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Abstract 

Accurate age control of the late Tortonian to early Messinian (8.3-6.0 Ma) is 

essential to ascertain the origin of the benthic foraminiferal δ18O trends and the late 

Miocene carbon isotope shift (LMCIS), and to examine temporal relationships 

between the deep-sea, terrasphere and cryosphere. The current Tortonian-Messinian 

Geological Time Scale (GTS2012) is based on astronomically calibrated 

Mediterranean sections; however, no comparable non-Mediterranean stratigraphies 

exist for 8-6 Ma suitable for testing the GTS2012. Here, we present the first high-

resolution, astronomically tuned benthic stable isotope stratigraphy (1.5 kyr 

resolution) and magnetostratigraphy from a single deep-sea location (IODP Site 

U1337, equatorial Pacific Ocean), which provides unprecedented insight into climate 

evolution from 8.3-6.0 Ma. The astronomically calibrated magnetostratigraphy 

provides robust ages, which differ by 2-50 kyr relative to the GTS2012, for polarity 

Chrons C3An.1n to C4r.1r, and eliminates the exceptionally high South Atlantic 

spreading rates based on the GTS2012 during Chron C3Bn. We show that the LMCIS 

was globally synchronous within 2 kyr and provide astronomically calibrated ages 

anchored to the GPTS for its onset (7.537 Ma; 50% from base Chron C4n.1n) and 

termination (6.727 Ma; 11% from base Chron C3An.2n), confirming that the 

terrestrial C3:C4 shift could not have driven the LMCIS. The benthic records show 

that the transition into the 41-kyr world, when obliquity strongly influenced climate 

variability, already occurred at 7.7 Ma and further strengthened at 6.4 Ma. Previously 

unseen, distinctive, asymmetric saw-tooth patterns in benthic δ18O imply that high-

latitude forcing played an important role in late Miocene climate dynamics from 7.7-

6.9 Ma. This new integrated deep-sea stratigraphy from Site U1337 can act as a new 

stable isotope and magnetic polarity reference section for the 8.3-6.0 Ma interval. 
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1. Introduction 

The late Tortonian to early Messinian (8.3-6.0 Ma) is characterised by long-

term reduction in benthic foraminiferal δ18O values and by distinctive short-term δ18O 

cycles (Hodell et al., 2001; Drury et al., 2016). Coevally, a permanent –1‰ change in 

oceanic δ13CDIC, referred to as the late Miocene carbon isotope shift (LMCIS), marks 

the last major global carbon cycle shift expressed in all oceanic basins, after which 

near-modern inter-oceanic δ13C gradients are established at ~6.7 Ma (Keigwin, 1979; 

Hodell and Venz-Curtis, 2006). Furthermore, this time period marks the development 

of strong equator to pole SST gradients with major cooling at high latitudes but little 

change in the tropics (Herbert et al., 2016).  Accurate age control is crucial to 

ascertain the origin of the δ18O cyclicity and the LMCIS, as constraining the precise 

timing of such events can allow accurate determination of temporal and causal 

relationships between deep-sea, terrestrial and cryosphere records.  

The late Tortonian - early Messinian Geological Time Scale (GTS2012) is 

constructed using astronomically tuned sedimentary cycles in Mediterranean 

successions (Hilgen et al., 1995; Krijgsman et al., 1999). However, recent studies 

utilising astronomically tuned deep-sea sedimentary successions have challenged the 

Mediterranean tuning (Channell et al., 2010; Westerhold et al., 2012; Westerhold et 

al., 2015). Discrepancies in the Mediterranean tuning could originate because road-cut 

outcrops are often more difficult to integrate and interpret than deep-sea sedimentary 

successions, which benefit from multiple hole sedimentary splices and integration 

between multiple sites. To test the Tortonian-Messinian GTS, independent 

astronomical calibration of Chrons C3An.1n to C4r.1r is required in suitable 

successions outside the Mediterranean.  
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Up to now, no stand-alone integrated high-resolution chemo-, magneto-, and 

cyclostratigraphy exist for 8-6 Ma from a single non-Mediterranean deep-sea site. The 

absence of appropriate records was overcome with the retrieval of equatorial Pacific 

Integrated Ocean Drilling Program (IODP) Site U1337 (Figure 1.A). Site U1337 is an 

ideal location at which to generate the required stratigraphy, as it is characterised by 

relatively high pelagic sedimentation rates (~2 cm/kyr) and high biogenic carbonate 

content. Crucially, a rudimentary shipboard magnetic polarity stratigraphy was 

recovered at Site U1337 with great potential for improvement (Expedition 320/321 

Scientists, 2010b).  

We present a high-resolution astronomically tuned benthic stable isotope 

stratigraphy (1.5-2 kyr resolution) and magnetostratigraphy (2.5 kyr resolution across 

reversals) for 8.3-6.0 Ma to provide accurate age control and constrain late Miocene 

climate evolution at an unprecedented resolution from a deep-sea perspective. We 

verify the Site U1337 astrochronology by comparison to an extended benthic stable 

isotope stratigraphy from equatorial Atlantic Ocean Drilling Program (ODP) Site 926 

(Figure 1.A), which has an independent astrochronology (Zeeden et al., 2013). The 

new U1337 astrochronology is used to independently calibrate the high-resolution 

magnetostratigraphy and improve the GPTS for 8.3-6.0 Ma and to establish a key 

reference stratigraphy for the late Miocene. We finally investigate the origin of the 

LMCIS and the late Tortonian-early Messinian patterns in benthic δ18O. 

 

2. Materials and Methods 

All datasets are archived as supplementary tables in the open access Pangaea 

database (https://doi.pangaea.de/10.1594/PANGAEA.872722). 
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2.1. Site locations and sampling strategy 

This study utilises late Miocene sediments recovered from IODP Site U1337 

(Figure 1.A; 3°50.009′N, 123°12.352′W; 4463 m water depth; 4190-4260 m 

palaeowater depth between 8.3-6.0 Ma; Expedition 320/321 Scientists, 2010b; Pälike 

et al., 2012)) in the eastern equatorial Pacific, retrieved during Pacific Equatorial Age 

Transect (PEAT) Expedition 321 (Expedition 320/321 Scientists, 2010b). A total of 

1186 samples were taken for isotope analysis between 110 and 168.03 revised m 

composite depth (rmcd = CCSF-A from Wilkens et al., 2013) to increase the 

resolution of existing 10-cm resolution isotopic record produced at IODP Site U1337 

by Jun Tian (Tonji University; Tian et al., in prep), in order to obtain a final resolution 

of ~3-4 cm (~1.5-2 kyr). For discrete palaeomagnetic analysis, 597 cube samples 

(standard ODP 2x2x2 cm = 8 cc) were taken between 92.76 and 167.88 m rmcd from 

parallel holes U1337A, U1337B and U1337D, at a minimum sampling resolution of 

50 cm (100 kyr). Across reversals, sampling resolution was increased to 5 cm (2.5 

kyr) and completed in at least two parallel holes. All off splice data were adjusted to 

the revised Wilkens et al. (2013) splice using mapping pairs (Supplementary Table 1). 

This study additionally uses sediments from ODP Site 926 (Figure 1.A; 

3°43.141′N, 42°54.501′W; 3598 m water depth) in the equatorial Atlantic, retrieved 

during Ceara Rise ODP Leg 154 (Shipboard Scientific Party, 1995). A total of 449 

samples were taken at 5-10 cm resolution (3-6 kyr) between 165.86 and 208.03 rmcd 

(Wilkens et al., 2017a) to increase the resolution of published isotope data between 

7.3-5.5 Ma (Shackleton and Hall, 1997) and to extend the record to 8.0 Ma. 

 

2.2. Site U1337 palaeomagnetic data 
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To reconstruct the magnetic reversal stratigraphy between C3An.1n and C4r.1r at 

Site U1337, all discrete cube samples were analysed for natural remanent 

magnetization (NRM).  Palaeomagnetic directions and magnetization intensities were 

measured on a cryogenic magnetometer (2G Enterprises model 755 HR) at the 

Faculty of Geosciences, University of Bremen (Germany). NRM was measured on 

each sample before applying alternating field demagnetization using peak-field steps 

of 5, 7.5 and 10 mT. After each demagnetization step, magnetization directions and 

intensities were measured (Supplementary Table 2).  

To determine the characteristic remanent magnetization (ChRM; Supplementary 

Tables 3 and 4), magnetization components were determined from AF 

demagnetization of the NRM using the method of Kirschvink (1980), anchoring 

components to the origin of orthogonal projections.  The peak fields for determination 

of ChRM are generally in the 5-10 mT range. A stable direction (ChRM) could not be 

found for 2% of the samples. The maximum angular deviation (MAD) was calculated 

to quantify the quality of the individual magnetic component directions. MAD values 

above 15° are excluded from further interpretation (9%). MAD values are generally 

below 10°, with 10% falling between 10° and 15°. Approximately 11% of the 

measurements have no MAD value, as they are based on fewer than three 

demagnetization steps. To azimuthally orient the data, the FLEXIT orientation 

(Expedition 320/321 Scientists, 2010a) was added to the sample declination values. 

All FLEXIT corrected declinations larger than 270° were plotted between -90° and 

0°. 

 

2.3. Stable isotope analyses 
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SEM images show that the benthic foraminiferal preservation is generally good at 

both sites, and that the foraminifera are suitable for isotopic analysis (Figure 1. B and 

C). From Site U1337, 1-6 translucent C. mundulus specimens (250-500 μm) and for 

Site 926, 3-6 translucent C. mundulus or C. wuellerstorfi (250-500 μm) were analysed 

for carbon (δ13C) and oxygen (δ18O) isotopes using a Kiel I carbonate preparation 

device attached to a Finnigan MAT 251 at MARUM (University of Bremen, 

Germany), with an analytical precision of 0.03 ‰ for δ13C and 0.04 ‰ for δ18O. All 

results are reported against Vienna Peedee Belemnite (VPDB) using the standard δ 

notation (per mille ‰), determined using calibrated in-house standards and NBS-19. 

All data were corrected to equilibrium using the species-specific constants listed in 

Supplementary Table 5. No offsets were found between the new U1337 δ13C and δ18O 

and 926 δ13C data and the existing records at Sites 926 and U1337 (see Supplementary 

Information for further details). All raw and corrected isotope data are provided in 

Supplementary Table 6. 

 

3. Results 

3.1. U1337 magnetostratigraphy 

As mentioned above, magnetizations directions associated with MAD values 

>15° (9%) were rejected, and magnetization directions of 2% of samples are not 

associated with a MAD value as they could not be adequately determined after the 

three steps of AF demagnetization. The remaining component inclination and 

declination values from discrete samples are consistent amongst parallel holes and 

corroborate the shipboard half-core measurements, despite low coercivity and low 

natural remanent magnetization intensity (<0.01 to 5.74 mA/m; mean = 0.14±0.45 

mA/m) (Figure 2.D-J). We identify 16 polarity reversals at Site U1337 from the top of 
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Chron C3An.1n to the base of Chron C4r.1r, with 10 reversals identified with a 

precision of ± 5 cm (2 kyr) or less (Table 1). The polarity reversals were selected as 

the centre point between samples that had clearly identifiable opposite polarities, with 

the distance between these samples providing an indication of uncertainty in the 

position of the polarity reversal. Data from all parallel holes were considered when 

available. 

 

3.2. U1337 and 926 benthic isotope stratigraphies 

The Site U1337 δ13C and δ18O records are the first records available for the 8-6 

Ma interval with ~1.5 kyr sampling resolution (Figure 2.B and C). The U1337 δ18O 

stratigraphy shows the characteristic long-term 0.1-0.2‰ late Miocene variations, and 

~0.8m cycles are observed throughout the record. In the lower part (~155-135 m 

CCSF), the new records show well-expressed, short-term ~0.8 m cycles, with δ18O 

changing by ~0.6‰. The new data reveal a saw-tooth pattern not previously resolved 

(Figure 2.B). The U1337 δ13C stratigraphy is dominated by a long-term negative –1‰ 

shift, globally recognised as the LMCIS. Cycles of ~2-2.5 m dominate the δ13C record 

directly before and after the LMCIS. Weak ~0.8 m cycles appear in the δ13C record 

during the shift, before replacing the 2-2.5 m cycles as the dominant cyclicity in the 

youngest part of the record (Figure 2.C). The δ18O and δ13C records generally display 

an antiphase relationship throughout the record, particularly on the scale of ~0.8 m 

cycles. This relationship is weak below 120 mcd, but becomes stronger at the top of 

the record, between 110 and 120 mcd. 

The additional δ13C data produced at Site 926 agree very well with, and increase 

the resolution of, the available published data. The new δ13C record also extends 

further back in time and captures the full extent of the LMCIS (Figure 3). 
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4. Astrochronology  

4.1. Minimal and Fine tuning 

Initial age control is provided by a 5th order polynomial fit through 6 shipboard 

nannofossil datums (Supplementary Table 7). The ~0.8 m cycles observed throughout 

the δ18O and δ13C records are consistent with obliquity forcing, which supports that the 

record is suitable for orbital tuning. Additionally, the 2-2.5 m cycles observed most 

strongly in the δ13C record correspond to eccentricity periods. 

To reconstruct an astronomical age model for Site U1337, we correlate the 

benthic foraminiferal δ18O series to computed variations in the Earth’s orbit (Laskar et 

al., 2004), as the benthic foraminiferal δ18O in particular shows strong variability, 

apparently driven by obliquity. We constructed a tuning target composed of equally 

weighted eccentricity, tilt and Northern Hemisphere precession (E+T-P, from Laskar 

et al., 2004), as this combination best represented the interference patterns between 

obliquity and precession observed in the benthic δ18O record, in particular between 6.9 

and 7.7 Ma. No phase shift was applied to our tuning to account for possible lags 

between δ18O and insolation forcing due to the response time of ice sheets. Although 

this has been well established for the Pleistocene (obliquity = 8 kyr; precession = 5 

kyr; Imbrie et al., 1984), the response time during the Miocene is unknown (Holbourn 

et al., 2007). To obtain a minimum tuning, we correlated δ18O minima to E+T-P 

maxima using 17 tie points, following a similar strategy to Holbourn et al. (2007) 

(Supplementary Table 8). We restricted the correlation to approximately one tie point 

per ~100 kyr cycle, as recommended by Zeeden et al. (2015) in order to ensure that 

no frequency modulation was introduced by the astronomical tuning process. As the 

purpose of this study is to astronomically calibrate the magnetostratigraphy between 
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~8.3-6 Ma, a high-resolution, or fine-tuned astrochronology was also generated to 

reduce the uncertainty in calibration of the reversals. In the fine-tuning strategy, an 

additional 35 tie points were added between the E+T-P maxima and δ18O minima 

(Figure 4; Supplementary Table 8). Between the minimal and fine-tuned calibrations, 

the age for each individual isotope point generally changes by <5 kyr, up to a 

maximum of 12 kyr. 

 

4.2. Validation and revision at Ceara Rise 

The long-term (Myr) and short-term (20-40 kyr) agreement between the δ13C 

records from Sites U1337 (Pacific) and 926 (Atlantic) is excellent (Figure 5.A). This 

suggests that both astrochronologies are accurate, even though they were generated 

independently using different proxies: Site U1337: δ18O tuned to ET-P with no phase 

lag; Site 926: magnetic susceptibility and grey scale tuned to P-0.5T with no phase lag 

(Zeeden et al., 2013; updated in Wilkens et al., 2017). Uncertainty in the correct phase 

of precession of the tuning target can result in a 10 kyr uncertainty; however, the 

phase relationship at Ceara Rise has been well-established (see Shackleton and 

Crowhurst, 1997; Zeeden et al., 2013). The excellent agreement between the δ13C 

records from U1337 and 926 provides further confidence in the choice of a Northern 

Hemisphere precession in the tuning target of U1337.  

The only exception to the excellent agreement in short-term variations is a 20-kyr 

offset that occurs between the δ13C records from 7.7-7.3 Ma, where the Site 926 δ13C 

record is 20-kyr older than identical δ13C variations at Site U1337 (Figure 5.B). A 20-

kyr offset between the Atlantic and Pacific oceans cannot be attributed to oceanic 

circulation processes. It is most likely that the δ13C variations are synchronous and 

this offset reflects an age model inaccuracy. Between 7.7-7.3 Ma, the tuning at Site 
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U1337 is particularly accurate, as the highly distinctive obliquity driven δ18O cycles 

agree extremely well with the E+T-P tuning target (Figure 5.C). However, the offset 

occurs during a 2.4 Myr eccentricity minimum (Figure 6.E), which implies that the 

926 astrochronology is less reliable because the cycles in magnetic susceptibility 

(MS) and lightness (l*) are correlated to precession and modulated by eccentricity. 

During an eccentricity minimum, the modulation of precession is weaker and as a 

result, the sedimentary cycles are less well expressed. During the 2.4 Myr eccentricity 

minimum, the 926 astrochronology is therefore adjusted by 20-kyr between 7.76 and 

7.30 Ma (Supplementary Table 9). The validity of adjusting the 926 astrochronology 

by a single precession cycle is supported by a consistent 20-kyr offset between U1337 

and 926 δ13C records, and the excellent agreement between the two records after the 

uniform adjustment (Figure 5.D). 

 

5. GPTS calibration and implications for the Fish Canyon standard 

5.1. GPTS calibration and reconciliation of South Atlantic spreading rates 

We identify 16 polarity reversals at Site U1337 between Chrons C3r and C4r.1r, 

providing the first complete high-resolution deep-sea polarity stratigraphy from 8.3-

5.2 Ma at a single location (Table 1). The 15 reversals between Chron C3An.1n to the 

base of Chron C4r.1r are astronomically calibrated using the minimal- and fine-tuning 

calibrations (Figure 6). The age uncertainties, associated with the depth uncertainties 

in the exact positions of the polarity reversals, are 1-2 kyr for 10 reversals, and 3-5 

kyr for the remaining five reversals. The astronomically calibrated reversal ages 

generally differ by less than 7 kyr between the minimal and fine-tuned age models 

(Table 1). Considering the low uncertainty in the new U1337 magnetostratigraphy 
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and the distinctive δ18O and δ13C data, this new integrated deep-sea stratigraphy 

provides a new stable isotope and polarity reference section for the 8.3-6 Ma interval. 

The fine-tuned U1337 reversal ages differ by 2-50 kyr relative to the GTS2012 

(Table 1). These offsets could originate from: 1) constant offsets due to phase shift 

and lock-in depth differences or 2) inaccuracies in the magnetostratigraphy or tuning 

at Site U1337 and/or the Mediterranean sections. No phase shift was applied to either 

the U1337 or Mediterranean tunings. However, adding a constant phase shift cannot 

explain the variable offsets of the U1337 calibration to the GTS2012. A finite lock-in 

depth, the depth below the sediment surface where the sediment magnetisation was 

acquired (Langereis et al., 2010), could cause an offset of several kyr in reversal ages 

towards older values, particularly as the mean sedimentation rate (~2 cm/kyr) at 

U1337 is low compared to the Faneromeni section (~5 cm/kyr; Hilgen et al., 1995).  

Erroneous magnetostratigraphies and/or astrochronologies are the more likely 

origin for major >10 kyr offsets. The U1337 reversals, however, have low depth 

uncertainties (corresponding to 1-2 kyr for most reversals) and are consistent across 

parallel holes. In contrast, four reversals within the Mediterranean composite section, 

consisting of 7 successions, have uncertainties >10 kyr (Hilgen et al., 1995, 2000, 

2012; Krijgsman et al., 1999). Additionally, the Site U1337 magnetostratigraphy is 

the only continuous record resolving all polarity chrons from 8-6 Ma. The accuracy of 

the Site U1337 astrochronology is supported by the remarkable long- and short-term 

agreement between the Sites U1337 (Pacific) and 926 (Atlantic) δ13C records (Fig. 

2.B), which were independently tuned using different proxies. 

Four U1337 reversal ages remain offset from the GTS2012 after considering the 

uncertainties in both magnetostratigraphies and the Site U1337 fine-tuned 

astrochronology: C3An.1r/C3An.2n (50 kyr younger), C3Ar/C3Bn (36 kyr younger), 
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C3Br.1n/C3Br.2r (20 kyr older) and C4n.2n/C4r.1r (17 kyr older). The Site U1337 

stratigraphy concurs with the H95 timescale (Hilgen et al., 1995) between Chrons 

C3Bn to C4r.1r but diverges between Chrons C3Ar and the base of C3r, where the 

H95 ages are older by 30-71 kyr, and agreement with the GTS2012 is also poor. The 

U1337 age of C3Ar/C3Bn, in particular, is ~40 kyr younger than the GTS2012 

C3Ar/C3Bn reversal age of 7.140 Ma identified at the Mediterranean Oued Akrech 

section (Hilgen et al., 2000). In the Mediterranean, the C3Ar/C3Bn reversal is clearly 

identified at Metochia between sapropels M76 and M77 (Krijgsman et al., 1995), 

~10-20 kyr above sapropel K16 at Kastelli (Krijgsman et al., 1994; Hilgen et al., 

1995) and at the top of sapropel OA19 at Oued Akrech (Hilgen et al., 2000). 

However, sapropels M76/K16 and M77 respectively correlate to sapropel OA20 and 

OA21 (Hilgen et al., 2000). This correlation results in a 1-2 sapropel/precession cycle 

difference in the location of C3Ar/C3Bn between Metochia/Kastelli and Oued 

Akrech. The Site U1337 C3Ar/C3Bn reversal age of 7.104±0.002 Ma agrees 

exceptionally well with the C3Ar/C3Bn age of 7.101±0.007 Ma determined by Hilgen 

et al. (1995) at Kastelli, which implies that the Oued Akrech age is potentially ~40 

kyr too old. 

Changes in seafloor spreading rates of the South Atlantic spreading centre (e.g. 

Ogg, 2012; Westerhold et al., 2012) show that spreading rates based on the GTS2012  

are the highest of the Cenozoic during Chron C3Bn (Westerhold et al., 2012) (Figure 

7.A). The astronomically calibrated magnetostratigraphy from Site U1337 eliminates 

the high peak during Chron C3Bn and corroborates the rates based on H95 (Figure 

7.B). We suggest that the correlation of Oued Akrech to the other Mediterranean 

successions and to the insolation target could be too old by two precession cycles. 

This is supported by the reconciliation of spreading rates and 40-kyr offset in the 
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C3Ar/C3Bn reversal age and due to the consistency between the C3Ar/C3Bn reversal 

ages from Kastelli, Methochia and U1337. A 40-kyr misalignment at Oued Akrech is 

feasible, as the sapropels at this succession are less well expressed and thicker than 

the sapropels at the Cretan sections. 

 

5.2. Implications for the ‘Rock-Clock’ and Fish Canyon sanadine 

calibration 

The Mediterranean sections that form the GTS2012 were additionally used in the 

‘Rock-Clock’ synchronisation of 40Ar/39Ar and U/Pb, which adjusted the Fish Canyon 

sanidine (FC) 40Ar/39Ar-dating standard to 28.201±0.046 Ma (Kuiper et al., 2008). 

This FC standard age was later refined to 28.173±0.028 Ma using the astronomically 

tuned A1 ash layer in the Faneromeni Section on Crete, located in geomagnetic Chron 

C3Ar (Rivera et al., 2011). However, studies on astronomically tuned deep-sea 

sedimentary successions have instead proposed a younger FC standard age, 

challenging the Mediterranean tuning and the ‘Rock-Clock’ synchronisation 

(Channell et al., 2010; Westerhold et al., 2012; Westerhold et al., 2015). 

The U1337 fine-tuned reversal ages for C3An.2n/C3Ar and C3Ar/C3Bn are used 

to test the A1 ash layer age. Using inferred sedimentation rates of 4.91 ± 0.29 cm/kyr 

at Faneromeni and a duration of 0.377 ± 0.002 Myr for Chron C3Ar from U1337, the 

A1 age (~49% from base of Chron C3Ar) becomes ~6.921 ± 0.011 Ma, which is ~20 

kyr younger than the 6.943 ± 0.005 Ma age used to verify the ‘rock-clock 

synchronization’ (Rivera et al., 2011), although the ages are close considering their 

respective uncertainties. Although an uncertainty in the precession phase of the 

U1337 tuning target could add an additional 10 kyr uncertainty, bringing the two A1 

ash estimates within error, the C3Ar Chron coincides with an interval where a 
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characteristic interference pattern is observed in the benthic δ18O between obliquity 

and precession. The similarity of this interference pattern between the E+T-P tuning 

target and the δ18O record strongly support the use of Northern Hemisphere 

precession. Additionally, the use of Southern Hemisphere precession could change 

the anti-phase relationship between benthic δ18O and obliquity. We therefore consider 

the uncertainty due to unknown precession phase as minimal during this interval. 

An A1 ash age of 6.921 Ma translates to an FC standard age of 28.083 ± 0.045 

Ma, which is close to the FC age estimate of 28.10 Ma based on tuned Eocene 

sections (Westerhold et al., 2015) and is between the older (Kuiper et al., 2008; 

Rivera et al., 2011) and younger (Channell et al., 2010; Westerhold et al., 2012) FC 

ages. An FC age of 28.083 Ma increases the offset between U-Pb and 40Ar/39Ar dating 

and contradicts the ‘rock-clock synchronization’ of Kuiper et al. (2008). U-Pb and 

40Ar/39Ar ages of coal beds adjacent to the K-Pg boundary are within error when 

using an FC age of 28.294 Ma (Renne et al., 2013); however, an FC age of 28.083 Ma 

makes the 40Ar/39Ar ages ~485 kyr younger than the U-Pb ages. Additionally, the new 

FC age of 28.083 Ma contradicts the FC eruption age of 28.196 ± 0.038 Ma based on 

U-Pb dates from single zircon crystals (Wotzlaw et al., 2013). Thus, our 28.083 Ma 

estimate could corroborate that a systematic offset exists towards younger ages for 

40Ar/39Ar dating compared to U-Pb dating (Min et al., 2000; Schoene et al., 2006) and 

supports that the Fish Canyon Tuff may not be an ideal high-precision 40Ar/39Ar 

dating standard (Phillips and Matchan, 2013). More interestingly, our FC age estimate 

of 28.083 ± 0.045 Ma (28.038-28.128 Ma) is consistent within error of a recently 

revised FC age of 28.126 ± 0.019 Ma (28.107-28.145 Ma) (Phillips et al., 2017), 

obtained by a new generation of multi-collector mass spectrometers that enable highly 

accurate 40Ar/39Ar dating. Taken together, this corroborates the suggestion that the 
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best FC dating standard age is 28.10 (Westerhold et al., 2015). However, achieving 

final integration of astrochronological, magnetostratigraphical and radio-isotopic 

dating techniques, requires analysis of the section with potential to recover accurate 

chronologies using all three techniques, which has not yet been achieved. 

 

6. Dynamic Late Miocene 41-kyr world 

Our high-resolution (~1.5 kyr) benthic isotope records provide unequalled 

insight into late Tortonian-early Messinian climate evolution and dynamics from 8.3-

6.0 Ma, in particular into the evolution of the cryosphere and carbon cycle 

components (Figure 6). A key feature is the transition at 7.7 Ma from a short-term 

eccentricity dominated world into a persistent 41-kyr obliquity driven climate state, 

which further strengthens at 6.4 Ma (Figure 6.B, C, I, J and K). The 7.7 Ma transition 

marks a clear shift from dominant 100-kyr cyclicity to dominant 41-kyr cyclicity in 

the δ18O record (Figure 6.I), expressed as clear and distinctive saw-tooth obliquity 

driven cycles from 7.7-6.9 Ma (Figure 6.C). Between 7.7 and 6.9 Ma, the distinctive 

δ18O cycles display varying degrees of asymmetry (Figure 8). The asymmetry in the 

δ18O record reflects the shape of the ET-P curve, which could indicate that the 

asymmetry results from the interference pattern between strong obliquity forcing and 

a minor precessional influence, particularly after 7.2 Ma (Figure 8.B). The 7.7 Ma 

transition is poorly manifested in benthic δ13C, as only minor obliquity cyclicity 

emerges (Figure 6.B and J). This weak δ18O-δ13C coupling (Figure 6.K) is attributed 

to a limited cryosphere-carbon cycle interaction, associated with the driving 

mechanism of the LMCIS (Drury et al., 2016).  

Unlike earlier records where short-term transitions from 100-41-100 kyr 

forcing are observed (Holbourn et al., 2013), the 7.7 Ma transition is the first time that 



Confidential manuscript submitted to Earth and Planetary Science Letters 

 

17 

the climate system does not return to a 100-kyr dominated world observed in the early 

and mid Miocene (Holbourn et al., 2013), even when signs of 100-kyr cyclicity return 

at ~7.2 Ma (Figure 6.I). Even during the node in obliquity around 6.5 Ma (Figure 

6.E), the δ18O record still shows evidence of a response to obliquity forcing, with the 

observed pattern in δ18O values reflecting the interaction between 100-kyr and 41-kyr 

forcing on the benthic δ18O record (Figure 6.C and I). For the first time in this interval,  

strong obliquity cycles appear at 6.4 Ma in the δ13C record, as well as the δ18O record, 

implying a strong cryosphere-carbon cycle coupling and an intensification of the 41-

kyr beat (Figure 6. B, C, I, J and K). The 7.7 Ma transition and later 6.4 Ma 

intensification mark the first establishment of a 41-kyr world, which remains a 

prominent beat in benthic δ18O and δ13C records for the remainder of the Miocene and 

into the Plio-Pleistocene (Shackleton and Hall, 1997; Hodell et al., 2001). 

 

6.1. Implications for glaciations 

The 7.7 Ma transition marks a long-term –0.2‰ shift in δ18O between 7.7 and 

6.9 Ma, with exceptional 41-kyr-paced saw-tooth 0.6‰ δ18O cycles superimposed 

(Figure 6.B). Similar cyclic behaviour, interpreted as dynamic ice volume oscillation 

(Hodell et al., 2001; Drury et al., 2016), could not be confirmed as high-latitude 

forcing due to scarce late Miocene proximal ice records (Monien et al., 2012). For the 

first time for the late Miocene, the unprecedented high-resolution U1337 records 

show that the short-term δ18O variations are distinctive asymmetrical, saw-tooth 

cycles (slow ice build-up, rapid deglaciation), which are more pronounced than in 

other records (Figure 8.B). Past studies revealing asymmetrical cycles in the mid-late 

Miocene have associated this with glacial-interglacial activity (Holbourn et al., 2013). 

At U1337, though part of the asymmetry may reflect the interaction between 



Confidential manuscript submitted to Earth and Planetary Science Letters 

 

18 

precessional and obliquity forcing, the combination of the distinctive saw-tooth 

cycles, the strong obliquity-paced signal and the anti-phase δ18O-δ13C relationship 

(characteristic of Pleistocene glacial-interglacial cycles; Broecker and Peng, 1986), all 

strongly imply that high-latitude climate processes, including ice volume change, 

drive these cycles between 7.7 and 6.9 Ma (Figure 6.B and C). Coupled with the 

lower average δ18O across this same interval, it could indicate that warming and 

reduced global ice volume lead to increased dynamic variability and instability in 

high-latitude regions. 

Evidence for high-latitude Northern and Southern Hemisphere ice variation is 

sparse for the late Tortonian-early Messinian, due to scarce retrieval of sediments that 

recover this interval (Monien et al., 2012). In addition, bottom water temperature 

(BWT) estimates for the late Miocene are sparse and severely limited in resolution 

(Billups and Schrag, 2003; Lear et al., 2003), and cannot resolve temperature changes 

on the scale of the benthic δ18O oscillations. However, Pacific low-resolution Mg/Ca 

records indicate that BWT may have changed by a maximum range of ~1-1.5°C (Lear 

et al., 2003) during the 7.7-6.9 Ma interval. Assuming that half the 0.6‰ δ18O 

excursions reflect BTW changes, 0.3‰ can be attributed to changes in ice volume, 

equivalent to ~25 m of sea level change (using the average early-middle Miocene 

relationship of 1.2‰/100 m - Gasson et al., 2016). Sea level changes of ~25 m could 

reflect considerable variations in small-scale Greenland ice sheets, the Western 

Antarctic Ice Sheet or East Antarctic subglacial basins, although variations in the 

Antarctic Ice Sheet are perhaps more realistic considering the warm Northern 

Hemisphere temperatures observed during the late Miocene (Herbert et al., 2016). 

However, without verification from ice-proximal records, the true extent of these 

variations cannot be confirmed. 
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The 7.7 Ma climate transition and 0.2‰ decrease in average δ18O occur when 

a long 2.4 Myr eccentricity minimum coincides with strong obliquity (Figure 6.D and 

E), which could explain the increased influence of obliquity and increased high-

latitude climate variability. Although eccentricity influence returns at ~7.3-7.2 Ma, 

the sensitivity to obliquity remains strong until 6.9 Ma, shortly after a 0.2‰ increase 

in average δ18O between 7.0 and 6.9 Ma. However, even during the nodes in obliquity 

forcing around 6.5 Ma, the system does not return to a strong 100-kyr beat. Why the 

climate system loses sensitivity to the influence of eccentricity after 7.7 Ma is unclear. 

No large CO2 changes are visible (Beerling and Royer, 2011) that could drive this 

sensitivity change and a major long-term cooling in sea surface temperature observed 

most strongly at mid- to high-latitudes occurs ~0.5 Myr after the 7.7 Ma transition 

(Herbert et al., 2016). The occurrence of the distinctive δ18O cycles during an interval 

of decreased average δ18O could indicate increased sensitivity to obliquity forcing due 

to a combination of increased temperature and reduced ice volume (Drury et al., 

2016). However, to finally resolve the effect of high-latitude temperature versus ice 

volume change, complimentary high-resolution records of deep-sea temperatures are 

required.  

 

6.2. Short-term synchronous onset of the LMCIS 

We provide the first tuned ages anchored to the GPTS for the onset (7.537 Ma; 

50% from base of Chron C4n.1n) and termination (6.727 Ma; 11% from base of 

Chron C3An.2n) of the LMCIS (Figure 6.B). The comparison between the U1337 and 

ODP 926 δ13C records shows that the onset and termination of the LMCIS occurred 

within <2 kyr between the Atlantic and the Pacific (Figure 4). The origin of the 

LMCIS is unknown; however, anchoring the shift to the GPTS facilitates comparison 
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with terrestrial records of the C3:C4 vegetation shift, which has been proposed as a 

mechanism for changing the continental carbon flux into the ocean (Bickert et al., 

2004). However, the C3:C4 shift is gradual and globally asynchronous (8-4 Ma in 

Pakistan - Behrensmeyer et al., 2007; 10-0 Ma in eastern Africa - Uno et al., 2016), 

which makes it an unlikely mechanism to explain the LMCIS, as the onset and end of 

the shift are synchronous between oceanic basins on short timescales (Figure 6.B). 

The LMCIS onset was linked to increased terrestrial organic carbon erosion during a 

sea level drop (Bickert et al., 2004). However, the onset of the LMCIS occurs ~150 

kyr after a 0.2‰ benthic δ18O reduction at 7.7 Ma, which contradicts an increase in 

global ice volume (Figure 6.C). Additionally, if sea level driven organic matter input 

controlled the LMCIS, a stronger δ18O-δ13C coupling would be expected than is 

observed at Site U1337 and elsewhere (Figure 6.B and C; Drury et al., 2016). 

 

7. Conclusions 

Our study represents the first complete, high-resolution astronomically 

calibrated integrated chemo-magnetostratigraphy for the 8.3-6 Ma interval from a 

single deep-sea location. Astronomical calibration of the Site U1337 

magnetostratigraphy eliminates exceptionally high spreading rates in the South 

Atlantic anomaly profile during Chron C3Bn and provides robust ages for magnetic 

reversals C3r/C3An.1n to C4r.1r/C4r.1n. Comparison of the new magnetochronology 

with coeval Mediterranean successions suggests that the astronomical calibrated age 

for the Faneromeni A1 ash layer used for the ‘rock-clock synchronization’ could be 

~20 kyr younger.  

At 7.7 Ma, a transition occurs from an eccentricity-dominated world into a 

climate state with persistent 41-kyr obliquity-driven beat, which further strengthened 
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at 6.4 Ma. The previously unseen saw-tooth patterns in the antiphased benthic δ18O 

and δ13C data indicate a dominantly high-latitude forcing with dynamic ice sheets 

from 7.7-6.9 Ma. The distinctive 0.6‰ δ18O excursions could indicate ~25 m of sea 

level change during this time.  

Additionally, for the first time, we provide astronomically calibrated ages 

anchored to the GPTS for the onset (7.537 Ma; 50% from base of Chron C4n.1n) and 

termination (6.727 Ma; 11% from base of Chron C3An.2n) of the LMCIS. A 

comparison of astronomically tuned δ13C records from the Atlantic and Pacific shows 

that the LMCIS was synchronous to within 2 kyr. This comparison and the anchoring 

of the LMCIS to the GPTS, confirms that the C3:C4 shift could not have driven the 

LMCIS.   
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Tables 

Table 1. Astronomically calibrated magnetostratigraphy from Site U1337, compared 

to CK95, H95 and GTS2004/2012 (Cande and Kent, 1995; Hilgen et al., 1995; 

Lourens et al., 2004; Hilgen et al., 2012). 
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Figures  

 

Figure 1. A) Location and water depth of IODP Site U1337 in the equatorial Pacific 

and Ocean Drilling Program ODP Site 926 on Ceara Rise in the equatorial Atlantic 

(http://www.geomapapp.org); B) SEM image of a Cibicidoides wuellerstorfi from 

Site 926; C) SEM image of a Cibicidoides mundulus from Site U1337. 

 

http://www.geomapapp.org/
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Figure 2. Late Miocene palaeoceanographical records from Site U1337 on depth 

rmcd (CCSF-A Wilkens et al., 2013). A: Shipboard nannofossil datums (Expedition 

320/321 Scientists, 2010b) with the GTS2012 age noted in the label (Hilgen et al., 

2012). B: Benthic foraminiferal δ13C (in ‰ versus VPDB). C: Benthic foraminiferal 

δ18O (in ‰ versus VPDB). D: Discrete and shipboard declination data from Hole D. 
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E: Discrete and shipboard declination data from Hole B. F: Discrete and shipboard 

declination data from Hole A. G: Interpreted magnetostratigraphy from Site U1337. 

H: Splice shipboard declination data with all discrete measurements. I: Splice 

shipboard inclination data with all discrete measurements. J: Discrete MAD values. 

K: Composite core image. 

 

 

Figure 3. Late Miocene benthic δ13C record from Site 926 on depth rmcd (Wilkens et 

al., 2017). A: Shipboard nannofossil datums in Ma (Backman and Raffi, 1997) with 

the Zeeden et al. (2013) age noted in the label (with the exception of the age for B 

Amaurolithus spp. / B Amaurolithus primus, which has been altered to account for the 

adjustment to the ODP 926 age model). B: Benthic foraminiferal δ13C (in ‰ versus 

VPDB). C: Composite core image. 
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Figure 4. Fine-tuning of the Site U1337 chemo- and magnetostratigraphy, with 

minimal tuning tie points indicated in green and fine-tuning tie points indicated in 

orange. A: Fine-tuned magnetostratigraphy from Site U1337. B: Fine-tuned benthic 

foraminiferal δ13C (in ‰ versus VPDB). C: Fine-tuned benthic foraminiferal δ18O (in 

‰ versus VPDB). D: Eccentricity+Tilt-Precession tuning target (E+T-P) from Laskar 

et al. (2004) E: Benthic foraminiferal δ18O (in ‰ versus VPDB) on depth rmcd 

Wilkens et al. (2013). F: Fine-tuned sedimentation rates (in m/Myr) on depth rmcd.  
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Figure 5. Offset between the fine-tune U1337 and original 926 astrochronologies. 

Benthic δ13C (in ‰ versus VPDB) between 8.5-5.8 Ma from (A) Site U1337 on the 

fine-tuned astrochronology and from (B) Site 926 on the Zeeden et al. (2013) 

chronology. Composite core images from (C) U1337 and (D) 926. Benthic δ13C (in 

‰ versus VPDB) between 8-7 Ma from (E) Site U1337 on the fine-tuned 

astrochronology and from (F) Site 926 on the Zeeden et al. (2013) chronology. 

Benthic δ18O (in ‰ versus VPDB) between 8-7 Ma from (G) Site U1337 on the fine-

tuned astrochronology and (H) Eccentricity+Tilt-Precession tuning target (E+T-P) 

from Laskar et al. (2004). Benthic δ13C (in ‰ versus VPDB) between 8-7 Ma from 



Confidential manuscript submitted to Earth and Planetary Science Letters 

 

36 

(E) Site U1337 on the fine-tuned astrochronology and from (F) Site 926 on the 

adjusted astrochronology. 

 

 

Figure 6. Late Miocene records from IODP Site U1337 and ODP Site 926. The Site 

U1337 fine-tuned age model was used. A: Astronomically tuned nannofossil datums 

from U1337 and 926 in Ma. B: U1337 and 926 benthic foraminiferal δ13C (in ‰ 
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versus Vienna Peedee belemnite, VPDB) and the late Miocene carbon isotope shift 

(LMCIS). C: U1337 benthic foraminiferal δ18O (in ‰ versus VPDB). D: 

Eccentricity+Tilt-Precession tuning target (E+T-P) from La2004 (Laskar et al., 2004). 

E: Eccentricity and Tilt from La2004. F: U1337 astronomically tuned 

magnetostratigraphy. G: U1337 discrete declination data. H: U1337 and 926 

composite core images. I: Wavelet analysis of the Site U1337 benthic δ18O data (in ‰ 

versus VPDB) on the fine tuned astrochronology. J: Wavelet analysis of the Site 

U1337 benthic δ13C data (in ‰ versus VPDB) on the fine tuned astrochronology. K: 

Coherence wavelet analysis of the Site U1337 benthic δ18O and δ13C data (in ‰ 

versus VPDB) on the fine tuned astrochronology. Wavelet analyses were produced 

using the Matlab code provided by Grinsted et al. (2004). 

 

 

Figure 7. South Atlantic spreading rates calculated using the U1337, H95 (Hilgen et 

al., 1995) and GPTS2004/2012 (Lourens et al., 2004; Hilgen et al., 2012) for the (A) 

Cenozoic and (B) the interval from 9-5 Ma (adapted from Westerhold et al., 2012 to 

include rates calculated using the U1337 magnetostratigraphy). GPTS 2004 is 

equivalent to the GPTS2012 for the interval between 6-8 Ma. 
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Figure 8. A) High-resolution U1337 benthic foraminiferal δ18O (in ‰ versus VPDB) 

and B) close-up of the 6.9-7.7 Ma distinct δ18O cycles, indicative of high-latitude 

climate forcing, plotted together with the Eccentricity+Tilt-Precession tuning target 

(E+T-P) from La2004 (Laskar et al., 2004). 

 


