has however previously been implicated by region in a GWAS of AD in a 

Korean sample (Park, 2013), and AD symptom count in an African American sample (Kendler, 2011). 

Unless there is an as yet undiscovered ethanol pathway it is unclear how a gene which metabolizes 

formaldehyde amongst others could differentiate AD from BP. More encouraging is another top 40 SNP 

signal of interest is the cell-cell contact and scaffolding gene, discs large homolog 5 (DLG5) 

(uncorrected gene-based p = 4.26 × 10−4), a gene that has previously been associated with variation in 

liver enzymes (Chambers, 2011) and obesity (Comuzzie, 2012).  One would expect a gene specific to 

alcohol biology to stand out in any study of AD genetics. It makes intuitive sense for the main 

difference between people with BP and AD and people with BP alone would be related to alcohol 

metabolism (including by liver enzymes) amongst others.   

Broadly, cadherins are adhesion molecules that mediate Ca2+-dependent intercell adhesion (Ivanov, 

Philippova, & Tkachuk, 2001). Mapped to 16q24 in the human chromosome, the CDH13 gene is 

anchored in the membrane via glycosylphosphatidylinositol (GPI). It has been found throughout the 

central nervous system (including cerebral cortex, midbrain, and medulla), and is believed to play a role 

in maintaining neural circuitry (Ivanov et al. 2001; Takeuchi et al. 2000). CDH13 as a “cell adhesion 
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molecule” is well positioned to play roles in regulation of synaptic connectivities that are of interest for 

brain disorders that include addictions and ADHD (Treutlein et al. 2009; Rivero et al. 2013). GWAS 

comparing substance-dependent vs control and successful vs unsuccessful abstainers from smoking 

have each identified SNPs in the 3’ region of the cadherin 13 (CDH13) gene (Uhl et al. 2008).  CDH13 

variants interacting with environment have been found for age of first drink (rs4389131 x parental 

monitoring), and another for age of first intercourse (rs12926331 x peer drinking). Thus CDH13 may 

have a role in initiating risky behaviour (whether in the context of affective disorder or alone) which 

may be why CDH13 is considered an addictions candidate gene. Early risk behaviour could be a 

confounder variable and actually represent repeated use of alcohol from a young age which itself is a 

risk factor for developing AD. The cadherins as a group and CDH13 in particular are worthy of further 

investigation. 

 In the next chapter I report on the BPALC vs supernormal controls analysis. 
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Figure 11-1 Q-Q plot of BPALC vs BP GWAS p-values 

 

Figure legend: Q–Q plots of observed and expected −log10(P) of the associations between SNPs  
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Figure 11-2 Manhattan Plot of BPALC vs BPnonALC GWAS. 

 

Figure legend:  Results of the genome-wide association analyses for BPALC vs BPnonALC. The x-axis 

shows the chromosome numbers and the y-axis the significance of the association signals (i.e. −log10(P) 

value) 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

  

Table 11.1 BPALC vs BPnonALC: Top 40 SNPs, gene wise results and relevant replication studies 

CH
R SNP BP 

A
1 F_A F_U 

A
2 

CHIS
Q P OR Position Distance 

Gene 
code 

Gene 
based p* 

 

3 rs626491 20514267 T 0.2425 0.3866 G 17.69 2.60E-05 0.508  downstream  34869 SGOL1  ---  
 

14 rs10147012 76019185 T 0.1857 0.09 C 17.69 2.60E-05 2.306  downstream  5827 BATF 7.72E-04 
 

2 rs7591997 149589774 C 0.06071 0.01289 T 17.66 2.64E-05 4.948  upstream  6370 ---  ---  
 

11 rs34143639 122404194 G 0.05036 0.00862 A 17.21 3.35E-05 6.098  downstream  45719 ---  ---  
 

5 rs2256569 9160380 C 0.1893 0.3214 T 17.19 3.39E-05 0.4929  intron  0 SEMA5A 5.95E-03  

5 rs988593 9156684 A 0.1714 0.3 G 17.05 3.65E-05 0.4828  intron  0 SEMA5A 5.95E-03 
 

10 rs1268956 79608277 T 0.3786 0.2471 C 16.96 3.81E-05 1.856  intron  0 DLG5 4.26E-04 
 

3 rs595551 20516530 A 0.25 0.3886 C 16.9 3.93E-05 0.5245  downstream  32606 ---  ---  
 

3 rs1683768 31074131 C 0.3357 0.4799 T 16.88 3.98E-05 0.5476  upstream  137874 GADL1 1.82E-01 
 

7 rs218971 10986882 C 0.4781 0.3362 G 16.87 4.01E-05 1.809  upstream  26617 PHF14 1.54E-02 
 

4 rs1510738 67500648 G 0.2107 0.1103 A 16.83 4.10E-05 2.153  downstream  203409 ---  ---  
 

3 rs1683760 31089530 A 0.3321 0.4757 G 16.78 4.21E-05 0.5481  upstream  153273 GADL1 1.82E-01 
 

3 rs294306 31079692 T 0.3321 0.4756 A 16.75 4.27E-05 0.5483  upstream  143435 GADL1 1.82E-01 
 

4 rs17595186 99988713 A 0.3551 0.227 G 16.71 4.37E-05 1.875  exon  0 ---  ---  
 

5 rs304855 152759013 G 0.277 0.4171 A 16.64 4.52E-05 0.5353  upstream  110162 GRIA1 9.21E-01 
 

7 rs1079478 10989364 A 0.4714 0.3324 G 16.54 4.77E-05 1.791  upstream  24135 PHF14 1.54E-02 
 

10 rs1248631 79582881 T 0.3786 0.2486 C 16.53 4.78E-05 1.842  intron  0 DLG5 4.26E-04 
 

10 rs1248657 79629127 C 0.375 0.2457 T 16.49 4.90E-05 1.842  UTR-3  0 
LOC100
131132 2.00E-02 

 

5 rs2526122 9158180 C 0.1727 0.2994 T 16.47 4.94E-05 0.4883  intron  0 SEMA5A 5.95E-03 
 

4 rs10517989 67500915 G 0.2107 0.1114 A 16.39 5.14E-05 2.129  downstream  203676 ---  ---  
 

3 rs182401 31081125 T 0.3321 0.4741 G 16.39 5.14E-05 0.5516  upstream  144868 GADL1 1.82E-01 
 

10 rs1659390 79625407 T 0.3786 0.2493 C 16.35 5.27E-05 1.835  intron  0 DLG5 4.26E-04 
 

4 rs10857059 79854436 T 0.2143 0.1143 C 16.33 5.31E-05 2.114  intron  0 PAQR3 1.51E-03 
 

12 rs1402312 78234525 A 0.02857 0.00143 G 16.19 5.72E-05 20.56  intron  0 NAV3 6.73E-01 
 

3 rs294278 31127911 T 0.3321 0.4728 C 16.1 6.00E-05 0.5546  upstream  191654 GADL1 1.82E-01 
 

7 rs2950183 102020363 G 0.3643 0.2378 T 16.07 6.12E-05 1.836  intron  0 
PRKRIP
1 4.17E-03 

 

5 rs13154208 119318747 A 0.2679 0.1571 G 16.01 6.31E-05 1.962  downstream  301972 ---  ---  
 

13 rs9542547 71527068 T 0.3214 0.2014 A 15.99 6.38E-05 1.878  upstream  62205 
LINC003
48 4.79E-01 

 

3 rs1395162 31092371 C 0.3357 0.4757 A 15.94 6.53E-05 0.557  upstream  156114 GADL1 1.82E-01 
 

15 rs2456470 62777956 G 0.3143 0.1957 C 15.9 6.69E-05 1.884  intron  0 TLN2 7.34E-01 
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Table 11.1 contd… 

9 rs12001902 78715080 T 0.1331 0.05714 G 15.82 6.95E-05 2.533  intron  0 PCSK5 3.25E-02 
 

9 rs2047995 81169950 C 0.3237 0.204 T 15.69 7.46E-05 1.868  downstream  224941 PSAT1 6.39E-01 
 

16 rs4360919 83616310 T 0.1071 0.2157 C 15.66 7.60E-05 0.4363  intron  0 CDH13 1.33E-01 
 

6 rs707937 31731014 G 0.2821 0.17 C 15.6 7.82E-05 1.919  intron  0 SAPCD1 6.69E-03 
 

3 rs172421 31084868 G 0.3393 0.4771 C 15.42 8.62E-05 0.5629  upstream  148611 GADL1 1.82E-01 

5 rs1013721 9088165 T 0.2036 0.33 G 15.41 8.67E-05 0.519  intron  0 SEMA5A 5.95E-03 

16 rs7499397 83620469 C 0.4607 0.3271 T 15.39 8.75E-05 1.757  intron  0 CDH13 1.33E-01 

5 rs304841 152778918 C 0.2464 0.3775 T 15.28 9.26E-05 0.5392  upstream  90257 GRIA1 9.21E-01 

22 rs9613519 28110312 C 0.464 0.3299 T 15.26 9.36E-05 1.758  intron  0 ---  ---  

7 rs218967 10988142 T 0.4784 0.3443 A 15.16 9.89E-05 1.747  upstream  25357 PHF14 1.54E-02 

Key: CHR= Chromosome; BP= base pairs; A1= Allele 1; F_A= Frequency of Allele 1; F_U= Frequency of Allele 2; A2=Allele 2; CHISQ = chi squared. OR = odds  

ratio. *Uncorrected p <0.05 in bold. No gene-based tests survived Bonferroni correction. 
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Table 11.2 BPALC vs BPnonALC: Top 40 gene based analysis genes   

Chr Gene 
n 
SNPs n Sims 

VEGAS2 
Test result 

Uncorrected 
gene based 
p  Top SNP 

Top SNP 
p  

14 BATF 12 1.00E+06 53.12562 7.72E-04 rs10147012 2.60E-05 

5 SEMA5A 164 1.00E+05 340.6102 5.95E-03 rs2256569 3.39E-05 

10 DLG5 40 1.00E+06 259.6666 4.26E-04 rs1268956 3.81E-05 

7 NDUFA4 18 1.00E+05 83.65992 5.19E-03 rs218971 4.01E-05 

4 ADH5 20 1.00E+06 104.1915 9.23E-04 rs17595186 4.37E-05 

4 PAQR3 14 1.00E+05 74.32575 1.51E-03 rs10857059 5.31E-05 

7 SPDYE6 4 1.00E+06 31.91611 4.99E-04 rs2950183 6.12E-05 

6 HSPA1L 2 1.00E+06 15.68911 5.25E-04 rs707937 7.82E-05 

22 MN1 23 1.00E+05 77.40639 2.09E-03 rs9613519 9.36E-05 

10 DLG5-AS1 10 1.00E+06 61.91778 8.26E-04 rs1149725 1.23E-04 

17 SLC26A11 19 1.00E+06 82.65686 9.63E-04 rs2269376 1.32E-04 

5 HAVCR1 20 1.00E+06 140.5367 2.40E-04 rs7731951 1.41E-04 

11 DYNC2H1 79 1.00E+05 271.3367 4.93E-03 rs2671349 1.58E-04 

5 TIMD4 15 1.00E+05 73.62017 2.26E-03 rs9790967 1.59E-04 

3 SNORA58 2 1.00E+06 15.15453 5.48E-04 rs9843898 1.88E-04 

14 RALGAPA1 16 1.00E+06 131.1212 6.86E-04 rs10147261 1.92E-04 

2 TTC27 31 1.00E+05 97.41738 5.67E-03 rs17012300 1.97E-04 

2 FASTKD2 17 1.00E+05 71.196 3.22E-03 rs17280449 2.26E-04 

15 LOC101929478 11 1.00E+05 54.68458 2.25E-03 rs2292416 2.57E-04 

19 ZNF816-ZNF321P 17 1.00E+05 53.29152 6.15E-03 rs17770717 2.57E-04 

1 CHIA 56 1.00E+05 157.7963 6.39E-03 rs9645351 2.62E-04 

17 TP53I13 6 1.00E+05 21.68943 8.96E-03 rs8081085 2.82E-04 

14 INSM2 5 1.00E+05 35.13945 3.11E-03 rs4982292 2.83E-04 

4 PI4K2B 17 1.00E+05 81.24482 3.06E-03 rs7661189 3.12E-04 

2 HAAO 24 1.00E+05 129.8898 1.76E-03 rs2119014 3.33E-04 

10 KIAA1462 33 1.00E+04 102.9859 9.20E-03 rs11007874 3.33E-04 

15 ST8SIA2 33 1.00E+05 81.05471 7.13E-03 rs7170557 3.38E-04 

10 PITRM1 47 1.00E+05 149.6708 2.73E-03 rs12678 3.43E-04 

1 RFWD2 23 1.00E+05 96.15749 4.06E-03 rs791743 3.47E-04 

17 RAP1GAP2 33 1.00E+05 75.5678 4.51E-03 rs4790372 3.58E-04 

13 SPATA13_1 113 1.00E+05 216.2478 7.62E-03 rs4770587 3.86E-04 

7 EGFR-AS1 22 1.00E+05 77.93638 2.67E-03 rs2075110 3.99E-04 

8 IDO2 33 1.00E+05 112.979 4.52E-03 rs10504014 4.60E-04 

2 DBI 13 1.00E+06 87.71992 6.42E-04 rs1374313 4.92E-04 

5 GPR150 4 1.00E+05 14.9653 7.81E-03 rs6556877 5.26E-04 

4 ZCCHC4 14 1.00E+05 67.89398 4.97E-03 rs7684466 5.38E-04 

9 TAL2 13 1.00E+05 54.60498 4.13E-03 rs7039618 5.94E-04 
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Table 11.3 BPALC vs BPnonALC gene based replications of AD or related phenotypes from the literature  

Chr 
Gene 
symbol Gene name n SNPs n Sims 

VEGAS 
Test 
result 

Uncorrect
ed gene 
based p Top SNP 

Top SNP 
p-value 

AD/related phenotype 
replication (reference) 

10 DLG5 
Discs, large 
homolog 5 40 1000000 259.6 4.26E-04 rs1268956 3.81E-05 

Liver enzymes 
(Chambers, 2011) and 
obesity (Comuzzie, 
2012) 

4 ADH5 
Alcohol 
dehydrogenase 5 22 100000 117.9 5.07E-03 rs17595186 4.37E-05 

AD (Park, 2013); AD 
symptom count 
(Kendler, 2011) 

2 HAAO 

3-Hydroxy-
anthranilate 3,4-
dioxygenase 24 100000 129.9 1.76E-03 rs2119014 3.33E-04 

AD with conduct 
disorder and suicide 
attempts (Dick et al, 
2010) 

2 DBI 
Diazepam binding 
inhibitor 13 1000000 87.7 6.42E-04 rs1374313 4.92E-04 AD (Waqa, 2007) 

1 MTHFR 

Methylenetetra-
hydrofolate 
reductase 20 10000 73.6 9.60E-03 rs2236797 6.46E-04 

AD severity, withdrawal 
symptoms and hyper-
homocysteinamia 
(Saffroy, 2008; 
Benyamina, 2009; Lutz, 
2006, 2007) 

3 GHSR 

Growth hormone 
secretagogue 
Receptor 14 1000000 68.8 6.96E-04 rs509035 2.46E-03 

Alcohol intake and body 
mass (Haplotypic 
association) (Landgren, 
2008) 

2 TTL 
Tubulin tyrosine 
ligase 10 100000 45.9 5.83E-03 rs4849074 2.96E-03 

AD with conduct 
disorder and suicide 
attempts (Dick et al, 
2010) 
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Figure 11-3 BPALC vs BPnonALC: LocusZoom regional plot of top SNP and nearest gene SGOL1  

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 

 

 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Table 11.4: Top 10 BPALC vs BP VEGAS2 pathways 

GO ID and 
pathway 

Initial 
pathway 
length 

Final 
pathway 
length Pathway P Empirical P Pathway gene list 

BIOCARTA P53 
HYPOXIA  19 18 

1.33E-03 1.14E-03 
GADD45A, FHL2, CSNK1A1, CDKN1A, IGFBP3, ABCB1, MAPK8, ATM, MDM2, HIF1A, 
HSP90AA1, AKT1, NQO1, HIC1, TP53, NFKBIB, BAX, EP300 

GO:0031280 
negative 
regulation of 
adenylate 
cyclase/lyase 
activity 49 48 

1.57E-03 1.84E-03 

CORT, OPRD1, GNAI3, ADCY10, RGS1, ADORA1, ADCY3, GRM7, CCR2, GNAI2, GRM2, 
DRD3, ADCY5, NPY2R, NPY1R, ADCY2, NPR3, HTR1A, GABBR1, GRM4, OPRM1, ADCY1, 
GNAI1, GRM3, GRM8, OPRK1, ADCY8, S1PR3, GABBR2, ADRA2A, DRD4, ADCY6, RXFP2, 
EDNRB, ADCY4, CHRM5, SSTR5, ADCY9, ADCY7, SSTR2, GNAL, GALR1, PALM, HRH3, 
OPRL1, GNAZ, GALR3, MCHR1 

PC Tryptophan 
catabolism 17 16 

3.33E-03 3.40E-03 
NADK, NMNAT1, CCBL2, NMNAT2, KMO, HAAO, ACMSD, KYNU, NMNAT3, TDO2, 
AADAT, IDO2, CCBL1, NADSYN1, QPRT, AFMID 

BIOCARTA Tumor 
Suppressor Arf 
Inhibits 
Ribosomal 
Biogenesis 17 17 

3.54E-03 4.00E-03 
POLR1A, POLR1B, PIK3CA, PIK3R1, POLR1C, RAC1, TWIST1, PIK3CG, MYC, CDKN2A, 
ABL1, MDM2, POLR1D, RB1, TP53, TBX2, E2F1 

GO:0031365 N-
terminal protein 
amino acid 
modification 12 12 

3.61E-03 3.90E-03 
KAT2B, NAA50, MAP6D1, METAP1, NAA15, NMT2, METAP2, NAA16, CREBBP, PDF, 
NMT1, EP300 

REACTOME 
TRYPTOPHAN 
CATABOLISM 11 10 

3.67E-03 2.50E-03 
CCBL2, KMO, HAAO, ACMSD, KYNU, TDO2, AADAT, IDO2, CCBL1, AFMID 
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Table 11.4 contd… 

GO ID and 
pathway Initial pathway length Final pathway length Pathway P Empirical P Pathway gene list 

GO:0030817 
regulation of 
cAMP 
biosynthetic 
process 94 91 

4.12E-03 3.70E-03 

CORT, GPR3, OPRD1, CAP1, GNAI3, ADORA3, NTRK1, ADCY10, 
RGS1, ADORA1, ADCY3, OXER1, FSHR, CALCRL, GRM7, CCR2, 
GNAI2, GRM2, DRD3, ADCY5, DRD5, EDNRA, NPY2R, NPY1R, 
ADCY2, NPR3, HTR1A, ADRB2, DRD1, EDN1, CAP2, GABBR1, 
GRM4, GLP1R, HTR1B, OPRM1, ADCYAP1R1, ADCY1, GNAI1, 
GRM3, CALCR, GRM8, OPRK1, ADCY8, GNAQ, NTRK2, S1PR3, 
GABBR2, ABCA1, UCN3, HTR7, ADRA2A, ADRB1, DRD4, PTH, 
CALCA, PTHLH, ADCY6, RXFP2, EDNRB, ADCY4, TSHR, GPR65, 
CHRM5, SSTR5, ADCY9, ADCY7, MC1R, ADORA2B, NF1, CRHR1, 
SSTR2, GALR2, ADCYAP1, GNAL, MC4R, GALR1, PALM, S1PR4, 
P2RY11, AVP, GHRH, MC3R, GNAS, HRH3, OPRL1, GNAZ, 
ADORA2A, GALR3, MCHR1, ACR 

GO:0015491 
cation:cation 
antiporter activity 14 13 

4.27E-03 3.80E-03 
SLC9A1, SLC8A1, SLC9A2, SLC11A1, SLC9A9, SLC9A3, SLC22A4, 
SLC3A2, SLC8A3, SLC24A1, SLC8A2, SLC24A3, SLC9A8 

GO:0008484 
sulfuric ester 
hydrolase activity 11 11 

4.38E-03 3.80E-03 
ARSJ, ARSB, ARSK, ARSI, SULF1, GNS, GALNS, ARSG, SGSH, 
SULF2, ARSA 

GO:0005247 
voltage-gated 
chloride channel 
activity 12 11 

4.43E-03 3.50E-03 
CLCN6, CLCNKB, CLIC4, CLCN2, PKD2, CLCN3, CLIC1, CLIC5, 
CLCN1, CLCN7, CLIC6 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Fig. 11.4 BPALC vs BPnonALC: Region plot of SNP nearest GADL1  

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Fig. 11-5 UCL BPALC vs BPnonALC plot of SEMA5A and strongest SNP. 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 

 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Fig. 11-6 PGC Bipolar GWAS plot of same region as Fig. 11-5 (near SEMA5A). 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Fig. 11-7: BPALC vs BPnonALC: ADH5 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 11-8 BPALC vs BP: CDH13 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 11-9 BPALC vs BP gene pathway analysis  

 

Figure legend:  x axis = number of genes; x axis = GO molecular category 
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12 CHAPTER 12. RESULTS OF BPALC VS SNC GWAS 

This analysis was to try and differentiate BPALC genes from supernormal controls. Unlike the previous 

chapter which sought AD genes as separate from BP, this approach looks at the combined phenotype – 

a commonly occurring dual diagnosis picture and thus clinically relevant. For this analysis of BPALC 

vs normal ancestrally matched controls, we examined 143 subjects with bipolar disorder and comorbid 

AD (BPALC) vs 510 normal controls. 

We analysed 372,193 SNPs genotyped on the Affymetrix GeneChip Human Mapping Array in 506 BP 

patients and 510 controls following the quality control and data cleaning procedure described in 

Methods, above. The overall genotyping call rate for analysed SNPs was 99.4%. Including the 

multimarker predictors, our data set is estimated to capture 78.7% of common variation (SNPs with 

minor allele frequency >=5%) in the CEPH HapMap (CEU) samples with r2 >0.8.   

No SNP achieved conventional genome wide significance levels. Quantile-Quantile (Q-Q) plots for 

each analysis, illustrating the observed p-values for the autosomal associations in relation to the 

expected p-values (based on the number of tests, under the null hypothesis of no association), are 

presented in Figure 12-1. A Manhattan plot of our association analyses is shown in Fig.12-2. The lack 

of SNP data points near the top of each panel (i.e. p ≈ 10−8) indicates that there were no strong 

association signals. SNPs in the top 40 with lowest p-values are presented in Table 12.1. 

I then checked whether any of the 40 SNPs with the lowest p-value for each analysis were in or close to 

a gene of known relevant function. None of the top SNPs themselves were previously related directly to 

AD or alcoholism-related phenotypes, however genes in or near these SNPs are briefly reported.  
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Our strongest SNP rs17498319 (p 1.0 x 10-5) was distant from any gene. The second ranked SNP by p 

value was rs1024820 which is intronic to Musashi RNA-Binding Protein 2 (MSI2), a gene which codes 

for RNA binding protein that regulates the expression of target mRNAs at the translation level. It may 

play a role in the proliferation and maintenance of stem cells in the central nervous system, and may 

contribute to disease progression in chronic myeloid leukemia. Third ranked came one of two SNPs 

intronic to the collagen, type I, alpha 2 (COL1A2, highest ranked SNP rs369982, p = 1.49 x 10-5) gene 

which was also implicated by gene wise analysis. Ranked fourth was SNP rs8062326 (p=1.62x10-5), a 

single SNP placed midway between the synaptotagmin 17 (SYT17) and Inositol 1,4,5-triphosphate 

receptor-interacting protein-like 2 (ITPRIPL2) genes.   

We found six nominally BPALC-associated SNPs near or within the GABA-A beta-3 receptor 

(GABRB3, highest ranked SNP p = 2.6 x 10-4, uncorrected gene-wise significance p = 2 x 10-3). The 

tachykinin receptor 1 (TACR1, also known as neurokinin-1 receptor, NK1R) was nominally associated 

with BPALC in three SNPs. There were eight SNPs nominally associated with BPALC near the gene 

for insulin-like growth factor 1 (IGF1, highest ranked SNP: rs12426318, 154 kb downstream, p = 1.8 x 

10-3). Neither GABRB3, TACR1 nor IGF1 survived gene wise testing for either phenotype. 

In our publication on this data we were interested in commonalities with the “connectivity cluster” 

genes. We noted forty five SNPs nominally associated with BPALC were located in and around 

cadherin 11 (CDH11, highest ranked SNP rs429065, p = 1.0 x 10-4, gene-wise p = 6 x 10-4).  SNP 

rs429065 is located 22 Kb downstream of CDH11 (Figure 12-4). Two of the associated SNPs from a 

genome-wide study of pooled DNA from the COGA sample (Johnson et al. 2006) were also nominally 

associated in our sample. These were intronic SNP rs35200 (p = 1.9 x 10-2) and rs35164 (p = 1.4 x 10-4) 

which is 5,484 base pairs downstream from CDH11. rs35164 was also implicated with early age of 

onset alcoholism in the GWAS by Edenberg and colleagues (Edenberg et al. 2010).  Excluding the 
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CDH11 SNPs replicated above, no strongly associated SNPs from previous GWAS replicated in this 

study.  

I then performed VEGAS2 gene permutation tests on all SNPs within and next to a previously 

implicated gene and corrected for multiple tests. In the gene-based tests, we found 236 genes with p 

<0.01, strongest gene Hydroxyanthranilate 3,4-Dioxygenase (HAAO) on Chromosome 24 p = 9.13 x 10-

4 (Fig. 12-5). The top 40 of these are listed in Table 12.2. Cross referencing with the literature database 

of gene and SNP associations, I found 8 genes that were nominally associated (p<=0.05) that were in 

common with our VEGAS2 gene wise list. All gene replications of AD or related phenotypes and the 

top SNPs in that gene where p<0.05 from our data are listed in Table 12.3.  Most notable of these are 

HAAO and TTL (Tubulin tyrosine ligase) both of which have been linked to conduct disorder, 

depression and suicide (Dick et al. 2010), and TGOLN2 (Trans-Golgi Network Protein 2) which has 

been implicated in suicide attempts in alcoholism (Mahon, 2010).  

Pathway analysis using VEGAS revealed genetic pathways involving adenylate cyclase activity, 

tryptophan metabolism, solute carriers, voltage gated ion channels, and amino acid modification (Table 

12.4). 

PANTHER analysis of our top genes implicate in gene based analysis (P<001, n=236) revealed binding, 

catalytic, nucleic acid binding and receptor activity among the main molecular pathways (Fig. 12-7). 

In summary, this was the first small GWAS comparing patients with BP and comorbid AD with normal 

controls in an attempt to tease out the BPALC phenotype (as opposed to AD) genetic effects. No marker 

reached genome-wise significance. However gene wise, replication, and pathway approaches offer a 

number of biologically plausible genes worthy of further investigation. 
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12.1 DISCUSSION 

This genome-wide study comparing individuals with BP with and without comorbid AD diagnoses has 

not achieved genome wide significance, but has replicated several previous associations with AD and 

addiction phenotypes by gene based analysis.  

Our most interesting  tentative SNP associations with BPALC were in or near genes involved in cell 

adhesion, neurotransmitter pathways, enzymatic activity, cellular messengers, connective tissue, and 

cell regulation but none of these reached genome wide significance (p<10-8) and can therefore the 

associations can only be described as suggestive.  

First we discuss SNP signals of association, then gene based findings. Our top ranked genome wide 

SNP suggestively associated with BPALC is located equidistant from Synaptotagmin 17 (SYT17) and 

Inositol 1,4,5-triphosphate receptor-interacting protein-like 2 (ITPRIPL2). SYT17 is expressed 

abundantly in the frontal and temporal lobes, hippocampus, hypothalamus, amygdala, substantia nigra, 

and pituitary.  Synaptotagmins are considered to be important in the docking and fusion of synaptic 

vesicles and plasma membrane in neurotransmitter release and is a worthy candidate gene (Fukuda et al. 

1994). ITPRIPL2 is also expressed in the brain but little is known about its function.  

Genes suggestively implicated by gene based significance in the present study include those that are 

functionally involved in second-messenger systems, ion and neurotransmitter function, neuronal 

adhesion, differentiation and architecture. These are considered part of the “connectivity constellation” 

of genes (Uhl et al. 2008b). The cadherin (CDH) gene family are a useful example of connectivity 

genes. These genes encode a large group of transmembrane proteins that mediate calcium-dependent 

cell-cell adhesion and the generation of synaptic complexity in the developing brain (Benson & Tanaka 

1998). Cadherins have been implicated in mnemonic processes, addictions and bipolar disorder 
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(Johnson et al. 2009, Uhl et al. 2008b).  CDH11 (Fig 12-4)  was implicated in a genome-wide study of 

pooled COGA DNA (Johnson et al. 2006), a recent GWA of alcoholism from COGA families 

(Edenberg et al. 2010), and was implicated in our study with uncorrected gene based significance tests 

and high (but not significant) genome-wide ranking. Twenty two CDH11 SNPs in the UCL sample 

were nominally implicated in BPALC. Our strongest CDH11 SNP, rs429065 was not associated with 

bipolar disorder in the Wellcome Trust Case Control Consortium (p=1.2 x 10-2) and STEP-BD samples 

(p = 2.7 x 10-2) (WTCCC, 2007; Sklar et al. 2008).   

At gene based level, this study revealed a number of further genes of suggestive interest. Taste receptor 

2, 28 (TAS2R38, Fig. 12-3) on 7q36 is of great interest because taste affects alcohol consumption and 

has known associations with AD. Duffy et al reported a study on 6-n-propylthiouracil (PROP) which is 

a probe for genetic variation in bitter taste. They found that homozygotes of the alanine-valine-

isoleucine (AVI) /AVI haplotype in gene TAS2R38 reported higher alcohol use than heterozygotes 

(Duffy, 2004). Using COGA data, Wang and colleagues noted a positive correlation between TAS2R38 

haplotypes and Maxdrinks in high-risk women of African-American origin. The common taster 

haplotype was significantly associated with a lower mean Maxdrinks compared with the other 

haplotypes, but not alcohol dependence (Wang, 2007).   

TAS2R38 was found at nominal gene based level only in the BPALC vs SNC comparison, and not at 

meta-analysis level.  This is explainable by the possibility that taste receptors play a more prominent 

role in alcohol dependence in the context of bipolar disorder, then in AD alone, at least in this 

population. The AD association has been reported in African Americans (in pure AD not BPALC or 

similar). Perhaps this is evidence of pleiotropy in that the gene has an effect on expression of different 

phenotypes in different populations of people. 
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The tentative associations in our study should be replicated in other BPALC samples including non-

Caucasians to fully evaluate the gene. There are numerous taste receptor genes, and taste is a key factor 

in the tolerability of a drink, so it would be worth considering all as candidate genes for AD. 

Sequencing of individuals with risk alleles and possible cross-matching with laboratory based taste 

testing, or surveys of subjective taste (e.g. of popular alcoholic drinks) may allow for further 

clarification. 

HAAO (Fig 12-5) was nominally associated in our BPALC vs SNC sample (and, also in the BPALC vs 

BPnonALC, and meta-analysis studies). The phenotypes of AD, conduct disorder, and suicide attempts, 

which show linkage on chromosome 2, are all characterized by elements of impulsivity and poor 

behavioural control. Conduct disorder is a robust predictor of both concurrent and future alcohol 

problems (Crowley et al. 1998; Moss and Lynch, 2001; White et al. 2001) Furthermore, numerous twin 

studies indicate that the overlap between childhood conduct disorder and adult alcohol dependence is 

largely due to shared genetic factors (Slutske et al. 1998; Krueger, 1999; Young et al. 2000; Kendler et 

al. 2003). This common genetic liability is believed to be a predisposition toward behavioural 

undercontrol/disinhibition, which can manifest as conduct disorder in childhood and alcohol 

dependence later in life (Slutske et al. 2002).  

It is not unreasonable to theorize that the characteristics which predispose to substance use and 

externalizing problems represent an expression of an underlying tendency toward behavioural 

disinhibition. Longitudinal studies have found that behavioural disinhibition measured in 

childhood/adolescence predicts both the development of substance use disorders and a propensity 

toward suicidal behaviour in young adulthood (Tarter et al. 2004).  Behavioural disinhibition is a key 

diagnostic criteria for BP and is arguably also evident in SZ. It is possible that HAAO in our sample is 

involved in this impulsive propensity across the disorders.  
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Of further note is that Tachykinin receptor 1 (TACR1) also known as Neurokinin receptor 1 (NKR1) 

had a gene based p value of 0.016. TACR1 has been previously implicated in BP, AD, and Attention 

Deficit Hyperactivity Disorder (ADHD) (Sharp, 2014). It should be noted that the Sharp study was from 

unlinked UCL AD and ADHD samples, but the BP sample was the same as used in this GWAS (ie 

PBALC vs SNC). The association with TACR1 and BPAD, ADS, and ADHD suggests a shared 

molecular pathophysiology between these affective disorders. 

The GABA system has a wealth of overlapping evidence for involvement in BP, SZ and AD. Important 

negative findings include the genes of the Gamma-aminobutyric acid (GABA) system which encode 

receptors for the major inhibitory transmitter of the nervous system.  GABA receptors are of strong 

interest in addictions, alcoholism, and affective disorders (Agrawal et al. 2008, Bierut et al. 2010).  

None of the GABA receptor genes including GABRA2 were implicated at corrected gene wise level in 

the present study.   

In our sample, GABRB3 (Fig 12-6) showed tentative gene based associations in several groups.  Noble 

found a significant decrease in the prevalence (P = 4.5 x 10-3) and frequency (P = 2.7 x 10-2) of the 

GABRB3 major (G1) allele in “severe alcoholics”, compared to non-alcoholics. Furthermore, a 

significant progressive decrease was noted in G1 allelic prevalence (P = 2.4 x 10-3) and frequency (P = 

1.9 x 10-2) in non-alcoholics, less severe and severe alcoholics, respectively (Noble, 1998). Sequencing 

GABRB3 in subjects with the G1 allele may reveal novel mutations. 

The SEMA5A gene belongs to the semaphorin gene family that encodes membrane proteins containing 

a semaphorin domain and several thrombospondin type-1 repeats. Members of this family are involved 
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in axonal guidance during neural development. This gene has been implicated as an autism 

susceptibility gene and cri-du-chat syndrome. SEMA5A is of interest because it has been replicated in 

two studies on autistic spectrum disorder, another neuropsychiatric condition with a high heritability. 

Weiss and colleagues (Weiss et al, 2009) published a linkage and association mapping study using half 

a million SNPs for 1553 individuals with autism and their families. Initial analysis did not yield 

genome-wide significant associations; however, genotyping of top hits in additional families revealed a 

SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with 

autism (P = 2 x 10-7). They also demonstrated that expression of SEMA5A is reduced in brains from 

autistic patients, further implicating SEMA5A as an autism susceptibility gene.  Cheng and colleagues’ 

GWAS of autism spectrum disorders showed significant association with an intergenic SNP near 

Semaphorin 5A (SEMA5A) and provided evidence for reduced expression of the same gene. In a novel 

GWAS follow-up approach, they mapped an expression regulatory pathway SEMA5A in silico by using 

population expression and genotype data sets. They found that the SEMA5A regulatory network 

significantly overlapped with rare autism-specific CNVs (Cheng et al. 2013). 

How might autism and alcoholism be linked? They have no phenotypic commonalities to suggest 

underling aetiological or biological connections. Clinically, one would expect the social interaction 

difficulties and reduced novelty-seeking of autism would protect against alcohol use and alcohol-using 

peers. Small studies of individuals with autism have reported very low rates of drinking and substance 

use in people with autism spectrum disorders (Hofvander et al. 2009; Santosh & Mijovic 2006). 

However De Alwis and colleagues found an increased risk of developing alcohol and other substance 

misuse with increasing numbers of autism spectrum traits.  The researchers studied autistic traits in 

3080 Australian twins and found just under 20 percent of those with no autistic traits met the criteria for 
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alcoholism. In contrast thirty five percent of people with six or more traits were alcohol dependent (De 

Alwis et al. 2014).  

There is considerable genetic overlap between ADHD and autism; and alcoholism and ADHD. There is 

also evidence of common vulnerability genes to both autism and alcoholism. Certainly families with 

autistic children have higher rates of alcoholism. Miles et al analysed 167 pedigrees ascertained through 

an autistic child; 39% had alcoholism in patterns consistent with transmission of a genetic trait (Miles et 

al. 2003). Schumann et al’s GWAS meta-analysis of more than 40,000 people revealed an association 

between SNP rs6943555 in the Autism Susceptibility Candidate 2 gene (AUTS2) and alcohol 

consumption at genome-wide significance (P = 4 × 10−9) (Schumann et al. 2011). In our data neither 

this SNP nor its related gene on gene based analysis were significant (p=0.6) (Fig. 15-4). However there 

are likely, as with all complex diseases, to be many common genetic pathways crossing disorders, 

further complicated by the possibility of pleiotropy (Consortium 2015). 

Genes of interest with suggestive involvement that did not stand up to correction included ADH5, 

CHRNA6, and KCNMA1. ADH5 (uncorrected gene based p = 0.03) was implicated in our BPALC vs 

BPnonALC data is a potential candidate gene for AD because of its role in alcohol metabolism. It has 

previously been associated with AD (Park, 2013) and AD symptom count in African Americans 

(Kendler et al. 2011). This lack of association may reflect ancestral differences because our sample was 

of White British ethnicity. CHRNA6 on chromosome 22 (uncorrected gene based p = 0.029; strongest 

SNP rs10427722, p = 0.01752) is also intriguing from a substance misuse perspective because it has 

been associated with subjective response to tobacco, but not alcohol (Zeiger et al. 2008). Lastly, 

Potassium Channel, Calcium Activated Large Conductance Subfamily M Alpha, Member 1 

(KCNMA1), on Chromosome 10, uncorrected gene based p = 0.04; top SNP rs2673464, p = 0.006) was 
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associated with AD in people with SZ (Kendler et al. 2011). KCNMA1 is the human homologue of the 

slo-1 gene in C. Elegans, a gene involved in ethanol resistance in this species (Wang et al. 2001). 

12.2 BPALC VS SNC GWAS CONCLUSIONS 

The relationship between bipolar and unipolar affective disorder and alcohol dependence is 

bidirectional (Sonne and Brady, 2002) and there is consensus that the two disorders have reciprocal 

effects on each other. AD may also change expression and function of the same neurotransmitters as 

those involved in bipolar disorder, thereby “prompting” the symptoms of unipolar and bipolar affective 

disorder (Tohen et al. 1998).  

The present study has benefitted from a well-characterized, ancestrally homogenous and ancestrally-

matched control sample. The main drawback was the modest sample size of bipolar patients with AD 

for a genome-wide study.  

Although low significance values are needed for convincing GWAS results there are genes previously 

implicated in the genetics of alcoholism which were suggestively associated with bipolar alcoholism 

after gene based association tests. This suggests that our results are worthy of further investigation. The 

“connectivity cluster” genes are strongly represented in this study. We also report tentative new 

alcoholism gene associations in a bipolar-alcoholic sample which are in need of further investigation in 

additional samples.  

 In the next chapter I report on the SZALC vs SZnonALC analysis. 
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Fig. 12-1 Q-Q Plot of BPALC vs SNC 

 

Figure legend:  Q–Q plots of observed and expected −log10(P) of the associations between SNPs  



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Fig. 12-2 Manhattan plot of BPALC vs SNC 

 

Figure legend:  Results of the genome-wide association analyses for BPALC vs SNC. The x-axis shows the chromosome numbers and the y-axis 

the significance of the association signals (i.e. −log10(P) value) 
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Table 12.1 BPALC vs  SNC: Top 40 SNPs and uncorrected gene based results 

CHR SNP 
Position 

(base 
pairs) 

A1 
AF 

Cases 
AF 

Control 
A2 CHISQ P OR Position Distance 

Nearest gene 
code 

Gene 
based 

p* 

4 rs17498319 58147714 C 0.25 0.1394 T 19.5 1.01E-05 2.058 downstream 71451 --- ---  

17 rs1024820 55607591 T 0.4317 0.2926 C 19.11 1.24E-05 1.836 intron 0 MSI2 3.28E-01 

7 rs369982 94048482 A 0.5357 0.3909 G 18.75 1.49E-05 1.798 intron 0 COL1A2 1.74E-04 

16 rs8062326 19156016 A 0.075 0.02222 G 18.59 1.62E-05 3.568 intron 0 SYT17/ ITPRIPL2 --- 

2 rs10205049 119899933 G 0.5321 0.3927 A 17.37 3.07E-05 1.759 downstream 13886 C1QL2 5.93E-03 

17 rs17836920 72078926 A 0.275 0.4119 G 17.28 3.23E-05 0.5416 intron 0 C17orf54 --- 

9 rs10967953 2756638 C 0.2607 0.1535 T 17.2 3.37E-05 1.945 intron 0 KIAA0020 1.79E-02 

17 rs12051795 45413384 A 0.0219 0.001027 G 16.7 4.38E-05 21.78 intron 0 EFCAB13 1.29E-01 

13 rs4770393 23692789 T 0.06429 0.01829 C 16.66 4.46E-05 3.687 upstream 140653 --- --- 

13 rs1330910 78582044 T 0.1143 0.04757 C 16.62 4.56E-05 2.583 intron 0 RNF219-AS1 8.59E-02 

5 rs12516376 129720170 C 0.1107 0.2202 T 16.6 4.62E-05 0.4409 downstream 2144 --- --- 

7 rs10488600 136605458 T 0.2122 0.1173 C 16.34 5.29E-05 2.028 intron 0 CHRM2 5.40E-02 

13 rs7318572 23678935 A 0.04745 0.01029 T 16.29 5.44E-05 4.792 upstream 126799 --- --- 

13 rs17078254 23678405 T 0.04643 0.0101 G 16.2 5.70E-05 4.772 upstream 126269 --- --- 

18 rs17288584 69134662 A 0.1036 0.04141 G 16.19 5.72E-05 2.674 downstream 52536 LOC100505776 3.33E-01 

14 rs7158201 71010546 T 0.1475 0.07041 C 16.12 5.94E-05 2.284 intron 0 RP11-486O13.4 --- 

5 rs2189381 129792625 C 0.1964 0.3198 T 16.05 6.16E-05 0.5198 upstream 72487 --- --- 

13 rs7322449 23693091 T 0.06115 0.01721 C 16.03 6.23E-05 3.72 upstream 140955 --- --- 

13 rs17068683 78568871 A 0.1143 0.04848 G 16.01 6.30E-05 2.532 intron 0 RNF219-AS1 8.59E-02 

9 rs16925783 7288704 A 0.1214 0.05354 G 15.77 7.17E-05 2.443 downstream 113056 KDM4C 6.70E-01 

11 rs7104304 125283262 A 0.3489 0.4827 G 15.63 7.70E-05 0.5744 intron 0 PKNOX2 1.35E-01 

9 rs7857841 2756756 A 0.1464 0.07085 C 15.6 7.82E-05 2.25 intron 0 KIAA0020 1.79E-02 

6 rs1028714 1833041 G 0.3429 0.2273 C 15.44 8.52E-05 1.774 intron 0 GMDS 8.08E-01 

4 rs17661170 171175320 G 0.1964 0.3172 A 15.44 8.53E-05 0.5263 upstream 19750 LOC101928223 3.28E-01 
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Key: CHR= Chromosome; BP= base pairs; A1= Allele 1; F_A= Frequency of Allele 1; F_U= Frequency of Allele 2; A2=Allele 2; CHISQ = chi squared. OR = 

odds ratio. *Uncorrected p <0.05 in bold. 
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17 rs7222497 72087797 G 0.3536 0.4859 C 15.39 8.73E-05 0.5788 intron 0 
RP11-
101O21.1  --- 

3 rs918244 10480628 C 0.06786 0.02134 G 15.39 8.74E-05 3.338 intron 0 ATP2B2 2.19E-01 

2 rs3815475 160114315 A 0.03571 0.006085 G 15.34 8.97E-05 6.049 intron 0 WDSUB1 5.11E-03 

7 rs6960667 130923445 G 0.1 0.0404 A 15.3 9.18E-05 2.639 intron 0 MKLN1 4.06E-01 

18 rs280983 4451489 C 0.275 0.403 T 15.27 9.33E-05 0.5618 intron 0 DLGAP1 3.04E-01 

5 rs6879343 23056410 T 0.06835 0.1602 C 15.21 9.63E-05 0.3844 downstream 41774 --- --- 

17 rs8080915 72083792 C 0.3714 0.503 T 15.16 9.87E-05 0.5838 intron 0 
RP11-
101O21.1 --- 

14 rs10137987 28371914 A 0.5821 0.4505 G 15.15 9.91E-05 1.699 upstream 87297 --- --- 

14 rs11158863 70981166 C 0.1393 0.0668 A 15.09 1.02E-04 2.261 intron 0 --- --- 

17 rs10512591 70879560 G 0.02143 0.09091 A 15.08 1.03E-04 0.219 intron 0 SLC39A11 6.31E-02 

20 rs6061245 61044227 T 0.6 0.4687 C 15.05 1.04E-04 1.7 intron 0 GATA5 5.46E-04 

18 rs280984 4451130 T 0.2714 0.398 C 14.99 1.08E-04 0.5636 intron 0 DLGAP1 3.04E-01 

22 rs2267123 28284061 T 0.2679 0.1657 A 14.92 1.12E-04 1.843 intron 0 PITPNB 3.83E-03 

12 rs17835106 76405801 C 0.25 0.1515 T 14.78 1.21E-04 1.867 upstream 28006 --- --- 

5 rs2256569 9160380 C 0.1893 0.3057 T 14.66 1.29E-04 0.5304 intron 0 SEMA5A 2.30E-02 

20 rs6587239 61040951 T 0.3857 0.5152 C 14.64 1.30E-04 0.5909 synon 0 GATA5 5.46E-04 
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Table 12.2 BPALC vs SNC: Top 40 VEGAS2 Gene Based Permutation Testing     

Chr Gene 
n 

SNPs 

n 
VEGAS2 

Sims 

VEGAS2 
Test 

result 

Gene based 
P value 

Top SNP Top SNP P   

7 COL1A2 16 1.00E+06 77.79 1.74E-04 rs369982 1.49E-05   

14 ADAM20 3 1.00E+06 39.02 2.07E-04 rs7158201 5.94E-05   

1 SLC9A1 8 1.00E+06 65.13 3.96E-04 rs11247612 3.08E-04   

1 CEP170 5 1.00E+06 46.91 4.84E-04 rs12091558 1.57E-04   

14 ADAM20P1 2 1.00E+06 22.90 4.91E-04 rs11158863 1.02E-04   

20 GATA5 9 1.00E+06 46.89 5.46E-04 rs6061245 1.04E-04   

17 EFNB3 7 1.00E+06 38.26 5.48E-04 rs2909430 2.11E-04   

2 OXER1 23 1.00E+06 143.77 8.15E-04 rs7583085 5.75E-04   

2 HAAO 24 1.00E+06 144.03 9.13E-04 rs7583085 5.75E-04   

1 FAM131C 5 1.00E+06 25.25 9.35E-04 rs6696416 5.54E-03   

2 RETSAT 8 1.00E+05 45.79 9.80E-04 rs1053561 9.94E-04   

3 SNORA58 2 1.00E+05 14.07 1.00E-03 rs9843898 4.14E-04   

7 LOC100131257 17 1.00E+05 71.43 1.09E-03 rs7793374 4.33E-04   

16 CDH11 64 1.00E+05 264.32 1.11E-03 rs429065 1.64E-04   

17 WRAP53 9 1.00E+05 38.89 1.11E-03 rs2909430 2.11E-04   

2 POLR1B 13 1.00E+05 67.72 1.11E-03 rs4849074 5.07E-04   

17 TP53 10 1.00E+05 41.34 1.13E-03 rs2909430 2.11E-04   

10 ZNF33A 16 1.00E+05 89.63 1.14E-03 rs645064 1.50E-04   

18 GREB1L 15 1.00E+05 91.36 1.18E-03 rs1318841 2.43E-03   

17 DNAH2 10 1.00E+05 45.62 1.21E-03 rs2909430 2.11E-04   

12 MSI1 7 1.00E+05 35.72 1.22E-03 rs2701632 1.11E-03   

20 RBBP8NL 8 1.00E+05 39.44 1.23E-03 rs6061245 1.04E-04   

14 MED6 5 1.00E+05 32.66 1.24E-03 rs7158201 5.94E-05   

2 CHCHD5 12 1.00E+05 63.77 1.30E-03 rs4849074 5.07E-04   

20 LOC284798 10 1.00E+05 54.07 1.37E-03 rs4815389 3.11E-04   

19 BRD4 5 1.00E+05 27.58 1.45E-03 rs11665899 4.76E-03   
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Table 12.2contd…   

2 TTL 10 1.00E+05 59.73 1.47E-03 rs4849074 5.07E-04   

12 AQP6 10 1.00E+05 42.54 1.61E-03 rs7309966 4.22E-03   

10 ZNF37A 21 1.00E+05 130.71 1.64E-03 rs645064 1.50E-04   

6 MIR1275 11 1.00E+05 43.09 1.64E-03 rs4713731 2.71E-04   

9 KCNV2 21 1.00E+05 70.17 1.67E-03 rs10967953 3.37E-05   

17 SPNS3 14 1.00E+05 45.96 1.70E-03 rs4239046 1.44E-03   

1 CLCNKA 7 1.00E+05 31.69 1.85E-03 rs6696416 5.54E-03   

18 ABHD3 4 1.00E+05 25.83 1.87E-03 rs2850565 2.77E-03   

2 MTA3 37 1.00E+05 192.29 1.92E-03 rs7583085 5.75E-04   

4 HGFAC 9 1.00E+05 39.59 1.98E-03 rs13128489 1.64E-03   

22 MN1 23 1.00E+05 76.38 2.15E-03 rs5752613 1.90E-03   

6 DAAM2 34 1.00E+05 124.46 2.16E-03 rs2504090 1.62E-04   

2 TGOLN2 14 1.00E+05 59.33 2.18E-03 rs1053561 9.94E-04   

22 MIR3199-2 6 1.00E+05 28.57 2.26E-03 rs2267123 1.12E-04   

18 MIR320C1 3 1.00E+05 22.88 2.31E-03 rs2850565 2.77E-03   

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations 
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Table 12.3 BPALC vs normal controls: Genes Yielding Evidence for Association at P <0.05 After Permutation Testing and Replication 

Ch
r 

Gene 
symbol 

Gene name 
n 
SNPs 

n 
VEGAS 
Sims 

VEGAS 
Test 
result 

P Top SNP 
Top SNP 
p-value 

AD/related 
phenotype 
replication 
(reference) 

2 HAAO 

3-
Hydroxyanthran
ilate 3,4-
dioxygenase 24 1000000 144.0322 9.13E-04 rs7583085 5.75E-04 

AD with conduct 
disorder, depression and 
suicide (P=0.0327) (Dick, 
2010) 

2 TTL 
Tubulin tyrosine 
ligase 10 100000 59.73078 1.47E-03 rs4849074 5.07E-04 

AD with conduct 
disorder, depression and 
suicide (P=0.0302) (Dick, 
2010) 

2 TGOLN2 

Trans-Golgi 
Network 
Protein 2 14 100000 59.32617 2.18E-03 rs1053561 9.94E-04 

Suicide attempts in 
alcoholism (p = 0.03-
0.008) (Mahon, 2010) 

7 TAS2R38 
Taste receptor 
2 38 11 100000 50.00965 2.31E-03 rs2204607 3.17E-03 

Bitterness perception 
and alcohol intake 
(Duffy, 2004) 

1 MTHFR 

methylenetetra
hydrofolate 
reductase 20 100000 85.99447 3.42E-03 rs2076001 2.65E-04 

Serum homocysteine 
levels in alcoholics (de La 
Vega 2001) 

6 
HEY2 
(HERP1) 

Hes-Related 
Family BHLH 
Transcription 
Factor With 
YRPW Motif 2 13 100000 58.73213 6.55E-03 rs9321054 6.54E-03 

Reduced  HERP mRNA 
expression in AD (Bleich, 
2006) 

15 GABRB3 

GABA(A) 
receptor beta3 
subunit 37 100000 85.24025 7.49E-03 rs2114485 3.54E-04 

Severity of alcoholism 
(Noble, 1998) 

11 GSTP1 
Glutathione S-
Transferase Pi 1 3 10000 13.34865 9.50E-03 rs6591256 1.90E-03 

Val/val polymorphism 
and cirrhosis and 
pancreatitis in AD (Burim 
2004) 

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations 
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Table 12.4 VEGAS2 pathway analysis results 

GO ID and pathway 
Initial 
pathwa
y length 

Final 
pathw
ay 
length 

Path
way 
P 

Empirica
l P 

Pathway gene list 

GO:0001756somit
-ogenesis 33 32 

8.33
E-05 

5.00E-
05 

PSEN2, WNT3A, MSGN1, ZEB2, RBPJ, LEF1, SFRP2, RIPPLY2, TBX18, T, DLL1, 
MEOX2, NKX3-1, SFRP1, PRKDC, ROR2, ATM, MYF5, PCDH8, PSEN1, MESP2, 
HES7, TCAP, KAT2A, MEOX1, AXIN2, MIB1, DLL3, TCF15, PAX1, POFUT1, 
EP300 

BIOCARTA ARF 
PATHWAY 17 17 

1.79
E-04 

1.02E-
04 

POLR1A, POLR1B, PIK3CA, PIK3R1, POLR1C, RAC1, TWIST1, PIK3CG, MYC, 
CDKN2A, ABL1, MDM2, POLR1D, RB1, TP53, TBX2, E2F1 

REACTOMETRYPT
OPHANCATABOLI
SM 11 10 

2.74
E-04 

1.48E-
04 CCBL2, KMO, HAAO, ACMSD, KYNU, TDO2, AADAT, IDO2, CCBL1, AFMID 

GO:0035282 
segmentation 46 45 

2.21
E-04 

1.70E-
04 

PSEN2, WNT3A, MSGN1, TCF7L1, ZEB2, HOXD8, TDGF1, RBPJ, LEF1, SFRP2, 
RIPPLY2, TBX18, T, DLL1, MEOX2, HOXA2, NKX3-1, SFRP1, PRKDC, MLLT3, 
ROR2, BMI1, EGR2, ATM, FRS2, MYF5, TBX3, PCDH8, PSEN1, MESP2, 
RPGRIP1L, DVL2, HES7, TCAP, KAT2A, MEOX1, HOXB6, AXIN2, MIB1, DLL3, 
TCF15, PAX1, POFUT1, MAFB, EP300 

GO:0005247volta
ge-gated chloride 
channel activity 12 11 

3.92
E-04 

2.82E-
04 

CLCN6, CLCNKB, CLIC4, CLCN2, PKD2, CLCN3, CLIC1, CLIC5, CLCN1, CLCN7, 
CLIC6 

PANTHER 
BIOLOGICAL 
PROCESS 
Chromatin 
packagi-ng and 
remodeling 162 113 

7.51
E-04 

7.80E-
04 

KDM1A, RBBP4, NASP, BRDT, SYCP1, HIST2H2AB, SETDB1, GATAD2B, 
ASH1L, H3F3A, HIST3H2A, CENPA, MTA3, TSPYL6, HAT1, KAT2B, SS18L2, 
SETD2, PBRM1, L3MBTL3, ARID1B, HDAC9, CBX3, H2AFV, BAZ1B, TRRAP, 
SUV39H2, TRDMT1, SIRT1, H2AFY2, SMC3, SIRT3, NAP1L4, SPTY2D1, TAF6L, 
UBTFL1, H2AFX, NCAPD3, NCAPD2, PHC1, H2AFJ, H3F3C, SMARCD1, CBX5, 
BAZ2A, NAP1L1, SIRT4, SETD1B, SETDB2, TOX4, BAZ1A, MTA1, INO80, 
TNP2, SETD1A, TOX3, CBFA2T3, SUPT6H, SUZ12, TADA2A, SMARCE1, EZH1, 
UBTF, CBX1, HILS1, SUPT4H1, SMARCD2, BPTF, H3F3B, CBX4, L3MBTL4, 
SS18, SETBP1, CHAF1A, SAFB, BRD4, GATAD2A, SUPT5H, TRIM28, CBFA2T2, 
SS18L1, CHAF1B, CECR2, SMARCB1, H1F0, HDAC10 
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Table 12.4 contd… 

GO:0007389 
pattern 
specification 
process 240 196 

6.54E-
04 

5.60E-
04 

HES3, CTNNBIP1, PAX7, GRHL3, CYR61, CELSR2, ALX3, HIPK1, NOTCH2, 
PBX1, RNF2, BTG2, DISP1, LEFTY2, PSEN2, WNT3A, MSGN1, IFT172, 
SIX3, VAX2, CYP26B1, NOTO, TCF7L1, EN1, GLI2, ZEB2, ACVR2A, ACVR1, 
DLX2, HOXD3, NEUROD1, SF3B1, SATB2, ACVR2B, CTNNB1, TDGF1, 
ARL6, PLXND1, ZIC1, CHRD, TP63, HES1, HTT, NKX3-2, RBPJ, GSX2, 
SHROOM3, NKX6-1, PKD2, BMPR1B, CXXC4, LEF1, PITX2, BBS7, HHIP, 
SMAD1, EDNRA, SFRP2, SEMA5A, FGF10, FST, APC, SMAD5, CDX1, 
PROP1, EDN1, RING1, MDFI, VEGFA, BMP5, RAB23, RIPPLY2, TBX18, 
CITED2, T, DLL1, UNCX, LFNG, MEOX2, SP8, EVX1, TBX20, GLI3, RELN, 
SMO, HIPK2, SHH, MNX1, GATA4, NKX3-1, SFRP1, PRKDC, ASPH, EYA1, 
ARC, FOXH1, RFX3, CER1, MLLT3, PCSK5, GAS1, ROR2, BARX1, PTCH1, 
TGFBR1, PBX3, LMX1B, ENG, NOTCH1, BMI1, ZEB1, NRP1, EGR2, 
NODAL, BMPR1A, CYP26A1, FRAT1, LDB1, EMX2, ALX4, LRP5, C2CD3, 
ATM, ZBTB16, DSCAML1, TULP3, LRP6, WNT1, HOXC4, GDF11, GLI1, 
FRS2, MYF5, ALX1, ASCL1, TBX3, IFT88, FLT1, ALG5, PCDH8, FOXG1, 
NKX2-1, BMP4, SIX1, PSEN1, GSC, YY1, GREM1, ALDH1A2, SMAD6, 
MESP2, NR2F2, AXIN1, FTO, FOXC2, DVL2, HES7, LHX1, HNF1B, PCGF2, 
TCAP, KAT2A, MEOX1, WNT3, HOXB9, NOG, AXIN2, FOXJ1, RFNG, MIB1, 
SMAD2, SMAD4, RAX, RTTN, TSHZ1, DAND5, DLL3, NTF4, TCF15, MKKS, 
OVOL2, PAX1, FOXA2, KIF3B, MAFB, IFT52, BMP7, SIM2, CRKL, MFNG, 
EP300 

REACTOME DAG 
AND IP3 
SIGNALING 29 29 

1.06E-
03 

9.20E-
04 

PRKACB, ADCY3, PRKCE, CALM2, PDE1A, CREB1, PRKAR2A, PRKCD, 
ADCY5, ADCY2, CAMK4, ITPR3, ADCY1, PRKAR2B, ADCY8, PRKACG, 
ADRBK1, ITPR2, ADCY6, PDE1B, ADCY4, CALM1, ADCY9, ADCY7, PRKCA, 
PRKAR1A, CALM3, PRKCG, PLCG1 

GO:0034199 
activation of 
protein kinase A 
activity 15 15 

1.39E-
03 

1.04E-
03 

PRKACB, ADCY10, ADCY3, PRKAR2A, ADCY5, ADCY2, ADCY1, PRKAR2B, 
ADCY8, PRKACG, ADCY6, ADCY4, ADCY9, ADCY7, PRKAR1A 

PC Tryptophan 
catabolism 17 16 

1.41E-
03 

1.22E-
03 

NADK, NMNAT1, CCBL2, NMNAT2, KMO, HAAO, ACMSD, KYNU, 
NMNAT3, TDO2, AADAT, IDO2, CCBL1, NADSYN1, QPRT, AFMID 
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Fig. 12-5 BPALC vs SNC: TAS2R38 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 12-6 BPALC vs SNC: CDH11 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 12-7 BPALC vs SNC: HAAO region plot 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 12-8 BPALC vs SNC: GABRB3 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 12-9 BPALC vs SNC: PANTHER histogram of numbers of genes in each GO pathway 

 

 

 

Figure legend:  x axis = number of genes; x axis = GO molecular category 
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13 CHAPTER 13: RESULTS OF SZALC VS SZNONALC 

This analysis was to try and differentiate SZALC genes from SZnonALC controls in a similar way to 

the BPALC vs BPnonALC analysis. For this analysis of SZALC vs “pure” SZ (without AD, 

SZnonALC), we examined 77 subjects with SZ and comorbid AD (SZALC) vs 384 SZ without AD 

(SZnonALC).  

We analysed 372,193 SNPs genotyped on the Affymetrix GeneChip Human Mapping Array following 

the quality control and data cleaning procedure described in Methods, above. The overall genotyping 

call rate for analysed SNPs was 99.4%. Including the multimarker predictors, our data set is estimated 

to capture 78.7% of common variation (SNPs with minor allele frequency >=5%) in the CEPH HapMap 

(CEU) samples with r2 >0.8.   

No SNP achieved conventional genome wide significance levels. Quantile-Quantile (Q-Q) plots for 

each analysis, illustrating the observed p-values for the autosomal associations in relation to the 

expected p-values (based on the number of tests, under the null hypothesis of no association), are 

presented in Figure 13-1. A Manhattan plot of our association analyses is shown in Fig. 13-2. The lack 

of SNP data points near the top of each panel (i.e. p ≈ 10−8) indicates that there were no strong 

association signals. SNPs in the top 40 with lowest p-values are presented in Table 13.1. 

I then checked whether any of the 40 SNPs with the lowest p-value for each analysis were in or close to 

a gene of known relevant function. None of the top SNPs themselves were previously related directly to 

AD or alcoholism-related phenotypes, however genes in or near these SNPs are briefly reported.  



      174 

Our strongest SNP rs4727695 (p 1.97 x 10-6) was intronic to Laminin, Beta 1 (LAMB1, Fig. 13-3), one 

of a group of extracellular matrix glycoproteins and the major noncollagenous constituent of basement 

membranes. Laminins have been implicated in a wide variety of biological processes including cell 

adhesion, differentiation, migration, signalling, neurite outgrowth and metastasis, and may be involved 

in the organization of the laminar architecture of cerebral cortex. 

2nd SNP by GWA p-value was s7621179 which is intronic to Cell adhesion molecule 2 (CADM2, Fig. 

13-4) a gene that codes for a member of the synaptic cell adhesion molecule 1 (SynCAM) family (part 

of the immunoglobulin superfamily). A lower-ranked SNP rs10191156 (p = 8.4 x 10-5) was intronic to 

Senataxin (SETX, gene based p = 5.57 x 10-3) which may be involved in both DNA and RNA 

processing. Mutations in this gene have been associated with ataxia-ocular apraxia-2 (AOA2) and an 

autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS4).  

I then performed VEGAS2 gene based permutation tests on all SNPs within and next to a previously 

implicated gene and corrected for multiple tests. In the gene-based tests, I found 45 genes with a p-value 

<0.01, strongest gene long intergenic non-protein coding RNA 1366 (LOC257358, gene based p = 5.5 x 

10-4) on Chromosome 5 (Fig. 13-5). The top 40 of these are listed in Table 13.2.  

Cross referencing with the literature database of gene and SNP associations, I found 9 genes that were 

nominally associated (p<=0.05) that were in common with our VEGAS2 gene wise list. No genes 

survived Bonferroni correction for multiple tests. All gene replications of AD or related phenotypes and 

the top SNPs in that gene where p<0.05 from our data are listed in Table 13.4.  

Most interesting of this group is CAMK2A (Fig. 13-6) on chromosome 5, gene based p = 3.13x 10-2 

which has a role in learning and memory, and has been associated with both AD (Easton, 2013), BP 
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(Ament et al. 2015) and transition to cocaine dependence (Easton, 2014). Also of interest is CHRM2, 

uncorrected gene based p = 1.86 x 10-2, which has been associated with AD, drug dependence and 

affective disorders (Luo et al. 2005), and AD with depression (Wang et al. 2004). The finding of 

NPY2R  with an uncorrected gene based p = 5.27 x 10-3 is intriguing because of its previous association 

with AD, alcohol withdrawal symptoms, comorbid alcohol and cocaine dependence, and cocaine 

dependence (Wetherill et al. 2008).  Genes BUB1, CHN1, COBLL1 and TRIB2 have all been 

associated with AD with conduct disorder, depression and suicide (Dick, 2010). Our finding of 

SYNGR1 with nominal gene based p = 0.02 is of interest because it Chr 22q11-13, a region  with 

consistent linkage regions for SZ and BP but not AD or SUD (Han et al. 2013).  

Pathway analysis using VEGAS did not show significant results and will not be reported here. 

PANTHER analysis of our top genes implicate in gene based analysis (P<001, n=236) revealed 

adenylate cyclase activity, tryptophan metabolism, solute carriers, voltage gated ion channels, and 

amino acid modification (Table 13.4) among the main molecular pathways. 

In summary, this was the first GWAS comparing patients with SZ and comorbid AD versus “pure” SZ 

without AD in an attempt to tease out the genetic factors contributing to AD in people with SZ. No 

marker met genome-wise or corrected gene based significance. However gene based approaches hint at 

a number of biologically plausible genes involving learning and memory, and synaptic biology. 

13.1 DISCUSSION 

In this analysis of SZ with and without AD, the hope was to find genes implicated in AD. A number of 

gene based tests were nominally associated and found firm published evidence to support their 

involvement in AD.  
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Perhaps most interesting is the tentative signal of CAMK2A on chromosome 5 (uncorrected gene based 

p = 3.13x 10-2) which has a role in learning and memory, and has been associated with both AD 

(Easton, 2013), BP (Ament et al. 2015) and transition to cocaine dependence in humans and mice 

(Easton, 2014). Also of interest is CHRM2, gene based p = 1.86 x 10-2, which has been associated with 

AD, drug dependence and affective disorders (Luo et al. 2005), and AD with depression (Wang et al. 

2004). The suggestive finding of NPY2R (uncorrected p 5.27 x 10-3) is intriguing because of its 

previous association with AD, alcohol withdrawal symptoms, comorbid alcohol and cocaine 

dependence, and cocaine dependence (Wetherill et al. 2008).   

Our finding of SYNGR1 with an uncorrected gene based p = 0.02 is of interest because it is located in 

Chr 22q11-13, a region  with consistent linkage regions for SZ and BP but not AD or SUD (Han et al. 

2013). The SYNGR1 gene in this region is associated with presynaptic vesicles in neuronal cells and 

association studies have confirmed the involvement of SYNGR1 in SZ and BP (Verma et al. 2005; 

Iatropoulos et al. 2009; Kato 2007) but not in Han Chinese (Wang et al. 2009).  SYNGR1 is considered 

a probable susceptibility gene in both disorders.  

This is an unexpected finding because we were explicitly trying to separate AD genes from SZ genes. If 

this is a true association (noting that it would not survive Bonferroni correction) there are several 

explanations: 1) It is a SZALC gene which has not previously been seen because of phenotypic 

heterogeneity. It is possible that previous SZ GWA studies did not exclude SZALC comorbidity leading 

to a broader phenotype.  Indeed a detailed literature search found no evidence that the main studies 

excluded patients with AD or alcohol misuse (i.e. O’Donovan et al. 2008; Shi et al. 2009; Moskvina et 

al. 2009; Potkin et al. 2009; Ripke et al. 2011; Walters et al. 2013; Fanous et al. 2012; Ripke et al. 

2013); 2) It is an AD gene commonly inherited with SZ (however it did not feature in the SZALC vs 

normal controls analysis).  In the next chapter I report on the SZALC vs SNC analysis. 
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Table 13.1 SZALC vs SZnonALC: Top 40 SNPs and gene based results   

CHR SNP 
Position 
(base 
pairs) 

A1 
AF 
Cases 

AF 
Control 

A2 CHISQ P OR Position Distance 
Nearest gene 
code 

Gene 
based p* 

7 rs4727695 107614003 G 0.2078 0.08073 A 22.62 1.97E-06 2.987  intron  0  LAMB1  6.31E-02 

3 rs7621179 85820416 G 0.07143 0.01172 A 21.55 3.45E-06 6.487  intron  0  CADM2  4.31E-01 

11 rs7106819 12570446 G 0.5519 0.3581 C 20.26 6.76E-06 2.208  upstream  125523  TEAD1  6.97E-01 

20 rs17800346 11552387 C 0.2273 0.09922 A 19.82 8.52E-06 2.67  upstream  225884  ---   

7 rs3893568 107629659 T 0.2597 0.1224 C 19.48 1.02E-05 2.516  intron  0  LAMB1  6.31E-02 

12 rs2010060 53070502 T 0.5068 0.3184 A 19.14 1.21E-05 2.2  intron  0  KRT1  1.05E-03 

8 rs13281810 89780482 G 0.6623 0.4701 A 18.97 1.33E-05 2.211  downstream  31119  ---   

9 rs2900171 102251637 A 0.09091 0.02214 T 18.67 1.55E-05 4.418  upstream  42341  LOC100507438   

9 rs16918616 102272438 A 0.09091 0.02214 G 18.67 1.55E-05 4.418  upstream  21540  LOC100507438   

6 rs12213573 4210858 T 0.5649 0.3776 C 18.62 1.59E-05 2.14  downstream  20818  ---   

1 rs17427125 5706597 A 0.08442 0.01953 C 18.34 1.85E-05 4.628  intron  0  ---   

1 rs1499396 5707224 C 0.08442 0.01953 T 18.34 1.85E-05 4.628  intron  0  ---   

18 rs524273 24390432 C 0.2987 0.4857 A 18.09 2.11E-05 0.451  intron  0  AQP4-AS1  7.19E-02 

4 rs9654198 114710727 C 0.3571 0.2005 T 17.95 2.27E-05 2.215  upstream  27644  CAMK2D  1.79E-02 

4 rs4642242 19555435 A 0.5526 0.3708 C 17.47 2.92E-05 2.097  intron  0  ---   

3 rs2042686 107066743 G 0.5 0.3255 A 17.06 3.62E-05 2.072  intron  0  LOC101929579   

1 rs17467353 5706560 G 0.08442 0.02083 A 17.02 3.69E-05 4.333  intron  0  ---   

4 rs4417971 114753435 A 0.3506 0.1992 G 16.9 3.95E-05 2.171  upstream  70352  CAMK2D  1.79E-02 

5 rs2731694 171878751 A 0.5065 0.3329 G 16.73 4.31E-05 2.057  intron  0  SH3PXD2B  1.51E-02 

1 rs10875053 97636966 G 0.2922 0.1549 C 16.53 4.80E-05 2.252  intron  0  DPYD  1.86E-02 

4 rs6827998 114710196 T 0.3506 0.201 G 16.4 5.12E-05 2.146  upstream  27113  CAMK2D  1.79E-02 

16 rs16950218 79352274 G 0.06494 0.01302 A 16.29 5.43E-05 5.264  downstream  53804  ---   

16 rs16950213 79351872 G 0.06494 0.01302 A 16.29 5.43E-05 5.264  downstream  53402  ---   

12 rs1561560 8762963 C 0.1494 0.05729 T 16.13 5.91E-05 2.889  intron  0  AICDA  5.99E-02 

10 rs2812495 71418185 C 0.6234 0.4466 A 16.07 6.11E-05 2.051  downstream  24833  C10orf35  2.66E-04 
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10 rs2616076 71418213 G 0.6234 0.4466 T 16.07 6.11E-05 2.051  downstream  24861  C10orf35  2.66E-04 

4 rs7667580 19558358 T 0.5455 0.3724 C 15.99 6.37E-05 2.022  intron  0  ---   

1 rs1474797 186967193 G 0.3636 0.2135 A 15.91 6.65E-05 2.105  downstream  9080  PLA2G4A  1.69E-02 

1 rs11165805 97652000 G 0.2857 0.1523 C 15.83 6.92E-05 2.226  intron  0  DPYD  1.86E-02 

16 rs11150443 82171367 C 0.2013 0.09162 T 15.74 7.25E-05 2.499  intron  0  ---   

12 rs1464042 53091326 T 0.5584 0.3867 C 15.58 7.92E-05 2.006  intron  0  KRT77  6.66E-04 

3 rs3774081 10961939 A 0.1234 0.04308 T 15.5 8.24E-05 3.126  intron  0  SLC6A11  7.49E-02 

2 rs1192340 84948021 A 0.1234 0.04308 G 15.5 8.24E-05 3.126  intron  0  DNAH6  2.22E-03 

9 rs10901156 135184237 G 0.1494 0.05859 A 15.47 8.40E-05 2.821  intron  0  SETX  5.57E-03 

17 rs1532457 31607870 A 0.2468 0.4154 G 15.37 8.84E-05 0.4611  intron  0  ASIC2  9.79E-02 

16 rs2081257 82170725 C 0.2039 0.09424 G 15.29 9.23E-05 2.462  intron  0  ---   

16 rs8047857 82165577 C 0.2532 0.1302 A 15.17 9.84E-05 2.265  intron  0  ---   

7 rs6973199 138411712 C 0.2078 0.09766 T 15.17 9.84E-05 2.424  intron  0  ATP6V0A4  4.12E-02 

4 rs4128132 19562384 T 0.5455 0.3766 C 15.15 9.93E-05 1.986  intron  0  ---    

11 rs16916055 91160029 C 0.04545 0.00651 T 15.15 9.96E-05 7.267  downstream  259567  ---    

 Key: CHR= Chromosome; BP= base pairs; A1= Allele 1; F_A= Frequency of Allele 1; F_U= Frequency of Allele 2; A2=Allele 2; CHISQ = chi 

squared. OR = odds ratio. *Uncorrected p <0.05 in bold. 
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Table 13.2 SZALC vs SZ Top 40  Genes After VEGAS2 Permutation Testing  

Chr Gene n SNPs n Sims 
VEGAS2 Test 

result 

Uncorrected 
gene based p  

Top SNP Top SNP P 

5 LOC257358 24 1.00E+06 116.76 6.50E-05 rs17072564 5.55E-04 

2 MEIS1-AS3 5 1.00E+06 41.86 1.02E-04 rs10496135 2.99E-04 

2 C2orf82 16 1.00E+06 118.17 2.09E-04 rs1284 1.36E-04 

10 C10orf35 22 1.00E+06 102.11 2.66E-04 rs2616076 6.11E-05 

3 CCDC54 14 1.00E+06 66.73 2.68E-04 rs2042686 3.62E-05 

14 PPP2R5C 11 1.00E+06 50.45 2.95E-04 rs8016207 6.33E-04 

2 GIGYF2 28 1.00E+06 144.27 3.07E-04 rs1284 1.36E-04 

16 HSD17B2 30 1.00E+06 144.50 5.06E-04 rs11150443 7.25E-05 

4 PDGFC 17 1.00E+06 112.07 5.31E-04 rs17811863 1.35E-04 

16 MPHOSPH6 35 1.00E+06 228.09 5.62E-04 rs11150443 7.25E-05 

11 POLD3 12 1.00E+06 75.03 6.30E-04 rs10793095 3.60E-04 

18 ACAA2 12 1.00E+06 64.29 6.38E-04 rs7244563 6.04E-04 

17 AXIN2 10 1.00E+06 54.15 6.54E-04 rs7216210 1.51E-04 

12 KRT77 32 1.00E+06 151.45 6.66E-04 rs2010060 1.21E-05 

11 LOC100507384 17 1.00E+06 85.85 6.85E-04 rs6485638 3.00E-03 

11 MIR7154 19 1.00E+06 100.04 6.95E-04 rs6485638 3.00E-03 

19 KLK7 13 1.00E+06 68.22 7.10E-04 rs1654559 5.36E-04 

2 NGEF 42 1.00E+06 150.15 7.39E-04 rs1284 1.36E-04 

18 AQP4 13 1.00E+06 51.86 7.58E-04 rs524273 2.11E-05 

19 KLK6 16 1.00E+06 70.52 8.43E-04 rs1654559 5.36E-04 

19 KLK5 14 1.00E+06 63.88 8.56E-04 rs1654559 5.36E-04 

8 CHMP7 8 1.00E+06 34.87 8.92E-04 rs12544414 6.12E-04 

12 KRT2 26 1.00E+06 127.18 9.06E-04 rs2010060 1.21E-05 

12 KRT1 27 1.00E+06 132.32 1.05E-03 rs2010060 1.21E-05 

19 KLK9 10 1.00E+05 55.45 1.08E-03 rs1654559 5.36E-04 

21 MIR6508 7 1.00E+05 38.90 1.16E-03 rs2837006 2.28E-03 
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14 RBM25 12 1.00E+05 58.57 1.20E-03 rs362350 1.40E-03 

3 LINC00883 14 1.00E+05 52.91 1.20E-03 rs2042686 3.62E-05 

19 KLK8 10 1.00E+05 55.45 1.21E-03 rs1654559 5.36E-04 

1 DPYD-AS1 22 1.00E+05 79.73 1.21E-03 rs10875053 4.80E-05 

14 PSEN1 12 1.00E+05 53.59 1.25E-03 rs2293796 8.98E-04 

2 COL6A3 27 1.00E+05 93.22 1.40E-03 rs4433949 8.43E-04 

9 TTF1 8 1.00E+05 41.23 1.41E-03 rs4637976 2.24E-03 

4 PIGG 8 1.00E+05 52.46 1.42E-03 rs4499656 1.71E-04 

6 RPS10 7 1.00E+05 32.26 1.48E-03 rs6912971 4.04E-03 

19 KLK11 12 1.00E+05 55.56 1.50E-03 rs1654559 5.36E-04 

19 KLK10 12 1.00E+05 55.56 1.71E-03 rs1654559 5.36E-04 

8 R3HCC1 16 1.00E+05 73.91 1.72E-03 rs12544414 6.12E-04 

19 LILRA2 9 1.00E+05 36.52 1.77E-03 rs10402506 1.97E-03 

5 KCNMB1 16 1.00E+05 68.55 1.88E-03 rs17072564 5.55E-04 

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations 
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Table 13.3 SZALC vs SZ Genes Yielding Evidence for Association at P <0.05 After Permutation Testing and Literature Replication  

Chr 
Gene 
symbol 

n 
SNPs n Sims 

VEGAS 
Test 
result 

Uncorrected 
gene based 
p-value Top SNP 

Top 
SNP p-
value 

AD/related phenotype replication 
(reference) 

7 CHRM2 34 10000 97.98 1.86E-02 rs6943675 2.38E-03 

AD/drug dependence/affective 
disorders (Luo et al. 2005), and AD 
with depression (Wang et al. 2004). 

11 BDNF 14 10000 33.98 3.85E-02 rs11602246 5.72E-03 

BP (Serretti and Mandelli 2008; 
Craddock and Sklar 2009). 

7 GRM8 101 10000 252.06 1.02E-02 rs11763603 5.15E-03 

Theta EEG and alcoholism (Chen, 
2009) 

3 GHSR 9 10000 27.59 1.82E-02 rs16845462 2.21E-02 

Alcohol consumption and body 
weight (Landgren, et al.  2008) 

4 NPY2R 10 100000 40.43 5.72E-03 rs2342653 8.59E-03 

AD, alcohol withdrawal symptoms, 
comorbid alcohol and cocaine 
dependence, and cocaine 
dependence (Wetherill et al. 2008). 

2 BUB1 3 10000 9.43 3.22E-02 rs4443010 1.45E-02 

AD with conduct disorder, 
depression and suicide (Dick, 2010) 

2 CHN1 19 100000 81.96 8.22E-03 rs17222746 3.21E-03 

2 COBLL1 33 10000 77.81 2.48E-02 rs16849792 7.46E-03 

2 TRIB2 16 10000 42.59 4.93E-02 rs477599 1.57E-02 

5 CAMK2A 22 10000 44.06 3.13E-02 rs9688182 6.23E-03 

AD (Easton, 2013); BP (Ament et al. 
2015); transition to cocaine 
dependence (Easton, 2014) 

22 SYNGR1 10 10000 41.02 2.11E-02 rs1010170 1.03E-02 

Nonsyndromic intellectual disability 
(Berrier, 2012, Hamdan, 2011) 

 

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations 
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Fig. 13-1 Q-Q plot of SZALC vs SZ 

 

Figure legend:  Q–Q plots of observed and expected −log10(P) of the associations between SNPs  

Fig. 13-2 Manhattan plot of SZALC vs SZ 

 

Figure legend:  Results of the genome-wide association analyses for SZALC v SZ. The x-axis shows 

the chromosome numbers and the y-axis the significance of the association signals (i.e. −log10(P) value) 



MD (Clin.Res.) Thesis – Gregory John Lydall – November 2015 

Fig. 13-3 SZALC vs SZnonALC: Top SNP in LAMB1

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 13-4 SZALC vs SZnonALC: CADM2 region

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 13-5 SZALC vs SZnonALC: LOC257358 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 13-6 SZALC vs SZnonALC: CAMK2A  

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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14 CHAPTER 14: RESULTS OF SZALC VS NORMAL CONTROLS 

The current analysis aimed to try and differentiate SZALC genes from supernormal controls. Unlike the 

previous chapter which sought AD genes as separate from SZ, this approach looks at the combined 

SZALC phenotype – a common and clinically important dual diagnosis combination, similar to  the 

BPALC approach in Chapter 12.  

We analysed 372,193 SNPs genotyped on the Affymetrix GeneChip Human Mapping Array following 

the quality control and data cleaning procedure described in Methods, above. The overall genotyping 

call rate for analysed SNPs was 99.4%. Including the multimarker predictors, our data set is estimated 

to capture 78.7% of common variation (SNPs with minor allele frequency >=5%) in the CEPH HapMap 

(CEU) samples with r2 >0.8.  For this analysis of SZALC vs normal ancestrally matched controls, we 

examined 77 subjects with SZ and comorbid AD (SZALC) vs 510 normal controls. 

No SNP achieved conventional genome wide significance levels. Quantile-Quantile (Q-Q) plots for 

each analysis, illustrating the observed p-values for the autosomal associations in relation to the 

expected p-values (based on the number of tests, under the null hypothesis of no association), are 

presented in Figure 14.1. A Manhattan plot of our association analyses is shown in Fig. 14.2. The lack 

of SNP data points near the top of each panel (i.e. p ≈ 10−8) indicates that there were no strong 

association signals. SNPs in the top 40 with lowest p-values are presented in Table 14.1. 

I then checked whether any of the 40 SNPs with the lowest p-value for each analysis were in or close to 

a gene of known relevant function. None of the top SNPs themselves were previously related directly to 

AD or alcoholism-related phenotypes, however genes in or near these SNPs are briefly reported.  
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Our strongest SNP rs17030670 on Chromosome 2, intronic to uncharacterised gene LOC101927533 (p 

= 5.89 x 10-06, Fig. 14-3).   

I then performed VEGAS2 based permutation tests on all SNPs within and next to a previously 

implicated gene and corrected for multiple tests. In the gene-based tests, we found 43 genes with p 

<0.01, strongest gene LOC101927166 on Chromosome 17,  gene based p = 4.96 x 10-5(Fig. 14-4). The 

top 40 of these are gene based results listed in Table 14.2.  

Cross referencing with the literature database of gene and SNP associations, I found 29 genes that were 

nominally associated (p<=0.05) that were in common with our VEGAS2 gene based list. No genes 

survived Bonferroni correction for multiple tests.  

Most notable of these is the opioid precursor prodynorphin (PDYN, uncorrected gene based p = 2.03 x 

10-2, Fig. 14-5) which is a strong addictions candidate gene from the literature. It has been implicated 

in disinhibited behaviour (Flory et al. 2011); opioid dependence in African Americans (Ray et al. 2005); 

cocaine dependence (Dahl et al. 2005); cocaine and alcohol dependence in African Americans 

(Williams et al. 2007); methamphetamine dependence (Nomura et al. 2006); and altered brain 

methylation in alcoholics (Taqi et al. 2011). PDYN has also been implicated in SZ (Zhang et al. 2004) 

and less strongly in SZ by epistatic interaction with the DRD3 Gly allele (Ventriglia et al. 2002).   

Again we see gene based suggestive results from CHRM2, GRM8, BDNF, GPD1L and TLR1. 

Fascinatingly we found a gene based signal from both neuropeptide Y (NPY) and the neuropeptide Y 2 

receptor (NPY2R, Fig. 14-6) which are both associated with AD and alcohol withdrawal symptoms 

(Bhaskar et al, 2013; Wetherill et al 2008). All gene replications of AD or related phenotypes and the 

top SNPs in that gene where p<0.01 from our data are listed in Table 14.3.  
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VEGAS2 Pathway analysis did not show significant results and are not presented here.  

In summary, this was the first small GWAS comparing patients with SZ and comorbid AD with normal 

controls in an attempt to tease out the SZALC phenotype (as opposed to AD) genetic effects. No marker 

was genome-wise significant. However gene wise and pathway approaches offer a number of 

biologically plausible genes involving the opioid, cholinergic and glutamatergic systems, and 

neurotrophins. 

14.1 DISCUSSION 

In this analysis of SZALC vs SNC, the hope was to find genes implicated in the SZALC phenotype. 

Again, despite a larger sample size, no marker met genome wide significance thresholds. A number of 

gene based tests were nominally associated and found firm published evidence to support their 

involvement in AD. I will mention the most significant in my opinion. 

PDYN1 is of significant interest because of the key role of the opioid system in reward, pleasure and the 

strong evidence for involvement in addictive behaviours (see Section 5.2.5).  PDYN1 has much 

circumstantial evidence supporting its role in addiction: Methylation of PDYN CpG-SNPs in post-

mortem brains of alcoholics was found to be different to control subjects (Taqi et al. 2011). PDYN1 has 

been implicated (weakly) in opiate dependence in African Americans (Ray et al. 2005); cocaine 

dependence (Dahl et al. 2005); cocaine and alcohol dependence in African Americans (Williams et al. 

2007) ; methamphetamine dependence (Nomura et al. 2006); and disinhibited behaviour (Flory et al. 

2011).  

Flory’s analysis of AD and disinhibited behaviour did not find an association between the PDYN 

polymorphism and the diagnosis of AD, however they did observe an association between the "low" 
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expressing L allele of the PDYN gene and disinhibited behaviour (Flory et al. 2011). The authors 

suggest that variation in the PDYN gene is associated with a dimensional trait or intermediate 

phenotype that reflects a preference for heavy drinking and engaging in related risky behaviours. Unsafe 

and impulsive behaviours are often evident during episodes of SZ and BP, with risk increased when the 

patient has been drinking. It is an interesting theory that this effect may be mediated though PDYN’s 

effects on risky behaviours – which may be a useful phenotype for future work.  

Cholinergic muscarinic 2 receptor (CHRM2) is implicated in memory and cognition, which are both 

key functions impaired in many neuropsychiatric disorders. Association has been found between 

CHRM2 and  AD and major depressive syndrome (Wang et al. 2004); and AD/drug 

dependence/affective disorders (Luo et al. 2005). 

Neuropeptide (NPY) is a neurotransmitter involved in cortical excitability, stress response, food intake, 

circadian rhythms, and cardiovascular function. It has been associated with AD (Bhaskar et al. 2013; 

Mottagui-Tabar et al. 2005); and alcohol withdrawal seizures (Okubo et al. 2003). NPY2R has been 

associated with AD, alcohol withdrawal symptoms, comorbid alcohol and cocaine dependence, and 

cocaine dependence (all p < 0.03) (Wetherill et al. 2008).  A German study found no association with 

AD (Zill et al. 2008). 

14.2 SZALC GWAS CONCLUSIONS 

This larger GWAS of SZALC vs normal controls suggested some interesting gene signals implicating 

the opioid, cholinergic and glutamatergic systems in SZALC. 
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In the next chapter I report on the first meta-analysis of combined psychosis and AD phenotype versus 

psychosis without AD. 
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Fig. 14-1: Q-Q plot of SZALC vs SNC 

 

Figure legend:  Q–Q plots of observed and expected −log10(P) of the associations between SNPs  
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Fig. 14-2: Manhattan plot of SZALC vs SNC 

 

Figure legend: Results of the genome-wide association analyses for SZALC vs SNC. The x-axis shows 

the chromosome numbers and the y-axis the significance of the association signals (i.e. −log10(P) value) 
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Table 14.1 SZALC vs SNC: Top 40 SNPs and gene based significance values 

CHR SNP 
Position 
(base 
pairs) 

A1 
AF 
Cases 

AF 
Control 

A2 CHISQ P Position 
Distance 
from 
gene  

Nearest gene 
code 

Gene 
based p 

2 rs17030670 65935157 T 0.1883 0.066 C 20.53 5.89E-06 intron 0 LOC101927533 --- 

5 rs17498388 166775014 G 0.539 0.3386 A 19.96 7.91E-06 intron 0 TENM2 4.00E-02 

17 rs4791140 63660230 T 0.2403 0.102 C 19.33 1.1E-05 intron 0 CEP112 1.06E-01 

3 rs11709093 71128054 A 0.3701 0.2012 G 18.39 1.8E-05 intron 0 FOXP1 3.33E-04 

5 rs9942407 74540187 A 0.5325 0.3406 G 18.3 1.88E-05 downstream 75793 --- --- 

12 rs1561560 8762963 C 0.1494 0.04781 T 18.27 1.92E-05 intron 0 AICDA 2.67E-02 

2 rs1192340 84948021 A 0.1234 0.03386 G 18.21 1.98E-05 intron 0 DNAH6 1.37E-03 

10 rs1750738 11156472 C 0.1948 0.0757 T 17.99 2.22E-05 intron 0 CELF2 1.35E-02 

3 rs7652858 121998105 T 0.05844 0.006 C 17.98 2.24E-05 intron 0 CASR 3.39E-02 

3 rs2134225 122002253 A 0.05844 0.006 C 17.98 2.24E-05 intron 0 CASR 3.39E-02 

17 rs2315504 39046881 C 0.3377 0.5301 A 17.44 2.96E-05 upstream 5402 KRT20 4.60E-04 

12 rs2010060 53070502 T 0.5068 0.3187 A 17.35 3.11E-05 intron 0 KRT1 1.29E-03 

2 rs1947465 84618105 C 0.1169 0.032 T 17.21 3.34E-05 downstream 32542 SUCLG1 1.91E-04 

12 rs1487654 24820731 G 0.4026 0.2331 C 17.07 3.6E-05 downstream 24631 --- --- 

2 rs6708183 78384746 T 0.2105 0.3924 C 16.97 3.81E-05 downstream 255173 --- --- 

21 rs719500 19036144 A 0.2792 0.4641 G 16.54 4.78E-05 upstream 3442 --- --- 

5 rs4515270 101180049 A 0.4805 0.3024 T 16.5 4.86E-05 upstream 27565 --- --- 

7 rs1526408 125045427 T 0.2013 0.08367 A 16.49 4.89E-05 downstream 26052 LOC101928283 7.79E-02 

17 rs1027894 46527718 A 0.1104 0.02988 G 16.46 4.96E-05 upstream 10014 --- --- 

17 rs8081430 46541483 C 0.1104 0.02988 G 16.46 4.96E-05 intron 0 --- --- 

8 rs2945908 8192229 C 0.2468 0.1155 A 16.24 5.58E-05 intron 0 SGK223 8.56E-04 

2 rs7355580 970417 T 0.2013 0.3765 C 16.23 5.62E-05 intron 0 SNTG2 6.56E-03 

16 rs8046065 3838298 T 0.2013 0.08434 C 16.18 5.75E-05 intron 0 CREBBP 7.93E-03 

16 rs9930513 7886652 A 0.1623 0.05976 G 16.14 5.87E-05 upstream 109699 --- --- 
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Key: CHR= Chromosome; BP= base pairs; A1= Allele 1; F_A= Frequency of Allele 1; F_U= Frequency of Allele 2; A2=Allele 2; CHISQ = chi 

squared. OR = odds ratio. Uncorrected p <0.05 in bold. 

Table 14.1 contd… 

17 rs11655120 46542355 T 0.1104 0.03024 A 16.13 5.92E-05 intron 0 --- --- 

15 rs10519180 63126806 T 0.08442 0.01793 G 16.07 6.1E-05 intron 0 TLN2 3.80E-02 

12 rs1976130 24818342 C 0.4221 0.255 T 15.85 6.87E-05 downstream 22242 --- --- 

2 rs6761698 973109 C 0.2078 0.3805 T 15.66 7.57E-05 intron 0 SNTG2 6.56E-03 

2 rs13000280 84696996 A 0.1118 0.03187 G 15.57 7.94E-05 upstream 46583 DNAH6 1.37E-03 

4 rs922418 168525403 A 0.1429 0.3028 G 15.47 8.4E-05 upstream 203498 --- --- 

16 rs4782854 83911556 T 0.1776 0.3454 G 15.43 8.58E-05 upstream 21175 MLYCD 2.80E-01 

8 rs13281810 89780482 G 0.6623 0.482 A 15.35 8.92E-05 downstream 31119 --- --- 

7 rs10953842 117044682 T 0.1908 0.07968 G 15.26 9.36E-05 intron 0 ASZ1 1.09E-02 

2 rs6710556 969866 C 0.2727 0.4494 T 15.18 9.79E-05 intron 0 SNTG2 6.56E-03 

2 rs4832087 84724673 C 0.1104 0.032 G 15.1 0.000102 upstream 18906 DNAH6 1.37E-03 

17 rs12449855 46485603 C 0.1104 0.032 T 15.1 0.000102 intron 0 SKAP1 1.33E-02 

10 rs10882205 95032661 C 0.3896 0.2311 T 15.09 0.000103 downstream 11100 --- --- 

19 rs10403787 10166375 A 0.2792 0.1434 G 15.03 0.000106 exon 0 C3P1 1.38E-03 

7 rs2367910 81786043 A 0.2078 0.092 C 15.03 0.000106 intron 0 CACNA2D1 1.07E-01 

1 rs12061855 167426797 C 0.04545 0.003984 G 14.98 0.000109 intron 0 CD247 4.01E-01 
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Table 14.2 SZALC vs SNC: SZ Top 40  Genes After VEGAS2 Permutation Testing 

Chr Gene 
n 
SNPs 

n Sims 
VEGAS2 
Test result 

Uncorrected 
gene based 
P value 

Top SNP 
Top SNP 
p value 

17 LOC101927166 9 1.00E+06 82.2973952 1.46E-04 rs1027894 4.96E-05 

3 EPHA3 31 1.00E+06 211.784169 1.48E-04 rs907713 1.45E-04 

2 SUCLG1 11 1.00E+06 97.249129 1.91E-04 rs1947465 3.34E-05 

18 ACAA2 12 1.00E+06 71.6553817 2.70E-04 rs669350 1.48E-04 

10 UNC5B 24 1.00E+06 76.8357146 2.89E-04 rs6480502 2.59E-03 

3 FOXP1 67 1.00E+06 196.287595 3.33E-04 rs11709093 1.80E-05 

13 MIR8073 25 1.00E+06 90.5143254 3.68E-04 rs9521717 1.55E-04 

2 LINC01249 15 1.00E+06 82.1009024 3.97E-04 rs10187813 1.90E-04 

17 KRT20 10 1.00E+06 47.8296839 4.60E-04 rs2315504 2.96E-05 

19 RDH8 6 1.00E+06 28.8757304 4.62E-04 rs10403787 1.06E-04 

21 LCA5L 13 1.00E+06 91.5925885 5.15E-04 rs2837006 6.64E-04 

21 MIR6508 7 1.00E+06 43.2985084 5.30E-04 rs2837006 6.64E-04 

6 SMAP1 14 1.00E+06 83.9298365 5.69E-04 rs781977 1.70E-04 

12 MFAP5 5 1.00E+06 29.828979 5.82E-04 rs1561560 1.92E-05 

5 ANKRD31 16 1.00E+06 105.768886 6.42E-04 rs9942407 1.88E-05 

18 SCARNA17 7 1.00E+06 48.8804324 6.62E-04 rs669350 1.48E-04 

10 UNC5B-AS1 11 1.00E+06 47.1054825 8.56E-04 rs6480502 2.59E-03 

8 SGK223 25 1.00E+06 114.394018 8.56E-04 rs2945908 5.58E-05 

11 LINC00301 9 1.00E+06 74.2288671 9.62E-04 rs11825362 2.86E-04 

21 WRB 14 1.00E+06 84.6687584 9.98E-04 rs2837006 6.64E-04 

18 SNHG22 23 1.00E+05 170.219148 1.19E-03 rs669350 1.48E-04 

3 PIK3CA 10 1.00E+05 54.2942636 1.28E-03 rs3975506 8.64E-04 

17 KRT12 10 1.00E+05 41.2119099 1.29E-03 rs2315504 2.96E-05 

2 DNAH6 34 1.00E+05 180.985815 1.37E-03 rs1192340 1.98E-05 

19 C3P1 8 1.00E+05 28.924666 1.38E-03 rs10403787 1.06E-04 

17 EPN2 2 1.00E+05 13.5660971 1.40E-03 rs3862148 1.62E-03 

3 MIR1284 6 1.00E+05 37.0379343 1.40E-03 rs6780776 2.08E-03 

5 HMGCR 18 1.00E+05 91.1304538 1.43E-03 rs2335418 1.09E-04 

11 LINC00678 10 1.00E+05 56.3450902 1.45E-03 rs4923460 2.42E-03 

4 NPY2R 10 1.00E+05 51.5342839 1.45E-03 rs2342653 1.41E-03 

9 TPD52L3 16 1.00E+05 98.9996404 1.47E-03 rs2381438 4.82E-04 

9 NACC2 14 1.00E+05 41.7128461 1.50E-03 rs4842092 3.82E-04 

20 SIRPA 19 1.00E+05 64.1855772 1.62E-03 rs6035140 3.00E-03 

15 PEX11A 3 1.00E+05 17.615686 1.63E-03 rs8179043 4.58E-04 

5 ZCCHC10 9 1.00E+05 77.9505451 1.64E-03 rs7721953 4.96E-04 

2 MIR548AD 13 1.00E+05 100.688985 1.65E-03 rs1011798 6.21E-04 

19 COL5A3 10 1.00E+05 32.4166066 1.73E-03 rs10403787 1.06E-04 

8 C8orf46 15 1.00E+05 57.6899107 1.79E-03 rs1030420 1.87E-03 

9 TTF1 8 1.00E+05 39.6917086 1.79E-03 rs7037570 8.36E-03 
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Table 14.3 SZALC vs SNC Genes Yielding Evidence for Association at P <0.05 After Permutation Testing and Literature Replication  

Chr 

Gene 

symbol n SNPs n Sims 

VEGAS 

Test 

result 

Uncorrected 

gene based 

p-value Top SNP 

Top SNP 

p-value AD/related phenotype replication (reference) 

20 PDYN 19 10000 46.11  2.03E-02 rs6035140 3.00E-03 

Disinhibited behaviour (Flory et al. 2011); opioid dependence in 

African Americans (Ray et al. 2005); cocaine dependence (Dahl et 

al. 2005); cocaine and alcohol dependence (Williams et al. 2007) ; 

methamphetamine dependence (Nomura et al. 2006); altered 

brain methlyation AD (Taqi et al. 2011). SZ (Zhang et al. 2004). SZ 

by epistatic interaction with DRD3 Gly allele (Ventriglia et al. 

2002). 

8 NAT1 29 10000 55.19 4.50E-02 rs13268900 1.93E-02 

NAT1: severity of substance abuse (Comings, Muhleman, Wu, & 

MacMurray, 2000) 

7 NPY 28 10000 72.15 3.66E-02 rs10487603 1.05E-02 

NPY: AD (Bhaskar et al. 2013; Mottagui-Tabar et al. 2005); alcohol 

withdrawal seizures (Okubo, Harada, Higuchi, & Matsushita, 2003) 

7 CHRM2 34 10000 83.48 3.34E-02 rs6943675 3.77E-03 

AD/drug dependence/affective disorders (Luo et al. 2005), and AD 

with depression (Wang et al. 2004). 

11 BDNF 14 10000 46.06 9.70E-03 rs4923460 2.42E-03 BP (Serretti and Mandelli 2008; Craddock and Sklar 2009). 

1 TBX19 12 10000 27.38 4.50E-02 rs2075976 1.78E-02 AD (Yu et al. 2008) 

7 GRM8 101 10000 243.76 1.31E-02 rs2299555 3.38E-03 

Theta EEG and alcoholism (Chen, 2009); SZ (Takaki, 2004; Zhang, 

2014; Li 2015), depression (Lee, 2012) 

4 NPY2R 10 100000 51.53 1.45E-03 rs2342653 1.41E-03 

AD, alcohol withdrawal symptoms, alcohol and cocaine 

dependence(Wetherill et al. 2008) 

2 NTSR2 15 10000 30.01 4.85E-02 rs6432233 2.08E-02 

AD with conduct disorder and suicide attempts (Dick et al, 

2010) 

3 GPD1L 18 100000 73.02 5.90E-03 rs1562878 1.07E-03 AD (suggestive) (Frank, 2012) 

4 TLR1 9 10000 22.84 3.25E-02 rs7696175 2.15E-02 AD, maxdrinks (Kapoor et al. 2013) 

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations. BP = bipolar disorder. SZ = 

schizophrenia. AD = alcohol dependence 
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Fig. 14-3 SZALC vs SNC: uncharacterised gene LOC101927533 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 14-4 SZALC vs SNC: uncharacterised gene LOC101927166 region plot 

 

Figure legend:  1 Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal 

position. Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 14-5 SZALC  vs SNC: PDYN region plot (uncorrected gene based P = 2.03 x 10-2) 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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15 CHAPTER 15: RESULTS OF META-ANALYSIS: BPALC + 

SZALC VS BPNONALC + SZNONALC 

For this meta-analysis we examined 220 BPALC + SZALC vs “pure” BP + SZ (ie without AD) as 

controls. This approach was to increase the power to detect genes which affect risk of developing AD in 

people with severe mental illness. We used PLINK’s meta-analysis function. 

We analysed 372,193 SNPs genotyped on the Affymetrix GeneChip Human Mapping Array following 

the quality control and data cleaning procedure described in Methods, above. The overall genotyping 

call rate for analysed SNPs was 99.4%. Including the multimarker predictors, our data set is estimated 

to capture 78.7% of common variation (SNPs with minor allele frequency >=5%) in the CEPH HapMap 

(CEU) samples with r2 >0.8.   

While the larger sample size increased the significance values by a factor of 10, no SNP achieved 

conventional genome wide significance levels. Quantile-Quantile (Q-Q) plots for each analysis, 

illustrating the observed p-values for the autosomal associations in relation to the expected p-values 

(based on the number of tests, under the null hypothesis of no association), are presented in Figure 15-1. 

A Manhattan plot of our association analyses is shown in Fig. 15-2. The lack of SNP data points near 

the top of each panel (i.e. p ≈ 10−8) indicates that there were no strong association signals. SNPs in the 

top 40 with lowest p-values are presented in Table 15.1. 

I then checked whether any of the 40 SNPs with the lowest p-value for each analysis were in or close to 

a gene of known relevant function. None of the top SNPs were previously related directly to AD or 

alcoholism-related phenotypes, however genes in or near these SNPs are briefly reported.   
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Our strongest SNP was intronic to TLN2 (talin 2, Fig. 15-3) which gene encodes a protein related to 

talin 1, a cytoskeletal protein that plays a significant role in the assembly of actin filaments and in 

spreading and migration of various cell types, including fibroblasts and osteoclasts.  Next was Senataxin 

(SETX) a gene encodes for a protein which contains a DNA/RNA helicase domain at its C-terminal end 

which suggests that it may be involved in both DNA and RNA processing. Mutations in this gene have 

been associated with ataxia-ocular apraxia-2 (AOA2) and an autosomal dominant form of juvenile 

amyotrophic lateral sclerosis (ALS4).  T-Cell Immunoglobulin And Mucin Domain Containing 4 

(TIMD4) was next by SNP implication. This is implicated in sarcoma and malaria. Fifth ranked SNP 

was neuron navigator 2 (NAV2), a gene associated with neuroblastoma. GO annotations related to this 

gene include heparin binding and helicase activity. The seventh strongest SNP was glutamate 

decarboxylase-like protein 1 (GADL1) a variant of which is linked to response to lithium therapy in 

bipolar disorder (Chen et al. 2014). SNPs in GADL1 were highly representative in the BPALC vs 

BPnonALC analysis, too. 

In the gene-based tests, we found 238 genes with p <0.01, strongest p = 3.2 x 10-5. The top 40 of these 

are listed in Table 15.2. Cross referencing with the literature AD and related phenotypes database I 

found 22 genes that were nominally associated (p<=0.05) that were in common with our VEGAS2 gene 

wise list. No genes survived Bonferroni correction for multiple tests.  

The most notable suggestive gene based results were GABRB3 which is associated with severity of 

alcoholism (Noble et al. 1998); MTHFR is associated with milder (Babor type A) alcohol dependence  

(Benyamina et al. 2009); AD (Saffroy et al. 2008); and serum homocysteine levels in alcoholics (de la 

Vega et al. 2001). GPRIN1’s allele A-containing genotype is over-represented in alcohol withdrawal 

seizures (Rujescu et al. 2005). Also interesting are OSBPL5 associated with AD (Edenberg, 2010) and 

PKNOX2 which has been repeatedly associated with AD in numerous studies AD (Chen et al. 2009; 
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Wang et al. 2011; Zuo et al.; Mulligan et al. 2006), and  with substance dependence (Chen et al. 2011). 

TTL, HAAO, COBLL1 are all associated with AD with conduct disorder, depression and suicide (Dick 

et al. 2010).  

An important negative finding is the absence of taste receptors, alcohol metabolising genes, and AUTS2 

(autism susceptibility gene 2), recently associated with AD (Schumann et al. 2011). A regional plot of 

our AUTS2 data confirms little signal in this region (Fig. 15-4). 

Pathway analysis using VEGAS revealed pathways involving generation of neurons (GO:0048699), 

inflammation (GO:0050727), response to inorganic substance (GO:0010035), transportation 

(GO:00151-03), and tyrosine metabolism (GO:004251) (Table 15.4). 

In summary, this was the first meta-analysis of BPALC+SZALC vs “pure” BP+SZ (i.e. severe mental 

illness [SEMI] without AD) in an attempt to tease out the AD genetic effects. No marker was genome-

wise significant. However gene based, replication and pathway approaches offer a number of 

biologically plausible candidate genes worthy of further investigation which we now discuss. 

15.1 DISCUSSION  

To increase power we combined the BPALC and SZALC groups in a meta-analysis and compared them 

with either “pure” psychosis or normal controls. Again, genome wide significance was not achieved, 

probably due to insufficient sample sizes.  
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Combining the BPALC and SZALC samples increases sample size (for “psychosis + AD”) but there are 

drawbacks: if BP and SZ are indeed biologically distinct disorders (and Kraepelin was correct in 

predicting this in 1921 (Kraepelin, 1921)) then power to detect a difference will be diluted by 

phenotypic heterogeneity. If, as we suspect, there is sufficient genetic overlaps between SZ and BP, this 

dilution may be reduced. However we have little data on any overlaps between SZALC and BPALC as 

phenotypes. 

A number of genes tentatively implicated by gene based analysis may offer some clues as to pathways 

differentiating addictions from psychotic disorders. Below I discuss the most pertinent. 

The glutamate system has long been involved in SSZ, BP and addictions.  GRM8 has been implicated in 

event-related theta oscillations during information processing and also in vulnerability to alcoholism 

using a family-based association test (FBAT) in the COGA sample (Chen, 2009). GRM8 was chosen by 

Chen et al because it is located at 7q31.3-q32.1 under the peak region of previously identified 

significant linkage (peak LOD = 3.5) using a genome-wide linkage scan of the same phenotype (event-

related theta band for the target visual stimuli). 

Ghrelin, an orexigenic peptide, acts on growth hormone secretagogue receptors (GHS-R1A), and 

expressed in the hypothalamus as well as in important reward nodes such as the ventral tegmental area. 

In a haplotype analysis of Spanish individuals ranging from abstinent to heavy drinkers, SNP rs2232165 

of the GHS-R1A gene was associated with heavy alcohol consumption and SNP rs2948694 of the same 

gene as well as haplotypes of both the pro-ghrelin and the GHS-R1A genes were associated with body 

mass in heavy alcohol consuming individuals (Landgren, 2008). 
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Glycerol-3-phosphate dehydrogenase 1-like (GPD1L) gene has been suggested in a GWAS via a SNP 

located at a distance of 30kb (Frank, 2012). In humans, mutations in the GPD1L gene have been 

reported to cause Brugada syndrome 2, which is a progressive disorder of myocardial conduction 

(OMIM MIM ID #611777). Interestingly, this gene has received support for the phenotype “alcohol 

stimulated activity” in the mouse (Palmer et al. 2006). 

In the next chapter I report on the final meta-analysis, using comorbid BPALC+SZALC vs normal 

controls analysis. 
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Fig. 15-1 Q-Q plot of meta-analysis vs “pure” BP+SZ (SEMI) 

 

Figure legend:  Q–Q plot of observed and expected −log10(P) of the associations between SNPs  
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Fig. 15-2 Manhattan plot of meta-analysis vs “pure” BP+SZ (SEMI) 

 

Figure legend:  Results of the genome-wide association analyses for Meta-analysis vs BP+SZ. The x-

axis shows the chromosome numbers and the y-axis the significance of the association signals (i.e. 

−log10(P) value) 
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Table 15.1 Meta vs SEMI Top 40 SNPs and gene based results 

CHR SNP 
Position 

(base pairs) 
A1 A2 Q P OR Position Distance 

Nearest gene 
code 

Gene 
based p* 

15 rs2456470 62777956 G C 1.7037 1.74E-05 1.74E-05  intron  0  TLN2  2.19E-01 

9 rs10901156 135184237 G A 2.1542 2.67E-05 0.002131  intron  0  SETX  3.21E-03 

5 rs9790967 156434655 G T 1.5905 3.13E-05 3.13E-05  upstream  44389  TIMD4  1.85E-03 

15 rs8039781 62836025 G A 1.6775 3.64E-05 3.64E-05  intron  0  TLN2  2.19E-01 

11 rs10766606 19960636 C T 0.63 4.08E-05 4.08E-05  intron  0  NAV2  4.43E-02 

9 rs16918616 102272438 A G 3.0302 4.26E-05 0.00499  upstream  21540  LOC100507438   ---  

3 rs1395162 31092371 C A 0.6336 4.41E-05 0.001856  upstream  156114  GADL1  2.21E-01 

3 rs294306 31079692 T A 0.641 5.20E-05 0.00947  upstream  143435  GADL1  2.21E-01 

11 rs7929735 133864938 T C 1.6573 5.32E-05 0.001251  upstream  38058  IGSF9B  1.79E-01 

14 rs10147012 76019185 T C 1.8391 5.38E-05 0.01495  downstream  5827  BATF  2.15E-04 

20 rs6048438 22901657 A G 0.5564 5.51E-05 5.51E-05  upstream  34951  ---   ---  

7 rs12699238 11610592 C G 1.6644 5.55E-05 5.55E-05  intron  0  THSD7A  3.03E-02 

3 rs1683760 31089530 A G 0.6446 5.97E-05 0.01305  upstream  153273  GADL1  2.21E-01 

4 rs7661189 25250165 T C 0.633 6.33E-05 6.33E-05  intron  0  PI4K2B  6.07E-04 

8 rs12674962 139708408 C T 0.6357 7.03E-05 7.03E-05  intron  0  COL22A1  2.48E-02 

18 rs524273 24390432 C A 0.5976 7.09E-05 0.05368  intron  0  AQP4-AS1  3.65E-02 

3 rs182401 31081125 T G 0.6467 7.09E-05 0.01226  upstream  144868  GADL1  2.21E-01 

13 rs4324007 93242263 A T 0.589 7.18E-05 0.001001  intron  0  GPC5  9.99E-02 

4 rs7688071 79126653 T C 1.5816 7.75E-05 7.75E-05  intron  0  FRAS1  3.98E-02 

4 rs7684466 25386468 C T 0.6389 7.81E-05 7.81E-05  intron  0  ANAPC4  1.47E-03 

9 rs10491739 12847826 C T 1.6824 8.49E-05 8.49E-05  downstream  25696  LURAP1L  1.34E-02 

1 rs1078308 213705895 A C 1.6009 8.60E-05 8.60E-05  intron  0  ---   ---  

12 rs1464042 53091326 T C 1.6015 8.68E-05 0.02597  intron  0  KRT77  2.50E-03 

4 rs10027814 25386559 G A 0.6428 9.94E-05 9.94E-05  intron  0  ANAPC4  1.47E-03 

4 rs7654358 25227917 G A 0.6308 9.94E-05 9.94E-05  intron  0  PI4K2B  6.07E-04 

14 rs957370 76008487 C T 1.8938 1.00E-04 4.32E-04  intron  0  BATF  2.15E-04 
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Table 15.1 contd… 

5 rs304855 152759013 G A 0.6436 1.02E-04 0.02738  upstream  110162  GRIA1  7.38E-01 

5 rs13154208 119318747 A G 1.6438 1.03E-04 0.01299  downstream  301972  ---   ---  

13 rs4770587 24692835 C T 1.5435 1.07E-04 1.07E-04  intron  0  ---   ---  

5 rs304841 152778918 C T 0.6283 1.10E-04 0.007309  upstream  90257  GRIA1  7.38E-01 

1 rs6680294 213715274 G A 1.5906 1.13E-04 1.13E-04  intron  0  ---   ---  

3 rs294278 31127911 T C 0.6617 1.35E-04 0.02984  upstream  191654  GADL1  2.21E-01 

2 rs743236 33346798 T A 1.5298 1.37E-04 1.37E-04  intron  0  LTBP1  3.07E-01 

8 rs10104531 139702693 T C 0.6349 1.40E-04 1.40E-04  intron  0  COL22A1  2.48E-02 

13 rs2146687 24700616 T C 1.5301 1.43E-04 1.43E-04  intron  0  ---   ---  

5 rs1148364 134924962 G C 1.5268 1.48E-04 1.48E-04  intron  0  ---   ---  

7 rs17554438 51180346 T C 1.8833 1.49E-04 0.001809  intron  0  COBL  1.04E-02 

7 rs2950183 102020363 G T 1.5298 1.58E-04 0.03439  intron  0  PRKRIP1  1.05E-02 

6 rs1267719 16060085 G A 1.5197 1.61E-04 1.61E-04  upstream  47768  ---   ---  

9 rs2900171 102251637 A T 2.7206 1.64E-04 0.04234  upstream  42341  LOC100507438   ---  

Key: CHR= Chromosome; BP= base pairs; A1= Allele 1; F_A= Frequency of Allele 1; F_U= Frequency of Allele 2; A2=Allele 2; CHISQ = chi 

squared. OR = odds ratio. *Uncorrected p <0.05 in bold. 
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Table 15.2 Top 40 Genes Yielding Evidence for Association After VEGAS2 Permutation Testing  

Chr Gene n SNPs n Sims 
VEGAS2 Test 

result 

Uncorrected 
gene based p 

Top SNP Top SNP P 

3 GHSR 9 1.00E+06 74.86 3.10E-05 rs509035 1.74E-04 

8 PPP2CB 5 1.00E+06 45.33 5.50E-05 rs2111862 4.69E-04 

14 BATF 10 1.00E+06 53.66 2.15E-04 rs10147012 5.38E-05 

2 CHCHD5 8 1.00E+06 44.99 3.67E-04 rs4849073 4.17E-04 

16 MT2A 14 1.00E+06 55.92 3.80E-04 rs6499850 2.09E-03 

4 ZCCHC4 12 1.00E+06 89.99 4.88E-04 rs7684466 7.81E-05 

16 MT1E 13 1.00E+06 53.06 5.09E-04 rs6499850 2.09E-03 

14 LOC102724153 12 1.00E+06 54.60 5.10E-04 rs10147012 5.38E-05 

6 SMAP1 14 1.00E+06 89.54 5.20E-04 rs781977 2.73E-04 

4 PI4K2B 13 1.00E+06 96.78 6.07E-04 rs7661189 6.33E-05 

16 MT1JP 11 1.00E+06 48.80 6.45E-04 rs6499850 2.09E-03 

16 MT1M 11 1.00E+06 48.80 6.91E-04 rs6499850 2.09E-03 

2 POLR1B 9 1.00E+06 45.55 8.00E-04 rs4849073 4.17E-04 

16 MT1L 13 1.00E+06 49.61 8.01E-04 rs6499850 2.09E-03 

16 MT1DP 12 1.00E+06 48.81 8.65E-04 rs6499850 2.09E-03 

16 MT1A 12 1.00E+06 48.81 9.38E-04 rs6499850 2.09E-03 

13 LINC00346 5 1.00E+05 30.90 9.60E-04 rs9521967 3.15E-03 

4 DOK7 14 1.00E+06 66.38 9.91E-04 rs13128489 4.29E-04 

4 LRPAP1 14 1.00E+05 65.80 1.04E-03 rs13128489 4.29E-04 

19 BRD4 5 1.00E+05 28.14 1.07E-03 rs2079014 2.79E-03 

3 MFSD1 9 1.00E+05 48.01 1.08E-03 rs340271 1.87E-03 

12 KRT2 25 1.00E+05 117.30 1.16E-03 rs1464042 8.68E-05 

4 HGFAC 9 1.00E+05 41.61 1.29E-03 rs13128489 4.29E-04 

12 MIR4303 7 1.00E+05 37.84 1.45E-03 rs11109314 2.34E-03 
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Table 15.2 contd… 

4 ANAPC4 11 1.00E+05 67.60 1.47E-03 rs7684466 7.81E-05 

7 SPDYE6 4 1.00E+05 26.73 1.50E-03 rs2950183 1.58E-04 

7 LOC100289561 5 1.00E+05 27.91 1.53E-03 rs2950183 1.58E-04 

16 MT1B 12 1.00E+05 46.78 1.54E-03 rs6499850 2.09E-03 

4 FABP2 14 1.00E+05 86.40 1.64E-03 rs11722940 4.18E-03 

10 LOC102031319 13 1.00E+05 57.90 1.71E-03 rs2505349 2.08E-03 

2 COBLL1 33 1.00E+05 122.52 1.73E-03 rs355839 1.11E-03 

13 SPATA13_1 93 1.00E+05 202.08 1.77E-03 rs4770587 1.07E-04 

3 TNFSF10 19 1.00E+05 82.31 1.80E-03 rs9881097 3.66E-04 

5 TIMD4 13 1.00E+05 65.56 1.85E-03 rs9790967 3.13E-05 

6 C6orf203 9 1.00E+05 33.80 1.98E-03 rs1714632 2.15E-03 

2 DBI 11 1.00E+05 64.88 2.09E-03 rs1374313 7.06E-04 

8 TEX15 8 1.00E+05 49.57 2.09E-03 rs2111862 4.69E-04 

20 PAX1 3 1.00E+05 28.43 2.16E-03 rs6035924 1.31E-03 

10 EPC1 17 1.00E+05 72.32 2.20E-03 rs2505349 2.08E-03 

1 C1orf122 2 1.00E+05 12.94 2.22E-03 rs12563037 6.74E-04 

1 MTF1 2 1.00E+05 12.94 2.22E-03 rs12563037 6.74E-04 

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations 
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Table 15.3 Meta-analysis vs BP+SZ Genes Yielding Evidence for Association at P <0.05 After Permutation Testing and replication  

Chr Gene symbol n SNPs n Sims 
VEGAS 
Test 
result 

Uncorrected 
P 

Top SNP 
Top SNP p-
value 

AD/related phenotype replication 
(reference) 

15 GABRB3 29 10000 61.61864 1.55E-02 rs2114485 2.88E-03 Severity of alcoholism (Noble, 1998) 

1 MTHFR 17 100000 69.76328 4.29E-03 rs2075539 1.30E-03 
Serum homocysteine levels in 
alcoholics (de La Vega 2001) 

5 GPRIN1 6 10000 19.46595 1.40E-02 rs10476198 3.17E-03 

2108A allele/A-containing genotype 
over-represented in alcohol 
withdrawal seizures (Rejescu 2005) 

7 GRM8 100 100000 262.9882 7.49E-03 rs1211384 4.03E-03 

Theta EEG and alcoholism (Chen, 
2009); SZ (Takaki, 2004; Zhang, 2014; 
Li 2015), depression (Lee, 2012) 

3 GHSR 9 10000 32.70371 9.00E-03 rs9881097 3.48E-03 
Alcohol consumption and body weight 
(Landgren 2008) 

11 OSBPL5 9 10000 21.76404 2.93E-02 rs11025773 1.13E-03 AD (Edenberg, 2010) 

11 PKNOX2 54 10000 104.4015 2.24E-02 rs7104304 4.76E-04 

AD (Chen, 2009; Beirut, 2010; Zuo, 
2010,Guo, 2012,  Zuo, 2014), 
substance dependence (Chen 2011) 

1 ST6GALNAC3 98 10000 168.6442 4.45E-02 rs12096789 5.76E-03 
Nominal association theta oscillations 
(Hodgkinson, 2010) 

2 TTL 7 100000 34.61967 4.01E-03 rs4849073 3.74E-04 
AD with conduct disorder, depression 
and suicide (P=0.0302) (Wang, 2007) 

2 HAAO 17 100000 79.99661 4.99E-03 rs7582883 1.86E-03 
AD with conduct disorder, depression 
and suicide (P=0.0302) (Wang, 2007) 

2 COBLL1 33 10000 88.48924 1.26E-02 rs355839 3.38E-03 
AD with conduct disorder, depression 
and suicide (P=0.0302) (Wang, 2007) 

14 DDHD1 17 10000 46.72375 3.38E-02 rs12435772 4.19E-03 AD (meta-analysis) (Wang, 2010) 

11 PKNOX2 54 10000 104.4015 2.24E-02 rs7104304 4.76E-04 

AD (Chen, 2009; Beirut, 2010; Zuo, 
2010,Guo, 2012,  Zuo, 2014), 
substance dependence (Chen 2011) 

3 GPD1L 18 10000 57.55162 1.48E-02 rs1562878 7.76E-03 AD (suggestive) (Frank, 2012) 

Table legend: SNP = single nucleotide polymorphism. N VEGAS2 Sims = number of VEGAS2 gene based simulations.  BP = bipolar disorder. SZ = 

schizophrenia. AD = alcohol dependence.
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Table 15.4 Meta-analysis vs normal controls: VEGAS2 pathway analysis 

GO ID and 
pathway 

Initial 
pathw
ay 
length 

Final 
pathw
ay 
length 

Pathw
ay p 

Empiric
al p 

Pathway gene list 

PANTHER 
Other trans-
port 53 44 

7.53E-
05 

2.20E-
05 

SLC35D1, HIAT1, AQP10, ERO1LB, VPS54, MFSD9, SLC5A7, SLC15A2, SEC61A1, MFSD1, LRPAP1, 
TRIM2, SLC35D3, AQP1, AQP3, HIATL1, SLC35D2, LCN9, SEC61A2, SLC22A18, TRIM3, CAPRIN1, 
SLC35C1, SLC15A3, CAPRIN2, AQP6, MIP, SLC35E3, NUP37, SLC15A4, SLC15A1, TMCO3, ERO1L, NGB, 
OCA2, AQP9, AQP8, SPNS3, TOM1L2, AQP4, SLC35E1, SYS1, SLC35C2, SLC35E4 

BIOCARTA 
ARF 
PATHWAY 17 17 

1.11E-
04 

3.20E-
05 

POLR1A, POLR1B, PIK3CA, PIK3R1, POLR1C, RAC1, TWIST1, PIK3CG, MYC, CDKN2A, ABL1, MDM2, 
POLR1D, RB1, TP53, TBX2, E2F1 

GO:0050727r
egulation 
inflame. 
response 71 63 

1.00E-

03 

7.00E-

04 

TNFRSF1B, PLA2G2A, FCER1A, SELE, SERPINC1, PLA2G4A, ADORA1, IL20, AGT, CALCRL, GHRL, PPARG, 
TLR9, IL20RB, AGTR1, GHSR, ADIPOQ, BCL6, IL2, EDNRA, TLR2, NPY5R, KLKB1, OSMR, ITGA2, IL6ST, 
NDFIP1, ADRB2, F12, NT5E, IL6, TAC1, IDO1, FABP4, JAK2, TLR4, IL2RA, INS, SAA1, SERPING1, 
SCGB1A1, TNFRSF1A, A2M, CMA1, GPX2, UACA, CD276, SPN, CX3CL1, SERPINF1, ADORA2B, CCL5, 
STAT5A, PRKCA, SBNO2, C3, ZFP36, APOE, NLRP12, LBP, ADA, ADORA2A, OSM 

GO:0010035 
response to 
inorganic 
substance 138 127 

1.06E-

03 

7.60E-

04 

PEF1, MTF1, TSHB, TXNIP, S100A16, PLA2G4A, TNNT2, ACTA1, RYR2, SDC1, APOB, KHK, XDH, HAAO, 
IL1A, LCT, NR4A2, SLC25A12, TTN, IGFBP2, SLC6A1, CTNNB1, TNNC1, CPOX, CASR, TRPC1, KCNMB3, 
TFRC, HTT, SOD3, PDGFRA, SEC31A, SNCA, LEF1, CASP6, FGG, PDCD6, SLC6A3, SLC1A3, SLC30A5, 
MAP1B, PCSK1, KCNIP1, DUSP1, SLC34A1, MAPK9, ITPR3, CDKN1A, GCLC, PGAM2, EGFR, SLC25A13, 
SRRT, CAV1, NOS3, PTK2B, STAR, ADAM9, GGH, IMPA1, CA2, TNFRSF11B, NDRG1, ACO1, AQP3, FXN, 
ALG2, ALDOB, GSN, RXRA, MAPK8, KCNMA1, ANXA11, PTEN, KCNIP2, AS3MT, UROS, STIM1, RELA, 
MTL5, CCND1, APOBEC1, A2M, MGP, SLC11A2, AVPR1A, KCNMB4, SYT1, HVCN1, PEBP1, P2RX7, 
ATP7B, MNAT1, SERPINA1, THBS1, CAPN3, SLC30A4, NEDD4, AQP9, CYP1A1, CHRNA3 

GO:0042517r
eg. tyrosine 
phos-
phorylation 11 10 

1.06E-

03 

6.40E-

04 
IL6R, IL20, GHR, IL6ST, IL6, JAK2, CNTF, CLCF1, GH1, LIF 

GO:0016605 
PML body 29 29 

1.23E-

03 

6.60E-

04 
SKI, HIPK1, SUMO1, SP100, TOPBP1, TDP2, LRCH4, HIPK2, EIF3E, SIRT1, TRIM8, ZBTB16, CBX5, CHFR, 
ZMYM2, RNF6, RB1, RAD51, PML, ISG20, BLM, UBE2I, RPA1, RPAIN, TP53, TOP3A, SPTBN4, MORC3, 
CHEK2 
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Table 15.3 contd 

GO:0008593 
regulation of 
Notch 
signaling 
pathway 10 10 

1.53E-

03 

7.80E-

04 
SOX2, TP63, KIT, IL6ST, HEY2, ASCL1, DTX1, NFKBIA, DLL3, JAG1 

GO:0048699 
generation 
of neurons 455 382 

1.76E-

03 

1.00E-

03 

HES5, TP73, HES3, EPHA2, PAX7, EPHB2, ID3, PPT1, ARTN, PCSK9, DAB1, DOCK7, RPE65, LHX8, USP33, 
MCOLN3, BARHL2, GFI1, LPPR4, OLFM3, NTNG1, AMIGO1, NGF, S100A6, EFNA1, NTRK1, IGSF9, 
LMX1A, TNR, LHX4, CRB1, BTG2, CNTN2, TGFB2, WNT3A, TBCE, GDF7, DPYSL5, STRN, NRXN1, RTN4, 
PEX13, B3GNT2, VAX2, ALMS1, SEMA4F, CTNNA2, TTL, ACTR3, EN1, GLI2, KIF5C, NR4A2, TBR1, DLX2, 
HOXD3, NEUROD1, SATB2, ALS2, ABI2, NRP2, CREB1, MAP2, XRCC5, EPHA4, DNER, GBX2, FARP2, 
CNTN4, ATP2B2, PPARG, WNT7A, TOP2B, CCR4, CCK, LAMB2, SEMA3B, FEZF2, ROBO2, ROBO1, RPL24, 
ALCAM, DRD3, KALRN, GATA2, EPHB1, SLITRK3, PRKCI, NLGN1, SOX2, EPHB3, DGKG, HES1, SPON2, 
HTT, SLIT2, CCKAR, PHOX2B, KIT, REST, RUFY3, NKX61, SPP1, ATOH1, UNC5C, NEUROG2, SCLT1, HHIP, 
SMAD1, POU4F2, VEGFC, HELT, SEMA5A, SLC1A3, ISL1, MAP1B, OTP, VCAN, GPR98, EFNA5, APC, 
SEMA6A, ACSL6,  4, DRD2, DSCAML1, PVRL1, FEZ1, OPCML, TULP3, CCND2, NTF3, PEX5, SOX5, WNT1 

BIOCARTA 
HER2 
PATHWAY 20 19 

1.82E-

03 

9.20E-

04 SHC1, SOS1, ERBB4, RAF1, PIK3CA, IL6ST, PIK3R1, ESR1, IL6, EGFR, PIK3CG, HRAS, ERBB3, GRIP1, 
MAP2K1, STAT3, GRB2, MAPK1, EP300 

REACTOME 
KINESINS 21 20 

1.97E-

03 

1.08E-

03 KIF2C, KIFAP3, KIF3C, KIF15, KIF9, KIF2A, KIF20A, KIF4B, KLC4, KIF5B, KIF11, KIF18A, KLC2, RACGAP1, 
KIF5A, KIF26A, KIF23, KIF2B, KLC3, KIF3B 

GO:00151-
03: 
inorganic 
anion trans-
membrane 
transporter 
activity 31 27 

2.91E-

03 

1.58E-

03 
SLC26A9, PCYOX1, SLC4A5, SLC20A1, SLC4A7, SLC26A1, SLC34A2, SLC4A4, ANKH, SLC26A2, SLC34A1, 
SLC17A2, SLC26A8, SLC26A5, SLC26A3, SLC13A1, SLC13A4, SLC20A2, SLC26A7, ADAMTS8, AQP6, 
SLC25A3, OCA2, SLC26A11, SLC5A5, SLC17A7, SLC4A11 
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Fig. 15-3 UCL meta-analysis vs SEMI: strongest SNP near TLN2 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 15-4 UCL meta-analysis vs SEMI: AUTS2 region 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 15-5 UCL meta-analysis vs pure mental illness: PANTHER histogram of numbers of genes in each GO pathway 

 

Figure legend:  x axis = number of genes; x axis = GO molecular category 
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16 CHAPTER 16: RESULTS OF META-ANALYSIS (COMORBIDITY 

VS SUPERNORMAL CONTROLS):  BPALC+SZALC VS SNC 

This meta-analysis was used to try and increase the power to differentiate SZALC+BPALC genes from 

normal controls (Panagiotou et al. 2013). Unlike the previous chapter which sought AD genes as 

separate from BP, this approach looks at the combined severe mental illness phenotype. We used the 

PLINK meta-analysis function. To reduce bias we used half the normal controls in each analysis 

combined in the meta-analysis. 

We meta-analysed 220 BPALC+SCZALC vs ancestrally matched normal controls. Again, despite the 

increased power, no SNP achieved conventional genome wide significance levels. Quantile-Quantile 

(Q-Q) plots for each analysis, illustrating the observed p-values for the autosomal associations in 

relation to the expected p-values (based on the number of tests, under the null hypothesis of no 

association), are presented in Figure 16.1. A Manhattan plot of our association analyses is shown in 

Fig.16.2. The lack of SNP data points near the top of each panel (i.e. p ≈ 10−8) indicates that there were 

no strong association signals. SNPs in the top 40 with lowest p-values are presented in Table 16.1. 

I then checked whether any of the 40 SNPs with the lowest p-value for each analysis were in or near to 

a gene of known relevant function. None of the top SNPs themselves were previously related directly to 

AD or alcoholism-related phenotypes, however genes in or near these SNPs are briefly reported.  

Our strongest SNP was rs743236 (p = 4.14 x 10-6; OR 1.72; gene based P = 5.53 x 10-2) which is in the 

LTBP1 (latent transforming growth factor beta binding protein 1, Fig. 16-3) gene. I have also plotted 

the same region from the PGC CDG which appears to show little evidence of association in comparison 

(Fig. 16-4).  
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Other interesting genes by nominal SNP association are in: Poly (ADP-Ribose) Polymerase Family, 

Member 16 (PARP16, catalyses the post-translational modification of proteins; rs1561889, p = 4.17x10-

5, OR 1.7); RAD51 Paralog B (RAD51B, which may detect unstable DNA; rs11624333, p = 8.42 x 10-5, 

OR 1.7 ), Zinc Finger 33A (ZNF33A, functions include sequence-specific DNA binding transcription 

factor activity; rs645064, p = 9.2 x 10-5, OR 1.59), and LIM domain 7 (LMO7, which may be involved 

in protein-protein interactions and is implicated in Townes-Brocks syndrome; rs9544021, p = 2.45 x 10-

5, OR 1.64 ). Gene Senataxin (SETX) was implicated by an intronic SNP rs10901156 (p = 8.89x10-5, 

OR 2.13) and gene based analysis (p = 2.41 x 10-3). CDH11 (cadherin 11, type 2, OB-cadherin 

(osteoblast) Fig. 16-5) which has numerous addictions signals in this study and elsewhere was ranked 

24th by SNP p-value, and was also nominally significant by gene based analysis (p = 1.44 x 10-3). I 

plotted the same region using the PGC CDG GWAS data (Fig. 16-6) which suggests no evidence of 

association at this locus. CDH11 and other cadherins are discussed further in the Discussion section. 

In order to confirm the involvement of genes previously implicated in alcoholism and addictions 

phenotypes, I employed gene based permutation tests on all SNPs within a 50 kb flank of all known 

genes.  

In the gene-based tests, we found 202 genes with p <0.01, strongest gene PDGFC on Chromosome 4, 

uncorrected p = 2.7 x 10-4 (Fig. 16-7). Cross referencing with the literature database of gene and SNP 

associations, I found 25 genes that were nominally associated (p < 0.05) and in common with our 

VEGAS2 gene based analysis list. The top 40 of these are listed in Table 16.2. No genes survived 

Bonferroni correction for multiple tests.  
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The most notable gene based results were strikingly similar to the previous meta-analysis. All gene 

replications of AD or related phenotypes and the top SNPs in that gene where p<0.05 from our data are 

listed in Table 16.3.  

PKNOX2 has been repeatedly associated with AD in numerous studies (Chen, 2009; Beirut, 2010; Zuo, 

2010; Guo, 2012; Zuo, 2014), substance dependence (Chen 2011). UCL meta-analysis SNPs in 

PKNOX2 are plotted in Fig. 16-8 showing some SNP signal for possible association. The PGC CDG 

plot of the same region is shown in Fig. 16-9, which appears to show no association at this locus.  

GABRB3 (GABA(A) receptor beta3 subunit, gene based p = 1.5 x 10-2) is of interest due to 

involvement of the GABA system in AD (also see Section 5.3.1) and a previous report of association 

with severity of alcoholism but not AD (Noble et al. 1998). 

Of particular interest is KCNMA1 (Potassium Channel, Calcium Activated Large Conductance 

Subfamily M Alpha, Member 1) which has been associated with AD in SZ (Kendler, 2011).  KCNMA1 

codes for “MaxiK channels” which are voltage- and calcium-sensitive potassium channels fundamental 

to the control of smooth muscle tone and neuronal excitability. Diseases associated with KCNMA1 

include generalized epilepsy, paroxysmal dyskinesia and impotence. Among its related pathways are 

Platelet homeostasis and Haemostasis. GO annotations related to this gene include actin binding and 

calcium-activated potassium channel activity.  

OSBPL5 (Edenberg, 2010), Cancer Susceptibility Candidate 4 (CASC4) (Wang, 2010), and Glycerol-3-

Phosphate Dehydrogenase 1-Like (GPD1L) (Frank, 2012) have all been implicated in AD. 
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TTL, HAAO, and COBLL1 are all associated with AD with conduct disorder, depression and suicide 

(Dick, 2010)  

Further uncorrected gene based p-values <0.05 included GRINP1 (G Protein Regulated Inducer of 

Neurite Outgrowth 1) which has been linked to alcohol withdrawal seizures (Rejescu, 2005) and GHS-

R1A (linked to body mass in heavy alcohol consuming individuals (Landgren, 2008). 

GRM8 has been implicated in event-related theta oscillations during information processing and also in 

vulnerability to alcoholism using a family-based association test (FBAT) in the COGA sample (Chen, 

2009). It is also a gene with strong evidence for involvement in SZ and depression but not bipolar 

disorder SZ (Takaki et al. 2004; Zhang et al. 2014; Li et al. 2015; Lee et al. 2012). 

Pathway analysis using VEGAS2 revealed nearly identical similar genetic pathways to the previous 

meta-analysis. These involved generation of neurons, inflammation, reaction to inorganic substance, 

transportation, and tyrosine metabolism (See Table 15.4 for top ranked pathways results). 

When compared with the PGC Cross Disorders Group Pathway analysis (Consortium 2015) there were 

few areas of overlap in the top ranked pathways. Only one PGC CDG pathway - GO:8601, Protein 

phosphatase type 2A regulator activity – was listed in our meta-analyses pathways with p <=0.05) 

(Table 15.5). 

PANTHER analysis of our top genes implicated in gene based analysis (P<001, n=236) revealed genes 

clustered in binding, catalytic, receptor and transporter activity among the main molecular pathways 

(Fig. 16-10). 
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In summary, this was the first GWAS comparing patients with BP or SZ and comorbid AD with normal 

controls in an attempt to tease out the severe mental illness + AD phenotype genetic effects (as opposed 

to AD alone). No marker reached genome-wise significance. However gene based, literature, and 

pathway approaches offer a number of biologically plausible genes. 

16.1 DISCUSSION 

This meta-analysis was of the combined the BPALC and SZALC groups compared with supernormal 

controls. Again, genome wide significance was not achieved, probably due to insufficient sample sizes.  

Combining the BPALC and SZALC samples increases sample size (for “psychosis + AD”) but there are 

drawbacks: if BP and SZ are indeed biologically distinct disorders (and Kraepelin was correct in 

predicting this [see  Section 15.1 for more on Kraepelin]) then power to detect a difference will be 

diluted by phenotypic heterogeneity. If, as we suspect, there is sufficient genetic overlaps between SZ 

and BP, then this dilution may be reversed.  

A number of genes tentatively implicated by gene based analysis may offer some clues as to pathways 

differentiating addictions from psychotic disorders. Below I discuss the most pertinent. 

Our strongest SNP was LTBP1 (latent transforming growth factor beta binding protein 1). This gene 

targets latent complexes of transforming growth factor beta to the extracellular matrix. Interestingly 

LTBP1 has been associated with alcohol drinking in a Han Chinese population by interaction with a 

nearby CNV (Pei, 2012). In comparison, the same region from the PGC CDG appears to show little 

evidence of association in comparison. 

 



      223 

SETX (uncorrected gene based p = 2.41 x 10-3) is a gene which encodes for a protein which contains a 

DNA/RNA helicase domain at its C-terminal end, which suggests that it may be involved in both DNA 

and RNA processing. Mutations in this gene have been associated with ataxia-ocular apraxia-2 (AOA2) 

and an autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS4). However the gene 

has so far not been implicated in major mental illness or addiction. 

CDH11 (cadherin 11, type 2, OB-cadherin (osteoblast) Fig. 16-5) which has numerous addictions 

signals in this study and elsewhere was ranked 24th by SNP p-value, and was suggested by gene based 

analysis (uncorrected p = 1.44 x 10-3). I plotted same region using the PGC CDG GWAS data (Fig. 16-

6) which suggests no regional evidence of association at this locus.  

In the gene-based tests, we found 202 genes with p <0.01, strongest gene PDGFC on Chromosome 24, 

p = 2.7 x 10-4 (Fig. 16-7). The most notable gene wise results were strikingly similar to the previous 

meta-analysis.  

 Cross referencing with the literature database of gene and SNP associations, I found 25 genes that were 

nominally associated (p<=0.05) and in common with our VEGAS2 gene wise list. No genes survived 

Bonferroni correction for multiple tests.  

PKNOX2 has been repeatedly associated with AD in numerous studies AD (Chen et al. 2009; Zuo et 

al.; Wang et al. 2011; Mulligan et al. 2006; Bierut et al. 2010; Guo et al. 2012)(Chen, 2009; Beirut, 

2010; Zuo, 2010; Guo, 2012; Zuo, 2014), substance dependence (Chen 2011). UCL meta-analysis SNPs 

in PKNOX2 are plotted in Fig. 16-8 showing some SNP signal for possible association. The PGC CDG 

plot of the same region is shown in Fig. 16-9, which appears to show no association at this locus.  
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Of particular interest is KCNMA1 (Potassium Channel, Calcium Activated Large Conductance 

Subfamily M Alpha, Member 1) which has been associated with AD in SZ (Kendler, 2011). KCNMA1 

codes for MaxiK channels which voltage and calcium-sensitive potassium channels fundamental to the 

control of smooth muscle tone and neuronal excitability. Diseases associated with KCNMA1 include 

generalized epilepsy and paroxysmal dyskinesia and impotence. Among its related pathways are Platelet 

homeostasis and Hemostasis. GO annotations related to this gene include actin binding and calcium-

activated potassium channel activity. Calcium channels have been implicated repeatedly in both BP and 

SZ aetiology and neurobiology , and their genes were initially discovered by GWAS (Ferreira et al. 

2008; Hamshere et al. 2013; Cross-Disorder Group of the Psychiatric Genomics Consortium 2013; 

Green et al. 2013; Sklar et al. 2008). Possible involvement of other electrolytes via calcium levels is 

therefore plausible. 

GABRB3 (GABA(A) receptor beta3 subunit, gene based p = 1.5 x 10-2) is of interest due to 

involvement of the GABA system in AD (also see Section 6.3.1) and a previous report of association 

with severity of alcoholism (Noble et al. 1998). Additionally, OSBPL5 (Edenberg, 2010), Cancer 

Susceptibility Candidate 4 (CASC4) (Wang, 2010), and Glycerol-3-Phosphate Dehydrogenase 1-Like 

(GPD1L) (Frank, 2012) have all been implicated in AD.  TTL, HAAO, and COBLL1 are genes all 

previously associated with AD with conduct disorder, depression and suicide (Dick, 2010). 

Further gene based p-values <0.05 included the GRINP1 (G Protein Regulated Inducer of Neurite 

Outgrowth 1) gene which has been linked to alcohol withdrawal seizures (Rejescu, 2005) and GHS-

R1A (Growth Hormone Stimulation Recepto2 1A; heavy alcohol consumption; body mass in heavy 

alcohol consuming individuals (Landgren, 2008). 



      225 

 

GRM8 has been implicated in event-related theta oscillations during information processing and also in 

vulnerability to alcoholism using a family-based association test (FBAT) in the COGA sample (Chen, 

2009). It is also a gene with strong evidence for involvement in SZ and depression but not bipolar 

disorder SZ (Takaki et al. 2004; Zhang et al. 2014; Li et al. 2015; Lee et al. 2012). 

Important negatives for this slightly better powered GWAS of comorbid psychotic illness and AD vs 

supernormal controls were the lack of signal in “classic” addictions genes, including dopamine, 

serotonin, COMT, and alcohol metabolism.  

Despite possible ancestral commonalities with the Sulovari eye colour study, we found no evidence of 

LD between the AD-associated GABA receptor gene cluster and eye colour genes OCA2/HERC2, nor 

between AD-associated GRM5 and pigmentation-associated TYR (Sulovari et al. 2015). 

Explanations of these important negative findings, aside from methodological differences and 

population heterogeneity are: i) our cases are of comorbid disorders vs supernormal controls, whereas 

the literature largely consists of alcoholism/AD as cases and a mix of controls; ii) most of the alcohol 

metabolism gene findings have been in Asian and American populations who therefore might have 

different risk alleles. iii) our study was underpowered. 

 Pathway analysis using VEGAS revealed very similar genetic pathways to the previous meta-analysis 

involving generation of neurons, inflammation, reaction to inorganic substance, transportation, and 

tyrosine metabolism (Table 16.4). PANTHER analysis of our top genes implicated in gene based 
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analysis (P<001, n=236) revealed binding, catalytic, receptor and transporter activity among the main 

molecular pathways (Fig. 16-10) – again a very similar picture to the first meta-analysis. 

This is explainable for a number of reasons: 1) the psychosis+AD and AD genetic pathways are similar, 

which was not evident in the underpowered single (BPALC or SZALC) GWASs. 2) Despite the larger 

sample size these gene wise results are suggestive at best and may be false positives. 3) The 

methodology introduced other unknown confounders.  

In the next chapters I critically appraise the strengths and weaknesses of this study, and look to future 

work directions. 
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Figure 16-1 Q-Q plot of meta-analysis vs supernormal controls GWAS 

 

Figure legend:  Q–Q plots of observed and expected −log10(p) of the associations between SNPs  
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Figure 16-2 Manhattan plot of Meta-analysis vs supernormal controls  

 

Figure legend:  Results of the genome-wide association analyses for Meta-analysis vs SNC. The x-axis 

shows the chromosome numbers and the y-axis the significance of the association signals (i.e. −log10(P) 

value) 
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Table 16.1 Meta-analysis vs supernormal controls: Top 40 SNPs and gene based results 

CHR SNP 
Position 
 (base 
pairs) 

A1 A2 Q P OR Position Distance 
Nearest gene 
code 

Gene 
based p 

2 rs743236 33346798 T A 5.27E-01 4.14E-06 1.7223  intron  0 LTBP1 5.63E-02 

2 rs17030670 65935157 T C 6.00E-02 7.67E-06 2.2222  intron  0 LOC101927533 --- 

9 rs10967953 2756638 C T 1.86E-01 1.96E-05 1.8603  intron  0 KIAA0020 3.17E-02 

13 rs9544021 76253354 T C 9.78E-01 2.45E-05 1.6443  intron  0 LMO7 2.06E-01 

3 rs17430548 65484875 G A 5.70E-01 2.74E-05 2.4615  intron  0 MAGI1 3.14E-01 

7 rs1526408 125045427 T A 1.12E-01 3.55E-05 2.0349  downstream  26052 LOC101928283 7.19E-02 

15 rs1561889 65540826 T C 5.04E-01 4.17E-05 1.6975  intron  0 PARP16 1.62E-02 

10 rs2388268 2595331 T C 8.19E-01 4.79E-05 1.9356  intron  0 --- --- 

10 rs2388263 2593161 T G 8.51E-01 5.77E-05 1.9217  intron  0 --- --- 

16 rs711753 57105839 A G 9.66E-01 8.22E-05 0.61  intron  0 NLRC5 5.90E-02 

14 rs11624333 68979835 C T 2.57E-01 8.42E-05 1.6466  intron  0 RAD51B 4.20E-02 

7 rs17148220 124989897 T G 1.25E-01 8.44E-05 1.9663  intron  0 LOC101928283 7.19E-02 

2 rs10205049 119899933 G A 1.28E-01 8.80E-05 1.585  downstream  13886 C1QL2 5.42E-03 

9 rs10901156 135184237 G A 3.92E-01 8.89E-05 2.1327  intron  0 SETX 2.41E-03 

18 rs11665142 74380913 A G 4.24E-01 9.14E-05 1.588  upstream  21073 FLJ44881 --- 

10 rs645064 38334341 T C 7.15E-01 9.20E-05 1.5856  intron  0 ZNF33A 5.19E-04 

4 rs260933 29373895 T C 6.43E-01 1.00E-04 1.5809  downstream  151111 --- --- 

3 rs1549114 175121109 A G 8.94E-01 1.02E-04 0.6158  intron  0 NAALADL2 7.29E-02 

1 rs3013754 54061978 C A 9.00E-01 1.42E-04 1.5911  intron  0 GLIS1 1.51E-02 

11 rs620095 114061226 T G 2.35E-01 1.42E-04 0.5049  intron  0 ZBTB16 6.04E-03 

4 rs17661170 171175320 G A 5.32E-01 1.47E-04 0.5947  upstream  19750 LOC101928223 --- 

1 rs4660017 241139151 C T 5.44E-01 1.48E-04 1.9677  intron  0 RGS7 6.28E-02 

18 rs17288584 69134662 A G 4.07E-01 1.58E-04 2.4108  downstream  52536 LOC100505776 4.34E-01 

16 rs4967886 65109912 A G 3.33E-01 1.58E-04 1.5613  intron  0 CDH11 1.44E-03 

12 rs4760786 71446789 C T 9.00E-01 1.60E-04 1.5796  intron  0 --- --- 

2 rs3770979 207451594 C A 3.32E-01 1.65E-04 2.2618  intron  0 ADAM23 2.06E-02 

8 rs2514973 119253485 G C 3.67E-01 1.65E-04 2.0776  intron  0 SAMD12 1.60E-01 

14 rs11624164 68986157 T C 2.76E-01 1.66E-04 1.6135  intron  0 RAD51B 4.20E-02 

10 rs496627 38350398 G A 6.77E-01 1.86E-04 1.5519  intron  0 ZNF33A 5.19E-04 

13 rs9518449 102224923 A G 2.99E-01 1.96E-04 2.3513  intron  0 ITGBL1 2.70E-01 

10 rs10903846 2746750 C T 9.83E-01 2.02E-04 1.7214  upstream  231463 --- --- 

4 rs2139980 157617198 A G 4.49E-01 2.10E-04 0.6255  downstream  64408 PDGFC 2.72E-04 

10 rs1208681 38092975 C T 6.04E-01 2.11E-04 1.5446  intron  0 ZNF248 1.61E-02 

1 rs4659586 241139692 A T 4.85E-01 2.31E-04 1.9178  intron  0 RGS7 6.28E-02 

10 rs11251437 2746118 G A 8.39E-01 2.37E-04 1.7157  upstream  232095 --- --- 

10 rs7090858 38003670 C A 6.23E-01 2.41E-04 1.5396  downstream  60629 --- --- 

18 rs4798677 8699988 A G 8.88E-01 2.47E-04 1.5398  intron  0 GACAT2 5.07E-01 

6 rs9366337 20252093 G A 5.90E-01 2.51E-04 1.6021  intron  0 --- --- 

6 rs16877617 16089085 G A 6.00E-01 2.55E-04 0.6177  upstream  18768 --- --- 
Key: CHR= Chromosome; BP= base pairs; A1= Allele 1; F A= Frequency of Allele 1; F U= Frequency of Allele 2; A2=Allele 

2; CHISQ = chi squared. OR = odds ratio. Uncorrected p <0.05 in bold. 
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Table 16.2 Top 40 Genes Yielding Evidence for Association After VEGAS2 Permutation Testing  

Chr Gene 
n 

SNP
s 

n Sims VEGAS2 Test result 

Uncorrected 
gene based P 

value 

Top SNP Top SNP P 

4 PDGFC 17 1000000 117.301571 2.72E-04 rs6827631 3.85E-04 

5 IL6ST 4 1000000 32.79562082 3.68E-04 rs11956465 7.00E-04 

12 AQP6 9 1000000 49.64338821 4.01E-04 rs7309966 2.14E-03 

2 CHCHD5 8 1000000 44.12957422 4.13E-04 rs4849073 3.74E-04 

12 AQP5 11 1000000 51.2609029 4.33E-04 rs7309966 2.14E-03 

10 ZNF33A 15 1000000 94.03343212 5.19E-04 rs645064 9.20E-05 

6 GCLC 11 1000000 46.81140748 5.65E-04 rs761141 6.69E-04 

12 RACGAP1 10 1000000 48.96194208 5.68E-04 rs7309966 2.14E-03 

2 POLR1B 9 1000000 45.64442756 7.20E-04 rs4849073 3.74E-04 

12 AQP2 14 1000000 54.23592388 7.48E-04 rs7309966 2.14E-03 

4 HGFAC 9 1000000 44.99965866 7.61E-04 rs13128489 5.98E-04 

12 LOC101927318 14 1000000 54.23592388 7.76E-04 rs7309966 2.14E-03 

3 GPR149 15 1000000 78.6904535 8.65E-04 rs701132 1.42E-03 

20 GATA5 5 100000 24.86417385 9.70E-04 rs6061245 1.13E-03 

10 ZNF37A 19 1000000 136.8578792 1.16E-03 rs645064 9.20E-05 

18 LOC100652770 16 100000 81.60557849 1.19E-03 rs2096919 5.58E-04 

12 KRT2 25 100000 116.7042829 1.30E-03 rs1464042 3.17E-04 

11 ADAMTS8 13 100000 55.0290288 1.34E-03 rs11606448 2.11E-03 

9 KCNV2 18 100000 64.31676007 1.37E-03 rs10967953 1.96E-05 

16 CDH11 49 100000 193.6398273 1.44E-03 rs4967886 1.58E-04 

12 MSI1 7 100000 33.42849535 1.95E-03 rs2701632 1.16E-03 

17 EFNB3 5 100000 24.47388357 1.95E-03 rs2909430 2.83E-04 

21 LINC00945 15 100000 66.52007164 2.10E-03 rs8128907 1.09E-03 
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Table 16.2 contd… 

Chr Gene 
n 

SNP
s 

n Sims VEGAS2 Test result Gene based P value Top SNP Top SNP P 

5 LOC102467073 6 100000 47.92295922 2.11E-03 rs7708515 1.95E-03 

21 OLIG1 12 100000 55.40194253 2.14E-03 rs8128907 1.09E-03 

10 TMEM26 15 100000 67.92123008 2.18E-03 rs10994750 2.14E-03 

4 LRPAP1 14 100000 58.55143097 2.27E-03 rs13128489 5.98E-04 

10 ITIH2 15 100000 52.84938343 2.31E-03 rs10508334 5.60E-04 

4 DOK7 14 100000 58.70439946 2.32E-03 rs13128489 5.98E-04 

9 SETX 10 100000 54.06500557 2.41E-03 rs10901156 8.89E-05 

18 DSG2 23 100000 86.5474038 2.42E-03 rs2096919 5.58E-04 

6 TXLNB 9 100000 30.5807926 2.49E-03 rs9484261 3.84E-03 

5 PDCD6 7 100000 47.9370828 2.52E-03 rs7708515 1.95E-03 

5 SDHA 7 100000 47.92308365 2.67E-03 rs7708515 1.95E-03 

12 PLA2G1B 6 100000 29.19883618 2.70E-03 rs2701632 1.16E-03 

3 PIK3CA 10 100000 47.45795547 2.78E-03 rs3975506 2.22E-03 

20 PAX1 3 100000 27.08081683 2.80E-03 rs6035924 1.11E-03 

3 MIR4789 11 100000 44.54119262 2.98E-03 rs1549114 1.02E-04 

12 LOC101927292 17 100000 49.72407853 3.03E-03 rs2849266 4.12E-03 

3 FOXP1 67 100000 164.3869724 3.17E-03 rs9878602 8.54E-04 

9 LOC100507346 5 100000 31.07861393 3.24E-03 rs16909865 6.69E-04 
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Table 16.3 Meta-analysis vs normal controls: Genes Yielding Uncorrected Evidence for Association at P <0.05 After Permutation Testing and Replication 

Chr 
Gene 

symbol 

n 

SNPs 
n Sims 

VEGAS 

Test result 

Uncorrected 

gene based 

p-value 

Top SNP 
Top SNP 

p-value 

AD/related phenotype replication 

(reference) 

15 GABRB3 29 10000 61.62 1.55E-02 rs2114485 2.88E-03 Severity of alcoholism (Noble, 1998) 

1 MTHFR 17 100000 69.76 4.29E-03 rs2075539 1.30E-03 

Serum homocysteine levels in alcoholics  

(de La Vega 2001) 

5 GPRIN1 6 10000 19.47 1.40E-02 rs10476198 3.17E-03 

2108A allele/A-containing genotype over-

represented in alcohol withdrawal seizures 

(Rejescu 2005) 

7 GRM8 100 100000 262.99 7.49E-03 rs1211384 4.03E-03 Theta EEG and alcoholism (Chen, 2009) 

3 GHSR 9 10000 32.70 9.00E-03 rs9881097 3.48E-03 

Alcohol consumption and body weight 

(Landgren 2008) 

11 OSBPL5 9 10000 21.76 2.93E-02 rs11025773 1.13E-03 AD (Edenberg, 2010) 

11 PKNOX2 54 10000 104.40 2.24E-02 rs7104304 4.76E-04 

AD (Chen, 2009; Beirut, 2010; Zuo, 2010,Guo, 

2012,  Zuo, 2014), substance dependence 

(Chen 2011) 

1 ST6GALNAC3 98 10000 168.64 4.45E-02 rs12096789 5.76E-03 

Nominal association theta oscillations 

(Hodgkinson, 2010) 

15 CASC4 7 10000 29.12 2.23E-02 rs3809471 7.37E-03 AD (meta-analysis) (Wang, 2010) 

2 TTL 7 100000 34.62 4.01E-03 rs4849073 3.74E-04 AD with conduct disorder, depression and 

suicide (P=0.0302) (Wang, 2007) 

HAAO: cocaine dependence (Guo, 2012) 

2 HAAO 17 100000 80.00 4.99E-03 rs7582883 1.86E-03 

2 COBLL1 33 10000 88.49 1.26E-02 rs355839 3.38E-03 

3 GPD1L 18 10000 57.55 1.48E-02 rs1562878 7.76E-03 AD (suggestive by nearby SNP) (Frank, 2012) 

10 KCNMA1 157 10000 278.77 2.02E-02 rs16934688 3.16E-03 AD in SZ (Kendler, 2011) 

Table legend: AD = alcohol dependence; BP = bipolar disorder; SZ = schizophrenia; nSims = number of simulations 
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Table 16.4 Top 16 PGC CDG and UCL VEGAS2 gene pathways 

PGC CDG UCL Meta vs SEMI UCL Meta vs SNC 

Pathway ID Pathway Description PGC 
Rank 

Combined P 
q-

value 
UCL 

Rank* 
Empirical P Rank* 

Empirical 
P 

1 5.75 × 10−8 0.0003 N/A N/A N/A N/A GO:51568 Histone H3-K4 methylation 

2 1.46 × 10−5 0.0362 907 0.11 896 0.111 GO:16571 Histone methylation 

3 4.73 × 10−5 0.0414 2172 0.33 N/A N/A GO:43414 Macromolecule methylation 

4 5.10 × 10−5 0.0414 2777 0.42 2738 0.424 GO:34968 Histone lysine methylation 

5 5.58 × 10−5 0.0414 837 0.1 829 0.103 GO:45216 Cell-cell junction organization 

6 5.69 × 10−5 0.0414 

6010 0.96 5997 0.964 P00003 

Alzheimer disease–amyloid 
secretase pathway 

7 5.86 × 10−5 0.0414 N/A N/A N/A N/A P04393 Ras pathway 

8 7.12 × 10−5 0.0422 

313 0.048 400 0.033 GO:8601 

Protein phosphatase type 2A 
regulator activity 

9 7.83 × 10−5 0.0422 N/A N/A N/A N/A GO:43297 Apical junction assembly 

10 9.25 × 10−5 0.0422 1113 0.14 1041 0.142 P00052 TGF-β signaling pathway 

11 9.53 × 10−5 0.0422 2477 0.37 2421 0.368 GO:14069 Postsynaptic density 

12 0.0001 0.0422 898 0.11 855 0.11 GO:32869 
Cellular response to insulin 
stimulus 

13 0.0001 0.045 N/A N/A N/A N/A P00010 B cell activation 

14 0.0001 0.045 3850 

0.59 3935 0.588 GO:8757 

S-adenosylmethionine–
dependent methyltransferase 
activity 

15 0.0001 0.0454 N/A N/A N/A N/A GO:23061 Signal release 

16 0.0002 0.0473 2073 0.29 1984 0.296 GO:34330 Cell junction organization 

Figure legend: PCG CDG = Psychiatric Genetics Consortium Cross Disorders Group. Meta = Meta analysis of BPALC + SZALC. SEMI = severe mental 
illness.  SNC = supernormal controls. * of 6211 pathways reported by VEGAS2. UCL pathway P bold if P<=0.05. 
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Fig. 16-3 Meta-analysis vs SNC: strongest GWA SNP in LTBP1 

 

Figure key: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-4 PGC CDG: plotting the UCL meta-analysis strongest SNP in LTBP1 

 
Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-5:  Meta-analysis plot of UCL CDH11 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-6 PGC CDG plot of CDH11 region 

 
Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-7 UCL meta-analysis vs SNC: Top gene based gene plot of PDGFC 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-8 UCL meta-analysis vs SNC: UCL PKNOX2 region plot 

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-9 Meta-analysis vs SNC: PGC CDG PKNOX2 region plot

 

Figure legend: x-axis = association P-values on the –log 10 scale; y-axis = chromosomal position 

Purple diamond = index SNP. SNP colours are LD (r2) estimates from 1000 genomes data. 
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Fig. 16-10 UCL meta-analysis vs SNC: number of genes in each GO pathway 

 

Figure legend:  x axis = number of genes; x axis = GO molecular category 
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17 CHAPTER 17. DISCUSSION AND CONCLUSIONS 

 

The new research component consisted of a case-control study of GABRA2 in AD and a series of 

GWAS of AD comorbid with severe psychotic illness. We performed the first genome wide association 

studies and meta-analyses of BPALC and SZALC compared with two different control groups. In 

addition to ancestrally matched supernormal controls, we uniquely used BP and/or SZ without AD as 

controls. The latter was a novel approach to “uncover” the underlying AD genes from the BP/SZ genes. 

To my knowledge this phenotype combination has not been published before (although SZ and AD 

versus normal controls (Kendler et al 2009) and SZ versus BP (Ruderfer, 2014) have been published). 

17.1 GENERAL COMMENTS ON THESE GWAS 

All these signals should be taken as tentative and biologically plausible candidate genes worthy of 

follow up in larger studies. With hindsight and the advancement of research during this degree, it is now 

not surprising that this study did not find markers which achieved gene-wise significance based on the 

small, by modern standards, sample size and the small effect sizes likely to impact on AD.  However at 

the time of collection, the sample size was less modest by comparison to the literature of the time. For 

example Potkin et al published a GWAS on SZ with 64 cases and 77 controls (Potkin et al. 2009). 

Strengths of the study include use of a well-characterised clinical sample assessed using validated 

research tools, ancestral homogeneity, and the use of ancestrally matched supernormal controls. 

Validity of diagnoses was improved by cross checking with clinical notes and use of experienced 

recruiters. Technical quality control was rigorous. Numerous studies have been published from the UCL 

samples, many of which have been replicated by other groups in different populations, which may be 
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further evidence of validity (or common confounders). We conducted several levels of analysis to 

examine enrichment of signals in AD, including GWAS, gene-based and pathway analysis methods. 

These revealed plausible gene signals and pathways for AD, albeit not reaching genome wide or 

corrected gene wide significance. Furthermore the case-case approach to a complex disorder as a novel 

approach worthy of further exploration. 

Weaknesses of the study include: 

1. Modest sample size by modern standards. This power was vastly underpowered compared to modern 

GWAS and the chances of false negatives are high in low power studies (Sham & Purcell 2014).  This 

was before larger international collaborations were commonplace and the recognition that much larger 

GWAS sample sizes would be needed to detect small genetic effect sizes in complex disorders. Another 

reason for the small sample size was pragmatic. While the genotyped BP and SZ samples on their own 

were of a good size for the time, the sizes shrunk dramatically when sub-dividing into ALC and 

nonALC groups. The UCL AD, BP and SZ samples have all grown considerably in the intervening 

time, thus future analyses will have greater power to detect a difference. 

2. Different diagnostic tools were used for diagnosis of AD/alcoholism in each group. While each tool 

on its own was previously validated for the diagnosis of AD/alcoholism, BP and SZ, the OPCRIT, 

SADS-L and SSAGA-II may each differ sufficiently to introduce ascertainment bias. Ascertainment 

bias can induce spurious cross-phenotype (CP) effects and occurs when the recruitment of people with 

one phenotype increases the prevalence of another unrelated phenotype in the cohort and leads to a false 

correlation between them. An example is Berkson’s bias which is common in clinically ascertained 

samples, as patients suffering from two conditions are often more likely to seek treatment than those 

with a single diagnosis (Westreich 2012).  
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3. Unaffected control individuals were shared across the BP and SZ studies. Common associations 

could occur if an artefact (such as population stratification or batch effects) systematically biased the 

shared controls and not the cases. In this study however I used half the normal controls in each half of 

the meta-analysis. 

4. Lack of imputation.  We used an older generation chip for genotyping and this was several years ago. 

It holds 500k SNP markers, which is low by modern standards but cutting edge at the time. This limits 

the density of coverage of the human genome, and imputation is one method to overcome this. The bulk 

of this study was done before imputation was widely in use, and this is a shortcoming of the study. 

5. False effects between two phenotypes can also occur when subjects with one phenotype are 

systematically misclassified with a different phenotype. For example, patients with BP can sometimes 

be misdiagnosed with SZ, and vice versa, and this could result in spurious genetic correlation between 

the traits. In the cases of schizophrenia and bipolar disorder, the misclassification rate would need to be 

larger than 20% to generate the genetic correlation (0.60) observed between the traits if the true genetic 

correlation were zero (Solovieff et al. 2013). Thus the misclassification rate must be quite high to have a 

substantial impact on the genetic correlation, and it is hoped that the clinical ascertainment methods 

limited this bias. 

These sources of bias can be avoided with careful study design. General guidelines for study design of 

GWAS should be followed, including appropriate control selection, adequate quality control and 

adjustment for population stratification. Population stratification is a major source of confounding in 

GWASs, and established methods of population stratification adjustment should be applied within 

studies. In addition, appropriate adjustments for multiple testing should be implemented to avoid false-

positive associations. Similar populations should be used across studies, as the underlying linkage 
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disequilibrium structure varies across populations and the SNP of interest may differentially highlight 

the causal variant. A further consideration is that when combining phenotypes across studies, 

participants may have different phenotypes, or different sets of SNPs owing to differences in 

genotyping arrays.  Genotype imputation can be used to obtain the same set of SNPs for all individuals 

(Solovieff et al. 2013).  

17.2 GENE-BASED ANALYSES 

The use of gene-based tests of association is worthy of further discussion. The gene-based test detects 

genes which show a greater signal of association than expected by chance given the LD between the 

SNPs and the gene’s length, while also accounting for number of SNPs. This in effect gives a 

significance value at the level of the whole gene as opposed to the whole genome.  

Gene-based analysis has several advantages. First, these analyses can account for multiple 

independent functional variants within a gene, with the potential to greatly increase the power to 

identify disease/trait-associated genes. Second, variations in protein-coding and adjacent regulatory 

regions are more likely to have functional relevance. Third, gene-based tests allow for direct 

comparison between different populations, despite the potential for different LD patterns (Neale & 

Sham 2004).  

In gene-based replication, the gene identified by the initial study is consequently examined for 

association with effectively all genetic variants in the intragenic and regulatory regions. Neale & 

Sham describe gene-based replication as the “gold standard” for three reasons: 1) genes are the 

functional unit of the human genome, and the positions, sequence, and function of genes are highly 

consistent across diverse human populations. This universality is considerably greater than that of 

either a SNP or a haplotype. Gene-based analysis might therefore lead to more consistent results and 
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alleviates difficulties in replication. 2) gene-based replication implies that each population studied 

will have local allele frequencies and LD structure accounted for, which should address problems 

with non-replication due to population differences. 3) gene-based replication simplifies the multiple-

testing problem by conveniently dividing it into two stages, dealing first with the multiple variants 

within a gene and then with the multiple genes in the genome (Neale & Sham 2004). 

In the BPALC paper (Lydall et al 2011a) we used a method whereby we combined the p values of the 

SNPs in a gene by Fisher's combination test (Curtis et al. 2012). This method assumes that the 

constituent p values should be based on independent tests, which is unlikely to be true for SNPs in 

the same gene. Violation of this assumption is likely to inflate the type I error rate, unless use of a 

permutation procedure provides empirical statistical significance (Li et al. 2011). Of the multitude of 

gene-based analyses which use differing statistical approaches each with their advantages and 

disadvantages the VEGAS approach was robust and user-friendly. The more popular gene-based and 

pathway methods were recently compared by Wojcik et al (2015). The gene-level program VEGAS 

had the highest sensitivity (28.6%) with less than 1% false positives (Wojcik et al. 2015).  VEGAS 

also supports robust pathway analyses in the same batch as gene-based analyses which represented 

efficient use of research time. 

The results of our analysis are presented with correction for multiple testing. Bonferroni correction 

itself may be conservative if the tests are not independent – and we do not know enough about effects 

between blocks to be confident (Gao et al. 2010). Another reason why this correction may be 

conservative is that the literature replication analyses already give evidence of prior association 

(Sham & Purcell 2014).  However our significance values should be interpreted with caution because 

the appropriate method for correcting these analyses is unclear (Johnson et al. 2010; Sham & Purcell 

2014).   
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Conversely, using the literature as control increases the risk of confirmation bias (“seeking  or  

interpreting  of  evidence  in  ways  that  are  partial  to  existing  beliefs, expectations,  or a 

hypothesis  in hand”) , citation bias (Pannucci & Wilkins 2010) and positive outcome bias (Emerson 

et al. 2010) because of the higher likelihood of positive studies being published (MacCoun 1998). 

17.3 PATHWAY ANALYSES 

Statistical association, while important, is not the only consideration for concluding whether variation 

in a gene plays a role in causing individual differences in disease susceptibility. Other relevant 

considerations include biological plausibility, animal models, and gene-expression studies (Page et 

al. 2003). Since genetic variation must be ultimately translated into differences in gene function to 

affect disease risk, pathway-based approaches have been developed which use prior biological 

knowledge on gene function to facilitate more powerful analysis of GWAS data sets. These 

approaches typically examine whether a group of related genes in the same functional pathway are 

jointly associated with a trait of interest. Pathway-based analysis is considered an effective technique 

that overcomes the limitations of the current single-locus methods. This procedure aims to provides a 

comprehensive understanding of the molecular mechanisms underlying complex diseases (Wang et 

al. 2007; Wang et al. 2010). 

Principally, a pathway-based approach is similar to the Gene Ontology (GO) analysis which, for 

example, has been used to provide insights into the biology of BP disorder (Holmans et al. 2009). 

The GO database contains large amounts of electronic annotations based on studies of human 

orthologues in model organisms, so that researchers can incorporate computationally predicted gene 

sets and pathways in the gene-enrichment analysis to improve power. Its capacity of capturing 

biological interaction among genes and improving power and robustness has been well recognized.  
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Jin and colleagues (2014) in an excellent recent review summarise the advantages of pathway-based 

approaches compared to single gene analysis methods. These include: 1) Pathway-based approaches 

appear to be well suited for analysis of massive GWAS data. 2) Since pathway-based approaches 

focus on sets of genes instead of individual genes, dimension reduction is automatically achieved and 

the issue of the multiple-test corrections is reduced when a large number of SNPs are examined. 3) 

Common diseases often arise from the joint action of multiple SNPs/genes within a pathway. 

Although each single SNP may confer only a small disease risk, their joint actions are likely to have a 

significant role in the development of disease. If one only considers the most significant SNPs, the 

genetic variants that jointly have significant risk effects but make only a small contribution if 

considered individually will be missed. 4) Locus heterogeneity, in which alleles at different loci 

cause disease in different populations, will increase the difficulty in replicating associations of a 

single marker with a disease. The list of significant SNPs from several studies may have little overlap 

leading to minimal replication of association findings at the SNP level. In comparison, pathway-

based approaches that utilize information from multiple loci in a functional unit could produce more 

stable and robust results than single gene analyses do. 5) Fourth, the ultimate purpose of genetic 

studies of complex diseases is to decipher the path from genotype to phenotype. Despite the wealth of 

data, connections between DNA variations and complex phenotypes, which are essential for 

unravelling pathogeneses of complex diseases and predicting variation in human health, have 

remained elusive. In this sense, pathway-based approaches provide a complementary role to single-

point analysis for interpreting the molecular paths underlying human diseases (Jin et al. 2014). 
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Several studies have demonstrated that pathway-based analysis is superior when it is applied to large-

scale genetic datasets for rheumatoid arthritis (RA), type 2 diabetes (T2D), SZ, Parkinson’s disease, 

etc. In addition, tracing the shared pathways among several pathologies tends to be an ongoing 

interest of disease pleiotropism, for example, the study of genetic links between RA and systemic 

lupus erythematosus, SZ and T2D (comprehensively reviewed in Jin et al. 2014). 

As always in biological research, there are caveats. The current understanding of human gene 

function is incomplete, so the curated gene sets and pathways are not a comprehensive representation 

of functionally related gene cohorts in the human genome. A large number of genes in the human 

genome are uncharacterized or poorly characterized, so that there may not be any pathway 

information available. Information on SNPs near these genes may not be incorporated in the 

pathway-based approaches, so our approach can complement but not replace the single-SNP 

approach (Wang et al. 2007).  

The reader should further be aware that, despite these advantages, gene pathway analyses do not 

specifically confirm individual gene associations. While an association with a gene may suggest 

potential association of another in the same biological pathway, it does not by itself confirm the 

involvement of the pathway gene, which would still arguably require an association signal between 

that and the phenotype.  

17.4 “MISSING HERITABILITY” 

It is known that most psychiatric conditions are generally highly heritable. However, at the time of 

writing, numerous GWAS appear to have limited power to predict the variation in psychiatric illness 

status at individual level, or develop novel pharmacological strategies, despite the huge amount of data 
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generated.  Genetic risk profile scores (RPS) are constructed from alleles showing modest association 

with schizophrenia can have low sensitivity and specificity in predicting caseness.  Combining all 

identified variants together may explain less than 7% of the total variance in disease risk between 

individuals (Ripke et al. 2014).  

There are various theories of where the "missing heritability" lies: theories include gene-gene 

interactions (epistasis), larger effects in the truly causal variants than in the SNPs, or in rare variants of 

large effect, population heterogeneity, or  underestimated environmental or epigenetic effects (both 

environment and epigenetic effects can be inherited) (Heard & Martienssen 2014).  

The power of genome-wide association studies to detect genes depends on a strong link between the 

studied phenotype and genotype. There are several reasons why there is a more modest success in 

finding genes with replicable associations with psychiatric diseases in comparison to other complex 

human diseases.  

Firstly, there is the precision to which we can diagnose psychiatric disorders today (Burmeister et al. 

2008; Schulze 2010; Plomin et al. 2009). If the phenotype cannot be quantified accurately with resultant 

misclassification of cases and controls, the power of the study is reduced. Psychiatric disorders by their 

nature are arguable less easy to objectively “measure” in comparison to other diseases that have 

reasonably precise diagnostic criteria, such as Crohn’s disease (Wellcome Trust, 2007; Webb et al. 

2008; Shi et al. 2009; Eichler et al. 2010). Another challenge will come with the recent change in 

diagnostic criteria with the publication of DSM-V (this is explained in detail in Section 2.4). While 

merging the diagnostic criteria into a single ‘substance use disorders’ cluster with varying degrees of 

severity might ease the definition of endophenotypes or of semi-quantitative approaches like symptom 

count,  care must be taken when comparing studies based on DSM-V with previously published DSM-
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IV-based work, and appropriate approaches to quantitative rather than binary phenotypes used. Further 

formal cross-validation of different diagnostic systems and tools with respect to genetic studies is 

needed. 

A more sophisticated characterization of the genetic susceptibility to AUD will most likely require (a) a 

more refined characterization  of alcohol-related phenotypes (b) advanced analytic techniques that make 

use of both array and next-generation sequencing technologies and (c) new analytical techniques to 

model gene, gene-gene, gene x environment, epigenetic, and environmental influences, with sufficiently 

massive sample sizes. Ultimately it is hoped that we will move past descriptive syndromes in psychiatry 

towards a nosology informed by disease cause (Cross-Disorder Group of the Psychiatric Genomics 

Consortium 2013). 

Secondly is sample size and power calculation. Generally for genetic studies, bigger (and better 

classified phenotypes) is better. Innovations  to increase sample size and offer longitudinal observation 

include the NIMH Research Domain Criteria (RDoC) project, which focuses on research integrating 

dimensions of behaviour and neurobiology (Cuthbert & Insel 2013). Longitudinal studies, e.g. 

following up large cohorts of twins from early childhood through adult life, have potential to give 

further insights into how genetic and environmental influences on development link with the emergence 

of clinical disorders, and also the aetiological relationships between clinical disorders and the 

occurrence of subclinical symptoms in the general population (Fagnani et al. 2011; Lin et al. 2007; 

Linney et al. 2003; van Os & Kapur 2009).  Development of an Alcohol Dependence Biobank, similar 

to the one for BP (Frye et al. 2015) and an international AD consortium would serve as a resources for 

larger sample sizes and clinical and biomarker studies of disease risk and treatment response. 
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The predominant use of current main-lifetime diagnostic categories may change to a more flexible 

approach (Owen 2011) in which endophenotypes, categorical/dimensional syndromes, or networks of 

correlated symptoms are used. Studies of simpler phenotypes, such as e.g. human height or body mass 

index, have now reached more than 250,000 participants in the world-wide endeavour to uncover the 

“genetic architecture” of complex human traits. Future larger sample sizes will increase power to detect 

a difference but with appropriate statistical techniques. GWA of endophenotypes will increase precision 

further compared with the complex and rather broad phenotypes of human psychiatric diseases 

(Burmeister et al. 2008; Plomin et al. 2009; Schulze 2010).  

Third is genetic heterogeneity. For AD, functional variations in genes involved in alcohol metabolism 

and taste modulate alcohol-related behaviours and thereby affect the individual risk for AD. In 

populations of European ancestry, in which the coding variations in ALDH and TASR238 are far less 

common, the greatest proportion of the individual genetic risk is yet unexplained and probably reflects 

the accumulating effects of multiple genes with minor individual impact.   

Large, rare CNVs may have a greater influence on the risk of one disorder than another, but the current 

evidence for the role of CNVs in AD is limited compared to SZ and BP.  It is also likely that there are 

common risk variants that are not shared between the disorders studied. While there is considerable 

genetic overlap between SZ and BP, the molecular overlap with these diagnoses and AD is not well 

established. Lastly, between the commonly occurring variants detectable by GWAS and rarer CNVs, 

there are likely to be risk variants of intermediate frequency and effect size, and also rare single-

nucleotide mutations (Sullivan et al. 2012). CNVs in AD need significant further investigation in order 

to make meaningful comparisons with other complex brain disorders. 
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High-throughput next-generation sequencing studies are underway, aimed at uncovering both inherited 

and de novo genetic variants in these ranges (Girard et al. 2011; Xu et al. 2012; Need et al. 2012; 

Gulsuner et al. 2013) . 

17.5 FUTURE DIRECTIONS 

There are a number of future avenues I would like to explore beyond this work.  

Firstly I would like to reanalyse the data using imputation methods which would help overcome some 

of the limitations of the design. Secondly we would like to secure funding for genotyping the full UCL 

ADS sample (which has doubled in size since I started) – unfortunately, GWAS funding has been 

unsuccessful thus far but is ongoing. Prof Gurling had started discussions about “iCOGA” (the 

International Collaboration on the Genetics of Alcoholism) and I think this would be an enormously 

progressive step. I would be honoured if our AD sampled could join in with a global GWAS or 

consortium like the PGC substance use disorders (SUD) group if we are able to complete genotyping. 

The Psychiatric Genomics Consortium has entered a growth phase that will, by the end of 2015, result 

in a tripling of the number of psychiatric cases with GWAS data from ∼80 000 to ∼240 000. This is 

expected to accelerate gene discovery and provide more clarity into interrelationships between complex 

psychiatric disorders (Crowley & Sakamoto 2015). 

I would also like to repeat the case vs case (phenotype A vs phenotype B) approach with larger samples 

of BPALC and SZALC, and also other psychiatric phenotypes commonly co-occurring with AD, once 

sample sizes are sufficient.  
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The use of sequential gene based scanning of genome wide data (as in VEGAS2) intrigues me because 

it may allow for smaller studies to contribute to science (an appropriate p-threshold will need to be 

decided). Risk of such an approach is missing influences in non-genic regions, which GWAS overcome, 

albeit at the expense of very large sample sizes. Approaches may include: 

1. Protein-protein interaction analysis of gene wide findings.  

2. Looking at transcriptomics analysis of data from either post mortem ADS/blood lecukocytes of living 

subjects/from animal models and overlaying that data with that from the genetics. 

Lastly, translational approaches eg convergent functional genomics (CFG) have been used to generate a 

genetic risk prediction score in AD, SZ and BP (Levey et al. 2014). This requires GWAS data and other 

genetic and gene expression data, from human and animal model studies. I would be interested to see 

whether gene expression data can be extracted from the UCL blood samples and if so to apply these 

techniques. 

As we learn more about the genetic framework of AUD, we find that different genetic variants lead to 

varying responses to treatment options, which might improve our ability to design individualized 

therapies – under the banner of personalized medicine. One example for the potential of 

pharmacogenetic approaches is the association of the OPRM1 As- n40Asp variation with the efficacy of 

the opioid antagonist naltrexone on relapse prevention (Ray et al. 2012). In the era of self-genotyping, 

more patients will be informed about their own genotypes and interested in their family histories, which 

presents with interesting clinical conundra, but also opportunities. Critical to the validity of this process 

is robust genomic, epistatic and epigenetic data.  
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17.6 FINAL REMARKS 

I hope that this work will go some small way to contributing to science and in time improved patient 

care. I am hugely grateful to all of the patients and their families who gave so much to this study. I am 

immensely thankful for researchers and colleagues upon whose shoulders I have stood this thesis, and I 

thank you the reader for bearing with me on this journey.  
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