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This paper has been prepared by the Symphony, collaboration (University of Warsaw, Uniwer-
sytet Jagielloriski, DESY/CNR and ICFO). on the occasion of the 25th anniversary of the “sim-
ple man’s models” which underlie most of the:phenomena that occur when intense ultrashort laser
pulses interact with matter. Theiphenomena in question include High-Harmonic Generation (HHG),
Above-Threshold Ionization (ATI),'and Non-Sequential Multielectron Ionization (NSMI). “Simple
man’s models” provide, both an intuitive basis for understanding the numerical solutions of the
time-dependent Schrédinger ‘equation, and the motivation for the powerful analytic approximations
generally known as the Strong-Field Approximation (SFA). In this paper we first review the SFA in
the form developed by us in the last 25 years. In this approach SFA is a method to solve the TDSE,
in which the non-perturbative interactions are described by including continuum-continuum inter-
actions in a systematic perturbation-like theory. In this review we focus on recent applications of
SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main
novel part of the presented theory concerns generalizations of SFA to: (i) time-dependent treatment
of two-electron’atoms, allowing for studies of an interplay between Electron Impact Ionization (EII)
and Resonant Excitation with Subsequent Ionization (RESI); (ii) time-dependent treatment in the
single active electron (SAE) approximation of “large” molecules and targets which are themselves
undergoingrdynamics during the HHG or ATI process. In particular, we formulate the general
expressions for the case of arbitrary molecules, combining input from quantum chemistry and quan-
tum dynamies. We formulate also theory of time-dependent separable molecular potentials to model
analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields.

We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the
age of 60.

* malciej.lewenstein@icfo.eu
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I. INTRODUCTION

A. Motivation

In the last three decades, we have witnessed incredible advances in laser technology and insthe understanding of
nonlinear laser-matter interactions, crowned recently by the award of the Nobel prize te,Gérard Meourou and Donna
Strickland [1, 2]. It is now routinely possible to produce few-cycle femtosecond (1fs = 1051 s) laser"pulses in the
visible and mid-infrared regimes [3, 4]. By focusing such ultrashort laser pulses on gas or golid targets, possibly in the
presence of nano-structures [5], the targets are subjected to an ultra-intense electric field, with peak field strengths
approaching the binding field inside the atoms themselves. Such fields permit the exploration of the interaction
between strong electromagnetic coherent radiation and an atomic or molecular system with unprecedented spatial
and temporal resolution [6]. On one hand, HHG nowadays can be used to generaté attosecond pulses in the extreme
ultraviolet [7, 8], or even in the soft X-ray regime [9]. Such pulses themselves may.be used for dynamical spectroscopy
of matter; despite carrying modest pulse energies, they exhibit excellent coherence properties [10, 11]. Combined
with femtosecond pulses they can also be used to extract information about the daser pulse electric field itself [12].
HHG sources therefore offer an important alternative to other sources of XUV and X-ray radiation: synchrotrons,
free electron lasers, X-ray lasers, and laser plasma sources. Moreover, HHG pulses can provide information about the
structure of the target atom, molecule or solid [13-15]. Of course, to decode such information from a highly nonlinear
HHG signal is a challenge, and that is why a possibly perfect, and pessibly “as analytical as possible” theoretical
understanding of these processes is in high demand. Here is the first'instanceswhere SFA offers its basic services.

In HHG, an electron is liberated from an atom or molecule through ionization, which occurs close to the maximum
of the electric field. Within the oscillating field, the electron can thus accelerate along oscillating trajectories, which
may result in recollision with the parent ion, roughly when therlaserifield approaches a zero value. Since electronic
motion is governed by the waveform of the laser electric fieldfan importan quantity to describe the electric field shape
is the so-called absolute phase or carrier-envelope phase (CEP). Control over the CEP is paramount for extracting
information about electron dynamics, and to retrieve structural information from atoms and molecules [13, 16, 17].
Control over the CEP is particularly important for HHGjwhen targets are driven by laser pulses comprising only one
or two optical cycles. In that situation the CEP determines the relevant electron trajectories, i.e. the CEP determines
whether emission results in a single or in multiple attosecond bursts of radiation [16, 18|.

The influence of the CEP on electron emissiontissalso extremely important. It was demonstrated for instance in an
anti-correlation experiment, in which the number of ATT electrons emitted in opposite directions was measured [12, 19].
Since the first proof-of-principle experiment [12], theistereo ATI technique has established itself as a direct measure
of the CEP, and demonstrated its abilityyfor single-shot measurements even at multi-kHz laser repetition rates. Both
bound-free and the rescattering continuum-c¢entinuum transitions are CEP sensitive; hence, the photoelectron distri-
bution of ATI can also be used to extraet structural information about the target. Again, theoretical understanding
of these processes and SFA which are “as analytical’as possible” are more than welcome in this line of research.

Laser-induced electron diffraction(IIED) is the technique that uses the doubly-differential elastic scattering cross-
sections to extract structural information [20=22]. Meeting the requirements to extract structural information has,
however, proven difficult due to the stringent prerequisites on the laser parameters. During recent years, the develop-
ment of new laser sources has dramatically advanced, leading to the first demonstrations of the technique [15, 23-26],
and the successful retrieval of the bond distances in simple diatomic molecules with fixed-angle broadband electron
scattering [23]. Recently, Pullen etral. [15] have exploited the full double differential cross section to image the entire
structure of a polyatomig'molecule for the first time. Again, to exploit the full potential of the recollision physics and
the intrinsic time resolution of LIED (and eventually HHG), we need the comprehensive and complete understand-
ing of the ATT and HHG processes and its theoretical, possibly analytical description [19, 27-32]. Here is the third
instance where SFACis indispemnsable.

The key for gaining/dynamicalystructural information and for realizing nonlinear dynamical spectroscopy with
HHG, ATI and, last.but not least, NSMI, however, consists in generalizations of the existing theories to the case,
when the targét in question itself undergoes dynamics beyond its SAE electronic structure. For NSMI this requires
including two, or even more electrons in the SFA theory. For molecules that would mean, for instance, developing
theory that takes into/account vibration or dissociation processes, occurring on the time scale comparable with the
laser pulSe duration:"Ab initio theory of this kind is generally too computationally intensive for numerical simulation.
Generalizations of SFA to include many electrons and/or nuclear motion are thus more than welcome.
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5 B. History of SFA
3
4 The history of SFA has at least five beginnings, many intertwined and entangled paths, and_many interfering
5 endings. The point of view presented here is dominated by the opinion of one of us (M.L.), who(started. to work on
6 the subject in 1980. The five beginnings of SFA, according to this point of view, are the following:
/ e Keldysh ionization theory. In 1964 L.V. Keldysh [33] attempted and solved analytically a veryfundamental
8 problem of tunnelling ionization of atoms in strong low-frequency oscillating electrie fields. Tnthe epochal
9 paper entitled “Ionization in the Field of a Strong Electromagnetic Wave” he derived his famoeus Bessel function
10 formulae for ionizations rates. F.H.M. Faisal [27] and H.R. Reiss [28] extended this theory to ealculate electron
11 spectra in the process to be named Above-Threshold ionization (ATT). These results were the first instances of
12 the Strong Field Approximation, named “KFR theory” after the authors. Notethat in thisinitial phase, SFA was
13 exclusively applied to ionization problems. The first experiments on ATT date from 1979 [34]; in fact, the name
14 of the observed phenomenon slowly shifted from “continuum-continuum tramnsitions” to ATI [35-37]. The first
15 observations of HHG date from 1988 [38, 39], and of non-sequential twofelectron fonization originate from 1983
16 [40, 41; for more recent reviews see 42, 43|. Keldysh theory was further developed to calculate total ionization
17 rates for various atomic species and states by M.V. Ammosov, N.B. Delone and VAP. Krainov [44]—the resulting
18 expressions are known as ADK rates. More broadly, Keldysh theory hasbeen an inspiration for many years for
19 many scholars. M.L. first learned the Keldysh theory from a preprint by L.'Davidovich et al., ICTP Trieste. In
20 fact, Davidovich later published several interesting papers on_Keldysh, theory [45-47]. In the beginning of the
21 1980s several non-perturbative, quantum-optics-inspired models of “continuum-continuum transitions” and ATI
2 were introduced by Z. Bialynicka-Birula [48], J.H. Eberly[49], K. Rzazewski [50] and others (for a review see
23 Ref. 51). These models stimulated M.L. to try to combine them with the Keldysh theory.
24 e Kroll-Watson theory. Another inspiration for the contemporary SFA came from the seminal papers of
25 N.M. Kroll and K.M. Watson on electron-atom [52] and atom-atom [53] scattering in the presence of a strong
26 electromagnetic wave. The earlier paper clearlyrdealt with, the problem of “continuum-continuum transitions”,
27 dressed by the laser field, leading to the expected Bessel-function dependence of the corresponding transition
28 amplitudes. This observation led to the formulations of.the ATI theory as a theory of multichannel decay and
29 continuum-continuum transitions, dressed by the laser field [54]. This approach, employing the relation between
30 ATT and electron scattering in the inténse laser.ficld \has been deepened and developed further in Ref. 55. In
31 the contemporary language, the results of these studies described ATI as a combination of direct tunnelling
32 processes, and rescattering processes occurringhin the laser dressed continuum. At that time, however, the
33 underlying quasi-classical theory and the simple man’s model was yet not known. It is worth noting that
34 this approach was also applied to two-electron ionization in Ref. 56, where the direct two-electron tunnelling
35 processes were analysed.
36 e Numerical studies of TDSE. Numerical simulations always played, play and will play a fundamental role
37 in our understanding of physics of matter in intense laser fields. A particularly important role was played here
38 by 1D models of one- and two-electron systems, initiated by J.H. Eberly on “Eberlonium”, also known as the
39 Rochester atom model. This series of studies allowed the description of several qualitatively important results
40 but, more importantly, it allowed=—by appropriate tuning of the parameters—the finding of accurate quantitative
41 predictions concerning ATL[57], HHG [58, 59|, stabilization of a 1D atom in the presence of a strong field of
42 high frequency [60]4-all‘of\that optimizing the “model atom for multiphoton physics” [61]. This approach was
43 very successfully ,generalized\to 1D two-electron models [62, 63], which in turn stimulated the development
44 of other quasi-1D approaches to the two-electron problems in intense laser fields. These developments were
45 very important, especially“in a view of the difficulties and computational cost of solving TDSE for helium in
46 3D [64-67; see also 68,69].»Analysis of the classical pathways for simultaneous escape of two electrons showed
47 that there arestwo saddle points located symmetrically with respect to the field polarization axis [70]. This
48 led to amodification‘of the 1D model, where electrons move along axes inclined symmetrically with respect to
49 the polarization direction [71-73]. Within this model the ionization for three active electrons was also recently
50 considered [74]. Another model, in which the center of mass movement was restricted to the polarization axis
51 was introducedby Ruiz et al. [75], and successfully applied to momentum distributions [76]—for a comparison
52 of various guasi-1D approaches, see Ref. 77.
53 Neverthelegs, the most important were investigations of the TDSE in 3D, led in those years by K. Kulander, who
54 not only developed codes for solving TDSE, but also propagation and phase matching in HHG, and collaborated
55 intensively with the top experimental groups. Several seminal papers were written on ATI [78], double ionization
56 of helium [79, 80] and phase matching in HHG [81]. The one that was the most important for the formulation of
57 the simple man’s models was the theory paper on HHG from atoms and ions in the high-intensity regime [82],
58
59
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in which the famous cut-off law for HHG was discovered: the high harmonics cease to exist above the photon
energy I, + 3.2U,, where I, is the ionization potential, and U, is the ponderomotive energy.

Classical phase-space methods. The key idea in these approaches was to mimic the evolution of the electronic
system in terms of classical trajectories, governed by the completely classical Hamiltonians, but satisfying an
initial phase-space distribution. In fact, that is why some versions of this approach were $ermed the “truncated
Wigner function” approach. Initially, these methods were proposed for microwave perturbations of atomic
systems by J. Leopold and I.C. Percival [83, 84]. They gained a lot of attention and‘pepularity in the studies
of quantum chaos and quantum dynamical localization [85]. Later, these methods were extended to the regime
of mid-infrared, and even high laser frequencies and two-electron systems. Thére are two variants of these
methods that can be distinguished: those where the initial distribution is calculated, classically [86-90], and
those which use the below-barrier tunneling approximations for the calculation of the imitial distribution [91].
The quality of classical phase-space averaging methods can be checked by ¢comparing their results with those
from the corresponding quantum-mechanical models [92]. Considerable progress,was made with these methods
on the study of the ionization yields [93, 94] and momentum distributions [95} Still, getting HHG spectra
within classical methods exclusively seems to be a complicated task—for .a récent discussion see Ref. 96. These
approaches are related to the so-called Initial Value Representation methods used in quantum chemistry [97-100],
though those methods are not purely classical, since they also account forphase shifts.

Simple man’s models. There were simple man’s models before the simple man’s model. An extended
discussion of precursors is contained in a recent review in Ref. 101, wheré the earlier quantum formulation of
“Atomic Antennas” of M.Y. Kuchiev is discussed [102], as well as early attempts by F. Brunel and P. Corkum
himself [103-105]. Essentially the same formulae as the ones, derived later in the framework of SFA for HHG
were obtained by F. Ehlotzky [106], but without the undeérlying,quasi-classical picture. The history of science
chooses its own heroes. Nowadays, the simple man’s model, alse’ known as the “three-step” or “recollision”
model, is usually attributed to P. Corkum [107], K. Kulander [82, 108], and to a conference contribution of H.
Muller. These formulations were done in the right place in the right time, and were truly seminal—they have
revolutionized the whole area! M.L. learned aboutythe simple man’s model for HHG during and immediately
after the famous NATO Workshop on Super Intense Laser Atom Physics (SILAP) in Han-sur-Lesse, Belgium,
in January of 1993 [109]. After the workshop M. Yu. Ivanov visited Saclay and stayed at M.L.’s house—that is
how our first paper on the SFA for HHG, based on simple man’s model, and co-authored by A. I’Huillier and
other colleagues, was written [110]. After along fight'with Phys. Rev. Lett., this paper was published as a Rapid
Communication in Phys. Rev. A, entitled “High-order harmonic-generation cutoff”. We termed the formula we
used to evaluate the time-dependent, dipole moment a dynamical Landau-Dykhne formula.

M.L. went to JILA in February 1993-and started to work on the long version of the theory, including a detailed
discussion of the relation of the/simple man’s model with the quasi-classical (better termed quantum-orbit)
saddle point approximations, along,with concrete calculations for what we called Gaussian models, i.e. models
in which the ground state of the atomrof ifiterest was approximated by a Gaussian function. The paper on the
theory of HHG by low-frequencydaser«fields appeared in Phys. Rev. A in 1994, and soon became a reference
paper for theorists and experimentalists working in the field [111]. During his stay in JILA M.L. worked with
K. Kulander on the extension of themiewly-formulated version of the SFA to ATI, stimulated by the observation
of the intensity-dependent rings in the high order ATI [112]. The paper that extended a quasi-classical analysis
(i.e. one based on simplexman’s.model) of rescattering processes in ATI appeared in Phys. Rev. A in 1995 [29].
On one hand, it explicitly demonstrated in which sense the SFA is a systematic perturbation theory in part
of the Hamiltonian describing the continuum-continuum transitions. On the other hand, we introduced here
for the first timenthe model atom involving a separable (non-local) potential. This kind of approach was a
generalization of the so-ealled zero-range Becker’s model [113]. Recently, it turned out to be extremely useful
in modelling HHG and ATT in molecular dimers, trimers and quadrimers [114-118]. Other uses of separable
potentials«in, the literature are discussed in Refs. 119-133.

The quantum simple man’s models, as the novel SFA was termed sometimes, proved very useful in explaining the
relation of quantum orbits to phase matching in HHG. It allowed thus to realise coherence control in high-order
harmoniics [134]; and understand the behaviour of the phase of the atomic polarization in high-order harmonic
géneration]135], which in turn allowed the construction of schemes for generation of attosecond pulse trains
using HHG [136]. The first such trains were observed in by P. Agostini et consortes in 2001 [137]. Equally well,
the ‘quantum simple man’s model allowed for explanations, both intuitive and quantitatively accurate, of the
generation of a single isolated attosecond pulse by an ultrashort, few-cycle laser pulse |7, 138-140].

The crowning of the SFA applications in the 1990s was perhaps the Science paper [141], in which theory
was confronted with the experimental results of the groups of the late B. Carré and P. Saliéres at Saclay, on
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; quantum orbits in HHG, and of G. Paulus and H. Walther at MPI Garching, on quantum orbits in ATI, driven
3 by elliptically-polarized laser fields.
4
Z C. SFA today
; Since the formulation of various versions of SFA, starting from Keldysh in 1964-1965 until the approaches based
on simple man’s models, formulated in 1993-1994, SFA kept being one of the most important theoretical tools of the
? physics of matter in intense laser fields. There are several important review articles and books thatieither describe or
10 include description of developments and applications of SFA [6, 19, 142, 143]. There wére various directions in which
N the theory of SFA developed in the recent 20 years, with many authors working on t€échnicaliissues of improving the
12 accuracy of the theory, while others generalised the theory to novel regions, as we move forward into the future [144].
1 2 We summarize here some of the main trends in this body of work:
15 e Coulomb corrections. A number of strong-field phenomena, particularlydn ionization experiments, show
16 features caused by the ion’s Coulomb potential that evade the SFA, ranging from Coulomb focusing [145] and
17 the asymmetric photoelectron spectra produced by elliptical polarizations [146]¢60 the more recent “ionization
18 surprise” of the so-called Low-Energy Structures [147|. Early work focused on including the Coulomb potential
19 through a Born series, often with a single rescattering used very suceessfully for the ATI plateau and NSDI [148],
20 but this is generally insufficient for Coulomb-dependent phenemena.» Current approaches include the use of
21 an oscillating Coulomb-wave basis for the continuum (the Coulomb-Volkov approximation [149]), the eikonal
22 inclusion of the Coulomb Hamiltonian to solve the continuum TDSE (the analytical R-matrix theory [150]) and
23 the direct modification of the SFA’s trajectory language.to include Coulomb potential influence on the action
24 and the trajectories (the Coulomb-Corrected SFA [151])¢ Tn addition to more “phenomenological” approaches (cf.
25 Refs. 152, 153) there have been very elegant approaches based on the Feynman path integral formulation [154].
2% The most recent results based on the path-integral approach are discussed in Refs. 155—158.
27 Saddle point techniques. The simple man’s model’s classical trajectories are encoded in the SFA as the
28 quantum orbits obtained as the saddle-point contributions to the oscillatory integrals. Understanding the nature
29 of these saddle points in the complex time and momentum planes [159-161] allows for a clear understanding
30 of the coherent contribution of each pathway[i4l], and it also paves the way for experiments showing the
31 contributions of other orbits [162, 163]. Technical improvements include the regularization of discontinuities at
32 the cutoff via uniform approximations [164, 165]pand the extension to multi-electron configurations [101]. On
33 the other hand, some problems, suchras the inclusion of field dressing of the ground state [166], are less amenable
34 to saddle-point analysis.
22 Applications to novel systems:, Two-electron systems. In the last two decades SFA has been successfully
37 applied to two-electron systemsiiMaost, of these approaches used SFA formulations based on S-matrix theory a
la W. Becker [142, 159], while the‘use of the physics of strong laser fields for imaging goes back to the seminal
38 Refs. 13 (for HHG) and 167 (for ATT). In fact, one could argue that two-electron experiments on cold target recoil
39 ion momentum spectroscopy (COLTRIMS) [168] pioneered the imaging methods using strong-field physics. The
40 phenomenon of interest here is the Non-Sequential Double ionization (NSDI), which occurs in accordance with
41 P. Corkum’s idea of asrecollision-driven model [107]. Still, NSDI has two faces. If the ionization potential of the
42 target ion is smallet than 3.170U,, the recolliding electron may directly cause stripping of another electron, since
43 there is enough energy for that to occur; this scenario is called Electron Impact ionization (EIT). On the other
44 hand, if the recolliding electron does not have enough energy, it may still excite the target ion to an excited
45 state, from which direct tunneling might easily take place; this scenario is known as Recollision Excitation with
46 Subsequent ionization (RESI). In EII, electrons are typically ejected step by step, with most of the quantum
47 interference effects getting washed out, and the standard SFA and quasi-classical trajectory models work very
48 well [764 142, 169=172]. The early studies of the RESI observed that time delay leads to back-to-back electron
49 ejection, and it was assumed that interferences between different channels (different intermediate excited states,
50 etc.) wereirrelevant [173, 174]. Pretty soon, however, a myriad of shapes in the electron momentum distributions
51 were observed'in RESI and, moreover, experiments were in clear contrast to the simplest SFA theories [175-
[¥) 179]. It was\then realised that the interference must be accounted for in RESI [180-182]. A lot of insight was
53 gained by the sophisticated analysis of the saddle-point approach [183]. A more complete understanding of the
54 REST plienomenon, taking into account interference effects, was only achieved recently [177, 184, 185]. All these
55 results allow, in principle, to work backwards toward the experimental data to reconstruct the states of the
56 excited e[lectl]ron involved in RESI. Amazingly, the channel interference in RESI seems to have been observed
57 recently [186].
58
59
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e Applications to novel systems: Attosecond streaking. The ideas of SFA have also been successfully

applied to the single-photon ionization of atoms by high-frequency XUV pulses in the presence of a moderately
strong infrared (IR) field, where the IR dresses the continuum and affects the final momentum:" This config-
uration, known as attosecond streaking [187, 188], is extremely sensitive to the details of Hoth fields and the
ionization process. Because of this, it is routinely used as a benchmark for ultrafast light sources, providing
direct measurements of optical waveforms [189], as well as high-temporal-resolution observations of ionization
processes [190].

Applications to novel systems: Large molecules. One of the most natural arenas forsapplication of SFA
and related theories is to the strong-field dynamics of molecules. The earliest approaches used the intense-field
many-body S-matrix theory (IMST) [191-195] later referred to as the molecular SEA"[196, 197|. This is a Bessel-
function expansion of SFA theory, which was used to model ATT ionization rates [191-193] and photoelectron
angular distributions [194-196] of molecular targets. Further work used saddle-pointi methods to link back
to the semi-classical dynamics, such as the recollision physics analysed intRefs. 21,198, for HHG [199-201],
including multi-electron effects [202], photoelectron angular distributions [197] andsspectra [203] for ATI, as well
as NSDI [204]; for reviews on these methods see Refs. 205, 206. Two related alternatives to SFA for molecules
are the so-called molecular ADK (MO-ADK) [207] and quantitative rescattering (QRS) [208] theories. This
theoretical work has also been mirrored and enhanced by substantial advances in the experimental control of
strong-field processes for molecules, including work on moleculagystructure [6; 14, 24, 209-211] and dynamics
[6, 205, 210, 212-215], electronic excitation in molecules in the XUV and X-ray energy domains [216, 217], and
the ability to follow the dynamics of an attosecond electron wave packet ejected from molecules [6, 13].

In a series of recent papers we revisited the SFA model on ATI for few=gycle infrared laser pulses [114-118]. We
compared it first with the numerical solution of the TDSE.in one (1D) and two (2D) spatial dimensions for an
atomic system [29]. We developed and generalized theré an analytigal atomic model based on a non-local (short
range) potential. In the first paper [114] we analysed ATI for an atom, followed by ATI [115] and HHG [116]
for diatomic molecules. Here we paid special attention to non-physical terms which arise in the theory if plane
waves are used instead of the exact continuum scattering states of the system. Finally, in Refs. 117 and 118,
we generalized our approach to molecular trimers and quadrimers, and attempted to describe Laser-Induced
Electron Diffraction for such targets. The ultimate goal of this theory is to characterize the time evolution of
the target (its size, configuration, its molecular orbital, its dynamical configuration, etc.) by looking at the
ATI spectrum and angular distributions, especially’in the region of high energies, corresponding to rescattering
processes.

Applications to novel systems: Selid state. In the past 5 years, the strong field community has increasingly
turned its attention to condensed mattersystems, following the observation of high-order harmonics from bulk
crystals subjected to strong laser ffields [218,219]. Our understanding of dynamics in gases, based essentially on
SFA, has recently been extended to.yield crucial insights into microscopic attosecond phenomena in condensed
matter [220-222]. The merger of st%ng field physics with solids has the potential to revolutionize contemporary
electronics [223], as well as yield ¢rucial fundamental insights into long-standing problems in condensed matter
physics. For instance, the first direct measurements of the Berry phase [224, 225] were accomplished using
HHG. These recent measurements-promise to be of great interest to the condensed-matter community, due to
the important role played by Berry phase in the anomalous Hall effect and in topological insulators, among
other fields.

Applications te movel systems: Atto-nanophysics. In the last decade SFA has been successfully applied
to situations inewhich HHG] ATT or NSMI come directly from nano-structures, for instance through plasmonic
excitations, or from atomic/molecular targets located close to nano-structures. In the latter case, plasmonic
enhanced electromagnetic fields close to the structures serve to excite the targets. Recent developments of this
area, termed atto-nanophysics, are extensively described in the review [5].

Applications to novel systems: Quantum simulators. The strong-field dynamics described by the SFA
have_very,close analogues in the motion of cold atoms in optical traps [226], particularly via the Kramers-
Henneberger correspondence between a dipole coupling and a ‘shaken’ atomic potential [227]. In the decades
since, cold‘trapped atoms have become one of the primary platforms for quantum simulation [228], and several
works have/explored the possibility of using cold-atom simulators to probe the strong-field dynamics described by
SFA [229-232], thereby allowing a complementary look at observables (like e.g. the instantaneous wavefunction,
or a full quantum state tomography on the outgoing particles) that are inaccessible to conventional experiments.
While some dedicated experimental efforts to implement this are still at the tool-building stage [233], there are
already functioning quantum simulation platforms for ultrafast physics [234], which should provide growing
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opportunities to test SFA physics in new ways. Similar complementary views on strong-field dynamics should
also be available via photonic simulation, using the natural Schrédinger-equation correspondence for optical
fibers [235].

D. The present paper

The present article is organized as follows. Section I, Introduction, covers the motivations for the paper (Subsec-
tion T A), and the past (Subsection I B) and present (Subsection IC) of SFA. In Section II(we present,a short explainer
of the basic phenomena and processes: HHG, ATI and NSMI, including representative and explanatory figures. In
Section III we review in more detail the theory, which describes the HHG and ATIsprocesses within the version of
Strong Field Approximation following Ref. 111. In particular, we present the derivation of the transition amplitudes
for both the direct and the rescattered electrons, as well as for the time-dependent. dipole moment. We develop in
detail the mathematical foundations towards the final results by starting fromusthe Hamiltonian, which describes the
atomic system and the TDSE associated to it. Section IV is devoted entirely to two-electron processes. We derive
SFA for this case in an explicit time-dependent approach, using exact eigenfunctions for the states in the one- and
two-electron continua and perturbation theory with respect to the “less-singular” parts of the continuum-continuum
matrix elements. We then analyze here the interplay between the EIl and RESI processes.

In Section V, we formulate our theory for the case when the single active electron (SAE) approximation is applied
to a molecule undergoing temporal evolution of its nuclear configuration. This is done using the Born-Oppenheimer
approximation and classical equations of motion for the nuclei. We/consider first the simplest case when the molecule’s
dynamics (vibrations, dissociations) do not affect the SAE electronic dynamics. Even in this simple case, novel effects
appear in the SFA dynamics, such as the appearance of a temporal Berry phase. In Subsection V B we go beyond this
approximation and consider the self-consistent dynamics, in’ whichh"SAE,dynamics affect nuclei and vice versa. We
conclude in Subsection V C where we present an outlook on extending our quasi-analytical model to more complex
atomic and molecular systems. Finally, in Section VI we briefly review the recent application of SFA theory to the
generation of harmonics in solid-state systems.

Appendix A discusses time dependent ADK rates.” In“Appendix B we sketch calculations of a(t)—the amplitude
of the ground state within our generalized SFA theory. \In Appendix C we introduce the model for our atomic and
molecular systems that uses a particular form'ef,a. non-local short-range separable potential. The matrix elements to
describe the direct ionization and the re-scattering processes, are then computed analytically.

We then offer additional material regarding the two-electron theory: in Appendix D we discuss the properties of
the dipole matrix elements involved, and in Appendix E we pose full forms for the two-electron integro-differential
equations derived from the TDSE. additionally we include Appendix G, where we present solutions of the RESI and
EII equations using additional approximations for the dipole matrix elements, neglecting electron-electron interaction
effects for those elements.

N
II. STRONG-FIELD PROCESSES IN AN ATOMIC GAS

Over the lifetime of strong-field physics, SFA theory has accounted for a broad variety of physical phenomena
which could not be explained by traditional perturbation theory. These phenomena involve light-matter interaction
using lasers whose field strengths, are comparable to the Coulomb force of attraction between electrons and protons.
Consequently, this can lead to the distortion of the Coulomb potential and the subsequent lowering of the barrier
to ionization in the strong-field regime. Many nonlinear ionization processes can be initiated in this regime, such as
multi-photon ionization (MPI)yabove-threshold ionization (ATI), tunnel ionization (TI), and over-the-barrier (OTB)
ionization. These processes ate shown in Fig. 1 with their operating conditions summarized in Table I. The ionization
regime of operation can be identified by the Keldysh parameter, «y, given by

1=\/5 (1

where I, is the ionization potential (i.e. the energy required to eject an electron from the ground state to the ionization
continuum), and/U,, is the ponderomotive energy (i.e. the average kinetic energy of the oscillations of a free electron
in a laser field) given by

e2&2 Ine?\3
= = =9.337 x 1072 Iy\
dmew?  8m2meeoc? x 0

9 eV

O W em—2 nm?2’

Up (2)
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where e is the elementary charge, & is the electric field amplitude, m, is the mass of an electron, wy, . \g and Iy are
the central laser frequency, wavelength and intensity, respectively, €y is the vacuum permittivity, and c is the speed
of light. We give, in the rest of this section, a brief summary of strong-field processes that are based on ATT and TI.

(a) Field Free (b) Multi-photon (c) Tunnel (d) Over-the-barrier
lonization lonization Ionization
1
1 ATI
v>>1 v <1 v <1

FIG. 1. The atomic Coulomb potentials under the influence of intense laserfields are shown for the (a) field free, (b) multi-
photon ionization, (c) tunnel ionization, and (d) over-the-barrier ionization cases. Above-threshold ionization (ATI) is also
presented (red vertical arrows) as compared to multi-photon ionization (black vertical arrows). Here, I, is the ionization
potential, and ~ is the Keldysh parameter. Figure adapted from Ref. 236.

Ionization regime Operatittg condition
Single-photon ionization (SPI) [hw > /1, > U,
Multi-photon ionization (MPI) I, > fiw > U,

Above-threshold ionization, (ATL) I, > U, > hw
Tunnel ionization (TI) WU, > I, > hw

TABLE I. The operating conditions in terms of photon energy; fw, ionization potential, I,, and ponderomotive energy, U,
are presented for single-photon ionization (SPI), multi*photon ionization (MPI), above-threshold ionization (ATI) and tunnel
ionization (TT).

A.  Above-Threshold Ionization (ATI)
A

Above-threshold ionization (ATI) isfan extension of multi-photon ionization where multiple photons are absorbed
to not only access the ionizatien continuum but to surpass the I, by more than one photon, 7w [34]. In the initial
studies of ATI there was substantial interest in determining the nature of this process, and discerning the relative
contributions of perturbative multi-photon ionization and tunnel ionization. Nowadays, ATI is considered holistically
as a process where non-pérturbative phenomena coexist with perturbative ones (see, for instance, Ref. 237).

In a typical ATI photoelectron spectrum, as shown in Fig. 2, a series of peaks are observed that correspond to each
photon absorbed above the I,,, each of which is separated by a single photon energy, fww. More strongly, ATI can be
observed in the high energy range of the photoelectron spectrum (2U, < E, < 10U,), referred to as high-order ATI
(HATTI), where redollision-based strong-field physics can appear, giving rise to elastic and inelastic scattering.

B. High-Harmonic Generation (HHG)

Attoséeond laser pulses of high-photon energies in the extreme ultraviolet (XUV) and X-ray energy region can be
produced by high-harmonic generation [6, 82, 107]. Pulse trains of attosecond radiation are generated using a multi-
cycle femtosecond driving laser pulse, as presented in Fig. 3a with the 27" — 85" harmonics shown [238]. Similarly,
a single attosecond pulse with a broadband spectrum can be generated using a near-single cycle driving laser pulse
withsa_continuous broadband spectrum, as shown in Fig. 3b [239], though other so-called ‘gating’ schemes are also
possible [240-244]. The maximum HHG cut-off energy, Fiax, that can be generated is given by the simple-man’s-
model-like E.x = 3.17U, + I, and is observed as the abrupt end to the HHG plateau.
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FIG. 2. Above-threshold ionization (ATTI) spectrum of xenon illuminated with a 50 ps, 1:05 pm laser pulse at three intensities:
(a) 2.0 x 10" W/cm?, (b)1.5 x 10® W/cm?, and (c) 1.0 x 10" W/cm?. Figlite taken from Ref. 78.

d
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FIG. 3. HHG spectrum forg(a)ta train of attosecond pulses and (b) an isolated attosecond pulse. In panel (a), argon was
illuminated with a 40fs (10-cycle), 1200 nm driving laser pulse to generate a spectrum over the 30-90eV range. In panel (b),
helium was ionized by a 12fs (1.8-eyele), 1850 nm laser pulse to generate a broadband spectrum over the entire water window
range of 284-543 eV, with the K- (orange), L- (green), and M-shell (blue) absorption edges indicated by vertical lines. Figures
in panels (a) and (b) wereladapted from Refs. 238 and 239, respectively.

These microscopic aspects.aside,, it is also important to remark that HHG is a macroscopic nonlinear optical process
that requires the coherent combination of a large number of emitters to be observed experimentally, and this requires
that specific attention be.paid to the phase-matching conditions [245], which are often the determining limitation in
the production of harmonics.

C. Inelastic Scattering: Non-Sequential Double Ionization (NSDI)

If the recollision of the returning electron (e;) with the parent ion is inelastic, then it can transfer enough energy
toreject a second electron (ez). This process is known as non-sequential double ionization (NSDI) [80], and it can
proceed through two ionization pathways upon the recollision of e; [246], as shown in Fig. 4a: (i) direct ionization of
€5, Known as electron-impact ionization (EII) [107]; or (ii) impact excitation of e; subsequently followed by its delayed
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Non-Sequential 4 -2 0 2 4
Double Ionization P« (a-u)

FIG. 4. (a) Non-sequential double ionization (NSDI) illustrated after the recollision of e; with the target ion using an atomic
Coulomb potential. After inelastic recollision, either the second electron is ejected throught (i) an electron-impact process (pink
arrow) or (ii) excited and subsequently ionized through recollision-excitation with subsequent ionization (RESI; blue arrow).
(b) The typical EII signature in a two-dimensional momentum map (pj,1, pj,2) of the longitudinal momenta of the two electrons
in atomic units (a.u.) from strong-field ionized Xe** ions. (In contrast, RESI may lead £o ‘amyriad of shapes in correlated
electron-electron distributions, and in principle occupies all four quadrants.) Panel (b)«was adapted from Ref. [246].

tunnel ionization, known as recollision-excitation with subsequent ionization (RESI) [247]. A typical signature of
NSDI, particularly in the EII regime, is the correlated detection of two electrons (e; and e3) in the same emission
direction within the two-dimensional momentum map (p1,pj,2) of the longitudinal momenta of the two electrons, as
shown in Fig. 4b.

D. Elastic Scattering: Laser-Induced Electrol Diffraction (LIED)

The highly-energetic returning electron can collide elastically andiscatter on the target ion, leading to a momentum
transfer between the electron and parent ion. This'is known as laser-induced electron diffraction (LIED) [14, 24,
210, 215, 248, 249] and it can be explained in the framework of,laser-driven electron recollision [82, 107]. Structural
information is embedded in the photoelectronmementum distribution, appearing as oscillations in the high-energy
part of spectrum corresponding to recollision-based physics (2U, < E, < 10U,) as a function of the emission angle,
as shown in Fig. 5 with a zoomed-in view of these oseillations given in the inset. It should be noted that, as opposed
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FIG. 5. “Typical /photoelectron spectrum recorded with LIED of CoHJ, with the direct photoelectrons (< 3.5 a.u.) and
rescattered electrons (> 3.5 a.u.) present. Oscillations are clearly seen in the rescattered energy range of the electron signal
thatyis.a result of the coherent molecular interference signal which is dependent on the target’s geometric structure. The inset
shows a zoomed-in view of the oscillations in the differential cross-section of the scattering energy range. Figure adapted from
Ref.248.
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to HHG, phase-matching is irrelevant for inelastic and elastic scattering processes (i.e. NSDI and LIED), since the
macroscopic observable is an incoherent combination of the emission from the different atoms in the laser focus.

III. STRONG FIELD APPROXIMATION FOR SINGLE-ELECTRON PROCESSES

Strictly speaking, neglecting nuclear motion, an atomic or molecular system interacting with astrong electric
field pulse is described by the time-dependent Schréodinger equation (TDSE) that captures both the evelution of the
(electronic) wave function and the time evolution of the physical observables. The numerical solution of the TDSE
offers a full quantum mechanical description of the laser-matter interaction processes; it has been used extensively
to study HHG [250-253] and ATI [147, 254-257] in atomic and molecular systemsiivHowever, the full numerical
integration of the TDSE in all the degrees of freedom of the system is computationally very demanding, when it is at
all possible. Moreover, a physical interpretation of the numerical results is highly nontrivial, as always for an ab initio
technique. Within thls framework, then, approximate methods are welcome, and SFA has(consistently been shown
over the years to be the workhorse tool for that role.

A. Hamiltonian and TDSE

Let us consider an atom or molecule under the influence of andintense laser field in the so-called single active
electron (SAE) approximation. In the limit when the wavelength of thedlaser )y is large compared with the Bohr
radius, ag (5.29 x 10~ m), the electric field of the laser beam arotind the interaction region can be considered spatially
homogeneous. Consequently, the interacting atoms will not experience the spatial dependence of the laser electric
field and, hence, only its time variation is taken into account—thisnis the so-called dipole approximation. Note, on
the other hand, that certain dynamical effects, even in the long-wavelength limit, can break this approximation [143].
Within this framework, the laser electric field can be.written as:

E(t) = 80 f(t) sin(wo t+ ¢0) €e.. (3)
The field of Eq. (3) has a carrier frequencyswy = QLOC, where c¢ is the speed of light, and a peak amplitude &.

We consider here that the laser field is linearly, polarized along the z direction, with a pulse envelope f(¢) and a
carrier-envelope phase ¢g. More generally, we couldiconsider time-dependent polarization, i.e. replace ye, — Eq(t).
The TDSE reads:

o R
mal‘l’(t» = H|¥(1)), (4)

where the Hamiltonian, H , describessthedaser-target system in SAE approximation, and is the sum of two terms, i.e.
H=Hy+U, (5)

where Hy is the laser-free Hamiltoniamefthe atomic or molecular system

- h2v?
Hy=— V(¢ 6
0 m + (I’)7 ( )
with V(#) the effective SAE atomic or molecular potential, m the electron mass, and U = —eE(t) - t the dipole

coupling, which deseribes the interaction of the atomic or molecular system with the laser radiation, written in the
length gauge [258,/259]|and underithe dipole approximation. Note that in atomic units, the electron charge, denoted
by e, is e = —1 a.u.,»and the Planck constant and electron mass are both set to unity, # = m = 1 a.u. In this work,
however, we kéep the explicit constants.

B. “Standard” SFA a la Lewenstein

We shall restrict ourselves to the regime of low laser frequency and relatively high intensity, where the SFA is
expected to bewvalid [27-29, 33, 55, 111] and to describe well the laser-matter interactions. This corresponds to the
tunnelling regime, where the Keldysh parameter v = /I,/2U, is less than one, v < 1. In this regime the effects of
atomic effective potential on the dynamics of electrons in the continuum are assumed to be small, and they can be
treated using perturbation theory. These observations suggest to formulate the “standard SFA” as follows:
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(i) The strong field laser does not couple with any bound state beyond the ground state, |0), so that only it and
the continuum (scattering) states, |p), are taken into account in the dynamics;

(ii) The amplitude of the ground state, a(t), is considered to be known.

(iii) The continuum states are taken from the basis of ezact scattering states, which are eigenstates via

A 1
Hylp) = —p° 7
olp) = 5 —p°Ip) (7)
of the atomic Hamiltonian with a fixed outgoing (kinetic) momentum p. The €ontinuum-continuum matrix
element from p to p’ are then decomposed into their most singular part, propertional.to iAiVy,d(p — p’), and
the “rest” [29, 55, 111]. The “rest” is then treated in a perturbative manner [29].

The following comments are necessary in order to specify more precisely the abeve points.

~
Ad (i) Based on the statement (i), the electronic state |¥(t)) that represents the'time evolution of the system is a
coherent superposition of the ground |0) and the continuum |p) states,[29, 111]:

(1)) = ot/ (a<t>|o> + [ b(p,t>|p>). ®)

The factor a(t), representing the amplitude of the ground state, is assumed to be known (see below for the ways
to evaluate or estimate it). The prefactor e»t/M represents $he phase oseillations which describe the accumulated
electron energy in the ground state (I, = —Ej is the ionizatiom potential, with Ey the ground-state energy of
the target system). Furthermore, the transition amplitude to thegontinuum states is denoted by b(p,t), and
it depends both on the kinetic momentum of the outgeing electron and the laser pulse. Note that, if needed,
other (relevant) bound states may be taken inte account in the expression (8) (cf. Refs. 260, 101, 166).

Ad (ii) There are several ways of evaluating or estimatingia(t), depending on the regime of parameters.

e First, one can use ab initio TDSE of the target system to determine the a(t). This is obviously quite costly
numerically, but it is much less costly thamsa,full solution of the TDSE which is also required to calculate
photoelectron momentum spectra or angular distributions which would need much higher precision, memory
and disk storage, and higher.computation times.

e Second, one can use any “cheap’approximate method to calculate a(t), such as phase-space averaging or
the truncated Wigner approximation,[96].

e Third, a broadly-used method is to calenlate a(t) analytically using the ionization rates according to the
Ammosov-Delone-Krainovstheory (ADK rates [44]). To this end, one generalizes these rates to depend
on time locally through the/time dependence of the laser electric field (also known as the quasi-static
approximation), which'is generally a rather straightforward task (see Appendix A). This approach is valid
in the quasi-static regime, when not only the laser frequency, but also the rate of change of the pulse
envelope function f(¢) are small—meaning that the laser pulse is longer, so that it includes several optical
periods.

e Fourth, when fthe pulseis very short, or it is long but not too strong, there is practically no depletion of the
ground statépi.e. a(t) ~ 1. This happens, for instance, for moderately long pulses when the ponderomotive
energy is lower than the saturation energy of the system (U, < Ugat)-

e Fifth, one can calculate a(t) within our SFA self-consistently. This approach was already discussed in
Ref. 111, but it turned out not to be very precise for the longer pulses—the ADK rates were giving much
bettér agreement with the exact solutions of the TDSE and with the experimental data. This approach
seems to bey however, much more adequate and precise for ultrashort, few-cycle pulses. We describe it in
detail in Appendix B.

Ad (iii) The continuum-continuum matrix element, independently of the fact whether the effective SAE potential is
short-range (as it is for model atoms and negative ions) or Coulomb-like, has the general form:

e(p|t[p’) = iehV,é(p — p') + hig(p, p’), 9)

where the part hig(p, p’) is less singular—typically the strongest singularity it contains corresponds to the on-
energy-shell gradient of the Dirac delta of p? — (p’)?. This part is responsible for rescattering effects in ATI and
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recollisions in NSMI. Note that since we insist on using the exact scattering states, the dipole matrix element
(p|t|0) (together with the rescattering continuum-continuum matrix elements) does include the full effects of
the effective SAE potential, comprising both the short-range effects as well as any long-range Coulomb effects
(if present).

Note also that the SFA in the present formulation (actually equivalent to that of Ref. 29) does not invelve plane
waves or Volkov solutions! The majority of authors, including ourselves, “erroneously” (in the view of the present
formulation) claim that SFA corresponds to the use of Volkov states in the continuwm. This is; in principle,
false and dangerous. One can use additional approximations, and approximate the, eract scattering,states by
plane waves in the calculations, but this is an additional approximation! It does simplify life and allows one to
calculate many things more easily, but it also leads to problems, especially in the'case of molecules and other
extended targets.

These problems are due to the fact that a plane wave |p) is not orthogonal to the ground state |0), so that the
matrix element (p|Rg|0) # 0, where Ry is the typical internuclear distancegwhich is just a constant vector. The
lack of orthogonality of (p|0) # 0 leads to various non-physical and misleading results in applications of, say,
“primitive” SFA to molecules (for remedies see Refs. 115, 116). We stress: no remedies are needed, on the other
hand, if the exact scattering states are used, since then the orthogonality is assured by construction.

Why, then, do the plane waves and Volkov solutions appear at all? Clearly this is due to the fact that in the
zeroth approximation of SFA we neglect the contribution of hg(p,p’). In this case, the full continuum-continuum
matrix element becomes (p|t|p’) = ihVpd(p — p’), and is exaetly equal to that obtained for plane waves and
Volkov solutions. That means that the quasi-classical action, deseribing the propagation of electrons in the
continuum, does indeed have a free electron form. For short-range effective potentials this is acceptable, but
not for the Coulomb-like ones. That is why the so-called.Coulomb corrections are easily included in (p|#|0) or
hg(p,p’), but much effort has been devoted to find Coulomb correc’tions to the action—see the Introduction for
the relevant references.

C. Solutions of the SFA equations

Our main task in this subsection will be t0 derive a general expression for the amplitude b(v,t), which then will
be used to calculate ATI spectra and angular distributions, as well as HHG spectra. After some algebra, the time
variation of the ground state amplitude, a(t), and the,transition amplitude b(v,t) read:

i) =3 [ BB - d"(p) bp.1 (10)

) 2 )
000 gl + b ) ¥p.1) + B0 - d(p)alt)

£ Bl Vab(p,t) + B() - [ &' o' D80, 5. (1)

The first term on the right-handiside of Eq. (11) represents the free phase evolution of the electron in the absence if
the oscillating laser field. dn the second term we have defined the bound-free transition dipole matrix element as

e(p[t|0) = d(p). (12)

Finally, the last two terms describe the continuum-continuum transition, Vpb(p,t), without the influence of the

scattering center, and by considering the core potential, | d*ep’ b(p’,t)g(p, p’). Here g(p,p’) denotes the rescattering
transition matrixselement, where the potential core plays an essential role:

e(plt|p’) = iehVpd(p — p') + hg(p, p’), (13)

Note that (11) is‘alinear integro-diffential equation for b(p,t). In the following, we shall describe how it is possible to
compute the transition amplitude, b(p,t), by applying the zeroth and first order perturbation theory to the solution
of the partial differential equation Eq. (11). We will split the solution of the transition amplitude, b(p,t), into two
parts: by(p,t)fand by (p,t), i.e. b(p,t) = bo(p,t) + b1(p,t). The zeroth order of our perturbation theory by(p,t) will
bercalled the direct term. It describes the transition amplitude for a laser-ionized electron that will never rescatter
with the remtaining ion. On the other hand, the first-order term, which we call the rescattered term, b1 (p,t), refers
to the electrons that, once ionized, will have a certain probability of rescattering with the potential of the parent ion.
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D. Direct-ionization amplitude

Let us consider the process in which the electron is ionized and does not return to its parent ion. Thissprogess is
modelled by the direct photoelectron transition amplitude bg(p,t). As the direct ionization proeess should have a
larger probability compared with the rescattering one [29], one can neglect the last term in Eq.(11). This is what we
refer to as the zeroth order solution:

. 2 .
i (P i
O¢bo(p,t) = 7 (Qm + Ip) bo(p,t) + 7 E(t) -d(p)a(t) + E(?) - Vpbo(ps#): (14)

The above equation is a first-order inhomogeneous differential equation, which is ‘easily solved by conventional
integration methods (see e.g. Ref. 261). Therefore, the solution can be written as

bo(p.t) = / A EW) -d(p+eAlt)/c— eA(t')/c)
i Jo (15)

A N & ,

xexp(—z/t dt [zm(p—i-eA(t)/c—eA(t)/c) —l—Ip]\/h) a(t').

’

Here, we have considered that the electron appears in the continuum with kinetic‘momentum p(t') = p+eA(t)/c—
eA(t")/c at the time ¢/, where p is the final kinetic momentum, and A(t) = —c ft E(t')dt’ is the vector potential of
the electromagnetic field, with ¢ the speed of light. In particular, the.vector,potential at the time when the electron
appears at the continuum ¢’ is A(t’), and at a certain detection tinie ¢, the,vector potential reads A(¢). In addition, it
is possible to write Eq. (15) as a function of the canonical momentum p,., defined by p. = p+ eA(t)/c, and therefore
the probability transition amplitude for the direct electrons simplifies.to that from Ref. 111, where we have eliminated
the subscript c:

¢

bo(p,t) = % /Ot df E(t')-d(p—eA(t")/c)a(t) exp(—i /t/ dt [zjn(p —eA(t)/c)* + Ip] /h) . (16)

This expression is understood as the sum of all the ionization events which occur from the time ¢’ to ¢ [141]. Then, the
instantaneous transition probability amplitude of an electron atia time t’, at which it appears into the continuum with
momentum p(t') = p — eA(t')/c, is defined byathe argument of the integral in Eq. (16). Furthermore, the exponent
phase factor in Eq. (16) denotes the “semi-classical action’; S(p,t,t'), that defines a possible electron trajectory from
the birth time ¢’ until the “detection” time ¢ [29]:

S(p, t,th).= /t/t di Hn(p —eA(t)/c)® + I,,] . (17)

As our purpose is to obtain the final transition amplitude bo(p,t), the time ¢ will be fixed at the end of the laser
field, t = tp. For our calculations, we thus define the integration time window as t € [0,tg]. Therefore, we set
E(0) = E(tr) = 0, in such a way to make sure that the electromagnetic field is a time oscillating wave and does not
have static components. The same arguments are applied to the vector potential A(t). In concrete calculations we
have defined the laser pulse,envelopelas f(t) = sin®( ‘Q*’Z%i) where N, denotes the number of total cycles.

Note that, for an arbitrary electromagnetic field, it is possible for Ay (t) # 0, i.e. vector potential does not necessarily
vanish at the end of the pulse, implying that the kinetic momentum at tp is pxin = p — eA(tr)/c; if that is the case
then it should be considéred earefully, since it is pyxi, which is detected in experiments. However, for laser pulses
that are focused away from their source and in the paraxial approximation, nonzero-area pulses of this form are not
possible, and the vector potential/can be taken as zero on both sides of the pulse.

E. Rescattering transition amplitude

In order to find a solution for the transition amplitude of the rescattered photoelectrons, by (p,t), we have considered
the rescattering, core matrix element g(p,p’) term of Eq. (11) different than zero, i.e. g(p,p’) # 0. In addition, the
first-ordér perturbation theory is applied to obtain by (p,t) by inserting the zeroth-order solution by(p,t) in the right-
hand side of Eq4(11). Then, we obtain b;(p,t) as a function of the canonical momentum p (neglecting the subscript
¢) as follows:

bi(p,t) = (h) / 0t exp [—iS(p.t. ') /1 B(Y') / i [ o AW er — AW
xE{")-d(p’ —eA(t")/c)a(t") exp [—iS(p,t',t")/h].
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This last equation contains all the information about the rescattering process. In particular, it refers to the probability
amplitude of an emitted electron at the time ¢, with an amplitude given by

E(t")-d(p' —eA(t")/c)a(t"). (19)

In this step the electron has a kinetic momentum of v'(t"") = p’ — eA(t"”)/c. The last factor, exp [—iS(p’,t',t")],
is the accumulated phase of an electron born at the time ¢’ until it rescatters at time ¢’. The.intervening term,
g(p —eA(t')/c,p’ — eA(t')/c), contains the structural matrix element of the continuuni-continuum transition at the
re-scattering time ¢’. At this particular moment in time, the electron changes its kinetic momentum from p’.—eA(t')/c
to p — eA(t')/c. We stress, however, that the term g(v,v’) does not necessarily imply that the electron returns to
the ion core.

In addition to this, the phase term exp [—iS(p,t,t’)] defines the accumulated phasesofthe electron after the rescat-
tering from the time ¢’ to the “final” one ¢ when the electron is “measured” at thé detector with momentum p. In
particular, note that the photoelectron spectrum, |b(p,tr)|?, is a coherent superposition of both solutions, by(p, tr)
and by (p, tr), together with an interference term:

b(p, tr)|* = |bo(p, tr) + b1 (P, tr)|?,
= |bo(p, tr)|* + |b1(p, tr)|* + bo(p, tr)b}(P, tr) +C-c. (20)

So far we have formulated a model, which describes the photoionization process leading to two main terms, namely,
a direct bo(p,tr) and a rescattering by (p,tr) one. As the complex tramsition amplitude, Eq. (16), is a single time
integral, it can be integrated numerically without major problems. However; the‘multiple time (“2D”) and momentum
(“3D”) integrals of the re-scattering term, Eq. (18), present an [increasingly difficult and demanding task from a
computational perspective. In order to reduce the computational difficulties, and to obtain a physical meaning of the
ATT process, one may employ saddle-point methods to evaluaterthese highly-oscillatory integrals (see Section IIIG
below for details). /S

The main challenge to calculate the AT spectrum is then the gomputation of the bound-free transition dipole matrix
element, d(p), and the continuum-continuum transition re-scattering matrix element g(p,p’) for a given atomic or
molecular system. In the Appendices, we discuss how to,do this‘analytically for a model atom or molecule with a
short-range separable potential.

~

F. Time-dependent dipole moment

Finally, to analyse the HHG we need to know the electron acceleration, or at least the time dependent electron
dipole moment. This is dominantly given.by'the zeroth order solution of the SFA equations. It is then given by the
dynamical version of the celebrated Landau-Dykhne formula,

(x(t)) = Re [h Jra i d (10" (b~ A /OB -d (p - eA(®)/c)alt)

%lexp (4 /; di Un(p —eA(D)/c)? + Ip} /h)] ;

which is then generally compared to experiment via its frequency-domain version, the Fourier transform

Q) = /oo (r(t))etr*“dt

o0

(21)

0 o t
= e[;/ dt/ dt’/dgp a*(t)d"(p — eA(t) /c)E(t') -d (p — eA(t))/c) a(t') (22)
—0 0
b1 -
X eXP(—Z’ / dt [(p —eA(t)/c)* + Ip} Jh+ th)] ,
t 2m
where () is the frequency of the emitted harmonic.

G. Saddle-point methods and quantum orbits

The SFA results as we have obtained them thus far, i.e. Eqgs. (16) and (18) for the direct- and rescattered-electron
momentum wavefunctions and Eq. (22) for the frequency-domain harmonic dipole, in what is known as their time-
integrated versions with explicit integrals over the times of ionization and recollision or recombination, are often
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perfectly sufficient for the evaluation of the relevant physical observables via a direct numerical integration. However,
they generally involve the integration of highly oscillatory terms, such as those contained in the phase factor of the
harmonic dipole in (22),

exp(—iSa(p, t,1') /1) = exp <_;L /f t {1(1) —eA(R)/e)® + Jp] a7 + mt) , (23)

L 2m

where the phase of the exponential can vary wildly, introducing extreme cancellations in thesintegrand that require
increased precision in the numerical integration to calculate correctly. Generally speaking, the phase in this factor
can be estimated by considering its scaling once the pulse amplitude & and frequency w are factored out by de-
dimensionalizing the integral in the exponent, giving contributions which scale with these-called strong-field parameter
z = Up,/w and with I,,/w. For experiments with a strong low-frequency field, both of these parameters are large, and
the exponent in Eq. (23) will quickly cover many radians without giving the rest of the integrand time to change,
giving rise to cancellations in the integral.

As mentioned earlier, this problem can be overcome by approximating any relevant oscillatory integrals using the
method of steepest descents, which approximates the integrals using the values,of the integrand at stationary points
of the action — in exactly the same way as the classical trajectories emerge,as the stationary-action points of the
Feynman path integral [141]. Using the paradigmatic case of HHG as an example; this requires us to find solutions
to the stationary-point equations over the three integration variables,

9 R N _
5 Sa(p,t,t') = 5 (p—eA')/c)*+I,=0 (24)
0 / _ Lo 2 _
ﬁSg(p,t,t )+ Q= 5 (p =€A(t)/e)” + I, = i) (25)
1 [t ~ S
VoSa(p.t.t) = — [Vl ealf/ddi =0 (26)
t/

which are often termed the tunnelling, recollision, and, refurn equations, respectively. (For other phenomena, these
should be adjusted accordingly, by e.g. dropping (25, 26)\for the direct-electron ionization amplitude.) The tunnelling
equation here, Eq. (24), is the central, determining structure, both because of its prevalence over all SFA applications
and because both of the terms on its left-hand side, 3 (p==eA(t')/c)? and I,, are ostensibly positive (for real '), which
means that solutions will only be possible if ¢’ (andpwith it, all the other variables) are complex-valued.

Within that steepest-descent approximation, then, SEA amplitudes are given by a sum over all the relevant saddle-

point roots that contribute to the deformed,integration contour,
B(Q) = Re|i Y H(ts, 14, p,)a (k) d(p, = €A(t,)/c) B(L]) - d(p, — eA(t])/c) a(t])e " nPeta /] (27)
s N

with an additional Hessian factor [H (t4t., p;) that accounts for the width of the complex-integration Gaussians being
approximated [262]. (Alternatively, it is alse possible to perform a partial saddle-point approximation over momentum
only, keeping the unique root of the return equation (26) p, = p,(t,t’) as a function of the ionization and recollision
times, and then integrate numerically.), For the full saddle-point method, the ionization time typically has a large
imaginary part and it is ¢onfined'to a'small window shortly after the peak of the field, while the recollision time comes
in a series of so-called guantum orbits that span the following periods, as shown in Fig. 6.

Typically, the only quantum orbits that contribute significantly to harmonic generation are the so-called short and
long trajectories, sliown in black and blue (resp.) in Fig. 6(b). The long trajectories, which ionize closer to the peak
of the field, have a/higher single-atom harmonic yield, but the phase-matching conditions are typically chosen to select
the contribution of the short trajectories, which are easier to phase-match. The higher-order returns (shown in red,
pink, green and purple)jwhich recollide more than one period after the ionization, typically spend too much time in
the continuum accumulating an intensity-dependent phase for them to form a macroscopically-coherent emission, but
under dedicated circumstances it is still possible to observe signatures of their presence [162, 163].

H. Polarization effects

The above analysis of quantum orbits becomes, obviously, more complex when the laser fields have more complicated
patterns of polarization beyond the simple linear one. Elliptical polarization was considered in the context of HHG
already in the pioneering papers by P. Corkum [107]: the electron trajectories in such situation form ellipses, and
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FIG. 6. Saddle-point trajectories for HHG produced by helium in a monochromatic field of wavelength 800 nm and intensity
2 x 10" W/cm?, showing (a) the energy-time relationship, (b) the saddle-point solutions in the complex time plane, and (c)
the electric field, for reference. The recollision and ionization saddlé pointsi(shown in solid and faint lines in panel panel (b))
form a series of curves in complex time, with close-to-real recollisior, times i the harmonic plateau that then veer off into
imaginary time at the cutoff. When plotted as an energy-time relationship (or, more precisely, as the harmonic order Q/w
versus the recollision time, shown in panel (a)), the saddle-point curves ‘wrap’ around the simple-man model’s purely classical
relationships. The below-threshold region, which is not ‘well'described by the SFA, is shown shaded in panel (a).

essentially miss the parent ion, leading to afapid.decrease of the HHG efficiency with increasing ellipticity. These
trajectory-based predictions were first confirmed in experiments by Budil et al. [263], and they can be used to produce
‘gating’ schemes [240-242] to produce isolated attoséeond pulses by using a time-dependent polarization that changes
across the pulse from circular to linearfand back.

The late Bertrand Carré was also among the pioneers of polarization studies in HHG. The first experimental results
of ellipticity dependence of the harmonié yield were published in Ref. 264, in which the detailed SFA theory of HHG
by an elliptically polarized laser field was investigated. The following seminal paper [265] was the first one to discuss
measurements of the (partial) polarization of high harmonics generated by elliptically polarized laser fields, with
careful comparison to SFA-based theory including propagation. This paper stimulated many researchers to search for
ways to control polarization of harmonics. The Holy Grail was to generate high-order harmonics with left- and right-
circular polarization to be able touse them to study circular dichroism in absorption—to distinguish, for instance,
chiral molecules—, or to study chiral effects in magnetism.

The rapid decrease of HHG “efficiency with ellipticity suggested looking for scenarios based around a linearly-
polarized IR driver. Pigneeringyideas were formulated by P.-M. Paul in his doctoral thesis [137], and developed
further in the group of B. Carré by Y. Mairesse, first employing two-photon absorption of one XUV and one IR
photon, and later resonant, HHG /[266, 267|, as well as HHG generated by linearly-polarized light pulses applied to
aligned molecules [268-270].

A breakthrough method was preposed by D.B. Milosevi¢ [271] and later implemented by O. Cohen, using two
circularly-polarized béams with a frequency ratio of 1:2 and opposite helicity [272], which permits the generation of
bright phase-matched cireularly-polarized extreme ultraviolet high harmonics [273; for a review see 274]. The original
method and results of Ref. 265 was developed further to completely characterize the state of elliptically-polarized
light by electron-ion veetor correlations [275], and finally to realise the complete polarimetry of high harmonics [276].
These methods haverecently been applied to HHG generated under O. Cohen’s ‘bicircular’ fields [277], providing a
clear evidence for depolarization of high harmonics.

It is worth mentioning that more laser fields with “exotic” polarization (spin) and orbital angular momentum have
been proposed recently (see Ref. 278 and references therein). These so-called polarization torus knots, proposed
invRef. 279, when applied to atoms in a form of ultrashort and ultraintense pulse, generate “exotic” harmonics
that eonserve torus-knot angular momentum, a topologically-nontrivial mixture between spin and orbital angular
momentum.
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One should also say that ellipticity and polarization effects play an important role in ATI and multielectron ion-
ization. A nice example of these ATT results is included in the Science paper of 2001 [141], where G. Paulus was able
to characterize a whole plethora of trajectories corresponding to rescattering of electrons in elliptically polarized laser
fields. In the same paper, Carré and Saliéres present spectra of high harmonics that allow one to identify. directly the
contribution of the “short” and “long” electronic trajectories.

IV. TWO-ELECTRON PROCESSES
A. Hamiltonian and states

In order to describe higher order processes we must extend this formalism to include more active electrons. We start
by formulating the SFA equations for two active electrons, this allows us to modelhigher order strong field ionization
process such as non-sequential double ionization (NSDI). We also include excited states'in the wave function to allow
for the recollision excitation with subsequent ionization (RESI) pathway of NSDI; étherwise only the direct electron
impact ionization (EII) pathway would be present. Following a similarprocedure to,the one electron case, the ansatz
for the wavefunction can be written as

[6(8)) = exp(iFot/h) (a(t) 0+ [@pue.0)lp.0)+ Y [ dBelpntlpin) + [[ dpde’ dp.p'0) |p,p'>> ,

v (28)

where |0) is the two electron ground state, |p,0)‘gives the two=electron state, where the first electron has been
promoted to a continuum scattering state with momentum'p, |p,7) is similar but the second electron is in an excited
state with a principal quantum number 1 while, |p, p") denotes both electron in continuum scattering states. The
state |n,0) could be included to allow for someradditional effects such as single electron frustrated tunnelling, but we
will neglect it for now as we are interested intwo electron effects, where this state will play almost no role. These
states are all eigenstates of the two particle Hamiltonian

2 -2
2 |33 N N .
H, = Zzzl <2m + V(rl)> + V(1 — 1), (29)
N

where p; are single particle momentum operators, V(r;) gives the interaction of each particle with the atomic/
molecular core and V(r; — ro) gives the interaction between the two electrons. Note that including the interaction
between electrons means that' none of.the two particle states introduced above can be written as products of one
particle states, e.g. |p,0) # {p)|0). . However, we can write the energy eigenvalue equations for each sector:

Hy |0) = —Eg)0) Ey = Iy, (two-electron ionization potential); (30)
2
Hy |p,0) = (ép_ - E10> Ip,0), FE4y = I, (one-electron ionization potential); (31)
m
2
Hy |p, )= <2p; — Em) Ip,7), E4,, = I, (one-electron excited-state ionization potential); (32)
m
2 2
] 4 p !
Holp,ph = (2= + 2 .
o0 = (5 + 5 ) o) (33)

Given that we are accounting for electron correlation, Fy will generally be different from 2F+(; however, often the
correlation ispweak and then this is a good approximation to make. Note that here the eigenstates |p,0), |p,n)
and |p,p’) do not denote plane-wave states in the continuum, but instead the full one- and two-electron scattering
eigenstatésswith asymptotic outgoing momenta p and p’. This explains the particular form of the eigenenergies.

Iffone assumes non-interacting electrons, this amounts to dropping the last term in Eq. (29), then the following
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substitution can be made for each of the two particle states

10) = [¢bo) =10)10), (34)

p,0) — [¢o(p)) % (Ip) [0) +[p) [0)), (35)

p,n) = [o(p,m)) = %(Im ) +p) ), (36)

p,p’) = [Yo(p, P)) = ﬁ (Ip) [P) + Ip) [P)) - (37)

Note we do not use anti-symmetric superpositions as we consider two electrons from a‘singlet spin state, so that the
spins will already be anti-symmetric. These will be eigenstates of the Hamiltonian Hy without the electron-electron
interaction term.

As in the one particle case the full Hamiltonian is given by laser-free and dipgle couplingdlamiltonians as in Eq. (5)
but now in the two particle case the dipole coupling is given by

T =— Z eB(t) - #;. = —E(t) - e(fy + i) (38)

We will proceed as before and derive the integro-differential equations fora(t), b(p,t), ¢(p,n,t) and d(p,p’,t).
However, first we will introduce the dipole matrix elements required for each possible kind of transition between the
two particle states. The matrix elements will follow the convention that the left state will have a lower or equal energy
to the right hand state. Then the dipole matrix elements candbe defined in the following way

d(p) := (Ole(1 +52)[p, 0) glp. p') = (p,0le(i +2)Ip,0)
d(p,n) := (Ole(t1 + T2)|p,7) g(p,p',n) := (p,0le(t1 + i2)[p',m) ,
d( p) < | (rl +I‘2)|p, > g(p7p/,pl/) = <p,0|€(f‘1 +f'2)|p/,p/>7 (39)
d(n) := (Olet|n),
h(p,n,p ,n) (p,nle(®1 + t2) [P0
h(p,n,p’,p") := (p.nle(t1 + £2)|p", P")s i(p,p’,p",p") = (p,p'le(t1 + £2)|p", "),

where the subindices refer to the two €lectrons. Note that, due to symmetry, the dipole matrix element from |0) to
|0) will be zero. Each matrix element has an important physical meaning, which we will discuss in some detail for
both the interacting and non-interacting cases im,the Appendix D.

N 1. Example for RESI

Here we use this formulationito recover the equations for the RESI mechanism of NSDI. The process of RESI goes
through each states in our two-electron wavefunction ansatz given by Eq. (28). Hence, it goes through the ‘chain’

0)=— [p",0) ——— [p,n) ——— [p,P’), (40)
d(p”) g(P”.pn) h(p,n,p,p’)
where the dipole matrix elements underneath are essential for the transitions between states, so must be included
to describe RESI. In Fig. 7, the complete Feynman diagram for RESI is shown. In addition to these dipole matrix
elements we include these responsible for self propagating the states

Ip;0) — [p’,0) implemented by g(p,p’), (41)
lp,n) — [p’,7") implemented by h(p,n,p’,n’) (42)
ip.p’) = [p".p") implemented by i(p,p’,p”,p"). (43)

The remaining dipole matrix elements, d(p,7), d(p,p’), and g(p,p’,p”), will not contribute significantly to RESI
and thus we can/neglect their contributions to the corresponding part of the time-dependent Schrédinger equation.
In this example we will take the simplest case where electron interaction is only considered in the necessary step of
therexcitation of the second electron. As in the case of SFA in SAE approximation, the crucial point is to determine
the most singular parts of the relevant matrix elements and the less singular “rest”. The SFA will then correspond to
the Systematic expansion of the “rest”.
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FIG. 7. The complete RESI process showing all three transitions. The three nodes marked at the times t', t” and ¢ show the
three transitions identified in the chain in Eq. (40).

Below we provide the necessary decompositions of the relevant matrix at twodevels: (a) at the level of exact
matrix elements, calculated for two-electron Hamiltonian; (b) approximated ‘mattix elements, calculated, neglecting
the electron-electron interactions. In this way we will be able to compare with, previous SFA results for RESI. We list
both expressions (a) and (b) in their most explicit form,

2e
d(p) =d(p) ~ — (p|r|01), 44
(p) =d(p) 7 (pIt]01) (44)
g(p,p’) = iehVpd(p — p’) + hig(p, p") 2iehiVyd(p — p') + figi(p, p'), (45)
h(p,n,p". 1) = dyy (ithp5(p —p') £ hh(p.p/, nQ +ed(p —p)dn, 1) (46)

~ by (iehVpd(p,— p') +hg1(p, ') + ed(p — p') (n[E]n’),
h(p,n,p’,p") ~ ed(p — p”)h(p,plam) + s (P=p')h(p,p",n)
=~ ed(p — p”) (n|#|p!) +edlp — p') (nE[p"), (47)
i(p,p’,p",p") = d(p" — p)(iehVpd(p — P”) + hg(p, P, P", P"))

+ 0(p" —p’)(iehVigo(p — ") + hg(p, P’ p", "))
+ 0(p — p"')(1€hV 0 (p' — p”) + hg(p,p’,p", p"))
+4(p.— p")(iehVy'd(p’ — p”') + hg(p,p’, ", p"))

~ §(pi=p")(iehVpd(p — p”) + hg1(p, "))
H0(p" — p)EehVpd(p — p”') + hgi(p, p”))
#0(p.— p”)(iehVpd(p' — p”) + hgi(p', p"))
+0(p = p")(iehVpd(p' — ") + hg1(p', p")) (48)

The convention that we use above is that the less singular parts of the matrix elements with tilde are calculated
“exactly”, taking into account electron-electron interaction, while the matrix with subscript 1 stem from approximate
calculation, in which we neglect the electron-electron interactions, so that these matrix elements can be obtained from
the corresponding singleelectron dipole moments, calculated in the SAE approximation. Thus fig;(p, p’) = hg(p, p’)
from the previous chapters.

In addition we have perhaps the most important matrix element that describes re-scattering of the electron accom-
panied by the excitation of the remaining electron,

g(p,p',n) =d(p —p)d(n) + hg(p,p’,n) = ed(p — p') (OF|n), + hg1(p,p’,7)- (49)

We will keep this matrix element in its entirety, but we will treat it as a perturbation.

Since we treat g(p,p’,n) as a first order perturbation, we can then keep only the most singular parts of the
remaining,matrix elements, neglecting the less singular parts such as g(p,p’). These less singular contributions can
be very interésting, leading to Coulomb effects such as distortion of interference structures in ATI [24, 280], and
should certainly receive some attention, but in the present instance we will take the most basic form of RESI and
neglect them. Thus, we will take, for instance, the single electron re-scattering g(p, p’) = 0 in the above equations.
Substituting these into the integro-differential equations (see Eq. (E1) in Appendix E) leads to a much simplified



Page 21 of 53 AUTHOR SUBMITTED MANUSCRIPT - ROPP-101177.R1

oNOYTULT D WN =

21
form:
ilt) = 1B() - [ P & @)p.)
b9 = 1 | (5 + o — Baa) (p.t) — BO(p)a(t) ~ iehB(0) - Vbl +
(P, 7, t) —% (Zf + Eop — Ew) c(p,n,t) — E(t) - /dgp’ g(p', p,n)b(p', 1) HichB()Vpc(p,ist)
d(p,p',t) —% (F;::L + h2 it Eo) d(p,p',t) — eE(t) - Y _(c(p,n, )&(DgD"n) + €, n, E®P', P, 1))
L n#0
— 2iehE(t) - (Vp + Vo )d(p,p',t) | + - - ~ (50)

The above equations contain only the terms relevant for the perturbative solution indthe first order in g(p,p’,n) —
they have thus reduced to a very simple form. Now integral solutions of each ofi\these equations can be formulated,
where d(p, p’, t) is expressed in terms of ¢(p, n,t), while é¢(p,n,t) is inderms of b(p,t), and b(p,t) is in terms of a(t),
which we assume to know (or we set to unity for the not-too-strong.and mnot-too-long driving pulses). The solutions
are as follows:

b(p”,t") = % / dt" exp -—*S (p",t',t")| d(p” — eA(t')/c)alt’), (51)
’ IS
p’ 777 I// _ / dt// /ddp// eXp|: hS (p, t//’ t/”):| E(t//) ! ( — BA(t”)/C p _ eA( //)/C 77) ( 1 //), (52)

d(p,p’,1) / dt" e de (P, p’ ,t”ﬂt) IGONSD (é(p —eA(t")/c,p’ — eA(t")/c,n) c(p'.n,t")  (53)

- n#0

(' — AW/, p — eA(t”)/en) clpy . t"')),

where
£ 1 )
(0", 11") ] Nl ot (o A0 + o — o (54)
t/
t/// 1 2
5. (0ot AT | 5o 0~ A7)/ + o - B (55)
t//
Sa (p, " 1" t)_/t dr | = (p— eA(r)/c)* + o (p/ — eA(r)/c)® (56)
p’p - £ 2m 2m p
The S-Matrix transition amplituderof this process can be related to the above expression in the following way
M(p,p’) = lim (p,p'|v(1) (57)

ERT !
= lim d(p,p',?) (58)
We get thus the final result for the RESI amplitude
d(p,p’,t) ( ) Z/ dt'”/ dt"/ dt’ /d3p" exp{ Sq(p,p’,t" t )}
n70

< B (&0~ AW ep - AW ) exp| 5. (0ot ")

h
XE(t") - g(p — A(t") /e, p" — eA(t")/c,n) exp [hs e t")} d(p” — eA@)/c)alt)

+{p' — p}> (59)
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In this expression, the three actions will be combined to give the SFA action for the RESI processes. The three
integrals with the times ¢’, ¢/ and """ can be associated with first ionization, recollision excitation and‘final ionization
respectively. The integral over momentum can be related to the intermediate momentum. These integrals can be solved
by the saddle point approximation, which makes this problem computationally tractable, as was(donenin [184; 185|.
Therein, probability distributions for monochromatic fields were calculated for the momentum (components parallel
to the laser field polarisation, where the components perpendicular to the laser field polarisation are integrated over,
as shown in Fig. 8. This shows that different pathways for the RESI process will interfere, by plotting.coherent and
incoherent sums. These are pathways related to ionization via different excited states; for argomthere are six pathways
that contribute, as well as pathways related to those via symmetries such as the indistinguishability of eleetrons.

2. Ezample for EII

Using the same logic it is easy to do the same for the EII of NSDI. Using thé same restrictions as before only the
integro-differential equation for d(p,p’,t) needs to be changed. This can easily be seén in the EII “chain” (see Fig. 9)
——— |p,P')4 (60)
g(p”,p,p’)

Here, we neglect the dipole matrix element for recollision excitation RESI contribution given by g(p, p’, n), and instead
include in a similar way the matrix element g(p, p’, p”’). We can proceedras before, and now the integro-differential
equation for d(p, p’,t) can be written out, this time it only depend§ on'b(p”, &) and is given by,

0y — |p”,0
0) 5= 19".0)

- 2,2 2../2
d(p,p/t) = —~ [ (h L p + E0> d(p,p’,t) = E(t) - /d3p” g(p,p’,p")b(p",t")

h 2m 2m
- 4
—2E(t).. (Vp +Vp)d(psp', 1) |- (61)
Then the solution can be written as
. ¢ t" .
d(p,p’,t) = % / dt” / dr’ /d3p” exp {;Sd (pyp’, 1", t)] E(t")g(p — eA(t")/c,p’ — eA(t")/c,p")
0 0

X exp [—;Sb (p”,t, t")} d(p"=eA(t)/c)a(t)). (62)

9.1x10 %
(b) l

t6.9x10 %

F46x10 2

23x10 2

24 12 00 12 24 24 12 00 12 24
P, U™ P, /U™
m =~ M ~p

FIG. 8. Momentum distribution of RESI for argon showing coherent and incoherent sums of pathways relating to different
intermediate excited states and pathways related by symmetries. Whether the sum is coherent or incoherent (denoted ¢ and i)
is given in the bottom right for both the pathways relating to symmetries and excited states respectively. The ponderomotive
energy is given by U, = 0.1 a.u.(I = 4.56 x 1013 W/CmQ) corresponding to an angular frequency w = 0.057 a.u. or wavelength
A =800 nm.
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Ultimately, both the EIT and RESI mechanism can be included in d(p,p’,¢) and it will still be integrable and, as
expected, will simply be equal to the sum of these two solutions. Note that EII is much more “classical” than RESI, i.e.,
that interference effects get washed out upon integration over momentum components perpendicular tothe driving
field polarization.

V. LARGE MOLECULES AND TARGETS IN STRONG LASER FIELDS

In this section we formulate the general problem we want to attack with the help of SFA [The Hamiltonian describing
a multi-atomic molecule or atomic cluster has the following general form:

IA{ = Hnuc + ﬁela (63)
where the nuclear hamiltonian reads
R N op2 . R =
Hywe = L V(Rq,...,Rn), 64
; i T (R4 N) (64)
with the inter-nuclear potential
N
R R 1 Z: 75 e?
V(Ri,... . Ry) =5 2, (65)
l#J B — Rl

where N is the number of nuclei involved, i enumerates theé nuclei, and R;, P; are their positions and momenta,
respectively, Z; are the nuclear charges, and M; the nuclear masses. principle, we could include more complex
nucleus-nucleus interactions, taking into account deeply-bound flectrons via effective potentials and similar methods.
We neglect here the influence of the laser electric fieldion the nueleus—they are simply too heavy to be affected by
the short laser pulses.

The electronic Hamiltonian depends parametrically on the pesitions of the nuclei, via

Z |rl_r | Z ‘r ZeE (66)

Here M is the number of electrons involved, enumerates them, and r;, p; are their positions and momenta, respec-
tively. Again, we could replace bare Coulomb potentials by the dressed effective ones. Also, we assume that the target
is large, but still smaller than the wavelength, so that a global dipole approximation holds.

A S

Born-Oppenheimer Approximation

In the following we assume that the nuclear motion is slower than that of the electrons, so we use the Born-
Oppenheimer approach. Tosthis i$iendy we first determine the electronic wave function, We({r;}2,,¢; {R;}Y,), in
Dirac’s notation denoted(as [Wa(8)), that fulfils TDSE with fixed nuclear positions

m%mel(m = (). (67)

0
0~

FIG.9. Thecomplete EI process showing the two transitions. The two nodes marked at ¢ and ¢’ show the two transitions
identified in the chain in Eq. (60).
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We define then instantaneous electronic potential for the nuclei
Ea({Ri}X1, 1) = (Pa(t)|[Ha| Pa (1)),
and treat the motion of the nuclei classically and solve the resulting Newton equations
dR; P,
dP;
dt :7VR7‘,V(R17"'7RN)7vRiEel(R15"'aRN)' (69)

The solutions of these classical equations are then inserted into the electronic TDSEgand so on. In general, it has to
be done self-consistently. We will discuss below a couple of cases when some simplifications are possible.

Single Active Electron Approximation

The theory formulated above can be reduced to a single-electron TDSE usingithe SAE approximation. In principle,
it can be done in the same way as it is done in the static case for atoms or molecules. The only difference is that
we now have to consider the fact that the effective potential must now be timerdependent through the parametric
dependence on the nuclear coordinates,

He.g + Vg (R1(2), ..., Rn(), t) — eE(t)f. (70)

_p

2m
While calculations of Veg for atoms belongs still to the domain’ of the Atomic physics, calculations of the effective
potential for molecules and, especially in the dynamical situations clearly require use of molecular physics and quantum
theoretical chemistry methods.

A. Strong FieldrApproximation for quenched molecules

The equations of the above section are very complex. There are some situations, however, when they can be radically
simplified. One example of such a situation is the instant quench, in which the molecule is suddenly stripped of, say,
one of the electrons, or photoexcited to a certain well-defined state. This can be achieved, for instance, applying an
ultrashort attosecond XUV or soft X-ray pulse'to the molecule. Right after the pulse, the molecule will find itself in
the ground state corresponding to one missing electron, or in the well-defined excited state. In both situations, the
nuclei configuration will be by no means stable. The molecule will start to vibrate, rotate, and maybe even dissociate.

If the excitation occurs to a weakly bound molecular state, the following vibrations or dissociation will occur on a
rather slow time scale of 100fs to 1pg: In that case, the HHG or ATI caused by an intense few-femtosecond pulse
may be used for an instant imaging‘of the dynamically changing molecular structure (for seminal experiments see
Refs. 213, 214). If the electron removal'or excitation occurs to a strongly-bound state, the resulting dynamics might
be much faster: stripping of eleetrons, for instance, might lead to dissociation completely controlled by the Coulomb
forces, and occurring on ghe timescalés of an atomic unit (fractions of a femtosecond). These are the situations we
want to consider in this section.

SFA and molecular dynamics

If we then apply a short femtosecond laser pulse in the mid-infrared range, we may expect that similarly as in
the standard HHG or{ATT processes, the femtosecond laser induced electronic dynamics will not affect the intrinsic
molecular dynamics. That means that, from the point of view of nuclei, we can replace the electronic Hamiltonian

f)2

Heg = o T Veg(R1(t), ..., Rn(t),t) — eB(t)i = Hy — eE(t)F, (71)
with
. p .
H() = %"“/eff(Rl(t),,RN(t),t) (72)
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The Born-Oppenheimer Newton equations for the nuclei can then be solved self-consistently, as
dR; P;
_ i 73
at — M;’ (73)
dP;
i —Vr,V(R1,...,RN) — VR, FEa(R4,...,RnN), (74)

where

Ea({Ri}L1,1) = (Ve (8) Ho({Ri} Ly, )| Ve (1))

Assuming the that the ionization during the process is weak, the contribution of the continuum part of the electronic
wavefunction will give negligible contribution to the electronic energy, so that

Ea({Ri}/L1, 1) = (Wo(t) Ho({Ri} {11, )| Wo (1)) a(t)]?, (75)

where |Ug(t)) is the time-dependent ground electronic state, and a(t) is the probability.amplitude of being in this
2 . . 2 \n . .

state. If we know |a(¢)|? (for instance, if we can assume that |a(t)|? =~ 1), then the sélutions can be simply introduced

into Eq. (75), and one can then calculate explicitly—i.e. without self-congistency conditions—both |¥o(t)) and the

corresponding continuum functions that fulfill

Eo({Ra} Yy, )1W0()) = Fio({R:}y) (1) (76)
5P Ip (1)) = Ho (RN B (77)

Both of these functions depend explicitly on time through the time dependence of the positions of the nuclei. Note,
that the equations can be even more simplified if we can simplify the effects of Ey in Eq. (74)—the equations will
not even require self-consistency! For instance, in the case of stripping of, say, K electrons, for large internuclei
distance, the only effect of Ey in Eq. (74) will be to screen the nuclei charges, that is replace Z;s by Z;s, where

ZiZi:ZiZi_K~

SFA for a quenched molecule

The expression derived above implicitly assumesithat we proceed in fact as in Section III. That is, we write the full
electronic wave function as

|\I,(t)>:eup(t)t/h+i¢3(t)( )W (t) /dBp p,t)|p( ))) (78)

where we set I,(t) = —Ey(t). The new effect here is ¢p(t) = (¥o(t)|0,¥o(t))—the Berry phase arising from project-
ing/expanding the electronic wave funictionin the time dependent basis. The equations still have practically the same
form as before; for instance the direct transition amplitude fulfills:

2

Outa(p. b+ (B (1)) bo(.0) + 1 BCO) - d(p. 01at) + B(O)- T o(p.), (79)

where we have included néw the Beiry phase in I,(t) = I,(t) + hi¢p(t). Note that the Berry phase is nonzero if and
only if the ground-state wavefunetion is complex. This typically happens if the time-reversal symmetry is broken, i.e.
for instance in the presence of a magnetic field or a so-called “artificial” gauge field. Also, the matrix element now
depends explicitly om'time, through the time dependence of the positions of the nuclei.

Generalized SFA expression for a quenched molecule

The above equations for the electronic dynamics together with the Newton equations (73) and (74), together with
the expressions for thé electronic energy (75-77), allow us to derive thus:

e The direct(ATI amplitude:

- t
2

bo(p, t) =z i df E')-d(p—eA(t")/c,t)a(t)
(80)

Xexp(—; /;df[;n( —eA(d)/e)? + ()D.
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e The re-scattering amplitude:

b(pot) = = [ espliS(o.t. )1 BW)- [ at' [ 0 g~ cAW)/e.p’ — AU MG P )
x E(t")-d(p" —eA(t")/c,t) a(t") exp[—iS(p’,t',t")/n],

where
Sttt = | i (0~ A D/ + 1,0 (2)
o The time-dependent dipole moment
(x(t)) = Re [h / ar [ *pa’ (014 (b - cA(t)/0) B(¥) A (p = AW)/c)al) (83)
cop( i [ a0 - cat/o Pl e (34)

Note that if |a(t)|? is “known”, then the solutions do not require self-consistency. Otherwise, they have to be obtained
in the manner discussed below. In the Appendix F we discuss a toy model of 1D quenched Hj molecule, looking at
qualitative and even semi-quantitative effects in HHG.

B. SFA for large targets’

Here we consider another situation: the molecule (a large target) is initially in the ground state, and is impinged
by an intense, short (few-cycle) laser pulse in the mid-infrared range. This pulse causes the ionization of the single
active electron, and induces thus structural dynamics of the target, i.e. the motion of the nuclei. Amazingly, the
expressions describing the quantities of interéstrare exvactly the same as in the previous section. The way to obtain
them, however, is much more complex: now werhave to'determine the evolution of R;(¢) and P;(t) simultaneously
and self-consistently with the dynamics of the electronic wave function, |¥e(t)).

The protocol to follow is thus:

1. Calculate the electronic state (the ground state of Hcﬁ‘),

Eel({Ri(O)}fV:pt)‘Pel(O» = Hea({Ri(0)}}L,, 0)|Wal(0)), (85)
for the initial positions of the nuclei AR, (to be able to calculate gradients).

2. Propagate the equations/for nuclei,

dR;, P;

ST 0

dP;

= —VR,V(Ry,....Ry) - VR, Ba(Ry,..., Ry), (87)
to the next time instant, t. Calculate the new {R;(#)}Y ;.
3. Calculaterthe newseleétronic state | (t)). This is the state propagated using Heg,

. d 5
ihi— [Wa(t)) = Ha({Rq(t)}i11, 1) Wa(t), (88)

dt

for the actual positions of the nuclei +AR; (to be able to calculate gradients). Note that this propagation
should be done using the SFA ansatz (78)). Calculate then

Ea({Ri()}L1, 1) = (Yar(t) Hea ({Ra(1) 111, 0)[ Wi (£) (89)

for the actual positions of the nuclei AR, (to be able to calculate gradients).
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4. Calculate
Ba({Ri(t)}/L1,1) = (Wa ()| Ha({Ri(H) L1, 0)[Ta (1)) (90)
5. Go to 2.

Obviously, the above procedure is quite complex, but it does not present giant numericalchallenges, and it is
relatively straightforward to implement. Evidently, it is much easier than solving the TDSE involving, classical (Born-
Oppenheimer) dynamics of the nuclei, the feasibility of which is not entirely obvious.

C. SFA and quantum molecular dynamics

The use of classical Newton equations for molecules in dissociation or vibration processés might be questionable.
There is a simple method of including certain aspects of the quantum motion of molecules that we describe now. Our
starting assumption is the generalization of the SFA ansatz to the full wave function: =

|U(t)) =& (Ry, ..., Ry)a(t)| Vo) + &1 (Ry, ... R /d3p p,1)|p), (91)

where &, §; are the normalized wave functions of the nuclei for the molecule with My M —1 electrons correspondingly.
As before Hog = Hy — eE(t)r, whereas

2

ﬁO:QP—m—I—%g(Rl,...,RN(t)). (92)

The electronic ground state is now time-independent, but it deesiexplicitly depend on the nuclear positions via

Ep(Ra, ..., Rv) W) = Ho| )" (93)
Similarly, the states in the continuum do not dependien time, but on the nuclear positions, entering via Hy as
p” :
—|p) = Hglp). 94
5, 1) =Ho|p) (94)
We still use the Born-Oppenheimer approximation, but in the quantum version. Also, we use different Hamiltonians
for the non-ionized and ionized part of the molecular electronic dynamics. Thus, for £y(Ry,...,Ry) we use
N, f)Q
Hyueo = L 1 V(Ry,...,R )2 (o (8) | Ho |Wo (). 95
co = Y + V(R . Ray) + o) (¥al0) ol 1) (95)
while for £ (Ry,...,Ry) we use simply
N p2
: V R4,...,Ry). 96
; 2Ml + 1 ) N) ( )

We neglect here the laser part,of the electronic energy, as well as the kinetic energy of electrons in the continuum. Note
that the equation (96) can be solved without any self-consistency conditions. As in the previous sections, equation
(95) can also be solved that'way, provided that the time dependence of |a(t)|? is known.

The last point is the derivatiomiof the SFA equation. To this end we assume that the quantum fluctuations of the
nuclear positions are shall, and replace the R; dependence in |¥y(t)) by the average R;(t) = [d°R R;|¢ (R, 1)]2.
Similarly, we replacethe Rj:dependence in the continuum part by the average R;(t) = [ d*RR;|¢1 (R, t)|?; after that
trick, the SFA equations can be.projected on the normalized functions &g 1(¢). This leads to the following modified
equations:

il % (24 1,00)) (o0 + BO - Tuba(p.0) + 1 BO)- .0 GO 0al), 97

and
ra(t) = 3 (0]l [ EPE() - d(p. Oo(p. ). (98)

As we see, théfinal equation depends only on the overlap (&;(¢)[€o(¢)), generally called the nuclear autocorrelation
function, which, despite the fact that the positions of the nuclei in each branch of the process are quite “classical”,
might' becomie very small as the positions of the nuclei in the two channels change. This can then seriously limit the
HHG and LIED signals from the process, both for the direct and re-scattering parts [212, 281, 282].
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VI. SFA FOR SOLIDS

The most important challenges of strong laser field physics concern using strong laser fields, be.it therones, used
in atto-science, or in free electron lasers (FELs), or in X-ray lasers, to characterize the statics and dynamies of the
targets. The complexity of those targets grows with their “size”: in a sense, atoms are the simplest, molecules are
much more complex, and solid state and condensed matter systems are perhaps the most,challenging, especially if we
consider strongly correlated systems.

The question of the optical response of solids has been a long-lasting subject of investigation, from the basics
of nonlinear optics [283], through studies of femtosecond X-ray sicence and the optical properties, of semiconduc-
tors [284, 285]; it is directly related to the fundamentals of attosecond optics [286] and eontemporary photoelectron
spectroscopy [287]. Before we focus on solids, let us summarize shortly the visions with atoms and molecules over the
past decade.

e Visions with atoms. In a sense, the basis for all of these applications is Ref. 111.:xHowever, to use this theory in
practice, one has to include important physical and quantitative effects,/such.a§ Coulomb focusing [288]. In the
last ten years or so, the primary focus of the work on atoms was on dynamics, in particular the dynamics of the
tunnelling processes, including the birth time of HHG photons [289], collectiveanany-electron dynamics [290],
explicit probing of the atomic wave function [291], or time resolved aute-ionization [292]; the Lund group
proposed to study the birth time of attosecond pulses using two=eolor fields [293, 294]. Recent highlights of
attacking atomic challenges with ultra-strong and ultrashort laser pulses_ include studies of the time when an
electron exits a tunnelling barrier [295], observations of electron propagation and screening on the atomic length
scale [296], and attosecond tunnelling interferometry [297]aFor a very recent discussion of these areas, see the
beautiful review on ultrafast holographic photoelectron imaging. in Ref. 298.

e Visions with molecules. These visions, obviously, ¢ome baek tgythe seminal Ref. 13, which was focused on
the reconstruction of the static molecular wave functions/from measured HHG spectra. In recent years these
visions moved very strongly forward. A few important examples (though by no means totally representative)
concern interferometry of multi-electron dynamies in molecules with HHG [202], following time-resolved chemical
reactions [214], or performing generalized moleeularhorbital tomography [299|, or observing the bending of
molecules in real time — the Renner-Teller effect using laser-induced electron diffraction [215].

e Visions with solids. This is probably themmost challenging area, especially if one thinks about strongly
correlated systems or systems with topological order.

The pioneering works on theory and éxperiments coneerning HHG in solids go back to the works of P.C. Becker et al.
and, independently, G. Petite and Ph. Martinin CEA Saclay [300-302], who developed and analyzed a “happy electron
model”. A more rigorous approach to SFA in'solids was followed by F. Faisal’s group few years later [303, 304]. Of
course, the basis to analyze HHG or LIED in solids must ivolve precise and detailed static structure calculations [305]

The whole area started to grow expongntially roughly ten years ago. Important early theory developments were
done by the S. Koch’s group [306]¢ Around 2010, the “volcano” erupts: Goulielmakis and coworkers report real-time
observation of valence electron motiod [307], while S. Ghimire et al. publish their seminal paper on observation of
high-order harmonic generation in"a bulk crystal in 2011 [218]. This is followed by a true explosion of interest in this
area: HHG generation and propagation in crystals [308], controlling dielectrics with light [309], attosecond band gap
dynamics in silicon [310], electron propagation and dielectric screening on the atomic length scale [296], and efficient
HHG in liquids [311, 312].

While the disorder of the liquid\ phase makes spectroscopic studies of its structure more complicated, the rigid
structure of solids allows for a much deeper understanding of the emission mechanisms as well as, potentially, broad
and detailed high-harmonic spectroscopy [313], real-time observation of interfering crystal electrons in HHG [314],
HHG in silicon [315], and, more recently, interferometric measurements of the dipole phase in high harmonics from
solids [316]. This is because, when an electron is released in a solid by a strong-field excitation from the valence to
the conduction band, it éxplores a continuum which contains much more structure than the quadratic band of a free
electron (as shown in{Fig. 10 and explained in depth in the review in Ref. 317), and the dispersion induced by this
structured comtinuum /produces non-harmonic motion which leads to the emission of so-called “intraband” emission
(cf. Ref318).

Moreover, in atoms, the ionized electron leaves behind a stationary hole which is bound to the parent ion and
cannot bedisplaced in space, but in solids this is no longer the case, and the motion of the hole in the valence band
also needs to 'be considered. Nevertheless, when the hole and electron meet, they can recombine and emit so-called
interband harmonics, exactly as in the atomic case (cf. Refs. 319, 320). However, despite that similarity, there are
important differences, since that recombination can happen away from the origin, the electron and hole trajectories
are Subject to more complicated dynamics in their dispersive bands, and the bands themselves contain nontrivial
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parallel-transport effects that produce, through a nonzero geometrical phase, additional ‘anomalous’ yvelocity terms
that also contribute to the harmonic emission.

The theory of HHG in solids is based on the “classical” work of Blount [321]. To a good approximation, the electronic
dynamics in a solid driven by a strong low-frequency laser pulse is governed by the semiconductor Bloch equations
(SBE) [322, 323, as derived for instance in Ref. 324:

i (K, 1) = %Sm cE(t) - d;, (K — eA(t)/c) n(K, 1) + c.c., (99)

(K, t) = f% eg(K—eA(t)/c) +eE(t) - £,(K — eA

—~

t)/c) — z% (K, t) (100)

—

— 2eE(t) - dey (K — eA(t) /o) w(K, 1),

where n,, is the population in band m, 7 is the inter-band coherence (wherefwe assume for simplicity a two-band
model), w = n.—n, is the population dlfference between the valence and conduction bands Se = —8p = 1, dypynr (k) is
the inter-band dipole moment, and £;(k) = £.(k) — &,(k) is the difference i the Berry connections of the two
bands [324, supplemental material]. These variables give rise to the harmonie,emission via the intra and inter-band
components of the total current,

Ja(t)=e Z/ PK v, (K — eAd) [e)n,, (Kit), (101)
Jorlt) = e% /ﬁd‘"’K &, (K —eAfe) 7(K, t) + c.c. (102)

L

Let us discuss with a little more detail the theoretical deseription of HHG in solids, and its similarities to SFA for
atoms. The basis for SFA is the Keldysh theory of tunnelling ionization [33]. Keldysh considered the ionization of
atoms in low frequency fields, and thus could use a'quasi-static approximation to describe the tunnelling processes.
It is worth nothing that in the orginal paper from 1965 Keldysh already could generalise his theory to the solid state,
and estimate tunneling ionization in solids. As detailed in Section I, Keldysh theory was generalized, on one hand,
by Ammosov, Delone and Krainov [44] to deseribetionization rates from complex atoms, and, on the other hand, by
Faisal and Reiss to describe ATI [28, 122]; it was also a stimulus for the present formulation of the SFA [111].

The optical response of solids (insulators and semiconductors, and to some extent even metals) to strong laser
fields is described by the semiconductor Bloch equations (99,100). In general, these equations are too complex to
solve directly other than numerically, but, as.in the atomic case, in some situations they allow us to calculate an
approximate expression for the electrouic current:

Energy

Growndsae 0 \ /

FIG. 10. Sketch of the differences between the harmonic-emission processes in atoms and solids. In atoms (left side), the
continuum band is parabolic, so the electron’s motion in the continuum does not emit harmonics, and the hole it leaves behind
remains stationary in a flat band. In a solid (right side), on the other hand, the hole can also move, and both holes and
electrons experience dispersive forces in their continuum motion, which leads to the emission of intraband harmonics. However,
when electrons and holes meet, they can also emit interband harmonics analogous to the gas-phase harmonics. Adapted from
Ref.317.
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In the atomic case, approximate analytic solutions of the TDSE are possible in the SFA, where the dynamics is
reduced to the ground state and continuum states (with bount states other than the ground state getting neglected),
and in the simplest approach Coulomb interactions are ignored. For solids, on the other hand, the‘situation is very
different from the very beginning, since we start with a many-body system of electrons in the valence band of the
crystal. In some cases, it is possible to use effective-electron descriptions of the system (and even then we\deal with
effectively non-interacting quasi-particles) and we have to include all of the particles that fill the valence band. This
is analogous to considering many filled bound states in an atom. Perhaps the best analogy to thesatomic case is
achieved by considering the solid-state dynamics using the Wannier description in the valence bond, coupled to Bloch
waves in the conduction band [222].

If the effective Fermi-liquid non-interacting quasi-electron description is a good approximation, then the response
of the solid to a strong laser pulse is well-described by a theory similar to the Keldyshdframework and to the SFA. On
the other hand, if we deal with strongly-correlated systems that cannot be described by the,effective mean-field-like
description, then one has to rely on much more rigid theoretical tools, including the effects of Coulomb interactions.
This is a challenging area, with only a few ab initio numerical studles [325, 326], though some additional headway
can be made using DFT [327 328].

Within the effective single-active-electron SFA theory, however, there is, substantially more that one can say ana-
lytically, at least on an approximate footing. Here, the current can be expressed [324]dn the form

fﬂz / dt’ / PK|dD) (K — eA(t)/c) | 1dYL(K —eA(t')/c)| EV) (1) (103)
IS () /A= (t—t) Toti () (K =6 (K . o

where S(K,t,t') is the so called quasi-classical action for the electron—hc%e and is defined according to:

S(K,t,t") = /t’ [sg(K —eA(t")/c) + eE(t" ) &g (K — eA(t")]c) — hi

T V) (K — eA(t")/c)| dt". (104)

This forms the heart of the SFA description of high-harmoniéiemission in a crystalline solid, and it contains all of
the semiclassical dynamics for the electron trajectories in the conduction band as well as the hole’s trajectory in the
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FIG. 11. Traces‘in HHG of a topological phase transition in a two-dimensional material, calculated from the semiconductor
Bloch equations (99,100) on the Haldane model in Ref. 324. (a) High-harmonic spectrum for two closely-related sets of
parameters, with equivalent bandgaps but on either side of the topological phase transition characterized with different Chern
numbers C' (b), showing a distinct suppression of even harmonics on the (trivial/nontrivial) side, despite the fact that the
symmetriesvof the Hamiltonian allow those harmonics and the bandgaps are essentially identical (c); it is only when one
considers the Berry curvature for those materials (d,e) that the differences in the spectrum can be explained.
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valence band [220, 221, 317, 329]. More recent theoretical developments concern the effects of multiple conduction
bands [330].

Traditional treatments of HHG in solids have worked in one-dimensional configurations where the geometrical-phase
element of (104) can be set to zero using an appropriate choice of gauge for the Bloch-function basi§, in which ease the
kinematics of the electron and hole wavepackets are fully determined by the band structure [220, 331, 332]., However,
there are materials where this gauge transformation is not possible, due to the existence of a Berry curvature on one
or more of the bands, and the geometric-phase terms in (104) cannot be neglected. This Berry curvature is crucial
for a wide array of solid-state effects [333-335], and it is the driving ingredient of many nontrivial phenomena. Its
presence in the SFA harmonic-emission current (103) means that it can in principle be measured via;HHG observables,
and indeed recent experimental [224, 225] and theoretical [324, 336] works show that this is the case; we showcase in
Fig. 11 some of our recent results on that front. A review on high-harmonic generation from, solids by Ghimire and
Reis was published very recently in Ref. 219.
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Appendix A: Time dependent ADK rates

This is the first section in which we remind the reader about possible way to evaluate/estimate the amplitude of the
ground state, a(t), which is the essential ingredient of our formulation of the SFA. The ADK rates apply,in principle
for arbitrary atoms, but the theory can be extended to molecules [207]. This approach can be used for pulses which
are not too short: the rate has to have time to “define itself”. The static expressions for,the ADK rates are

Wapk = |Chri+ 2(21,)%/2 /Y2 ~ImI=3/2 oxiy(—9(21,)3 /Y3 F), (A1)

where F is the peak value of the laser electric field, n* = Z/,/I,, and Z being the.charge of,the atomic/ionic core.
The other symbols are

22n*
|2 = A2
(et = T+ T DN — 1] N (42)
with T'(-) denoting the Gamma function, {* = n* — 1, and
204+ 1)(I + |m|)!
4 @D+ ]m) "

21l |m (1 — |mpk

with [, m denoting electrons initial orbital and magnetic quantum numbers.

For shorter pulses, we obtain Wapxk (t) replacing F' — F(t) = & f(t) (the rates change adiabatically with the pulse
envelope). If the laser frequency is even smaller, and the pulse shortéened we can even replace F — F(t) = |E(t)|,
i.e. the actual value of the electric field. v

Appendix B: Ground state amplitude according to SFA

Inserting the expression (15) in the equationsfor a(t), we obtain

/dt (t,t)a(t)), (B1)

where

At 1) = / AipE(1) | (p — cA(1)/c) BY)-d (b — cA()/0 -

X exp (—z’ /t ,t dt"[(p — eA(t")/c)?/2 + I,)] /h) .

In principle solving equation (Bb). in the static, quenched or even self-consistent case presents no basic difficulties. If
the pulse is longer, and the'rate of ¢hange of a(t) slow, we may replace a(t') — a(t) and obtain explicitly

a(t) = exp (—=Wsra(t))a(0), (B3)

Wsra :/Ot /Ot/’y(t,t’). (B4)

Appendix C: Model atom and molecule

where the SFA rate'is

The paradigm/examples of separable potentials used in atomic physics are zero-range potentials. In 1D, a Dirac
delta potential'can be used for this purpose. In 3D, the Dirac delta must be regularized—that is why the celebrated
pseudo-potential must be used. It has found multiple applications in the many-body theory of ultracold atomic gases
(cf. Refs: 228, 337); in strong-field physics it was elaborated by W. Becker and his collaborators [113]. In 2D the
situation is more complex due to the logarithmic divergences (cf. Ref. 338 and references therein).
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One should stress, however, that the use of separable potentials has a long history in strong-field physics [119-133].
Many of these papers deal with zero-range models, some with general separable potentials, but typically using laser
fields of constant strength and circular polarization. For such a case, one can transform the problem to,a rotating
frame in which the Hamiltonian is time-independent. The recent papers by Galstyan et al. [132, 133] are perhaps the
closest to the approach developed by us in Refs. 114-118.

In this section we discuss a useful non-local separable potential with the purpose of applicatiens for atoms, but
most importantly for large molecules. The idea will be to compute both the direct and the re-scattering transition
amplitudes [29]. These terms involve the dipole and the continuum-continuum matrix elements defined by Eqgs. (12)
and (13). Then, our main task will be devoted to find analytically the wavefunctions for the ground and scattering
states of our model potential. The Hamiltonian, H (p,p’), of the atomic system in the momentum representation can
be written as:

2

Hp,p) = 25(p-p') + V(p. D), (C1)

—9
2m
where the first term on the right-hand side is the kinetic energy operator, and the sed@hd one is the non-local potential

V(p,p’). We use non-local separable potentials that can be understood as sums of projectors on certain states. They
generally have the form

M
V(p,p) = —v Z i (P)d5(p")- (C2)

When we model molecules, each of the orbitals is typically centered in real'space at the positions of the nuclei, R;.
In the momentum representation it translates to ¢;(p) exp(ip-Ry¢;i(p), where ¢;(p) is a “smooth” function, with the
Fourier transform centered at R = 0. The above potential has genericallyyM bound states, so one can model with its
help not only the ground state of the molecule in question, but/ven some of its excited states. Alternatively it may
be used to model multielectron molecules.

Ground state

In the present Appendix we will consider M =1, only, so the models with a single bound state, but we will explore
the full richness of the orbital ¢(p) to model multicentered ground states of, in principle, arbitrary molecules. By
using the non-local separable Hamiltonian, we write the stationary Schrédinger equation as follows:

p2

EW(B) = 2 (p) —10(p) [ 60U (3)

where E denotes the energy of the waveflhction U(p). Note that we have defined the non-local potential as f/(p7 p) =
—v¢(p) d(p’), which describes the attraction'between the electron and the nucleus [29]. This potential has been chosen
such that it assures analytical solutions of/the continuum or scattering states, i.e. for states with energies £ > 0.
Note that the ground state can also be'calculated analytically. The parameter « is a constant that, as we will see,
determines the energy of the ground state. The shape of the ground state, however, can be controlled to a high
degree by the choice of afsuitable auxiliary function ¢(p), which may correspond to a multicenter molecular orbital
of arbitrary shape.
For the ground state, Wp(p), we solve the stationary Schrédinger equation in the momentum representation:

2

Y olp) —10(p) [ &P (B)VoB) =~y Vo (p), (c4)

From Eq. (C4) we easily determine the ground state:

No(p
Wop) = a2 (c5)
(3 +1p)
where, Alidenotes a normalization constant. Multiplying the last formula by ¢(p)*

on p, we obtain an equation that determines the ground state energy,

[ &plep)
1= f (1) ()

, and taking the volume integral
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The solution of the last integral in Eq. (C6) gives us the relation between the parameters I, and ~ given ¢(p). The
normalization constant fulfils

_ v [ Erloe)®
Y /(§i+1p)2' (1)

Scattering waves

Let us consider the scattering wave, ¥y, (p), with asymptotic momentum py, as a cehierent superposition of a plane
wave and an extra correction 6%y, (p):

Up, (P) = (P — Po) + 0¥, (P)- (C8)

depreciated deprecated
This state has an energy E = p3/2m. Then, the Schrédinger equation in moementuin representation reads:

2 2
pO p *
Wy, (B) = o Wi (P) ~ 19()g o LB () (),
A 5
= 22 ) 60, (p) = 10(p)0" () +40(R) [ "DV (6)5 0 (B, (c9)
2m  2m
To solve analytically the last equation, we apply elementary algebra and'the following Dirac delta distribution prop-
2 2 2
erties: (% —29)6(p—py) =0, and (% — ) 5(’)—22 — 29 + je) = 0. Finally, the correction §¥p, reads:
2mag(p)¢” (Po
§Up,(P) = )¢ (po) (C10)

(1 — A(ipo,+ €))p* — (po — i€)?)

Here, ¢, is the (positive) regularization parametersto avoid the divergence at p = pg, and A(ipg + €) is the function

A(k) = 2my [ Iﬁ;ﬁﬁ; @p’ evaluated atsk = ipy + €. The sign in front of e defines the asymptotic behaviour of the
scattering solutions. For the present cheiee, the scattered part of the wavefunction in the position representation
behaves asymptotically as exp(—ipor), d7€. asra incoming spherical wave, which is the correct behaviour for the
scattering wave functions, describing the states with asymptotic outgoing momentum pgy. The final expression for the

scattering wave functions is:

N
2my¢(p)¢* (po)

1\ = B . 11
PRI BT PO+ (g + ) (1 — (o — ) e

Dipole matrix element

The dipole matrix-element.is
d(po) = €<\I/p0‘7;hvp|\110>. (012)
Tedious, but/elementary algebra leads to:

d(po) = iheN V;;(b(po) P é(po) ! (C13)

o + I (% + I,,)
¢*(p) [(% + Ip) Vpd(p) — P ¢(p)}

(1 = A(—ipo + €))(p* — (po + ic)?) (% + Ip)

+ 2ihemyN ¢(po) / 5 d°p.
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Continuum-continuum transition matrix element

Let us consider the scattering waves obtained in Eq. (C11) and evaluate the continuum-continuum transition matrix
element of Eq. (13), i.e

e(p1|x|p2) = iehVp, 6(p1 — P2) + hg(p1, P2)- (C14)

Again after tedious (though straightforward) calculations we obtain:

. ¢(p)o* (p2)
8(P1, P2) = 2imyVp [(1 — A(ipo + €))((p? — (p2 — ie)z)] p=p1
_ 9" (p)9(p1)
— 2imyVp {(1 — A(—ip1 4+ €)((p*> — (p1 + ie)z)] p=p>

+4m*y /dd {1— mﬁflgjs(} )(m_“)z)r

¢*(p)o(P1)
Ve [(1 — A(—ipyt€)(p* = (o1 + ie)Q)} ’ (C15)

All of the above formulae are directly and easily generalized to the ecase when the Hamiltonian is time-dependent.

Appendix D: Dipole matrix elements

_ . . o . .
In the remaining appendices, we turn to the objects of the two-electron theory and their properties.

1. Dipole Matrix Elements from the ground state

The dipole matrix element given by the function.d, deals with dipole transitions from the two electron ground state
into all other admissible two electron states. This,is the analogue of the function by the same name for one electron
case, given by Eq. (12), but now there are three noen-zero variants. The first, bearing the strongest resemblance to
the one electron case, can be expressed as a sum of two terms

d(p) = (0[t1|p,0) + € (0[F2[p, 0) . (D1)

Each term will have two contributions; (1) dire¢t laser induced ionization of the electron acted on directly by the
operator, while the other electron rémain§bound in a ground state and (2) correlated ionization where the the action
of laser on one electron is transferred/to the other via electron-electron interaction, this could be through elastic
collision. This last contribution is expected/to be small and will be zero in the non-interacting case, where Eq. (D1)
simplifies to

d(p) =7 ((01 (0] 1 @Iz [p) [0) 4 (0] (0] Iy ® ¥ |0) |p)) (D2)

e
\[

2e

V2
The final expression is writtén in texms of 1-electron states and operators. This dipole matrix element is vital to most
strong field processesias it will describe the initial tunnelling step, hence it is necessary to model NSDI for both the EI
and RESI mechanism. The subscript denotes whether it is the first or second electron to be ionized, this is significant
as the second will have a much larger ionization potential, which will make it less probable and for both mechanisms
of NSDI we_will.neglect this contribution.

The other two variants of the d dipole matrix element require at least some electron interaction in all contributing
processes and so‘will both be zero in the non-interacting case. The element d(p,7) will again have two contributions,
in the first,the operator acts on an electron to ionize it and the electron-electron correlation causes the other electron
to be excited'in a ‘shake-up’ process. This would be the main term involved in the previously proposed shake-off
mechanism for NSDI [79], which has since fallen out of favour in preference of the re-collision mechanisms EII and

RESL This will be the dominant of the two contributions. In the second (presumably less likely) transition, the
laser excites an electron and the electron-electron correlation causes the second electron to be fully ionized. In both

(01]2|p) (D3)
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FIG. 12. Four main process for the matrix element g(p,p’), the top row [panels a) and b)]\;,how processes where the laser
dipole acts on the continuum state, the bottom row [panels ¢) and d)] show cases/wheredhe laser dipole acts on the ground
state and electron interaction transfers the energy to the continuum state. The right hand column includes the continuum
electrons interaction with the core potential

these possibilities the energy transfer between electron could be through direct collision or any other electron-electron
interaction, however in the first only some of the electron’s energy ds tramsferred, while in the second scenario most of
the electron’s energy will be transferred to the other one.

For the dipole matrix element d(p,p’) the only transition is one where the laser-induced ionization of an electron
through interactions between the electrons causes the otherelectron toyionize as well—in fact, this matrix element,
when dressed in the laser field, leads to collective tunnelling, as discussed in Ref. 56.

2. Dipole Matrix Elements from the scattering and ground state

The dipole matrix elements from the two eleetron scattering-ground state |p,0) are given by the function g, there
are three possible variants. The first, g(p, p/)yrelatesito the transition from the two electron continuum-ground
state |p,0) to an alternative continuum-ground state |p’,0). The leading contribution will typically come from the
laser induced change of momentum of ghe continuum state, this term should play a strong role as we expect strong
coupling between the laser and continuumnelectrons. Continuum-continuum transitions can, as in the one electron
case, also involve contributions via interactiomrthrough the single electron potential. In Eq. (13) this was described
by splitting of the continuum-continuum matrix element into two parts in the one-electron case. Alternatively, there
is the strongly correlated and less likely process, where the laser acts on the bound electron which through electron-
electron interaction changes the momentum ofthe scattering state for the other electron, without changing the state
of the original bound electron. This would be quite an exotic case and generally it is a reasonable approximation to
assume the two electrons in this state‘are some what physically separated. Of course, when an electron recollides with
the it’s parent atom/molecule then therefwill be much overlap and this term could contribute to elastic recollision
processes such as high-order abeve-threshold ionization (HATI). In Fig. 12 the four pathways discussed are shown in
the form of Feynman diagramsjthe nen-interacting cases are given by panels a) and b).

This dipole moment can be considerably simplified if we consider non-interacting electrons

g(p,p’) = 5 (Pl (0] [#1][p") 10) + (O] (p[£2/10) [P)) , (D4)

e
2
which can be writtendin terms of one particle state and operators as,

g1(p,p’) = e (pltp’). (D5)

This can be treated as before by Eq. (13),

The dipole maftrix element g(p, p’,n) deals with transitions from |p,0) to |p’,n). This will have contributions from
scattering,states/interacting with the laser to change the moment from p to p’, which simultaneously through the
electron interactions also leads to excitation of the other electron from it’s ground state into an excited state with
prineiple quantum number 7. It is crucial to include this to allow for the excitation step of the second electron in the
RESLmechanism of NSDI. Alternatively, there is the contribution that the excitation of an electron via the laser also
results in the momentum change of the scattering state from p to p’. In the non-interacting case the first pathway is
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FIG. 13. Two process from the matrix element g(p, p’, n), panel a) shows the excitation process via electron interaction required
in RESI, panel b) shows the laser induced excitation of the bound state while the continuum state remains unaffected.

a) f p| b) pl

p V pll p
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FIG. 14. Two process from the matrix element g(p,p’,p”), panel a) shows the recollision ionization process from the EI of
NSDI, panel b) shows the laser induced ionization of the bound state while théxcontinuum state remains unaffected.

has no contribution as the ground state electron cannot be excitéd without electron correlation. The second pathway
is non-zero in the case p = p’ and the dipole matrix element can,be written as

g(p, ', n) = (B — pl) (Ovf&) (D6)

The excitation via electron interaction and non-interacting pathways are depicted in panel a) and b) of Fig. 13,
respectively.

It is a very similar situation for the dipole matrix element g(p, p’, p”), except the excited state is replaced by a
scattering state with momentum p”. There are,the same kind of contributions, one where the change of momentum
of the scattering states leads through electron-electron’interaction to ionization of the bound state, this is the crucial
ionization step of the second electron in the EI mechanism of NSDI. Another possibility is the laser induced ionization
of the bound electron leads to change of.momentum of the scattering state, which could happen through the collision
of the two ionized electron. In the non-interacting case the first contribution is zero, while the second is non-zero
again if p = p’ which means the matrix.element can be simplified to

g(p,p, p”)\: ed(p~p') (02]#]p") + ed(p — p”) (02[E|p") - (D7)

The subscript two denotes that this is the laser induced ionization of a second electron, i.e. this electron comes from
a +1 ion, thus it is much less probably than the first ionization and for our purposes where we consider NSDI we will
not consider such contributions. In Fig. 14we show the EI recollision excitation pathway and also the non-interacting
pathway, in panels a) and b), réspectively.

3.  Dipole Matrix Elements from the scattering and excited states

The dipole matrix elements from the two electron continuum-excited state |p,n) are given by the function h, there
are two variants. Thedunction h(p;n, p’,n’) deals with transitions to alternate continuum-excited states. This will
have contributiens such as the laser induced recollision of the scattering state results in the excited electron moving
to a another @xcited state. This will be non-zero in the non-interacting case if either p = p’ or 7 = 7’ and the dipole
matrix element can be written as

h(p,n,p’,n") = edpy (pIt[p’) +ed(p — p') ([E|7') . (D8)

The other, function h(p,n,p’,p”’) deals with transition to continuum-continuum state |p’,p”). This will have a
contribution Where the laser induced recollision of the scattering state changes the momentum from p to p’ and
therexcited electron is ionized through electron-electron interaction. Alternatively, the laser induced ionization of the
excited electron can change the momentum of the continuum electron through their interaction. The first contribution
vaniShes in the non-interacting case, while the second contribution is non-zero if p = p’. This what leads to the final
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ionization step in the RESI mechanism of NSDI, where the excited electron tunnel ionizes via the dipole interaction.
This dipole matrix element can be written as

h(p,n,p’,p") = ed(p — p") (nlE|p’) +ed(p — ') (nlE|p"). (D9)

4. Dipole Matrix Elements from the scattering states

This dipole matrix element is between two-electron scattering states. This will mastly contribute to the final

evolution of the electrons before detection. It will have strong terms, where the laser induces a change in momentum
in one electron and the other electron remains unaffected. But it also included the strongly correlated contribution,
where the laser induces recollision/ interaction between the two electrons. The dipole matrix’element in the non-
interacting case is given by,

i(p,p’,p’,p",p") = ed(p'—p") (p|F|p") +ed(p'—p") (pIE|p"”") +ed(p—p") AP |t|p" )+ €3(p—p") (p'[t[p"") . (D10)

Appendix E: Two-Electron Integro-Differential Equations

The time variations of a(t), b(p,t), ¢(p,n,t) and d(p, p’,t) follow from TDSE for two electrons and read:

i) =~ [B0)- [ @ op.0d(e) + B0) -3 [ *p dpim0)d(e. 1)
n#0
- 4

+E(t) - / d*pd®p’ d(p,p’, t)d(p, p’)}

. 7 2 .
b(p.t) = - <2pm + Eo — E10> b(p,t) + E(t) -a(t)d*(p) + E(t) - /d"p/ b(p',t)g(p,p’)
+ E(t d*p’ c(p',n, t)glp, p’, N+ E(t) d*p'd’p” d(p’.p" . t)g(p.P’. P )1
3 f
i 2
Py t) = —¢ (;n + Ey — Em) c(pyipt) + E(t) - a(t)d*(p,n) + E(t) - /dgp’ b(p’,t)g"(p',p; )
+E(t /d?’p’c& y', )h(p,n,p',n') + E(t) / d’p'd’p" d(p’,p", t)h(p,n,p’, p )]
n’'#0
d(p,p,t) = —% (21); + —Z‘Tﬁ + Eo) d(psp’,t) + E(t) - a(t)d"(p', p) + E(2) - /d3p” b(p”,t)g"(p",p,P’)

+E( Z/d?’p”cp 1, t)h*(p”,n,p,p’) + E(1) //d3 "d’p" d(p”,p",t)i(p, D', p’ p’”)]

n#0
(E1)

Appendix F: HHG from a quenched molecule: A toy model

In this appendix we'analyze a toy 1D model of a quenched molecule Hy , or any similar diatomic molecule, stripped

of one gr more electrons, and treated in the SAE approximation. The remaining (or SAE) electron is after the rapid
stripping process, (say by an ultrashort XUV pulse) in the ground state of the model separable Hamiltonian. In the
position representation, the electron feels a potential that consists of two Dirac-delta peaks at positions £R/2; in the
momentum (wave vector) representation, that Hamiltonian reads

12k? -
H(k, k') = S—6(k = k') = Acos((k — K')R/2), (F1)
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where R is the instantaneous distance between the nuclei. Setting h;n’f = Fy = —1I,, the ground-state wave function
has the form

cos(kR/2)
Oo(k) = N——"--. F2
o) = N (F2)
By further denoting
cos(kR) m
I(/€7R) = / dk m = EeXp(—KR), (Fg)
we obtain the equation that determines the energy (through k) as
1= A(I(k,0) + I(, R)) = A (1 + exp(—kR)), (F4)
- ~
where A = mAm/h?. The normalization of the ground-state wave function is therefére fixed by
N? 13}

Similarly, for this simple model we can calculate the wave functions ofithe continuum states with the fixed outgoing
momentum p, and the dipole moment d(p) = (®,|z|Po). Here we are interested in approximate qualitative/semi-
quantitative description of HHG, so we will calculate the dipolé mement d(p) using plane waves, but employing the
careful approach of Refs. 114-118. This amounts, essentially, t6 meglecting “unphysical” terms o< R that arise because
of the non-orthogonality of plane waves and the ground state, |®g); fromythat approach, we get

o) — g 2002
) ((p/h)2 +r2)

The motion of nuclei in the simplest case can be treated classically with Coulombic repulsion. Denoting the nuclear
positions as x1, xa, with 1 — 25 = r and |r|= R;and.neglecting the electronic energy h%k(R)?/2m, we obtain

(F6)

dr 27r
T : F
dt — @ +a?)3)2’ (F7)

where Z is a “charge”, and a is the smog@thing parameter in the “Rochester” 1D version of the Coulomb potential. All
of these parameters can and, in fact, should be adjusted to mimic real molecules.

In order to get some qualitative/semisquantitative results, let us make some additional simplifying assumptions and
observations:

e The femtosecond pulse issnot t60 short, so its variation within a laser period can be neglected — we take it into
account at the end integrating over the time-dependent U, (t).

e During the dissociation of'our toy quenched molecule, kR changes from values < 1 to the ones > 1. Note that
R for the quenched molecule at the time ¢ = 0 is much smaller the the equilibrium size of the H;‘ molecule
(compare Fig. 15 and discussion below). Correspondingly, the ionization potential I, changes from I, ~ I,,(0)
to I, ~ I,,(c0)=T,(0)/4sIn other words, it undergoes a radical reduction by a factor of 4.

e The HHG spectrum cutoff for “local” contributions, i.e. electronic trajectories starting at x; and ending at x;,
changes thus from.3.2U, + I,,(0) to 3.2U, + I,,(0) /4, which for large I, is quite significant. If dissociation is very
fast, only the cutoft 3.2U, + I,,(0)/4 will be observed.

e Similarly, the efficiency and cutoff position for the “cross” contribution, i.e. electronic trajectories starting at x;
and ending.at o (and vice versa) also changes significantly with R.

e At'small R/(in the present terms kR < 1), the cutoffs for “local” and “cross” contributions are in distinguishable.
Their efficiency is comparable, but they contribute with different phases, which leads to destructive interference
(see Fig. 15, Refs. 114-118 and references therein).

e As R grows, we expect the cutoff of “cross” terms to grow, but their efficiency to decrease (see discussion below).
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As commented above, from this figure we can clearly see that there is a deep minimum for both terms, and that it
is located at the same position as for the total HHG spectra. This means that, for the case of the reéombination on
R; (dark green circle line), the electron wave packet ionized at Ry interferes with the one coming from R, and the
other way around. These minima are then generated by the destructive interference of such electron wavepackets. On
the other hand, we have seen that our short-range non-local potential is unable to accurately reproduce the positions
of the interference minima for some of the molecular orientation angles. We note, however, that, these minima are
typically washed out when an average over the molecular orientation is considered, a configuration that4s commonly
used in molecular HHG experiments.

Let us finally, discuss more quantitatively the position of the HHG cutoff for the “local” and “eross”. Terms. For
the local one, the quasi-classical theory predicts 3.17Up + I, (or 3.17Up + xI,, with 2/ 1.3 for small [,,, and = ~ 1
for large I, [111].

To this aim we repeat the saddle-point calculations from Ref. 111 for the cross trajectoriesy setting in this last
example e = 1, ¢ = 1 and w = 1, to make the expressions essentially equal to the ‘ones used in the 1994 paper. The

equation for the momentum gives
~

t
/ At (pe — A(t'))dt! = pmR, (FS)
t—r
which leads to

Dst (t7 T, R) = pst(t7 T, 0) 4 R/T7 (Fg)

where we have fixed the trajectory to the one going from —R/2 to R/2. We can now calculate the gain of kinetic
energy which should be equal to the emitted photon energy

L
Exin(t) — Exin(t — 7) = (pst (¢, 7,0) + R/7 = A(t)/2 - A(t — 7)/2) (A(t — 7) — A(t)). (F10)
Taking E(t) = cos(t), A(t) = —sin(t), we get
AFEyin(t,7) = 2U, sin(2t — 7)glsin(7) — 4iin(:_—/2)2 +2,/U, Rsin(7/2) cos(t — 7/2). (F11)

Obviously, to estimate the cutoff, we need to maximize the above expression first with respect to ¢, or better to say
t — 7/2, and then with respect to 7. The first term gives exactly 3.17U, as it does for the “local” trajectories. The
second can give maxima which are much larger, depending on R, but they occur at completely “dephased” instants
of t — 7/2 — note that when the secondfterm in, maximal, cos(t — 7/2) = %1, the first term vanishes. This is why,
although the cutoff for the the “crossed” trajectories might be very long, their efficiency for large R is not.

N
-10 —°.—Total -10
& 10 —local | 50 [,
c ——Cross = )
s 107 s 10"
£10 g10"° g
— s . qhnjflﬁ
% -14 % 14 Af\ J% b f"“
S 10 S 10 } Ty b ..M s ﬂ}
2 ¢ | T fm 1
g -16 g -16 ﬂ!“ J “
10} 10} \ (|
5 5 . L
10'18 L L . H L 10 18 L L . .'.&
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Harmonic order Harmonic order

(a) (b)

FIG. 15. Harmonic spectra Ion (w) (in logarithmic scale) of an H molecule as a function of the harmonic order calculated using
our quasi-classical SFA and for an orientation angle = 20°. (a) Local, cross and total contributions to the HHG spectrum; (b)
contributionsidepending on the recombination atom. Green circle line: recombination at Ry and light green line: recombination
at R4. The vertical lines indicate the position of the interference minima (see the text for details). Adapted from Ref. 116.
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Appendix G: RESI and EII using perturbative expressions for matrix elements

RESI We have left the dipole matrix element g(p, p’,7) unevaluated as we will deal with this next. Weneed to take
into account interactions here and to do this we can use first order perturbation theory. In the one-electron case, to
include a direct and ‘rescattering’-like contribution a perturbative series was used on the coefficients themselves. In
this case in order to get a more explicit form of the electron-electron contribution we avill use perturbation theory
on the states themselves. We can split the states into a non-interacting part and a first order approximation to the
interacting part as shown here

Ip,0) = [¢o(P)) + [¥1(P)) , (G1)
where |¢(p)) is given by the non-interacting states for |p,0) and
3.1 2m wo(pl7n)|V12‘w0(p)> 1",/
ir(e) = Y [t g R O ©2)

n’'#0

where |1o(p’,n)) is given by the non-interacting states for |p,7n). In the‘basis used dn the perturbative expansion
we have used excited states but also including the grounds state, i.e. n = 0 as'a basis to expand in. This is key to
including transition from the ground state to excited states via electromvinteraction. Substituting this into the matrix
element gives,

g(p,p’,n) = (p,0le(t1 + 2)|p’, m) (G3)
= (Yo(p)le(t1 + T2)|p’, 7) +(@u(p)le(t1 + T2)|p’, 7) (G4)

The first part is just given by the non-interacting form that we previeusly calculated for this matrix element, while
the for the second we can insert the Eq. (G2)

)) (o (0", 1) e(i1 + E2)lpsm) (G5)

g(,p',n) = es(p —p') (0u[Efn) + D / &p” (hfmewo(p DIVi2[vo(p))

= ( 12) — 2m(E10 — E177 o
=ed(p—p') (OlEn) + > /d3 oy, (1eiN g 6 (p” — p') + hg(p”, ")) +ed(p” — p') ('[En))
n'#0
2me (o (p)|Viz|¥o (', 1))
" (hQ(p2 _ p(/)Q) _ Qm(lglo _ Eln)) (GG)
= cd(p— ') (01l + Vil rp G P
v 2me (Po(p)Viz|vo(P'sm) -,
+/d3p hQ(pQ —p?z) - Qm(Eow i@ P)
+ Z P)|Vaz|vo (', 1)) (n'[En) (G7)

77760

The last line shows the differentypathways we have revealed by this expansion. Each term in the above equation
relates to a different physical process, the first is where the ground state is excited to by the laser while the scattering
state is unaffected. Thesecond term relates to the continuum electron being driven by the laser to the interact with
ground state electron causing it,to be excited, this is the most relevant one for RESI. These first two are shown
in Fig. 13. The third #erm is similar to the second except there is an additional interaction with the core for the
continuum electron; this could be from re-scattering after the RESI process has taken place. The final term excites
the second eléctron in two steps through electron interaction and the laser via an intermediate state. An additional
pathway can|be revealed if the same expansion is applied to the right ket state of Eq. (G3). This pathway is the same
as the latter,except the order of the interactions is reversed and laser excites the electron into the intermediate state
from the ground state. We did not consider this, given these pathways will not contribute to the core of the RESI
process.

Now we'make/he assumption that there will be no laser induced transitions between bound states and the matrix
element simplifies it to

;N 2me (o (p)|Viz|to(p', n))
g(p,p’n) = Vs n2(p% — p’?) — 2m(E1o — Eln)'

(G8)
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This assumption also simplifies the integro-differential equations and we can insert the calculation we performed for
g(p,p’,7n), this yields

2ie

a(t) = -~ B() / dp (01]¢[p) b(p, 1)

<h22 v’ + Ey — E1o> b(p,t) + 26\];i(t)a(t) (p|t]01) + iehE(t) - Vpb(pst)

/d3 'Yy h22m€<¢0( p)|Via|to(P', 1)) o
n#0

) 7t
— p/2) — 2m(E10 — Eln) P17 )

(hZ a +E0—E177> c(p,n,t) +E(1) /d3 ! ph22me<%(p TVflpo(e)) b(p',t)

C'(p, UE t) D 2 ( ) e Zm(Ew — E1q7)

h

~

+i€ﬁE(ﬁ)VpC(p7n,t)+2€E(t)-/dgp’ <nlf|p’>d(p,p’7t)]

+

d(p,p'.t) = 5t 5,

(h i +Eo) Ao, 0, 8) + eB(t) - 3@l . 6) (BIFln) + c(p,7, ) ' 1))
n#0

+E(t) - (Vp + Vp)(d(p,p',t) +d(p', p, t))} (G9)

h

Now we select only terms that contribute to the final probability flow into double ionized states and ignore the flow
in the opposite direction, as such we will assume a(t). = 1 isunity throughout. This simplifies the integro-differential
equations into a solvable form,

6(p, t) = —% [ (h; P’ + Fy — E10> b(p,t) + 26\];%@) (p|t]01) + tehE(t) - Vpb(p, t) (G10)
. AV / 2me (o (p, ) [Viz|vo(p')) /
C(Pﬂ?a t) - _ﬁ ( om + Eo — E117> C(P»nat) + E(t) . /d3p vp hQ(p,Q 7;2) — 2mt2EloO* Eln)b(p 7t)
+iehE(t)Vpe(p,n, t)} (G11)
. h2 2 h2 12 \
.00, =~ | (5 4 Ea o)+ CB(0) - (el (1) + 1.0 0l
n#0
+E(#) (Vp + Vp)(d(p, P, 1) +d(p, P, t))] (G12)

EII Here, we neglect the dipole matrix element for recollision excitation RESI contribution given by g(p,p’,n), and
instead include in a®imilar way-the matrix element g(p, p’, p”’). We can proceed as before splitting the wavefunction
into an non-interacting part. and an interacting perturbation, the perturbation is given by

|¢1 // d3kd3k/ 27’;7/2 iO(kkk/)gl)QwO( )> ‘wO(kz k/)> ) (G13)

Then removing dipelé transitions for the second electron from the bound state to the continuum to keep only the EI
mechanism for thie g(p, p’, p”) matrix elements yields

2m (¢o(p', p")[Vi2[¢o(P)))

! i
= 2 ’ "
g(p7 P,p ) (Vp + vp ) hz(pQ _p/2 /’2 ElO)

(G14)

Now the integro-differential equation for d(p, p’,t) can be written out, this time it only depends on b(p”, ") and is
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given by,

. . h2 2 h2 12
d(p,p’,t)=—%l<—p+ P

2m 2m

B ) dpop' )+ 2B(0) - [ B 0o )V + Vi)

+ E(t) : (VP + VP')(d(p7 pla t) + d(pla pa t))] .

Then the solution can be written as

t 2 1z Vi
d(p,p/,t) =i/ dt" 2€E(t//)~/d3p// b(p”,t”)(Vp+Vp/) m<¢0(p )| 12|¢0

0 hp"™ — (p — A (t"))?) = Eno

X exp [%Sd (p,p’,t", t)] (G16)

ally both the EI and RESI
, will simply be equal to the

Using the same equations for b(p”,t") and Sy (p, p’,t”,t) can be used as
mechanism can be included in d(p, p’,t) and it will still be integrable and,
sum of these two solutions.




