de la Rosa, R;
Steinmaus, C;
Akers, NK;
Conde, L;
Ferreccio, C;
Kalman, D;
Zhang, KR;
... Smith, MT; + view all
(2017)
Associations between arsenic (+3 oxidation state) methyltransferase (AS3MT) and N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms, arsenic metabolism, and cancer risk in a chilean population.
Environmental and Molecular Mutagenesis
, 58
(6)
pp. 411-422.
10.1002/em.22104.
Preview |
Text
nihms877017.pdf - Accepted Version Download (746kB) | Preview |
Abstract
nter‐individual differences in arsenic metabolism have been linked to arsenic‐related disease risks. Arsenic (+3) methyltransferase (AS3MT) is the primary enzyme involved in arsenic metabolism, and we previously demonstrated in vitro that N‐6 adenine‐specific DNA methyltransferase 1 (N6AMT1) also methylates the toxic inorganic arsenic (iAs) metabolite, monomethylarsonous acid (MMA), to the less toxic dimethylarsonic acid (DMA). Here, we evaluated whether AS3MT and N6AMT1 gene polymorphisms alter arsenic methylation and impact iAs‐related cancer risks. We assessed AS3MT and N6AMT1 polymorphisms and urinary arsenic metabolites (%iAs, %MMA, %DMA) in 722 subjects from an arsenic‐cancer case‐control study in a uniquely exposed area in northern Chile. Polymorphisms were genotyped using a custom designed multiplex, ligation‐dependent probe amplification (MLPA) assay for 6 AS3MT SNPs and 14 tag SNPs in the N6AMT1 gene. We found several AS3MT polymorphisms associated with both urinary arsenic metabolite profiles and cancer risk. For example, compared to wildtypes, individuals carrying minor alleles in AS3MT rs3740393 had lower %MMA (mean difference = −1.9%, 95% CI: −3.3, −0.4), higher %DMA (mean difference = 4.0%, 95% CI: 1.5, 6.5), and lower odds ratios for bladder (OR = 0.3; 95% CI: 0.1–0.6) and lung cancer (OR = 0.6; 95% CI: 0.2–1.1). Evidence of interaction was also observed for both lung and bladder cancer between these polymorphisms and elevated historical arsenic exposures. Clear associations were not seen for N6AMT1. These results are the first to demonstrate a direct association between AS3MT polymorphisms and arsenic‐related internal cancer risk. This research could help identify subpopulations that are particularly vulnerable to arsenic‐related disease.
Type: | Article |
---|---|
Title: | Associations between arsenic (+3 oxidation state) methyltransferase (AS3MT) and N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms, arsenic metabolism, and cancer risk in a chilean population |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/em.22104 |
Publisher version: | https://doi.org/10.1002/em.22104 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | arsenic metabolism; N6AMT1; AS3MT; polymorphism; cancer |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute > Research Department of Cancer Bio |
URI: | https://discovery.ucl.ac.uk/id/eprint/10076603 |
Archive Staff Only
View Item |