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Abstract

Given two candidate models, and a set of target observations, we address the prob-
lem of measuring the relative goodness of fit of the two models. We propose two
new statistical tests which are nonparametric, computationally efficient (runtime
complexity is linear in the sample size), and interpretable. As a unique advantage,
our tests can produce a set of examples (informative features) indicating the regions
in the data domain where one model fits significantly better than the other. In a
real-world problem of comparing GAN models, the test power of our new test
matches that of the state-of-the-art test of relative goodness of fit, while being one
order of magnitude faster.

1 Introduction
One of the most fruitful areas in recent machine learning research has been the development of
effective generative models for very complex and high dimensional data. Chief among these have
been the generative adversarial networks [Goodfellow et al., 2014, Arjovsky et al., 2017, Nowozin
et al., 2016], where samples may be generated without an explicit generative model or likelihood
function. A related thread has emerged in the statistics community with the advent of Approximate
Bayesian Computation, where simulation-based models without closed-form likelihoods are widely
applied in bioinformatics applications [see Lintusaari et al., 2017, for a review]. In these cases, we
might have several competing models, and wish to evaluate which is the better fit for the data.

The problem of model criticism is traditionally defined as follows: how well does a model Q fit a
given sample Zn := {zi}ni=1

i.i.d.∼ R? This task can be addressed in two ways: by comparing samples
Yn := {yi}ni=1 from the model Q and data samples, or by directly evaluating the goodness of fit of
the model itself. In both of these cases, the tests have a null hypothesis (that the model agrees with
the data), which they will reject given sufficient evidence. Two-sample tests fall into the first category:
there are numerous nonparametric tests which may be used [Alba Fernández et al., 2008, Gretton
et al., 2012a, Friedman and Rafsky, 1979, Székely and Rizzo, 2004, Rosenbaum, 2005, Harchaoui
et al., 2008, Hall and Tajvidi, 2002, Jitkrittum et al., 2016], and recent work in applying two-sample
tests to the problem of model criticism [Lloyd and Ghahramani, 2015]. A second approach requires
the model density q explicitly. In the case of simple models for which normalisation is not an issue
(e.g., checking for Gaussianity), several tests exist [Baringhaus and Henze, 1988, Székely and Rizzo,
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2005]; when a model density is known only up to a normalisation constant, tests of goodness of fit
have been developed using a Stein-based divergence [Chwialkowski et al., 2016, Liu et al., 2016,
Jitkrittum et al., 2017b].

An issue with the above notion of model criticism, particularly in the case of modern generative
models, is that any hypothetical model Q that we design is likely a poor fit to the data. Indeed, as
noted in Yamada et al. [2018, Section 5.5], comparing samples from various Generative Adversarial
Network (GAN) models [Goodfellow et al., 2014] to the reference sample Zn by a variant of the
Maximum Mean Discrepancy (MMD) test [Gretton et al., 2012a] leads to the trivial conclusion that
all models are wrong [Box, 1976], i.e., H0 : Q = R is rejected by the test in all cases. A more
relevant question in practice is thus: “Given two models P and Q, which is closer to R, and in what
ways?” This is the problem we tackle in this work.

To our knowledge, the only nonparametric statistical test of relative goodness of fit is the Rel-MMD
test of Bounliphone et al. [2015], based on the maximum mean discrepancy [MMD, Gretton et al.,
2012a]. While shown to be practical (e.g., for comparing network architectures of generative
networks), two issues remain to be addressed. Firstly, its runtime complexity is quadratic in the
sample size n, meaning that it can be applied only to problems of moderate size. Secondly and more
importantly, it does not give an indication of where one model is better than the other. This is essential
for model comparison: in practical settings, it is highly unlikely that one model will be uniformly
better than another in all respects: for instance, in hand-written digit generation, one model might
produce better “3”s, and the other better “6”s. The ability to produce a few examples which indicate
regions (in the data domain) in which one model fits better than the other will be a valuable tool for
model comparison. This type of interpretability is useful especially in learning generative models
with GANs, where the “mode collapse” problem is widespread [Salimans et al., 2016, Srivastava
et al., 2017]. The idea of generating such distinguishing examples (so called test locations) was
explored in Jitkrittum et al. [2016, 2017b] in the context of model criticism and two-sample testing.

In this work, we propose two new linear-time tests for relative goodness-of-fit. In the first test, the two
models P,Q are represented by their two respective samples Xn and Yn, and the test generalises that
of Jitkrittum et al. [2016]. In the second, the test has access to the probability density functions p, q
of the two respective candidate models P,Q (which need only be known up to normalisation), and is
a three-way analogue of the test of Jitkrittum et al. [2017b]. In both cases, the tests return locations
indicating where one model outperforms the other. We emphasise that the practitioner must choose
the model ordering, since as noted earlier, this will determine the locations that the test prioritises. We
further note that the two tests complement each other, as both address different aspects of the model
comparison problem. The first test simply finds the location where the better model produces mass
closest to the test sample: a worse model can produce too much mass, or too little. The second test
does not address the overall probability mass, but rather the shape of the model density: specifically,
it penalises the model whose derivative log density differs most from the target (the interpretation
is illustrated in our experiments). In the experiment on comparing two GAN models, we find that
the performance of our new test matches that of Rel-MMD while being one order of magnitude
faster. Further, unlike the popular Fréchet Inception Distance (FID) [Heusel et al., 2017] which can
give a wrong conclusion when two GANs have equal goodness of fit, our proposed method has a
well-calibrated threshold, allowing the user to flexibly control the false positive rate.

2 Measures of Goodness of Fit
In the proposed tests, we test the relative goodness of fit by comparing the relative magnitudes of
two distances, following Bounliphone et al. [2015]. More specifically, let D(P,R) be a discrepancy
measure between P and R. Then, the problem can be formulated as a hypothesis test proposing
H0 : D(P,R) ≤ D(Q,R) against H1 : D(P,R) > D(Q,R). This is the approach taken by Bounli-
phone et al. who use the MMD as D, resulting in the relative MMD test (Rel-MMD). The proposed
Rel-UME and Rel-FSSD tests are based on two recently proposed discrepancy measures for D:
the Unnormalized Mean Embeddings (UME) statistic [Chwialkowski et al., 2015, Jitkrittum et al.,
2016], and the Finite-Set Stein Discrepancy (FSSD) [Jitkrittum et al., 2017b], for the sample-based
and density-based settings, respectively. We first review UME and FSSD. We will extend these two
measures to construct two new relative goodness-of-fit tests in Section 3. We assume throughout that
the probability measures P,Q,R have a common support X ⊆ Rd.

The Unnormalized Mean Embeddings (UME) Statistic UME is a (random) distance between two
probability distributions [Chwialkowski et al., 2015] originally proposed for two-sample testing for
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H0 : Q = R and H1 : Q 6= R. Let kY : X × X → R be a positive definite kernel. Let µQ be the
mean embedding of Q, and is defined such that µQ(w) := Ey∼Qk(y,w) (assumed to exist) [Smola
et al., 2007]. Gretton et al. [2012a] shows that when kY is characteristic [Sriperumbudur et al., 2011],
the Maximum Mean Discrepancy (MMD) witness function witQ,R(w) := µQ(w) − µR(w) is a
zero function if and only if Q = R. Based on this fact, the UME statistic evaluates the squared
witness function at Jq test locations W := {wj}Jqj=1 ⊂ X to determine whether it is zero. Formally,
the population squared UME statistic is defined as U2(Q,R) := 1

J

∑J
j=1(µQ(wj) − µR(wj))

2.
For our purpose, it will be useful to rewrite the UME statistic as follows. Define the feature
function ψW (y) := 1√

Jq

(
kY (y,w1), . . . , kY (y,wJq )

)> ∈ RJq . Let ψQW := Ey∼Q[ψW (y)], and

its empirical estimate ψ̂QW := 1
n

∑n
i=1 ψW (yi). The squared population UME statistic is equivalent

to U2(Q,R) := ‖ψQW − ψRW ‖22. For W ∼ η where η is a distribution with a density, Theorem 2
in Chwialkowski et al. [2015] states that if kY is real analytic, integrable, and characteristic, then
η-almost surely ‖ψQW − ψRW ‖22 = 0 if and only if Q = R. In words, under the stated conditions,
U(Q,R) := UQ defines a distance between Q and R (almost surely).2 A consistent unbiased
estimator is Û2

Q = 1
n(n−1)

[
‖∑n

i=1[ψW (yi)− ψW (zi)]‖2 −
∑n
i=1 ‖ψW (yi)− ψW (zi)‖2

]
, which

clearly can be computed in O(n) time. Jitkrittum et al. [2016] proposed optimizing the test locations
W and kY so as to maximize the test power (i.e., the probability of rejecting H0 when it is false) of
the two-sample test with the normalized version of the UME statistic. It was shown that the optimized
locations give an interpretable indication of where Q and R differ in the input domain X .

The Finite-Set Stein Discrepancy (FSSD) FSSD is a discrepancy between two density func-
tions q and r. Let X ⊆ Rd be a connected open set. Assume that Q,R have probability
density functions denoted by q, r respectively. Given a positive definite kernel kY , the Stein
witness function [Chwialkowski et al., 2016, Liu et al., 2016] gq,r : X → Rd between q and
r is defined as gq,r(w) := Ez∼r [ξq(z,w)] = (gq,r1 (w), . . . , gq,rd (w))>, where ξq(z,w) :=
kY (z,w)∇z log q(z) +∇zkY (z,w). Under appropriate conditions (see Chwialkowski et al. [2016,
Theorem 2.2] and Liu et al. [2016, Proposition 3.3]), it can be shown that gq,r = 0 (i.e., the zero
function) if and only if q = r. An implication of this result is that the deviation of gq,r from the zero
function can be used as a measure of mismatch between q and r. Different ways to characterize such
deviation have led to different measures of goodness of fit.

The FSSD characterizes such deviation from 0 by evaluating gq,r at Jq test locations. Formally,
given a set of test locations W = {wj}Jqj=1, the squared FSSD is defined as FSSD2

q(r) :=
1
dJq

∑Jq
j=1 ‖gq,r(wj)‖22 := F 2

q [Jitkrittum et al., 2017b]. Under appropriate conditions, it is
known that almost surely F 2

q = 0 if and only if q = r. Using the notations as in Jitkrittum
et al. [2017b], one can write F 2

q = Ez∼rEz′∼r∆q(z, z
′) where ∆q(z, z

′) := τ>q (z)τ q(z
′),

τ q(z) := vec(Ξq(z)) ∈ RdJq , vec(M) concatenates columns of M into a column vector,
and Ξq(z) ∈ Rd×Jq is defined such that [Ξq(z)]i,j := ξqi (z,wj)/

√
dJq for i = 1, . . . , d and

j = 1, . . . , Jq. Equivalently, F 2
q = ‖µq‖22 where µq := Ez∼r[τ q(z)]. Similar to the UME statistic

described previously, given a sample Zn = {zi}ni=1 ∼ r, an unbiased estimator of F 2
q , denoted by

F̂ 2
q can be straightforwardly written as a second-order U-statistic, which can be computed in O(Jqn)

time. It was shown in Jitkrittum et al. [2017b] that the test locations W can be chosen by maximizing
the test power of the goodness-of-fit test proposing H0 : q = r against H1 : q 6= r, using F̂ 2

q as the

statistic. We note that, unlike UME, F̂ 2
q requires access to the density q. Another way to characterize

the deviation of gq,r from the zero function is to use the norm in the reproducing kernel Hilbert space
(RKHS) that contains gq,r. This measure is known as the Kernel Stein Discrepancy having a runtime
complexity of O(n2) [Chwialkowski et al., 2016, Liu et al., 2016, Gorham and Mackey, 2015].

3 Proposal: Rel-UME and Rel-FSSD Tests
Relative UME (Rel-UME) Our first proposed relative goodness-of-fit test based on UME tests
H0 : U2(P,R) ≤ U2(Q,R) versus H1 : U2(P,R) > U2(Q,R). The test uses

√
nŜUn =

√
n(Û2

P −
2In this work, since the distance is always measured relative to the data generating distribution R, we write

UQ instead of U(Q,R) to avoid cluttering the notation.
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Û2
Q) as the statistic, and rejects H0 when it is larger than the threshold Tα. The threshold is given by

the (1−α)-quantile of the asymptotic distribution of
√
nŜUn when H0 holds i.e., the null distribution,

and the pre-chosen α is the significance level. It is well-known that this choice for the threshold
asymptotically controls the false rejection rate to be bounded above by α yielding a level-α test
[Casella and Berger, 2002, Definition 8.3.6]. In the full generality of Rel-UME, two sets of test
locations can be used: V = {vj}Jpj=1 for computing Û2

P , and W = {wj}Jqj=1 for Û2
Q. The feature

function for Û2
P is denoted by ψV (x) := 1√

Jp

(
kX(x,v1), . . . , kX(x,vJp)

)> ∈ RJp , for some

kernel kX which can be different from kY used in ψW . The asymptotic distribution of the statistic is
stated in Theorem 1.

Theorem 1 (Asymptotic distribution of ŜUn ). Define CQW := covy∼Q[ψW (y), ψW (y)], CPV :=
covx∼P [ψV (x), ψV (x)], and CRVW := covz∼R[ψV (z), ψW (z)] ∈ RJp×Jq . Let SU := U2

P − U2
Q,

and M :=

(
ψPV − ψRV 0

0 ψQW − ψRW

)
∈ R(Jp+Jq)×2. Assume that 1) P,Q and R are

all distinct, 2) (kX , V ) are chosen such that U2
P > 0, and (kY ,W ) are chosen such that

U2
Q > 0, 3)

(
ζ2P ζPQ
ζPQ ζ2Q

)
:= M>

(
CPV + CRV CRVW
(CRVW )> CQW + CRW

)
M is positive definite. Then,

√
n
(
ŜUn − SU

)
d→ N

(
0, 4(ζ2P − 2ζPQ + ζ2Q)

)
A proof of Theorem 1 can be found in Section C.1 (appendix). Let ν := 4(ζ2P−2ζPQ+ζ2Q). Theorem
1 states that the asymptotic distribution of ŜUn is normal with the mean given by SU := U2

P − U2
Q. It

follows that under H0, SU ≤ 0 and the (1− α)-quantile is SU +
√
νΦ−1(1− α) where Φ−1 is the

quantile function of the standard normal distribution. Since SU is unknown in practice, we therefore
adjust it to be

√
νΦ−1(1 − α), and use it as the test threshold Tα. The adjusted threshold can be

estimated easily by replacing ν with ν̂n, a consistent estimate based on samples. It can be shown that
the test with the adjusted threshold is still level-α (more conservative in rejecting H0). We note that
the same approach of adjusting the threshold is used in Rel-MMD [Bounliphone et al., 2015].

Better Fit of Q in Terms of W . When specifying V and W , the model comparison is done by
comparing the goodness of fit of P (to R) as measured in the regions specified by V to the goodness
of fit of Q as measured in the regions specified by W . By specifying V and setting W = V ,
testing with Rel-UME is equivalent to posing the question “Does Q fit to the data better than P
does, as measured in the regions of V ?” For instance, the observed sample from R might contain
smiling and non-smiling faces, and P,Q are candidate generative models for face images. If we are
interested in checking the relative fit in the regions of smiling faces, V can be a set of smiling faces.
In the followings, we will assume V = W and k := kX = kY for interpretability. Investigating
the general case without these constraints will be an interesting topic of future study. Importantly
we emphasize that test results are always conditioned on the specified V . To be precise, let U2

V
be the squared UME statistic defined by V . It is entirely realistic that the test rejects H0 in favor
of H1 : U2

V1
(P,R) > U2

V1
(Q,R) (i.e., Q fits better) for some V1, and also rejects H0 in favor of

the opposite alternative H1 : U2
V2

(Q,R) > U2
V2

(P,R) (i.e., P fits better) for another setting of V2.
This is because the regions in which the model comparison takes place are different in the two
cases. Although not discussed in Bounliphone et al. [2015], the same behaviour can be observed for
Rel-MMD i.e., test results are conditioned on the choice of kernel.

In some cases, it is not known in advance what features are better represented by one model vs another,
and it becomes necessary to learn these features from the model outputs. In this case, we propose set-
ting V to contain the locations which maximize the probability that the test can detect the better fit of
Q, as measured at the locations. Following the same principle as in Gretton et al. [2012b], Sutherland
et al. [2016], Jitkrittum et al. [2016, 2017a,b], this goal can be achieved by finding (k, V ) which max-
imize the test power, while ensuring that the test is level-α. By Theorem 1, for large n the test power

P
(√

nŜUn > Tα

)
is approximately Φ

(√
nSU−Tα√

ν

)
= Φ

(√
nS

U
√
ν
−
√

ν̂n
ν Φ−1(1− α)

)
. UnderH1,

SU > 0. For large n, Φ−1(1 − α)
√
ν̂n/
√
ν approaches a constant, and

√
nSU/

√
ν dominates. It

follows that, for large n, (k∗, V ∗) = arg max(k,V ) P
(√

nŜUn > Tα

)
≈ arg max(k,V ) S

U/
√
ν. We
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can thus use ŜUn /(γ+
√
ν̂n) as an estimate of the power criterion objective SU/

√
ν for the test power,

where γ > 0 is a small regularization parameter added to promote numerical stability following
Jitkrittum et al. [2017b, p. 5]. To control the false rejection rate, the maximization is carried out on
held-out training data which are independent of the data used for testing. In the experiments (Section
4), we hold out 20% of the data for the optimization. A unique consequence of this procedure is that
we obtain optimized V ∗ which indicates where Q fits significantly better than P . We note that this
interpretation only holds if the test, using the optimized hyperparameters (k∗, V ∗), decides to reject
H0. The optimized locations may not be interpretable if the test fails to reject H0.

Relative FSSD (Rel-FSSD) The proposed Rel-FSSD tests H0 : F 2
p ≤ F 2

q versus H1 : F 2
p > F 2

q .

The test statistic is
√
nŜFn :=

√
n(F̂ 2

p − F̂ 2
q ). We note that the feature functions τ p (for F 2

p ) and
τ q (for F 2

q ) depend on (kX , V ) and (kY ,W ) respectively, and play the same role as the feature
functions ψV and ψW of the UME statistic. Due to space limitations, we only state the salient facts
of Rel-FSSD. The rest of the derivations closely follow Rel-UME. These include the interpretation
that the relative fit is measured at the specified locations given in V and W , and the derivation of
Rel-FSSD’s power criterion (which can be derived using the asymptotic distribution of ŜFn given in
Theorem 2, following the same line of reasoning as in the case of Rel-UME). A major difference is
that Rel-FSSD requires explicit (gradients of the log) density functions of the two models, allowing
it to gain structural information of the models that may not be as easily observed in finite samples.
We next state the asymptotic distribution of the statistic (Theorem 2), which is needed for obtaining
the threshold and for deriving the power criterion. The proof closely follows the proof of Theorem 1,
and is omitted.
Theorem 2 (Asymptotic distribution of ŜFn ). Define SF := F 2

p − F 2
q . Let Σss′ :=

covz∼r[τ s(z), τ s′(z)] for s, s′ ∈ {p, q} so that Σpq ∈ RdJp×dJq , Σqp := (Σpq)
>, Σpp =

Σp ∈ RdJp×dJp , and Σqq = Σq ∈ RdJq×dJq . Assume that 1) p, q, and r are all distinct,
2) (kX , V ) are chosen such that F 2

p > 0, and (kY ,W ) are chosen such that F 2
q > 0, 3)(

σ2
p σpq

σpq σ2
q

)
:=

(
µ>p Σpµp µ>p Σpqµq
µ>p Σpqµq µ>q Σqµq

)
is positive definite. Then,

√
n
(
ŜFn − SF

)
d→

N
(
0, 4(σ2

p − 2σpq + σ2
q )
)
.

4 Experiments
In this section, we demonstrate the two proposed tests on both toy and real problems. We start
with an illustration of the behaviors of Rel-UME and Rel-FSSD’s power criteria using simple one-
dimensional problems. In the second experiment, we examine the test powers of the two proposed
tests using three toy problems. In the third experiment, we compare two hypothetical generative
models on the CIFAR-10 dataset [Krizhevsky and Hinton, 2009] and demonstrate that the learned test
locations (images) can clearly indicate the types of images that are better modeled by one of the two
candidate models. In the last two experiments, we consider the problem of determining the relative
goodness of fit of two given Generative Adversarial Networks (GANs) [Goodfellow et al., 2014].
Code to reproduce all the results is available at https://github.com/wittawatj/kernel-mod.

1. Illustration of Rel-UME and Rel-FSSD Power Criteria We consider k = kX = kY to be a
Gaussian kernel, and set V = W = {v} (one test location). The power criterion of Rel-UME

as a function of v can be written as 1
2

wit2P,R(v)−wit2Q,R(v)

(ζ2P (v)−2ζPQ(v)+ζ2Q(v))1/2
where wit(·) is the MMD witness

function (see Section 2), and we explicitly indicate the dependency on v. To illustrate, we consider
two Gaussian models p, q with different means but the same variance, and set r to be a mixture of p
and q. Figure 1a shows that when each component in r has the same mixing proportion, the power
criterion of Rel-UME is a zero function indicating that p and q have the same goodness of fit to r
everywhere. To understand this, notice that at the left mode of r, p has excessive probability mass
(compared to r), while q has almost no mass at all. Both models are thus wrong at the left mode
of r. However, since the extra probability mass of p is equal to the missing mass of q, Rel-UME
considers p and q as having the same goodness of fit. In Figure 1b, the left mode of r now has a
mixing proportion of only 30%, and r more closely matches q. The power criterion is thus positive at
the left mode indicating that q has a better fit.

The power criterion of Rel-FSSD indicates that q fits better at the right mode of r in the case of
equal mixing proportion (see Figure 1c). In one dimension, the Stein witness function gq,r (defined
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Figure 1: One-dimensional plots (in green) of Rel-UME’s power criteria (in (a), (b)), and Rel-FSSD’s
power criteria (in (c), (d)). The dashed lines in (a), (b) indicate MMD’s witness functions used in
Rel-UME, and the dashed lines in (c), (d) indicate FSSD’s Stein witness functions.

in Section 2) can be written as gq,r(w) = Ez∼r [kY (z, w)∇z (log q(z)− log r(z))], which is the
expectation under r of the difference in the derivative log of q and r, weighted by the kernel kY .
The Stein witness thus only captures the matching of the shapes of the two densities (as given by
the derivative log). Unlike the MMD witness, the Stein witness is insensitive to the mismatch of
probability masses i.e., it is independent of the normalizer of q. In Figure 1c, since the shape of q and
the shape of the right mode of r match, the Stein witness gq,r (dashed blue curve) vanishes at the
right mode of r, indicating a good fit of q in the region. The mismatch between the shape of q and the
shape of r at the left mode of r is what creates the peak of gq,r. The same reasoning holds for the
Stein witness gp,r. The power criterion of Rel-FSSD, which is given by 1

2
gp,r(w)2−gq,r(w)2

(σ2
p(w)−2σpq(w)+σ2

q(w))1/2
,

is thus positive at the right mode of r (shapes of q and r matched there), and negative at the left
mode of r (shapes of p and r matched there). To summarize, Rel-UME measures the relative fit by
checking the probability mass, while Rel-FSSD does so by matching the shapes of the densities.

2. Test Powers on Toy Problems The goal of this experiment is to investigate the rejection rates of
several variations of the two proposed tests. To this end, we study three toy problems, each having
its own characteristics. All the three distributions in each problem have density functions to allow
comparison with Rel-FSSD.

1. Mean shift: All the three distributions are isotropic multivariate normal distributions: p =
N ([0.5, 0, . . . , 0], I), q = N ([1, 0, . . . 0], I), and r = N (0, I), defined on R50. The two
candidates models p and q differ in the mean of the first dimension. In this problem, the null
hypothesis H0 is true since p is closer to r.

2. Blobs: Each distribution is given by a mixture of four Gaussian distributions organized in a grid
in R2. Samples from p, q and r are shown in Figure 4. In this problem, q is closer to r than p is
i.e., H1 is true. One characteristic of this problem is that the difference between p and q takes
place in a small scale relative to the global structure of the data. This problem was studied in
Gretton et al. [2012b], Chwialkowski et al. [2015].

3. RBM: Each of the three distributions is given by a Gaussian Bernoulli Restricted Boltz-
mann Machine (RBM) model with density function p′B,b,c(x) =

∑
h p
′
B,b,c(x,h), where

p′B,b,c(x,h) := 1
Z exp

(
x>Bh+ b>x+ c>h− 1

2‖x‖2
)

, h ∈ {−1, 1}dh is a latent vec-
tor, Z is the normalizer, and B, b, c are model parameters. Let r(x) := p′B,b,c(x), p(x) :=

p′Bp,b,c(x), and q(x) := p′Bq,b,c(x). Following a similar setting as in Liu et al. [2016], Jitkrit-
tum et al. [2017b], we set the parameters of the data generating density r by uniformly randomly
setting entries ofB to be from {−1, 1}, and drawing entries of b and c from the standard normal
distribution. Let δ be a matrix of the same size asB such that δ1,1 = 1 and all other entries are
0. We setBq = B + 0.3δ andBp = B + εδ, where the perturbation constant ε is varied. We
fix the sample size n to 2000. Perturbing only one entry ofB creates a problem in which the
difference of distributions can be difficult to detect. This serves as a challenging benchmark to
measure the sensitivity of statistical tests [Jitkrittum et al., 2017b]. We set d = 20 and dh = 5.

We compare three kernel-based tests: Rel-UME, Rel-FSSD, and Rel-MMD (the relative MMD test
of Bounliphone et al. [2015]), all using a Gaussian kernel. For Rel-UME and Rel-FSSD we set
kX = kY = k, where the the Gaussian width of k, and the test locations are chosen by maximizing
their respective power criteria described in Section 3 on 20% of the data. The optimization procedure
is described in Section A (appendix). Following Bounliphone et al. [2015], the Gaussian width of
Rel-MMD is chosen by the median heuristic as implemented in the code by the authors. In the RBM

6



300 900 1500 2100 2700
Sample size n

0.0

0.5

1.0

R
ej

ec
ti

on
ra

te

Rel-UME J1 Rel-UME J5 Rel-FSSD J1 Rel-FSSD J5 Rel-MMD

500 1000 1500
Sample size n

0.000

0.005

R
ej

ec
ti

on
ra

te

(a) Mean shift. d = 50.

0.3 1 2 3 5 8
Sample size n (×103)

0.0

0.5

1.0

R
ej

ec
ti

on
ra

te

(b) Blobs. d = 2.

0.3 1 2 3 5 8
Sample size n (×103)

10−1

100

101

102

T
im

e
(s

)

(c) Blobs (Runtime)

0.2 0.3 0.4 0.6
Perturbation ε

0.0

0.5

1.0

R
ej

ec
ti

on
ra

te

(d) RBM. d = 20

Figure 2: (a), (b), (d) Rejection rates (estimated from 300 trials) of the five tests with α = 0.05. In
the RBM problem, n = 2000. (c) Runtime in seconds for one trial in the Blobs problem.
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Figure 3: P = {airplane, cat}, Q = {automobile, cat}, and R = {automobile, cat}. (a) Histogram of
Rel-UME power criterion values. (b), (c) Images as sorted by the criterion values in ascending and
descending orders, respectively.

problem, all problem parametersB, b, and c are drawn only once and fixed. Only the samples vary
across trials.

−10 −5 0 5 10
−10

−5

0

5

10

p
q
r

Figure 4: Blobs problem
samples: p, q, r.

Figure 2 shows the test powers of all the tests. When H0 holds, all tests
have false rejection rates (type-I errors) bounded above by α = 0.05 (Fig-
ure 2a). In the Blobs problem (Figure 2b), it can be seen that Rel-UME
achieves larger power at all sample sizes, compared to Rel-MMD. Since
the relative goodness of fit of p and q must be compared locally, the
optimized test locations of Rel-UME are suitable for detecting such local
differences. The poor performance of Rel-MMD is caused by unsuitable
choices of the kernel bandwidth. The bandwidth chosen by the median
heuristic is only appropriate for capturing the global length scale of the
problem. It is thus too large to capture small-scale differences. No ex-

isting work has proposed a kernel selection procedure for Rel-MMD. Regarding the number J
of test locations, we observe that changing J from 1 to 5 drastically increases the test power of
Rel-UME, since more regions characterizing the differences can be pinpointed. Rel-MMD exhibits
a quadratic-time profile (Figure 2c) as a function of n.

Figure 2d shows the rejection rates against the perturbation strength ε in p in the RBM problem. When
ε ≤ 0.3, p is closer to r than q is (i.e., H0 holds). We observe that all the tests have well-controlled
false rejection rates in this case. At ε = 0.35, while q is closer (i.e., H1 holds), the relative amount
by which q is closer to r is so small that a significant difference cannot be detected when p and q
are represented by samples of size n = 2000, hence the low powers of Rel-UME and Rel-MMD.
Structural information provided by the density functions allows Rel-FSSD (both J = 1 and J = 5)
to detect the difference even at ε = 0.35, as can be seen from the high test powers. The fact that
Rel-MMD has higher power than Rel-UME, and the fact that changing J from 1 to 5 increases the
power only slightly suggest that the differences may be spatially diffuse (rather than local).

3. Informative Power Objective In this part, we demonstrate that test locations having positive
(negative) values of the power criterion correctly indicate the regions in which Q has a better (worse)
fit. We consider image samples from three categories of the CIFAR-10 dataset [Krizhevsky and
Hinton, 2009]: airplane, automobile, and cat. We partition the images, and assume that the sample
from P consists of 2000 airplane, 1500 cat images, the sample from Q consists of 2000 automobile,
1500 cat images, and the reference sample from R consists of 2000 automobile, 1500 cat images. All
samples are independent. We consider a held-out random sample consisting of 1000 images from each

7



Table 1: Rejection rates of the proposed Rel-UME, Rel-MMD, KID and FID, in the GAN model
comparison problem. “FID diff.” refers to the average of FID(P,R)− FID(Q,R) estimated in each
trial. Significance level α = 0.01 (for Rel-UME, Rel-MMD, and KID).

P Q R Rel-UME Rel-
MMD

KID FID FID diff.
J10 J20 J40

1. S S RS 0.0 0.0 0.0 0.0 0.0 0.53 -0.045 ± 0.52
2. RS RS RS 0.0 0.0 0.0 0.03 0.02 0.7 0.04 ± 0.19
3. S N RS 0.0 0.0 0.0 0.0 0.0 0.0 -15.22 ± 0.83
4. S N RN 0.57 0.97 1.0 1.0 1.0 1.0 5.25 ± 0.75
5. S N RM 0.0 0.0 0.0 0.0 0.0 0.0 -4.55 ± 0.82

category, serving as a pool of test location candidates. We set the kernel to be the Gaussian kernel
on 2048 features extracted by the Inception-v3 network at the pool3 layer [Szegedy et al., 2016].
We evaluate the power criterion of Rel-UME at each of the test locations in the pool individually.
The histogram of the criterion values is shown in Figure 3a. We observe that all the power criterion
values are non-negative, confirming that Q is better than P everywhere. Figure 3b shows the top 15
test locations as sorted in ascending order by the criterion, consisting of automobile images. These
indicate the regions in the data domain where Q fits better. Notice that cat images do not have high
positive criterion values because they can be modeled equally well by P and Q, and thus have scores
close to zero as shown in Figure 3b.

4. Testing GAN Models In this experiment, we apply the proposed Rel-UME test to comparing
two generative adversarial networks (GANs) [Goodfellow et al., 2014]. We consider the CelebA
dataset [Liu et al., 2015]3 in which each data point is an image of a celebrity with 40 binary attributes
annotated e.g., pointy nose, smiling, mustache, etc. We create a partition of the images on the smiling
attribute, thereby creating two disjoint subsets of smiling and non-smiling images. A set of 30000
images from each subset is held out for subsequent relative goodness-of-fit testing, and the rest are
used for training two GAN models: a model for smiling images, and a model for non-smiling images.
Generated samples and details of the trained models can be found in Section B (appendix). The two
models are trained once and fixed throughout.

In addition to Rel-MMD, we compare the proposed Rel-UME to Kernel Inception Distance (KID)
[Bińkowski et al., 2018], and Fréchet Inception Distance (FID) [Heusel et al., 2017], which are
distances between two samples (originally proposed for comparing a sample of generated images,
and a reference sample). All images are represented by 2048 features extracted from the Inception-v3
network [Szegedy et al., 2016] at the pool3 layer following Bińkowski et al. [2018]. When adapted
for three samples, KID is in fact a variant of Rel-MMD in which a third-order polynomial kernel
is used instead of a Gaussian kernel (on top of the pool3 features). Following Bińkowski et al.
[2018], we construct a bootstrap estimator for FID (10 subsamples with 1000 points in each). For
the proposed Rel-UME, the J ∈ {10, 20, 40} test locations are randomly set to contain J/2 smiling
images, and J/2 non-smiling images drawn from a held-out set of real images. We create problem
variations by setting P,Q,R ∈ {S, N, RS, RN, RM} where S denotes generated smiling images
(from the trained model), N denotes generated non-smiling images, M denotes an equal mixture of
smiling and non-smiling images, and the prefix R indicates that real images are used (as opposed to
generated ones). The sample size is n = 2000, and each problem variation is repeated for 10 trials
for FID (due to its high complexity) and 100 trials for other methods. The rejection rates from all the
methods are shown in Table 1. Here, the test result for FID in each trial is considered “reject H0” if
FID(P,R) > FID(Q,R). Heusel et al. [2017] did not propose FID as a statistical test. That said,
there is a generic way of constructing a relative goodness-of-fit test based on repeated permutation of
samples of P and Q to simulate from the null distribution. However, FID requires computing the
square root of the feature covariance matrix (2048 x 2048), and is computationally too expensive for
permutation testing.

Overall, we observe that the proposed test does at least equally well as existing approaches, in
identifying the better model in each case. In problems 1 and 2, P andQ have the same goodness of fit,
by design. In these cases, all the tests correctly yield low rejection rates, staying roughly at the design
level (α = 0.01). Without a properly chosen threshold, the (false) rejection rates of FID fluctuate

3CelebA dataset: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
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(a) Sample from P = LS-
GAN trained for 15 epochs.

(b) Sample from Q = LS-
GAN trained for 17 epochs.
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Figure 5: Examining the training of an LSGAN model with Rel-UME. (a), (b) Samples from the
two models P,Q trained on MNIST. (c) Distributions of power criterion values computed over 200
trials. Each distribution is formed by randomly selecting J = 40 test locations from real images of a
digit type. (d) Test locations showing where Q is better (maximization of the power criterion), and
test locations showing where P is better (minimization).
around the expected value of 0.5. This means that simply comparing FIDs (or other distances) to
the reference sample without a calibrated threshold can lead to a wrong conclusion on the relative
goodness of fit. The FID is further complicated by the fact that its estimator suffers from bias in ways
that are hard to model and correct for (see Bińkowski et al. [2018, Section D.1]). Problem 4 is a case
where the model Q is better. We notice that increasing the number of test locations of Rel-UME
helps detect the better fit of Q. In problem 5, the reference sample is bimodal, and each model can
capture only one of the two modes (analogous to the synthetic problem in Figure 1a). All the tests
correctly indicate that no model is better than another.

5. Examining GAN Training In the final experiment, we show that the power criterion of Rel-UME
can be used to examine the relative change of the distribution of a GAN model after training further
for a few epochs. To illustrate, we consider training an LSGAN model [Mao et al., 2017] on MNIST,
a dataset in which each data point is an image of a handwritten digit. We set P and Q to be LSGAN
models after 15 epochs and 17 epochs of training, respectively. Details regarding the network
architecture, training, and the kernel (chosen to be a Gaussian kernel on features extracted from a
convolutional network) can be found in Section D. Samples from P and Q are shown in Figures 5a
and 5b (see Figure 8 in the appendix for more samples).

We set the test locations V to be the set Vi containing J = 40 randomly selected real images of digit i,
for i ∈ {0, . . . , 9}. We then draw n = 2000 points from P,Q and the real data (R), and use V = Vi
to compute the power criterion for i ∈ {0, . . . , 9}. The procedure is repeated for 200 trials where V
and the samples are redrawn each time. The results are shown in Figure 5c. We observe that when
V = V3 (i.e., box plot at the digit 3) or V9, the power criterion values are mostly negative, indicating
that P is better than Q, as measured in the regions indicated by real images of the digits 3 or 9. By
contrast, when V = V6, the large mass of the box plot in the positive orthant shows that Q is better
in the regions of the digit 6. For other digits, the criterion values spread around zero, showing that
there is no difference between P and Q, on average. We further confirm that the class proportions
of the generated digits from both models are roughly correct (i.e., uniform distribution), meaning
that the difference between P and Q in these cases is not due to the mismatch in class proportions
(see Section D). These observations imply that after the 15th epoch, training this particular LSGAN
model two epochs further improves generation of the digit 6, and degrades generation of digits 3
and 9. A non-monotonic improvement during training is not uncommon since at the 15th epoch the
training has not converged. More experimental results from comparing different GAN variants on
MNIST can be found in Section E in the appendix.

We note that the set V does not need to contain test locations of the same digit. In fact, the notion of
class labels may not even exist in general. It is up to the user to define V to contain examples which
capture the relevant concept of interest. For instance, to compare the ability of models to generate
straight strokes, one might include digits 1 and 7 in the set V . An alternative to manual specification
of V is to optimize the power criterion to find the locations that best distinguish the two models
(as done in experiment 2). To illustrate, we consider greedily optimizing the power criterion by
iteratively selecting a test location (from real images) which best improves the objective. Maximizing
the objective yields locations that indicate the better fit of Q, whereas minimization gives locations
which show the better fit of P (recall from Figure 1). The optimized locations are shown in Figure 5d.
The results largely agree with our previous observations, and do not require manually specifying V .
This optimization procedure is applicable to any models which can be sampled.
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