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Abstract

The research in this thesis is concerned with the design of a lab on chip operating in
the sub millimetre - Terahertz (THz) region of the spectrum. The lab on chip design
utilises Uni-Travelling Carrier (UTC) photodiodes for Continuous Wave generation
of THz and optoelectronic downconversion of THz. The system forms an integral
part of a THz Frequency domain spectrometer with high spectral resolution. The
use of UTC photodiodes enables the use of commercial 1550 nm laser sources and
fibre optic components which add a great deal of flexibility to the operation of the
spectrometer. In this work we review the on-chip waveguide options in the literature
for THz waveguiding and select an appropriate waveguide based on initial design
considerations. The waveguide chosen was a metamaterial waveguide in the form of
a Spoof Plasmon waveguide which allows for field enhancement at the metamaterial
surface. Following this the impedances of both the emitter UTC photodiode and
receiver UTC photodiode are evaluated under their optimum operating conditions
to maximise the power transfer across the spectrometer sample pathway. Using the
Impedance information, a transition is designed to convert from guided co-planar
waveguide modes to surface wave modes supported by the metamaterial waveguide.
In addition, a resonator is also designed and coupled to the waveguide for refractive
index sensing applications. Finally, the optical sub-system is designed to create
a tuneable frequency domain spectrometer that down-converts the received sub-
millimetre wave signals to the MHz range which can be easily extracted through
the device bias circuit. The system is used to demonstrate a proof of concept free
space spectroscopy system for remote sensing of Glucose concentrations in the 50-

65 GHz spectral range.



Impact Statement

The work in this thesis regarding the design of an on chip spectrometer and THz
frequency domain spectroscopy in general has the potential to impact a wide vari-
ety of areas. Particularly where high resolution spectral analysis are required. For
example in the quantification and qualification of pharmaceutical products where
several spectroscopic techniques are employed to assess product quality. Analysis
of trace atmospheric gasses is important for understanding the chemical dynamics
in the atmosphere and their contribution to climate change. THz Frequency do-
main spectroscopy allows the narrow absorption lines of low pressure gasses to be
resolved. This enables characterisation of various gas species present in the atmo-
sphere. By integrating the spectrometer on-chip a range of compact designs are
enabled, such as micro-organism detection and micro-fluidic sensing of samples
with a small scattering cross section in concentrations typically too small for con-
ventional spectrometers. In addition the small footprint of the device enables it to
be placed inside cryogenic or high field environments to enable spectroscopy on
samples at helium temperatures. Samples such as rare earth doped crystals present
an interesting target sample as they possess a rich array of spectral features along
with promising quantum phenomenon which could impact future developments in
quantum information processing. In this case the on-chip spectrometer presents a

scalable platform for addressing multiple quantum transitions.
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Chapter 1

Introduction

1.1 Terahertz Spectral Region

The Terahertz (THz) spectral region is located in the electromagnetic spectrum be-
tween the far infrared and microwave regions of the spectrum and is referred to as
the THz Gap. Itis typically under served in terms of commercial sources and detec-
tors when compared to the visible region of the spectrum. The gap, shown in Figure
1.1,isdened as 0.3 -3 THz or Imm - 100 um. A broader range of 0.1 - 10 THz is

also often used.

Figure 1.1: The Terahertz region of the electromagnetic spectrum
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There are many chemical and biological responses that can be accessed by the
energy range (meV) covered by THz radiation that are useful for quanti cation and
guali cation of samples, this is perhaps well illustrated by observing atmospheric
transmission across a section of the THz band, shown in Figure 1.2. Here there
are many absorption lines corresponding to the variety of chemical species in the

atmosphere.

Figure 1.2: Atmospheric transmission coef cient for the THz region of the spectrum[1.1, 2]

In addition to the absorption of some materials there are many that are transpar-
ent to THz radiation, which opens the door towards imaging in areas traditionally
inaccessible to the visible region of the spectrum. The main technological chal-
lenges involved in the production of THz devices depends on the approach taken.
For electrical oscillators the oscillation frequency is prohibitively high for most
diode technologies where the limits are imposed by electron transit times. For the
case of generation via stimulated emission the THz photon energy is lower than
that of the optical phonon energy, therefore sources relying on intra-band transi-
tions such as the Quantum Cascade Laser (QCL) require cryogenic cooling and in
some cases magnetic elds. In the following sections a review of the current state
of the art Continuous Wave (CW) sources and detectors will be presented with a
focus on their suitability for spectroscopy in general, and more speci cally to this

work, their suitability for on-chip integration, and frequency domain spectroscopy.
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