
Software Improvement with Gin: a Case Study

Justyna Petke1 and Alexander E.I. Brownlee2

1 University College London, UK
j.petke@ucl.ac.uk

2 University of Stirling, UK
sbr@cs.stir.ac.uk

Abstract. We provide a case study for the usage of Gin, a genetic im-
provement toolbox for Java. In particular, we implemented a simple GP
search and targetted two software optimisation properties: runtime and
repair. We ran our search algorithm on Gson, a Java library for convert-
ing Java objects to JSON and vice-versa. We report on runtime improve-
ments and fixes found. We provide all the new code and data on the ded-
icated website: https://github.com/justynapt/ssbseChallenge2019.

Keywords: Genetic Improvement · Search-Based Software Engineering

1 Introduction

Genetic improvement (GI) uses automated search to improve existing software [10].
GI-evolved changes have already been incorporated into development [6,7]. Only
recently two frameworks emerged that aim to help researchers experiment with
GI: Gin [3,11] and PyGGI [1,2]. The new version of Gin provides support for
large-scale Java projects, thus we decided to use it for our study.

In this paper we aim to determine whether we can improve various software
properties using Gin. We chose Gson for the case study, as it is written in Java
and follows the Maven directory structure. The second version of Gin provides
utilities for setting up Maven and Gradle projects, so that the user only needs to
provide project name and top level directory. This way researchers can quickly
test their novel GI strategies on such projects. Several of Gin’s utilities are
method-based, thus search can be restricted to individual methods.

In this work we use Gin to generate patches for one of the most frequently
used methods of Gson. We aim to improve its runtime and fix (injected) bugs.

2 Subject Program

Gson3 is a Java library for converting Java Objects to JSON and vice-versa. It
is used by over 152,000 projects on GitHub, and there have been 39 releases
so far. It can be built with Maven or Gradle, and follows the standard project
structure. In this work we use the latest release, that is, gson-parent-2.8.5.

3 https://github.com/google/gson

https://github.com/justynapt/ssbseChallenge2019


2 Justyna Petke and Alexander E.I. Brownlee

We first ran cloc4 and the PIT mutation tool5 to get information about the
project. Gson contains 50874 lines of code, 25193 of which are in Java. The test
suite achieves 83% line coverage and 77% mutation coverage.

3 Test Suite

The test suite consists of 1051 JUnit tests, 1050 of which are runnable with
mvn test (1 test is skipped; the total runtime of the remaining 1050 is <
10 seconds). Running PIT issued warnings that two tests (com.google.gson.
functional.ConcurrencyTest.testMultiThreadDeserialization and com.google

.gson.functional.ConcurrencyTest.testMultiThreadSerialization) leave hang-
ing threads. We ran those tests using Gin’s utility, gin.util.EmptyPatchTester

(which runs all provided unit tests in the input file for a project), and indeed the
program did not terminate, unless the -j option was added, which runs tests in
a separate JVM. Therefore, we fixed those tests by adding a shutDown hook for
the ExecutorService instances at the end of each of the two faulty unit tests6.

4 Methodology

We set out to show how the latest version of the genetic improvement tool,
Gin [3], can be used for the purpose of runtime improvement as well as pro-
gram repair. Therefore, we used the same search algorithm for targeting both
objectives: genetic programming; the most frequently used strategy in genetic
improvement [10]. Each individual in the population is represented as a list of
source code edits.

4.1 Search

Following the famous GenProg algorithm structure [8], for each generation we se-
lect two parents from the previous population at random, apply 1-point crossover
to create two children, and append both parents and both children to the current
population. If the required population size is not divisible by four, we add the
original program to the population until we reach the desired number7. Finally,
we mutate each of the created individuals and calculate their fitness.

Crossover: Crossover takes two parents, i.e., a list of edits, and creates two
children: one comprising the first half of edits of parent 1 and the second half of
edits of parent 2; the second child containing the remaining edits.

4 https://cloc.org/
5 Plugin used: https://github.com/STAMP-project/pitmp-maven-plugin
6 Fixed test class is available on the submission’s website, in the input folder.
7 We decided to make this small change following insight that fixes usually require no

more that four AST node edits [9].



Software Improvement with Gin: a Case Study 3

Mutation: We use two types of mutation operators, which were introduced in
Gin [3]. The first type are constrained statement edits, that contain delete,
copy, swap and replace operations to adhere with the Java grammar. delete
simply targets a single Java statement for deletion. The remaining three edits
target matching pairs of Java statements (e.g. two assignment statements, or two
if statements). The second mutation type are Binary and Unary replacement
operators. These follow the micro-mutations in [5]: binary operator replacement
will replace e.g. == with !=, or < with >; unary operator replacement will replace
e.g. ++ with --.

Fitness: For the purpose of runtime improvement, we simply used runtime mea-
sured by the system clock, in milliseconds, as fitness. We only allowed individuals
that pass all the tests to be considered for mating in the next generation. For
the purpose of program repair, we used the number of tests failed as a fitness
measure. We only allowed individuals that compile and do not fail more tests
than the original program to move to the mating population.

4.2 Setup

For our experiments, due to time constraints, we used 10 generations with popu-
lation size of 21. For runtime improvement, we ran each test (with 2 sec. timeout)
500 times and took the total time. This is to off-set the fact that each test case
can be run in milliseconds. For program repair this condition is not necessary.

In order to establish which methods to improve, we first ran Gin’s utility
gin.util.Profiler to establish which methods are the most frequently used.
This utility uses hprof8 to check how often a method appears on the call stack,
sampling it every 10ms. This is a non-deterministic procedure, so we ran each
test 10 times to ensure the most frequently used methods are in the output file.

We implemented 4 new classes: gin.util.GP is an abstract class, which also
processes input and output; gin.util.GPSimple implements GP search; while gin

.util.GPFix and gin.util.GPRuntime extend it, implementing fitness functions.
We ran our experiments on a Lenovo ThinkPad Edge laptop with Intel Core

i5-2410M CPU @ 2.30GHz 4 processor, running 64-bit Ubuntu 18.04.2 LTS.

5 Results

Gin’s Profiler revealed that the most frequently used method is com.google.

gson.Gson.newJsonReader. However, we did not use it in our experiments as it
consisted of only three lines that essentially just instantiated JsonReader and
returned it. Thus this method is unlikely to be improvable. Therefore, we opted
to target the second most frequently used method: com.google.gson.GsonBuilder
.create. This method also contains two addition operators, so it would be inter-
esting to see if the Binary operator could find improvements. Profiler identified
78 tests that cover this method. Overall, Profiler found 585 tests on the hprof
call stack (sampled at 10ms intervals, so not all 1050 tests captured, as expected).

8 https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html


4 Justyna Petke and Alexander E.I. Brownlee

5.1 Runtime improvement

We first tried the constrained statement edits. The GP run finished in 22 min-
utes. 56 improved patches were found. The best individual found improved
runtime by 19% on the training set. The best patch found removed one line:
addTypeAdaptersForDate(datePattern, dateStyle, timeStyle, factories);9 How-
ever, when the mutant was run with mvn test, several test cases failed. This
shows that the methods used were not enough to capture the desired software
behaviour for that method.

We can attribute this to the process the Profiler uses to determine the
tests associated with a given target method. The Profiler samples the call
stack at regular intervals, so could conceivably miss some calls. It also excludes
parametrised tests. Running on a subset of the tests helps avoid overfitting to
any dominant tests in the complete set, but cannot guarantee correct behaviour
(insofar as the test suite can measure it). The only solution to this is to treat the
limited test set produced by the Profiler for a target method as a quick-running
surrogate for the whole test set, but one should still evaluate on the whole set
at intervals.

We thus ran a second experiment, with all 585 tests identified by the Profiler

for training. Since we increased the number of tests to 585 from 78, we decreased
the number of repetitions of each test by the same fraction (500 / 7.5 = 67), to
save time. The experiment finished in 40 minutes, finding 46 improved patches.

This time Gin was able to find improvements that generalised to the whole
test suite of 1050 tests. The best patch improved runtime by 24% on the training
set and swapped the following two lines:

factories.addAll(hierarchyFactories);

addTypeAdaptersForDate(datePattern, dateStyle, timeStyle, factories);

That being said, the improvement is unnoticeable, when tests are run once.
This is due to the fact that all tests run in a fraction of a second (1050 tests
finish in less than 10 seconds). Moreover, the 24% improvement amounts to 1.25
seconds, which could be due to environmental bias, as total execution time was
calculated for fitness evaluation purposes.

Even though significant improvements have not been found, there is a key
point worth noting. The test suite has a strong impact on the validity of the
results of a GI framework. Despite the evolved patch passing all tests, we doubt
that this was the intended behaviour of the software, as the addTypeAdaptersForDate

method uses the factories variable. By swapping the statements, the value of
the factories variable is changed. Thus it is crucial to re-run the full test suite at
regular intervals during the search, and before application of GI, it is important
to ensure that the test suite is adequate. Generating additional tests on the cor-
rectly running original version of the program using a tool such as EvoSuite [4]
is also advised.

9 This mutant can be obtained by running gin.PatchAnalyser with the text for the
patch found in the output file of GPRuntime.



Software Improvement with Gin: a Case Study 5

5.2 Repair

In order to inject faults, we looked at the PIT reports. We found one mutation
that was both killed by the existing test suite and could be potentially found
by our mutation operators, that is, a change of sign from +3 to −3. We thus
introduced that mutant and ran our experiment with the 78 tests identified by
Profiler to cover the GsonBuilder.create method. Since we did not repeat test
runs, this experiment was quick, running in under 2 minutes.

The original code segment affected by the mutation was as follows:
List<TypeAdapterFactory> factories = new ArrayList<TypeAdapterFactory>(

this.factories.size()+ this.hierarchyFactories.size()+ 3);

The mutant looked like this:
List<TypeAdapterFactory> factories = new ArrayList<TypeAdapterFactory>(

this.factories.size()+ this.hierarchyFactories.size()- 3);

In this case, only the Binary and Unary replacement mutations were used in
the GP. Given that we ran the process with 21 individuals and 10 generations,
210 patches were generated overall during the search. 171 of those passed all the
tests. The first patch was found in the first generation, and changed the minus
sign to a multiplication. This patch passed all 1050 tests. In this case the fix was
found quickly because of the limited search space: having limited the possible
code mutations that the GP could explore to only mutations that would be likely
to fix the bug. To fix a wider range of bugs (i.e. where we do not know the bug a
priori), the number of edit types would need to be extended to at least the wider
range included with Gin and the search would take correspondingly longer.

As in the runtime experiment, we observed that the 78 tests might not be
enough to cover all the behaviour, we ran another experiment with the 585 tests
identified by the Profiler. This time 174 fixes were found in 4 minutes. This set
contained several individuals that contained the required mutation that changed
the minus to the plus sign. However, again the first patch found changed minus
to a multiplication instead. The question arises whether the fixes found are true
fixes, or whether the test suite should be improved.

We also injected another fault, that swaps the following two statements:
factories.addAll(this.factories);

Collections.reverse(factories);

Out of 78 tests, just one failed for this mutant. GP search took 41 seconds, this
time limited to the constrained statement mutations. No fix was found. We also
ran this experiment with 585 tests, to avoid overfitting. No fix was found either.
We know the fix is in the search space, so a larger run could potentially produce
the desired fix (or different random seeds for mutation selection and individual
selection). Given that previous research found that fixes usually contain short
mutations, perhaps a different search strategy would have been more effective.
The current one almost always increases the size of each mutant by one.

Finally, we introduced a bug that copied the following line right under itself:
Collections.reverse(factories);

We ran GP with the 78 tests and 585 tests, as before. In both cases the
correct fix was found in the first generation (i.e., deleting the extra line).



6 Justyna Petke and Alexander E.I. Brownlee

6 Conclusions

We showed how Gin can be used for the purpose of program’s runtime improve-
ment and repair. It shows how quickly and easily researchers can conduct GI
experiments on large Java projects. We added a simple GP search to Gin, and
applied it to Gson. Our results show that expression-level changes are possible
with Gin that can lead to useful mutations (fixes). There are several future di-
rections. More fine-grained fitness values are possible with Gin, as it captures
the expected and actual result of tests. This could guide the search better. From
our results a question arises whether GP is the best approach for GI.

We also showed that existing test suites are not enough to capture software
behaviour. We pose that Gin can thus be used to test the strength of a given
test suite. Gin also provides a utility to generate EvoSuite tests, which could
strengthen the test suite, though currently the feature is experimental.

All data for replicability purposes is available on the dedicated website:
https://github.com/justynapt/ssbseChallenge2019.

Acknowledgements The work was funded by the UK EPSRC grant EP/P023991/1
and Carnegie Trust grant RIG008300.

References

1. An, G., Blot, A., Petke, J., Yoo, S.: PyGGI 2.0: Language independent genetic
improvement framework. In: ESEC/FSE. ACM (2019)

2. An, G., Kim, J., Yoo, S.: Comparing line and AST granularity level for program
repair using PyGGI. In: Proc. Intern. GI Workshop @ICSE. pp. 19–26. ACM (2018)

3. Brownlee, A.E.I., Petke, J., Alexander, B., Barr, E.T., Wagner, M., White, D.R.:
Gin: Genetic improvement research made easy. In: GECCO. ACM (2019)

4. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: Proc. ACM SIGSOFT symposium and the European conf. on Foun-
dations of software engineering. pp. 416–419. ACM (2011)

5. Haraldsson, S., Woodward, J., Brownlee, A., Cairns, D.: Exploring fitness and edit
distance of mutated python programs. In: EuroGP. pp. 19–34. Springer (2017)

6. Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.I., Siggeirsdottir, K.: Fixing
bugs in your sleep: how genetic improvement became an overnight success. In:
GECCO, Companion Material Proc. pp. 1513–1520. ACM (2017)

7. Langdon, W.B., Lam, B.Y.H., Petke, J., Harman, M.: Improving CUDA DNA
analysis software with genetic programming. In: Proc. of the GECCO, GECCO.
pp. 1063–1070. ACM (2015)

8. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method
for automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012)

9. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the
search space of automated program fixing. EMSE 20(1), 176–205 (2015)

10. Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White, D.R., Woodward,
J.R.: Genetic improvement of software: A comprehensive survey. IEEE Trans. Evo-
lutionary Computation 22(3), 415–432 (2018)

11. White, D.R.: GI in no time. In: GECCO, Companion Material Proc. pp. 1549–1550.
ACM (2017)

https://github.com/justynapt/ssbseChallenge2019

	Software Improvement with Gin: a Case Study

