

Acoustic pressure field estimation methods for synthetic schlieren tomography

Eero Koponen,^{a)} Jarkko Leskinen, Tanja Tarvainen,^b and Aki Pulkkinen

*Department of Applied Physics, University of Eastern Finland, P.O. Box 1627,
70211 Kuopio, Finland*

(Dated: 18 March 2019)

1 Synthetic schlieren tomography is a recently proposed three-dimensional optical imag-
2 ing technique for studying ultrasound fields. The imaging setup is composed of an
3 imaged target, a water tank, a camera, and a pulsed light source that is stroboscopi-
4 cally synchronized with an ultrasound transducer to achieve tomographically station-
5 ary imaging of an ultrasound field. In this technique, ultrasound waves change the
6 propagation of light rays by inducing a change in refractive index via acousto-optic
7 effect. The change manifests as optical flow in the imaged target. By performing
8 the imaging in a tomographic fashion, the two-dimensional tomographic dataset of
9 the optical flow can be transformed into a three-dimensional ultrasound field. In
10 this work, two approaches for acoustic pressure field estimation are introduced. The
11 approaches are based on optical and potential flow regularized least square optimi-
12 zations where regularization based on the Helmholtz equation is introduced. The
13 methods are validated via simulations in a telecentric setup and are compared quan-
14 titatively and qualitatively to a previously introduced method. Cases of a focused,
15 an obliquely propagating, and a standing wave ultrasound fields are considered. The
16 simulations demonstrate efficiency of the introduced methods also in situations in
17 which the previously applied method has weaknesses.

^{a)}eero.koponen@uef.fi

^{b)}Also at: Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom.

¹⁸ **I. INTRODUCTION**

¹⁹ Ultrasound imaging is a fundamental part of medical diagnostics.¹ In addition to diag-
²⁰ nostics, ultrasound has therapy applications, such as, treatment of cancer² and essential
²¹ tremor³ and targeted drug delivery.⁴ To guarantee patient safety and quality of diagnostics
²² or therapy, ultrasound devices need to be calibrated. This requires measurement of the ul-
²³ trasound field, commonly accomplished using cumbersome and time-consuming hydrophone
²⁴ measurements.^{5,6} Thus, calibration and quality assurance of ultrasound devices could benefit
²⁵ from new ultrasound measurement and characterization techniques.

²⁶ Various optical imaging methods, namely schlieren imaging⁷⁻⁹ and its variations, such
²⁷ as shadowgraphy,¹⁰⁻¹² background oriented schlieren (BOS) imaging,¹³⁻¹⁵ and synthetic
²⁸ schlieren,¹⁶⁻¹⁸ have been applied in imaging of pressure fields. Thus, they can potentially
²⁹ serve as alternatives for traditional measurement methods to characterize ultrasound fields.

³⁰ These methods rely on observing deflection of light passing through a heterogeneous re-
³¹ fractive index field that carries information of a density or a pressure field.^{19,20} In schlieren
³² imaging, deflection of light is observed accurately using an expensive lens setup and an
³³ optical stop blocking non-deflected light arriving to a camera.^{19,21} In the simplest variation,
³⁴ shadowgraphy, no optical setup is needed and the light is simply projected to a screen.²⁰

³⁵ The deflected light is then observed as intensity variations. Shadowgraphy is mainly used
³⁶ for qualitative inspection of an ultrasound field due to its lack of sensitivity¹⁹ and challenges
³⁷ in obtaining absolute pressure values.^{10,11} The more recent schlieren variations are BOS²²
³⁸ and synthetic schlieren²³ that use inexpensive and easy-to-use setups. In these methods,

39 deflection of light is observed as optical distortions in an imaged target and thus, they
40 can produce quantitative measurements after post-processing of the images. In ultrasound
41 community, both BOS and synthetic schlieren methodologies have been used in imaging of
42 ultrasound fields.^{14,17,18}

43 In synthetic schlieren tomography (SST) for imaging of ultrasound fields, refractive index
44 field distribution is induced via acousto-optic effect.¹⁸ This results in light rays travelling
45 curved paths through the heterogeneous refractive index field, causing optical distortions in
46 an imaged target. Various optical flow methods exist to determine optical displacements
47 (gradient projections) from the captured images, such as Lucas-Kanade,²⁴ Horn-Schunck
48 (HS),²⁵ and cross correlation-methods.^{15,26} Of these methods, HS has good quality and
49 accuracy.²⁷ In addition, potential flow²⁸ can be used to determine potential functions (pro-
50 jections) of a pressure field. Since the determined optical distortions are two-dimensional
51 (2D), a tomographic dataset is required for reconstructing a three-dimensional (3D) ultra-
52 sound field. In SST, an ultrasound field is imaged stationarily using a stroboscopic setup
53 based on synchronizing a pulsed light source with the refractive index perturbations. To-
54 mographic imaging is achieved by rotating the refractive index field or the camera, the light
55 source, and the imaged target.

56 In this work, two new approaches for estimating acoustic pressure fields in SST are in-
57 troduced. The approaches are based on the optical and potential flow problems, which are
58 solved using a regularized least squares in a form similar to HS. For the regularizations,
59 Laplace and Helmholtz equations are applied. The estimated flow solutions are then used
60 with an inverse Radon transform to obtain estimates of the pressure field. The approaches

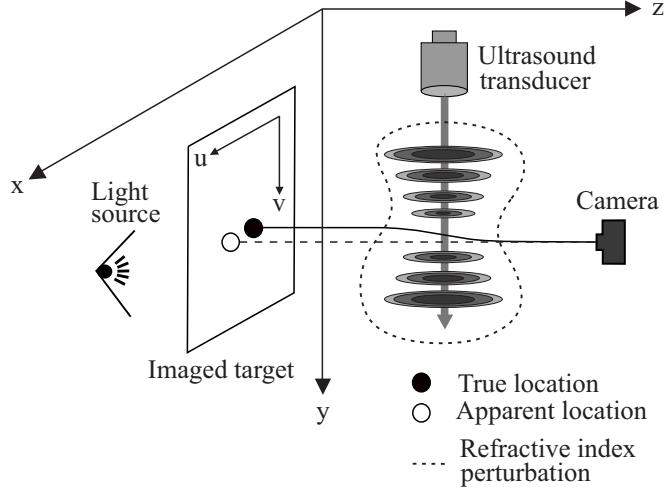


FIG. 1. Schematic image of a synthetic schlieren setup.

61 are compared to the previously introduced method using numerical simulations in qualita-
 62 tive and quantitative fashion. Comparison is conducted using three ultrasound fields that
 63 represent real measurement scenarios: a focused, an obliquely propagating focused, and a
 64 standing wave ultrasound fields.

65 II. MATERIALS AND METHODS

66 In this work, a SST setup consisting of a stationary ultrasound transducer and a rotat-
 67 ing camera, a light source, and an imaged target all immersed in the imaging medium is
 68 considered. A schematic image of such a setup is shown in Fig. 1. The camera is modelled
 69 as telecentric, meaning it performs imaging using orthographic view with respect to the
 70 captured light rays that all propagate in parallel. The coordinate system described in the
 71 Fig. 1 is adapted throughout this work.

72 **A. Theory of SST**

73 In a simple medium, such as water, refractive index of light behaves linearly as a function
 74 of adiabatic pressure due to the acousto-optic effect^{29,30}

$$n(x, y, z) = n_0 + \left(\frac{\partial n}{\partial p} \right) p(x, y, z), \quad (1)$$

75 where n_0 is the refractive index of the ambient medium, $(\partial n / \partial p)$ is the adiabatic piezo-
 76 optic coefficient,²⁹ and $p(x, y, z)$ is the acoustic pressure as a function of spatial coordinates
 77 (x, y, z) .

78 Heterogeneous refractive index field results in curving of light rays passing through it.
 79 The path of a light ray, according to a ray equation³¹ is

$$\frac{d}{ds} \left(n(\gamma(s)) \frac{d\gamma}{ds}(s) \right) = \nabla n(\gamma(s)), \quad (2)$$

80 where γ is an optical path vector and s is the geometrical length of the optical path. In
 81 general, the optical path is a complex curve and the ray equation is non-linear. However,
 82 for small refractive index perturbations, Eq. (2) can be linearized.^{15,26,32} It follows that the
 83 propagation can be modelled as light rays experiencing a deflection that is proportional
 84 to the projection of the refractive index field gradient along a straight path through the
 85 perturbation. The linearized deflection angles can be expressed as

$$\begin{cases} \phi_x(x, y) = \frac{1}{n_0} \int_Z \frac{\partial n}{\partial x}(x, y, z) dz, \\ \phi_y(x, y) = \frac{1}{n_0} \int_Z \frac{\partial n}{\partial y}(x, y, z) dz, \end{cases} \quad (3)$$

86 where $\phi_x(x, y)$ is the horizontal and $\phi_y(x, y)$ is the vertical deflection angle towards x and y
 87 axes, and Z is the integration path over the width of refractive index perturbation. Within

88 paraxial approximation, the displacement of the light ray originating from $(x, y, z = 0)$ can
 89 be expressed as

$$\begin{cases} u(x, y) = D\phi_x(x, y), \\ v(x, y) = D\phi_y(x, y), \end{cases} \quad (4)$$

90 where $u(x, y)$ is the horizontal and $v(x, y)$ is the vertical displacement, and D is the distance
 91 between the thin schlieren object and the camera. The relations for displacements and
 92 pressure gradient are obtained by combining Eqs. (1)–(4)

$$\begin{cases} u(x, y) = \kappa \int_Z \frac{\partial p}{\partial x}(x, y, z) dz, \\ v(x, y) = \kappa \int_Z \frac{\partial p}{\partial y}(x, y, z) dz, \end{cases} \quad (5)$$

93 where $\kappa = (D/n_0)(\partial n/\partial p)$ is a factor relating the line integral of the pressure gradient
 94 projections to absolute displacements. In the above formulations (1)–(5), we have assumed
 95 that the light pulses are infinitely short and the light ray propagation through the perturbed
 96 water is instantaneous. These assumptions are reasonable since the speed of light in water
 97 is much faster than the speed of ultrasound, hence the change in the refractive index is
 98 negligible during the propagation of a light pulse.

99 The optical displacements can be determined from a non-perturbed image, $I(x, y)$, and
 100 the perturbed image, $I^\delta(x, y)$ assuming the same exposure and illumination conditions. The
 101 relation between these images holds that³³

$$I^\delta(x, y) = I(x + u(x, y), y + v(x, y)), \quad (6)$$

102 where $(x + u(x, y), y + v(x, y))$ is an absolute position of a displaced light ray.

103 **B. Estimating optical flow**

104 In this work, HS method is used for determining the optical displacements from the
 105 image distortions due to its good performance for continuous and smooth displacements
 106 under noisy conditions. In addition to the traditional HS,²⁵ a potential flow approach is also
 107 used.²⁸

108 **1. Optical flow**

109 The traditional HS method is an approach for estimating the perturbed image with a
 110 first order truncated Taylor series as

$$\begin{aligned} I^\delta(x, y) &= I(x + u(x, y), y + v(x, y)) \\ &\approx I(x, y) + u(x, y) \frac{\partial I}{\partial x}(x, y) + v(x, y) \frac{\partial I}{\partial y}(x, y). \end{aligned} \tag{7}$$

111 Estimating the displacements is an ill-posed problem and has a non-unique solution due to
 112 more unknowns than equations. Uniqueness of a solution is obtainable by alleviating the
 113 ill-posedness via regularization.³⁴ Horn and Schunck introduced the unknown displacements
 114 as the minimizers of a global smoothness constraint.²⁵ In addition to a unique solution,
 115 the regularization fills in information from the neighbourhood at locations where the image
 116 gradient vanishes ($\nabla I \approx 0$). The HS regularized linear least squares problem in a continuous
 117 form is expressed as

$$\begin{aligned} (\hat{u}, \hat{v}) &= \arg \min_{(u, v)} \int_A \left(I^\delta - I - u \frac{\partial I}{\partial x} - v \frac{\partial I}{\partial y} \right)^2 dx dy \\ &\quad + \alpha^2 \int_A (\mathcal{L}u)^2 + (\mathcal{L}v)^2 dx dy, \end{aligned} \tag{8}$$

118 where (\hat{u}, \hat{v}) is an estimate of the image displacements, α is a regularization parameter, \mathcal{L}
 119 is a regularization operator, and A is the surface area over which the integration is carried
 120 over. The regularization operator \mathcal{L} is used to impose soft constraints on the estimates,
 121 thus making the problem less ill-posed. For smooth fields, first or second order differential
 122 operators are often used to impose differentiability of orders one and two.^{25,33}

123 In practice, numerical solving of this regularized least squares problem requires discretiza-
 124 tion of the problem by expressing the images and displacements as vectors that compose
 125 of pixel intensities. Images and displacements expressed as vectors are $\mathbf{I} = (I_1, \dots, I_J)^\top$,
 126 $\mathbf{I}^\delta = (I_1^\delta, \dots, I_J^\delta)^\top$, $\mathbf{u} = (u_1, \dots, u_J)^\top$, and $\mathbf{v} = (v_1, \dots, v_J)^\top$, where I_j and I_j^δ are the pixel inten-
 127 sities of unperturbed and perturbed images, and u_j and v_j are the horizontal and vertical
 128 displacements, for pixels $j = 1, \dots, J$. The discrete regularized least squares can then be
 129 expressed as

$$\begin{aligned}
 (\hat{\mathbf{u}}, \hat{\mathbf{v}}) = \arg \min_{(\mathbf{u}, \mathbf{v})} & \left\| \mathbf{I}^\delta - \mathbf{I} - \mathbf{D}_x \mathbf{u} - \mathbf{D}_y \mathbf{v} \right\|^2 \\
 & + \alpha^2 (\|\mathbf{L} \mathbf{u}\|^2 + \|\mathbf{L} \mathbf{v}\|^2),
 \end{aligned} \tag{9}$$

130 where $\|\cdot\|$ is the Euclidean 2-norm, $\mathbf{D}_x = \text{diag}\{I_{1,x}, \dots, I_{J,x}\}$ and $\mathbf{D}_y = \text{diag}\{I_{1,y}, \dots, I_{J,y}\}$
 131 are diagonal matrices of first order centered finite difference approximations³⁵ of the x and
 132 y derivatives of \mathbf{I} for pixels j , and \mathbf{L} is a regularization matrix (see Sec. II B 3). For details
 133 on solving least squares optimization problems of form Eq. (9), see e.g. Ref.^{34,36}

¹³⁴ **2. Potential flow**

¹³⁵ In potential flow method, the optical flow fields in Eq. (5) are described as a gradient of

¹³⁶ a potential function

$$P = \kappa \int_Z p(x, y, z) dz, \quad (10)$$

¹³⁷ such that $(u, v) = \nabla P$ and the regularized least squares problem (8) then becomes

$$\begin{aligned} \hat{P} = \arg \min_P & \int_A \left(I^\delta - I - \left(\frac{\partial I}{\partial x} \frac{\partial}{\partial x} \right. \right. \\ & \left. \left. + \frac{\partial I}{\partial y} \frac{\partial}{\partial y} \right) P \right)^2 dx dy + \alpha^2 \int_A (\mathcal{L}P)^2 dx dy. \end{aligned} \quad (11)$$

¹³⁸ The problem in a discrete form is

$$\begin{aligned} \hat{\mathbf{P}} = \arg \min_{\mathbf{P}} & \left\| \mathbf{I}^\delta - \mathbf{I} - (\mathbf{D}_x \mathbf{G}_x + \mathbf{D}_y \mathbf{G}_y) \mathbf{P} \right\|^2 \\ & + \alpha^2 \left\| \mathbf{L} \mathbf{P} \right\|^2, \end{aligned} \quad (12)$$

¹³⁹ where $\mathbf{P} = (P_1, \dots, P_J)^\top$ is the potential function in vector form, and \mathbf{G}_x and \mathbf{G}_y are the first

¹⁴⁰ order centered finite difference approximation operator matrices for the x and y derivatives.

¹⁴¹ For details on solving least squares optimization problems of form Eq. (12), see e.g. Ref. ^{34,36}

¹⁴² Because potential flow method estimates the potential function \mathbf{P} , the problem has equal

¹⁴³ number of unknowns and equations. However, regularization is still needed due to noise and

¹⁴⁴ zero image gradient locations ($\nabla \mathbf{I} \approx 0$).

¹⁴⁵ **3. Regularization operator**

¹⁴⁶ In this work, we use two different regularization operators. The first is a Laplace operator

¹⁴⁷ $\nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$ that promotes smooth solutions ^{25,33} of optimization problems (9) and (12).

¹⁴⁸ The second regularization operator $\nabla^2 + k^2$ is based on the Helmholtz equation for acoustic

149 fields, where $k = 2\pi/\lambda = \omega/c$ is the wavenumber, λ is the wavelength, ω is the angular
 150 frequency, and c is the speed of sound of the acoustic field.³⁷ The operator promotes solutions
 151 with acoustic wave-like features. In discrete forms, Laplace and Helmholtz operators are
 152 expressed as

$$\nabla^2 \approx \mathbf{G}_{xx} + \mathbf{G}_{yy} = \mathbf{L}, \quad (13)$$

$$\nabla^2 + k^2 \approx \mathbf{G}_{xx} + \mathbf{G}_{yy} + k^2 \mathbf{I} = \mathbf{L}, \quad (14)$$

153 where \mathbf{G}_{xx} and \mathbf{G}_{yy} are matrix operators corresponding to second order centered finite differ-
 154 ence approximations³⁸ of second partial derivatives along x - and y -axes, and \mathbf{I} is an identity
 155 matrix, and \mathbf{L} is a discrete regularization matrix. Since the optical flow fields in Eq. (5)
 156 can be expressed as the gradient of potential flow (10), imposing a second order differentia-
 157 bility with the regularization operators (13) and (14) causes a higher level differentiability
 158 assumption on the solution of optical flow (9) than potential flow (12).

159 **C. Tomographic imaging**

160 The principle of tomographic imaging in SST with a stationary ultrasound field and a
 161 rotating camera, a light source, and an imaged target is visualized in Fig. 2. Each of the
 162 captured images at different angles are 2D projections and carry information of the pressure
 163 field.

164 In order to describe the projections in tomographic coordinates, a mapping from the
 165 pressure fields' laboratory coordinates (x, y, z) to the local coordinates (x', y', z') of the
 166 rotating camera is needed. The angle of rotation θ around the y -axis connects the two

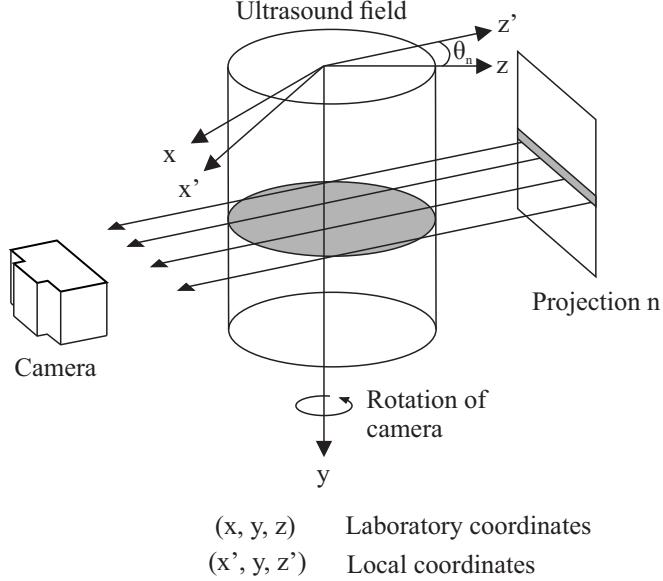


FIG. 2. Schematic image of measurement setup of SST. Laboratory coordinates (x, y, z) of the pressure field, local coordinates (x', y, z') of the rotating camera, and the imaged target at a projection angle θ_n .

167 coordinate systems

$$\begin{cases} x = x' \cos(\theta) - z' \sin(\theta), \\ y = y', \\ z = x' \sin(\theta) + z' \cos(\theta). \end{cases} \quad (15)$$

168 Expressing the line integral along the optical path over the pressure field in rotated coordi-
 169 nates is equivalent to a Radon transform^{39,40} $\mathcal{R}\{\cdot\}(x', \theta)$ as

$$\begin{aligned} \mathcal{R}\{p(x, y, z)\}(x', \theta) = & \int_{-\infty}^{\infty} p(x' \cos(\theta) - z' \sin(\theta), \\ & y, x' \sin(\theta) + z' \cos(\theta)) dz'. \end{aligned} \quad (16)$$

₁₇₀ Expressing the optical displacements of Eq. (5) and the potential function (10) similarly as

₁₇₁ the Radon transform (16) results in

$$u(x', y, \theta) = \kappa \frac{\partial}{\partial x'} \mathcal{R}\{p(x, y, z)\}(x', \theta), \quad (17)$$

$$v(x', y, \theta) = \kappa \frac{\partial}{\partial y} \mathcal{R}\{p(x, y, z)\}(x', \theta), \quad (18)$$

$$P(x', y, \theta) = \kappa \mathcal{R}\{p(x, y, z)\}(x', \theta). \quad (19)$$

₁₇₂ The above formulations (15)–(19) also apply to imaging with a rotating ultrasound field and

₁₇₃ a stationary camera, a light source, and an imaged target.

₁₇₄ **D. Tomographic pressure field estimations**

₁₇₅ The previous pressure field estimation method introduced in Ref.¹⁸ uses the vertical

₁₇₆ displacement to form an estimate for the pressure. For completeness, the method is para-

₁₇₇ phrased here. According to Eq. (18), $v(x', y, \theta)$ is the Radon transform of the y -derivative of

₁₇₈ the pressure field. Hence, we can use an inverse Radon transform (filtered back-projection

₁₇₉ algorithm in practice^{39,41}) to estimate the y -derivative of the pressure field. Furthermore,

₁₈₀ for strongly forward directed pressure fields, a plane-wave approximation can be made. In

₁₈₁ a lossless medium, the Helmholtz equation³⁷ is

$$\nabla^2 p + k^2 p = 0. \quad (20)$$

₁₈₂ Assuming plane-wave propagation along the y -direction, the derivatives in x - and z -

₁₈₃ directions become negligible and an approximate wave-equation holds that

$$\frac{\partial^2 p}{\partial y^2} + k^2 p \approx 0, \quad (21)$$

¹⁸⁴ from which a plane-wave approximation for the pressure can be obtained using

$$p = -\frac{c^2}{\omega^2} \frac{\partial}{\partial y} \left(\frac{\partial p}{\partial y} \right), \quad (22)$$

¹⁸⁵ where $\partial p / \partial y$ can be obtained using the inverse Radon transform.^{39,41} The pressure estimation
¹⁸⁶ can thus be expressed as

$$p(x, y, z) = -\frac{1}{\kappa} \frac{c^2}{\omega^2} \frac{\partial}{\partial y} \mathcal{R}^{-1} \{v(x', y, \theta)\}(x, z), \quad (23)$$

¹⁸⁷ The approach (23) is referred to as pressure estimation based on the v -displacement (PE- v).
¹⁸⁸ In this work, two new pressure field estimation methods are introduced. The first pressure
¹⁸⁹ estimation approach is based on the horizontal displacement $u(x', y, \theta)$. By integrating
¹⁹⁰ Eq. (17) along the x' -direction, we obtain

$$\begin{aligned} U(x'', y, \theta) &= \int_{-\infty}^{x''} u(x', y, \theta) dx' \\ &= \kappa \mathcal{R} \{p(x, y, z)\}(x'', \theta), \end{aligned} \quad (24)$$

¹⁹¹ where $U(x'', y, \theta)$ is now a quantity related to the Radon transform of pressure field that can
¹⁹² be readily obtained by applying the inverse Radon transform as

$$p(x, y, z) = \frac{1}{\kappa} \mathcal{R}^{-1} \{U(x'', y, \theta)\}(x, z). \quad (25)$$

¹⁹³ The approach (25) is referred to as pressure estimation based on the u -displacement (PE- u).
¹⁹⁴ The second new approach uses the potential flow estimate (19) and the inverse Radon
¹⁹⁵ transform to obtain the pressure field as

$$p(x, y, z) = \frac{1}{\kappa} \mathcal{R}^{-1} \{P(x', y, \theta)\}(x, z). \quad (26)$$

¹⁹⁶ The approach (26) is referred to as pressure estimation based on the pressure potential
¹⁹⁷ function P (PE- P).

198 **III. SIMULATION SETUP AND ANALYSIS**

199 In this work, the simulation setup is telecentric, that is, the light rays travel along parallel
200 lines from the light source to the camera. Tomographic imaging is achieved by rotating
201 the camera, the light source and the imaged target over a span of 180° at 1° increments.
202 All numerical computations were implemented in MATLAB R2017b (The MathWorks Inc.,
203 Natick, MA, USA).

204 **A. Acoustic field simulations**

205 Three acoustical simulation setups, shown in Fig. 3, were investigated: a focused ultra-
206 sound transducer sonicating along the rotation axis and obliquely at an angle of 45° with
207 respect to the rotation axis, and a piston transducer sonicating along the rotation axis to-
208 wards a reflecting target creating a standing wave. Both of the transducers were simulated
209 at a medically relevant frequency of $f = 1.01$ MHz. The pressure fields were simulated in
210 an isotropic medium using *k*-Wave⁴² that is based on a k-space pseudospectral method for
211 time domain acoustic simulations. The simulation parameters are shown in Table I.

212 In the focused acoustic field simulation, the geometrically focused transducer had an
213 element diameter and a focal length of 45.2 mm similar to Ref.¹⁸ The transducer operated
214 in a burst mode of 50 cycles (49.5 μ s burst duration, 73.6 mm propagation distance in
215 water). A snapshot of the simulation was taken at a time point of 55.1 μ s, corresponding
216 to a sound burst being centered at the focus after a propagation distance of 82.0 mm. The
217 size of the simulated acoustic field was $68.61 \times 113.37 \times 68.61$ mm in (x, y, z) coordinates.

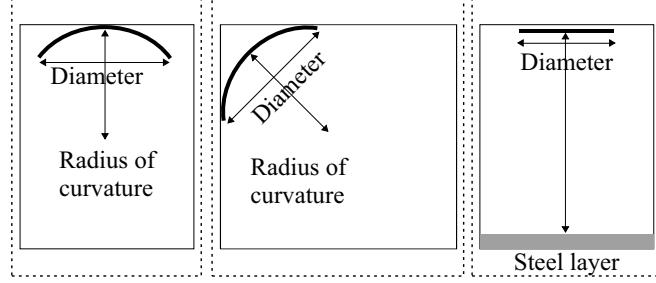


FIG. 3. Schematic image of simulation setups for a focused (left), an obliquely propagating focused (middle), and a standing wave (right) ultrasound fields. Borders of perfectly matched layers are shown by dashed lines.

218 The obliquely propagating focused ultrasound wave was obtained by rotating the focused
 219 ultrasound field by 45° with respect to the rotation axis.

220 In the standing wave-field simulation, the piston transducer had an element diameter of
 221 12.5 mm and was driven with a continuous wave. A reflecting steel layer with thickness of
 222 1.47 mm, corresponding to the wavelength of ultrasound, was simulated to be placed on the
 223 bottom of the domain, perpendicularly to the piston transducer. The distance between the
 224 steel layer and transducer was set to correspond a near-field length ($\frac{D^2}{4\lambda} \approx 26.6$ mm, where
 225 D is the diameter of the transducer). A snapshot of the standing wave was taken after the
 226 ultrasound's propagation distance of 2.5 times the near-field length, corresponding to 44.5
 227 μs in time duration. The size of the simulated acoustic field was $28.12 \times 25.02 \times 25.02$ mm.

228 A perfectly matched layer of thickness $1.47 \times 2.94 \times 1.47$ mm was added outside the
 229 acoustic simulation domains to avoid unphysical reflections from the open simulation bound-
 230 aries.

231 **B. Optical simulations**

232 The optical simulations were carried out in dense grids with $\Delta h = 24.54 \mu\text{m}$ corresponding
233 to 60 points per wavelength (PPW) similar in order of magnitude to Ref.¹⁸ In order to
234 perform the optical simulations, the simulated acoustic fields were interpolated to denser
235 grids. Furthermore, to avoid unnecessarily large domains, they were cropped to smaller
236 regions of interest. The acoustic field sizes were then $24.12 \times 38.84 \times 24.12 \text{ mm}$, $24.42 \times$
237 $24.42 \times 24.12 \text{ mm}$, and $25.00 \times 26.48 \times 25.00 \text{ mm}$ for the focused, the obliquely propagating,
238 and the standing wave acoustic fields.

239 Furthermore, the linearized optical model assumes small optical displacements, and there-
240 fore the acoustic fields were normalized with the factor κ using Eqs. (23), (25), and (26) by
241 limiting the maximum magnitude of the optical displacements to $4.4 \mu\text{m}$ (0.18 pixels).

242 Using the denser grid, an imaged target composed of individual Gaussian bumps was
243 generated. The peak separation and cut-off width of the bumps were $368 \mu\text{m}$ (15 pixels)
244 using a standard deviation of $147 \mu\text{m}$ (6 pixels). This corresponds to roughly four Gaussian
245 bumps per wavelength of 1.47 mm (60 pixels) with intensity range from zero to one. The
246 imaged targets were generated at sizes of $34.18 \times 38.84 \text{ mm}$, $34.38 \times 24.42 \text{ mm}$, and $35.41 \times$
247 26.48 mm for the focused, the obliquely propagating, and the standing wave acoustic fields.
248 From these images, perturbed images were interpolated using a spline interpolation based
249 on displacement fields computed using Eqs. (17)–(19).

250 In order to avoid performing an inverse crime,⁴³ the synthetic unperturbed and perturbed
251 images were interpolated into new discretizations with a grid size of $\Delta h = 25.55 \mu\text{m}$. Addi-

252 tive and spatially uncorrelated normal distributed noise with a standard deviation of 0.01,
253 corresponding to 1 % of the maximum intensity, was added to the intensity images.

254 The discretized regularization operators (13) and (14) explicitly include a homogeneous
255 Dirichlet type boundary condition, causing the optical and potential flow estimates fall to-
256 wards zero near the boundaries. To avoid this, the noisy unperturbed and perturbed images
257 were zero padded in the y -direction. Following the optical and potential flow estimations,
258 the estimated u , v , and P fields were cropped to regions of interest, which were used in
259 analysis. For the focused, the obliquely propagating, and the standing wave fields, the sizes
260 of the zero padded images were 34.18×44.95 mm, 34.38×30.52 mm, and 35.41×32.60
261 mm respectively. The corresponding sizes of regions of interest used in analysis were $28.05 \times$
262 38.83 mm, 28.25×24.4 mm, and 29.28×26.47 mm. The noisy unperturbed and perturbed
263 images, and their difference image of the region of interest for the focused ultrasound field
264 is shown in Fig. 4.

265 The pressure fields were estimated based on the optical and potential flow fields. The sizes
266 of the estimated pressure fields were $24.1 \times 44.95 \times 24.1$ mm, $24.40 \times 30.52 \times 24.12$ mm,
267 and $24.99 \times 32.6 \times 24.99$ mm for the focused, the obliquely propagating, and the standing
268 wave fields respectively. These estimates contained boundary artefacts arising from the
269 optical and potential flow, and thus regions of interests of sizes $19.75 \times 38.83 \times 19.76$ mm,
270 $20.06 \times 24.40 \times 19.78$ mm, and $20.65 \times 26.47 \times 20.65$ mm for each of the fields was chosen
271 for analysis.

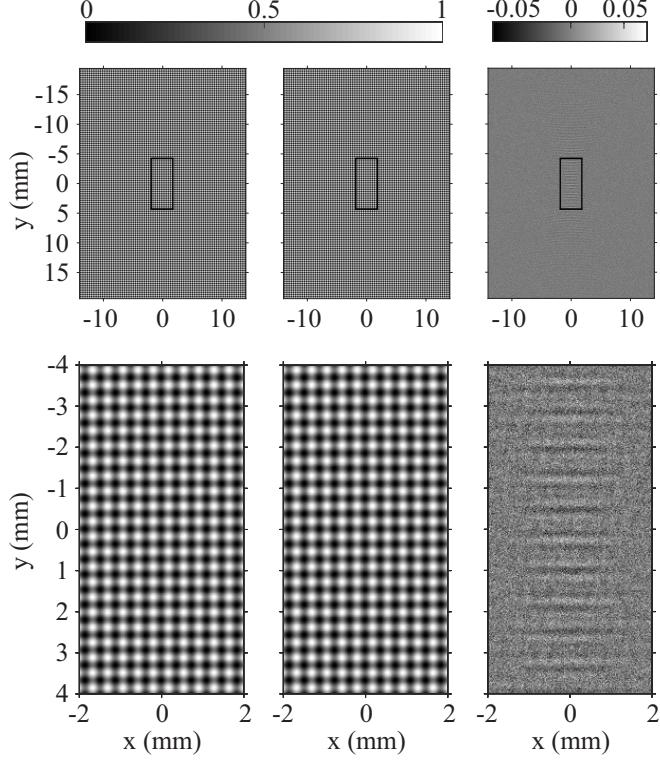


FIG. 4. From left to right: Noisy unperturbed, perturbed, and their difference image for the focused ultrasound field. Shown on the top row are the full-sized images and on the bottom row are the zoomed images.

²⁷² **C. Estimations and analysis**

²⁷³ The optical flow displacements were estimated using the HS method (9) and the potential flow was estimated using Eq. (12) from the unperturbed and perturbed images. The regularization parameters for the optical and potential flow methods were chosen based on a qualitative inspection of the estimates at a range of different parameter values. The regularization parameter for the optical flow estimations was chosen separately for the pressure estimation approaches PE-v (23) and PE-u (25) in order to avoid favouring either of them. The optical flow estimates are referred to as vertical HS-v (18) and horizontal HS-u (17)

280 displacements based on the separate HS estimations, and the potential function estimate is
281 denoted as PF (19).

282 The optical and potential flow estimates were then used as an input in PE-v (23), PE-
283 u (25), and PE-P (26) pressure estimation methods. The inverse Radon transform used in
284 the estimation methods was performed using a Hamming-filtered back-projection algorithm
285 that is suitable for noisy data. It was applied individually on the (x', θ) -planes for each
286 y -slice and the reconstructed 2D pressure (x, z) -planes were then stacked in the y -direction
287 to obtain the full 3D pressure field.

288 The optical and potential flow estimates, and the pressure estimates were analyzed using
289 relative error (RE), expressed as

$$\text{RE} = 100\% \cdot \frac{\|\hat{g} - g_{\text{True}}\|}{\|g_{\text{True}}\|}, \quad (27)$$

290 where \hat{g} refers to either the estimated optical and potential flow components \hat{u} , \hat{v} , and \hat{P} , or to
291 the estimated 3D pressure field \hat{p} , and g_{True} is the corresponding true field. Relative error was
292 computed by interpolating the true displacement fields, pressure projection, and pressure
293 fields into the discretization of the estimates. The boundary regions in the optical and
294 potential flow estimates, and the corresponding boundary regions in the pressure estimates
295 were excluded from the analyzes.

296 **IV. RESULTS**

297 **A. Focused ultrasound field**

298 Fig. 5 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential
299 flow estimate PF for the focused ultrasound field when using the Helmholtz regularization.
300 The REs for the optical and potential flow estimates using the Laplace and the Helmholtz
301 regularizations are shown in Table II. Based on the results, the optical and potential flow
302 estimates are improved in comparison to the Laplace regularization, when the Helmholtz
303 regularization is used. Of the Helmholtz regularization estimates, HS-v has the lowest RE
304 followed by PF. They both have similar resemblance to their corresponding true fields. The
305 high RE of HS-u is due to the acoustic field having smaller horizontal gradients than vertical,
306 making it more ill-posed to estimate.

307 Fig. 6 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal
308 planes yx ($z = 0$ mm) and the axial planes xz ($y = 0$ mm) when using the Helmholtz
309 regularization. Table II shows REs of the estimates when using the Laplace and Helmholtz
310 regularizations. Of the Helmholtz regularized pressure estimates, PE-u has the lowest RE,
311 followed by PE-P. All the estimates seem similar and close to the true pressure values on
312 the coronal plane. On the axial plane, pressure values of PE-P and PE-u are closer to the
313 true values than PE-v that has smaller pressure values.

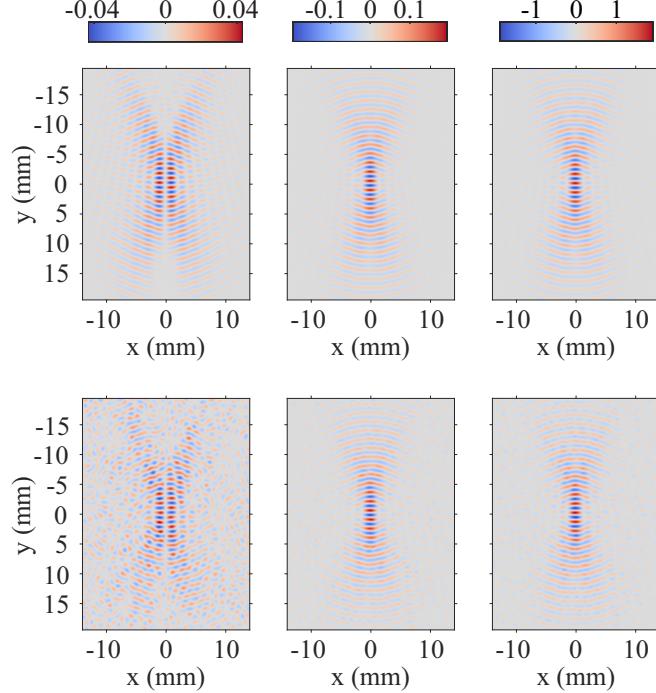


FIG. 5. (Color online) From left to right: the optical flow fields u and v , and the potential flow field P . Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization. Fields are shown for the focused ultrasound field at a rotation angle of 45° . Colorbar units from left to right: m , m , and m^2 .

³¹⁴ **B. Obliquely propagating focused ultrasound field**

³¹⁵ Fig. 7 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential
³¹⁶ flow estimate PF for the obliquely propagating ultrasound field when using the Helmholtz
³¹⁷ regularization. The REs for the optical flow estimates using the Laplace and the Helmholtz
³¹⁸ regularizations are shown in Table II. Of the Helmholtz regularization estimates, HS-u and
³¹⁹ HS-v have similar REs and visual appearance due to the propagation angle of the ultrasound.
³²⁰ The estimate PF has the lowest RE and the closest resemblance to its corresponding true
³²¹ field.

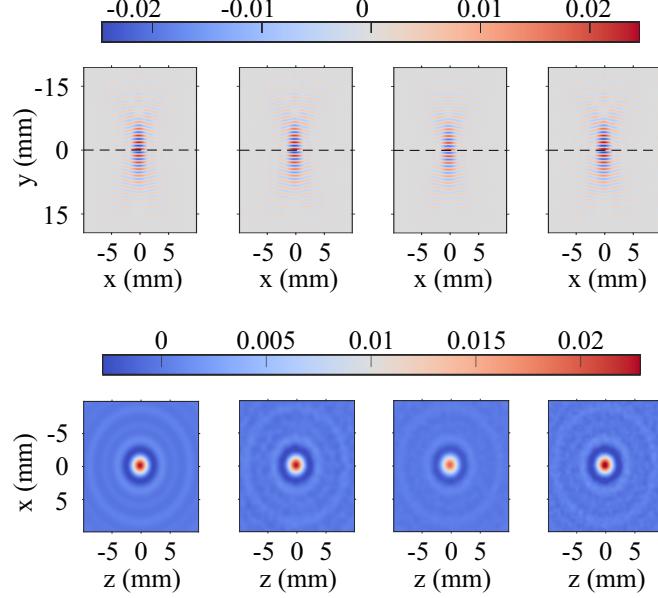


FIG. 6. (Color online) Coronal planes (top) and axial planes (bottom) of the focused ultrasound field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar units are in Pa.

322 Fig. 8 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal
 323 planes yx ($z = 0$ mm) and the axial planes xz ($y = 0$ mm) when using the Helmholtz
 324 regularization. Table II shows REs for the estimates when using the Laplace and Helmholtz
 325 regularizations. The Helmholtz regularized estimate PE-P has the lowest RE and resembles
 326 the true field the closest, followed by PE-u. In comparison to the results in Section IV A,
 327 the smaller focal pressure values of PE-v are more visible. These arise from the plane-wave
 328 approximation, that assumes propagation of sound principally along the y -axis.

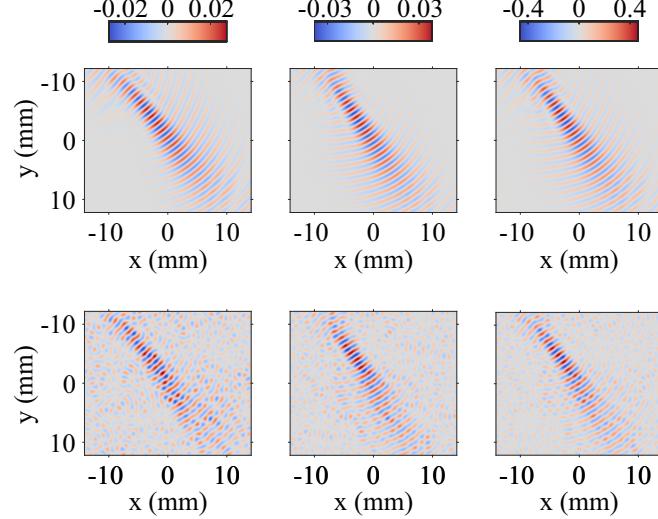


FIG. 7. (Color online) From left to right: the optical flow fields u and v , and the potential flow field P . Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization. Fields are shown for the obliquely propagating field at a rotation angle of 45° . Colorbar units from left to right: m, m, and m^2 .

329 **C. Standing wave ultrasound field**

330 Fig. 9 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential
 331 flow estimate PF for the standing wave ultrasound field when using the Helmholtz regu-
 332 larization. The REs for the optical and potential flow estimates using the Laplace and the
 333 Helmholtz regularizations are shown in Table II. The Helmholtz regularized PF estimate has
 334 the smallest RE, followed by HS-v. Both of them appear similar to their corresponding true
 335 fields. The horizontal displacement magnitudes are lower than the vertical displacement
 336 magnitudes. This leads to greater artefacts in the HS-u estimate, seen by the high RE and
 337 visual inspection of the region of interest.

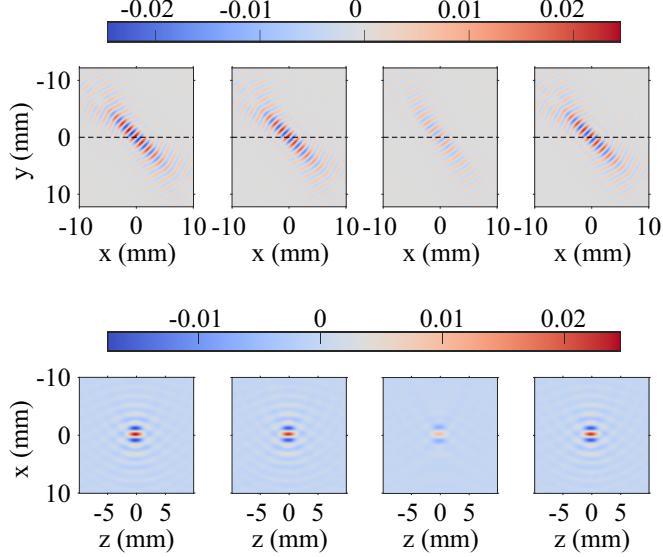


FIG. 8. (Color online) Coronal planes (top) and axial planes (bottom) of the obliquely propagating field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar units are in Pa.

338 Fig. 10 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal
 339 planes yx ($z = 0$ mm) and the axial planes xz ($y = 0$ mm) when using the Helmholtz
 340 regularization. Table II shows REs of the estimates when the Laplace and Helmholtz reg-
 341 ularizations are used. The Helmholtz regularized PE-P has the lowest RE, followed by the
 342 RE of PE-v. On the coronal plane near the ultrasound transducer, PE-P and PE-u resemble
 343 the local high-amplitude focus regions well, whereas PE-v has smaller amplitudes. On the
 344 other hand, PE-u has lower amplitudes when approaching the steel layer. Inspection of the
 345 axial plane shows coarser but more accurate pressure values for PE-P and smoother but
 346 lower pressure values for PE-v.

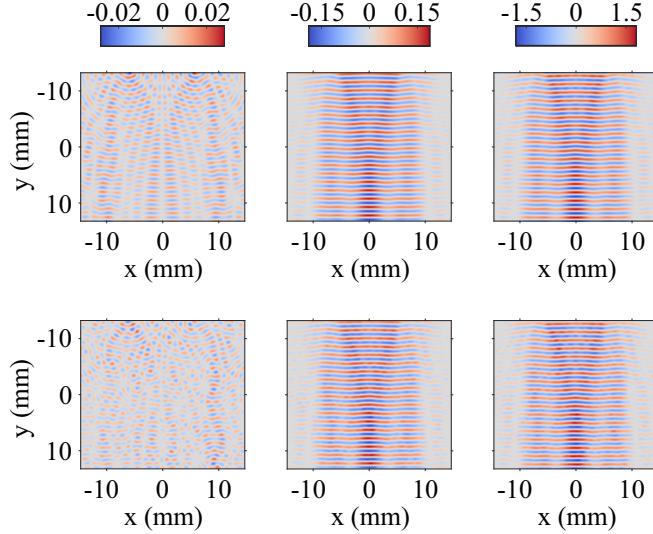


FIG. 9. (Color online) From left to right: the optical flow fields u and v , and the potential flow field P . Shown on the top are the true fields and on the bottom are the corresponding HS- u , HS- v , and PF estimates using the Helmholtz regularization. Fields are shown for the standing wave-field at a rotation angle of 45° . Colorbar units from left to right: m, m, and m^2 .

347 **V. DISCUSSION**

348 In this work, two acoustic pressure estimation methods for SST were introduced. The
 349 pressure estimation methods are based on regularized least squares optical and potential flow
 350 optimizations. These methods allow promotion of smooth solutions via Laplace regulariza-
 351 tion or acoustic wave-like features via Helmholtz regularization. The pressure estimation
 352 approaches were tested using numerical simulations for a focused, an obliquely propagat-
 353 ing focused, and a standing wave ultrasound fields. The pressure estimation methods were
 354 compared quantitatively and qualitatively to a previously introduced method (See Ref. 18).

355 The results show that the Helmholtz regularization is more accurate than the Laplace
 356 regularization when estimating optical and potential flow. In this work, the Helmholtz

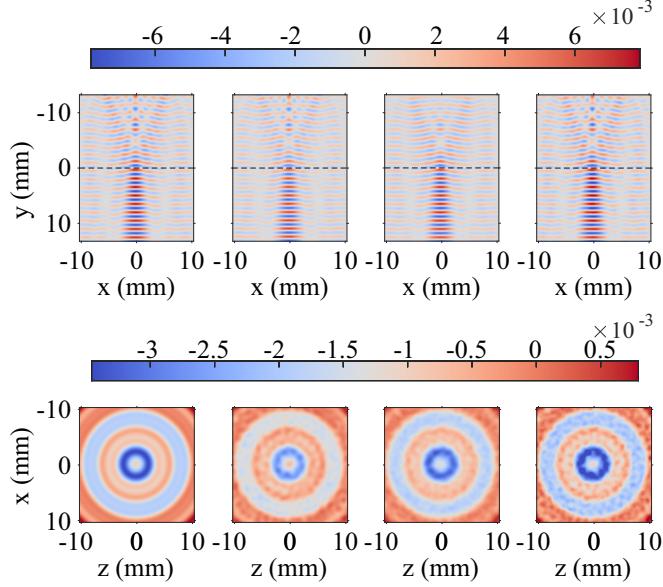


FIG. 10. (Color online) Coronal planes (top) and axial planes (bottom) of the standing wave field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar units are in Pa.

357 prior was imposed as a soft constraint in a regularized least squares problem. While the
 358 distortions are not strictly pressure waves, they inherit the wave-like nature of the pressure
 359 wave. Several other studies have used the Helmholtz prior both as soft and hard constraints
 360 and support the suggestion that it is effective in reconstructing pressure fields using optically
 361 measured data as an input.^{9,44,45} However, it should be noted that, since discretization affects
 362 regularization, Helmholtz regularization may not be optimal if a low discretization is used.

363 Furthermore, the results indicate that the potential flow based pressure estimation
 364 method PE-P with the Helmholtz regularization is the most accurate in estimating arbitrary
 365 ultrasound propagation. In comparison to a typical hydrophone measurement uncertainty

³⁶⁶ of 10 %,⁴⁶ the PE-P pressure estimates are comparable to it with an average relative error
³⁶⁷ of 15.8 % for the studied pressure fields.

³⁶⁸ When comparing PE-P estimates to PE-u and PE-v estimates, PE-P outperforms them
³⁶⁹ in feasibility too. Although, PE-u and PE-v both use the HS algorithm to estimate the
³⁷⁰ horizontal or vertical displacement components, they require different regularizations for
³⁷¹ optimal estimates depending on the propagation direction of the ultrasound beam. When
³⁷² the propagation angle of ultrasound is small with respect to the rotation axis of the camera,
³⁷³ estimation accuracy of the horizontal component reduces and hence affects the accuracy of
³⁷⁴ PE-u. For the vertical component, a small propagation angle is optimal. Accuracy of PE-v is
³⁷⁵ affected by both the accuracy of the vertical component and directly of the propagation angle
³⁷⁶ of the ultrasound. This is due to the plane-wave approximation that assumes ultrasound
³⁷⁷ propagation along the rotation axis. Thus, while PE-P is more robust in comparison to
³⁷⁸ PE-u and PE-v, it also performs similarly or better in accuracy.

³⁷⁹ In addition to accuracy of PE-P, it is based on estimating only one scalar potential flow
³⁸⁰ field, and thus it is faster than estimating two optical flow components. Estimating 180 im-
³⁸¹ ages in average took approximately 474 minutes for the optical flow fields and 81 minutes for
³⁸² the potential flow fields, that is over 5.8 times faster. The computations were implemented
³⁸³ using MATLAB R2017b on a workstation equipped with 2.53 GHz Xeon E5649 (Intel Cor-
³⁸⁴ poration, Santa Clara, CA) processor. The computational time for image processing can be
³⁸⁵ further reduced utilizing parallel computing.

³⁸⁶ While this study concentrated on estimating ultrasound fields, the proposed new methods,
³⁸⁷ PE-u and PE-P, can be adopted for estimating non-acoustically induced refractive index

388 field as well. PE-u assumes that the refractive index field has a gradient along the plane
389 perpendicular to the rotational imaging axis. For PE-P however, it is intrinsic that the
390 refractive index field can be expressed using a scalar potential. This limits the method to
391 applications with curl-free refractive index fields.²⁸ In comparison, the previously introduced
392 method PE-v explicitly approximates the refractive index field as a wave-field. Thus, the
393 new estimation methods can be thought as more general approaches.

394 The regularization parameter was not optimized but it was selected qualitatively by in-
395 specting the estimates at a range of different regularization parameter values and choosing an
396 estimate resembling a wave-field the most. This mimics conventional approach for choosing
397 the regularization parameter. In comparison to Laplace regularization, Helmholtz regular-
398 ization is much less sensitive to the choice of the regularization parameter as it was easier
399 to narrow down a qualitatively optimal regularization parameter (results omitted). Clas-
400 sical regularization parameter selection methods, such as L-curve⁴⁷ and generalized cross-
401 validation⁴⁸ methods exist but were not found suitable for this study (results omitted): an
402 algorithm for this would benefit in selecting the parameter faster and more consistently. No
403 thorough optimization for the imaged target was made. Optimizing the imaged target, such
404 as the lattice spacing of details, could possibly improve the results.

405 ACKNOWLEDGMENTS

406 This work has been supported by the Academy of Finland (Projects 286247, 314411, and
407 312342 Centre of Excellence in Inverse Modelling and Imaging) and Jane and Aatos Erkko
408 Foundation.

409 REFERENCES

410 ¹T. L. Szabo, *Diagnostic Ultrasound Imaging : Inside Out* (Academic Press, London, 2004),

411 pp. 1–576.

412 ²M. C. L. Peek and F. Wu, “High-intensity focused ultrasound in the treatment of breast

413 tumours,” *Ecancer* **12**, 794 (2018).

414 ³Y. Meng, Y. Huang, B. Solomon, K. Hynynen, N. Scantlebury, M. L. Schwartz, and

415 N. Lipsman, “MRI-guided focused ultrasound thalamotomy for patients with medically-

416 refractory essential tremor,” *J. Vis. Exp.* (130), e56365 (2017).

417 ⁴S. M. Chowdhury, T. Lee, and J. K. Willmann, “Ultrasound-guided drug delivery in can-

418 cer,” *Ultrasonography* **36**(3), 171–184 (2017).

419 ⁵S. P. Robinson, “Hydrophones,” in *Output Meas. Med. Ultrasound*, edited by R. C. Preston

420 (Springer, London, 1991), Chap. 4.

421 ⁶S. Maruvada, Y. Liu, J. E. Soneson, B. A. Herman, and G. R. Harris, “Comparison between

422 experimental and computational methods for the acoustic and thermal characterization of

423 therapeutic ultrasound fields,” *J. Acoust. Soc. Am.* **137**(4), 1704–1713 (2015).

424 ⁷Z. Xu, H. Chen, X. Yan, M.-L. Qian, and Q. Cheng, “Three-dimensional reconstruction

425 of nonplanar ultrasound fields using Radon transform and the schlieren imaging method,”

426 *J. Acoust. Soc. Am.* **142**(1), EL82–EL88 (2017).

427 ⁸Z. Xu, H. Chen, X. Yan, M. L. Qian, and Q. Cheng, “Quantitative calibration of sound

428 pressure in ultrasonic standing waves using the schlieren method,” *Opt. Exp.* **25**(17),

429 20401–20409 (2017).

430 ⁹N. Chitanont, K. Yatabe, K. Ishikawa, and T. Oikawa, “Spatio-temporal filter bank for
431 visualizing audible sound field by Schlieren method,” *Appl. Acoust.* **115**, 109–120 (2017).

432 ¹⁰R. Miyasaka, S. Harigane, S. Yoshizawa, and S. Umemura, “Quantitative measurement
433 of highly focused ultrasound pressure field by optical shadowgraph,” *J. Phys. Conf. Ser.*
434 **520**(1), 012026 (2014).

435 ¹¹Y. Iijima and N. Kudo, “Evaluation of Frequency-dependent ultrasound attenuation in
436 transparent medium using focused shadowgraph technique,” *Jpn. J. Appl. Phys.* **56**(7),
437 07JF13 (2017).

438 ¹²N. Kudo, “A simple technique for visualizing ultrasound fields without Schlieren optics,”
439 *Ultrasound Med. Biol.* **41**(7), 2071–2081 (2015).

440 ¹³F. Nicolas, V. Todoroff, A. Plyer, G. Le Besnerais, D. Donjat, F. Micheli, F. Champagnat,
441 P. Cornic, and Y. Le Sant, “A direct approach for instantaneous 3D density field recon-
442 struction from background-oriented schlieren (BOS) measurements,” *Exp. Fluids* **57**(1),
443 13 (2016).

444 ¹⁴M. Kremer, C. Caskey, and W. Grissom, “Background-oriented schlieren imaging and
445 tomography for rapid measurement of FUS pressure fields: initial results,” *J. Ther. Ultra-
446 sound* **3**(Suppl 1), P68 (2015).

447 ¹⁵E. Goldhahn and J. Seume, “The background oriented schlieren technique: Sensitivity,
448 accuracy, resolution and application to a three-dimensional density field,” *Exp. Fluids*
449 **43**(2-3), 241–249 (2007).

450 ¹⁶N. Taberlet, N. Plihon, L. Auzémery, J. Sautel, G. Panel, and T. Gibaud, "Synthetic
451 schlieren - Application to the visualization and characterization of air convection," Eur.
452 J. Phys. **39**(3), 035803 (2018).

453 ¹⁷I. Butterworth and A. Shaw, "Realtime acousto-optical QA methods for high intensity
454 fields," in *Proc. 39th Annu. Symp. Ultrason. Ind. Assoc.* (IEEE, New York, 2010), pp.
455 1–5.

456 ¹⁸A. Pulkkinen, J. J. Leskinen, and A. Tiihonen, "Ultrasound field characterization using
457 synthetic schlieren tomography," J. Acoust. Soc. Am. **141**(6), 4600–4609 (2017).

458 ¹⁹G. S. Settles and M. J. Hargather, "A review of recent developments in schlieren and
459 shadowgraph techniques," Meas. Sci. Technol. **28**(4), 042001 (2017).

460 ²⁰M. Raffel, "Background-oriented schlieren (BOS) techniques," Exp. Fluids **56**(3), 60
461 (2015).

462 ²¹G. Caliano, A. S. Savoia, and A. Iula, "An automatic compact Schlieren imaging system
463 for ultrasound transducer testing," IEEE Trans. Ultrason. Ferroelectr. Freq. Control **59**(9),
464 2102–2110 (2012).

465 ²²G. Meier, "Computerized background-oriented schlieren," Exp. Fluids **33**(1), 181–187
466 (2002).

467 ²³S. B. Dalziel, G. O. Hughes, and B. R. Sutherland, "Whole-field density measurements by
468 'synthetic schlieren,'" Exp. Fluids **28**(4), 322–335 (2000).

469 ²⁴B. D. Lucas and T. Kanade, "An iterative image registration technique with an application
470 to stereo vision," in *Proc. 7th Int. Jt. Conf. Artif. Intell. - Vol. 2* (Morgan Kaufmann,

471 San Francisco, 1981), pp. 674–679.

472 ²⁵B. K. Horn and B. G. Schunck, “Determining optical flow,” *Artif. Intell.* **17**(1-3), 185–203

473 (1981).

474 ²⁶L. Venkatakrishnan and G. E. A. Meier, “Density measurements using the Background

475 Oriented Schlieren technique,” *Exp. Fluids* **37**(2), 237–247 (2004).

476 ²⁷B. Atcheson, W. Heidrich, and I. Ihrke, “An evaluation of optical flow algorithms for

477 background oriented schlieren imaging,” *Exp. Fluids* **46**(3), 467–476 (2009).

478 ²⁸A. Luttmann, E. M. Boltt, R. Basnayake, S. Kramer, and N. B. Tufillaro, “A framework for

479 estimating potential fluid flow from digital imagery,” *Chaos An Interdiscip. J. Nonlinear*

480 *Sci.* **23**(3), 033134 (2013).

481 ²⁹T. A. Pitts and J. F. Greenleaf, “Three-dimensional optical measurement of instantaneous

482 pressure,” *J. Acoust. Soc. Am.* **108**(6), 2873–2883 (2000).

483 ³⁰A. Torras-Rosell, S. Barrera-Figueroa, and F. Jacobsen, “Sound field reconstruction using

484 acousto-optic tomography,” *J. Acoust. Soc. Am.* **131**(5), 3786–3793 (2012).

485 ³¹M. Born and E. Wolf, “Foundations of geometrical optics,” in *Princ. Opt.*, 7 ed. (Cam-

486 bridge University Press, Cambridge, 1999), Chap. 3.

487 ³²B. R. Sutherland, S. B. Dalziel, G. O. Hughes, and P. F. Linden, “Visualization and mea-

488 surement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder,”

489 *J. Fluid Mech.* **390**, 93–126 (1999).

490 ³³A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets Horn/Schunck: Combining

491 local and global optic flow methods,” *Int. J. Comput. Vis.* **61**(3), 211–231 (2005).

492 ³⁴J. Kaipio and E. Somersalo, “Classical Regularization Methods,” in *Stat. Comput. Inverse*
493 *Probl.* (Springer, New York, 2005), Chap. 2.

494 ³⁵T. J. Chung, “Introduction,” in *Comput. Fluid Dyn.* (Cambridge University Press, Cam-
495 bridge, 2002), Chap. 1.

496 ³⁶A. Tarantola, “The Least-Squares Criterion,” in *Inverse Probl. Theory Methods Model*
497 *Param. Estim.* (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005),
498 Chap. 3.

499 ³⁷P. M. Morse and K. U. Ingard, “Acoustic wave motion,” in *Theor. Acoust.* (Princeton
500 University Press, Princeton, NJ, 1968), Chap. 6.

501 ³⁸T. J. Chung, “Solution Methods of Finite Difference Equations,” in *Comput. Fluid Dyn.*
502 (Cambridge University Press, Cambridge, 2002), Chap. 4.

503 ³⁹A. C. Kak and M. Slaney, “Algorithms for Reconstruction with Nondiffracting Sources,”
504 in *Princ. Comput. Tomogr. Imaging* (IEEE, New York, 1988), Chap. 3.

505 ⁴⁰S. R. Deans, “Definition of the Radon transform,” in *Radon Transform Some Its Appl.*
506 (John Wiley & Sons, New York, 1983), Chap. 2.

507 ⁴¹S. R. Deans, “Recent Development of Inversion Methods,” in *Radon Transform Some Its*
508 *Appl.* (John Wiley & Sons, New York, 1983), Chap. 6.

509 ⁴²B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and recon-
510 struction of photoacoustic wave-fields,” *J. Biomed. Opt.* **15**(2), 021314 (2010).

511 ⁴³J. Kaipio and E. Somersalo, “Inverse Problems and Interpretation of Measurements,” in
512 *Stat. Comput. Inverse Probl.* (Springer, New York, 2005), Chap. 1.

513 ⁴⁴K. Yatabe and T. Oikawa, “Optically visualized sound field reconstruction using Kirchhoff-
514 Helmholtz equation,” *Acoust. Sci. Tech.* **36**(4), 351–354 (2015).

515 ⁴⁵K. Yatabe, K. Ishikawa, and T. Oikawa, “Acousto-optic back-projection: Physical-model-
516 based sound field reconstruction from optical projections,” *J. Sound Vib.* **394**, 171–184
517 (2017).

518 ⁴⁶R. Preston, D. Bacon, S. Corbett, G. Harris, P. Lewin, J. McGregor, W. O’Brien, and
519 T. Szabo, “Interlaboratory comparison of hydrophone calibrations,” *IEEE Trans. Ultrason.
520 Ferroelectr. Freq. Control* **35**(2), 206–213 (1988).

521 ⁴⁷P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” *SIAM
522 Rev.* **34**(4), 561–580 (1992).

523 ⁴⁸G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as a method for
524 choosing a good ridge parameter,” *Technometrics* **21**(2), 215–223 (1979).

TABLE I. Acoustic simulation parameters. Grid step Δh , time step Δt , pixels per wavelength (PPW), Courant-Friedrichs-Lowy (CFL) condition,⁴² speed of sounds SOS_w and SOS_s , and densities ρ_w and ρ_s in water and steel.

Parameter	Δh	Δt_w ^a	Δt_s ^b	PPW	CFL
Value	147.2 μm	29.70 ns	9.75 ns	10 px	3
Parameter	SOS_w	SOS_s	ρ_w	ρ_s	
Value	1487 $\frac{\text{m}}{\text{s}}$	4529 $\frac{\text{m}}{\text{s}}$	1000 $\frac{\text{kg}}{\text{m}^3}$	7800 $\frac{\text{kg}}{\text{m}^3}$	

^a The time step in the focused ultrasound field simulation is calculated based on SOS_w .

^b The time step in the standing wave-field simulation is calculated based on SOS_s .

TABLE II. Relative errors (RE) in percentage for the Laplace and the Helmholtz regularized optical flow estimates HS-u and HS-v, potential flow estimate PF, and the consecutive pressure estimates PE-u, PE-v, and PE-P for the focused ultrasound field (Focused), the oblique propagating focused ultrasound field (Oblique), and the standing wave ultrasound field (Standing).

Field	Regularization	HS-u	HS-v	PF
Focused	Laplace	136.4	44.4	83.7
	Helmholtz	70.0	24.6	26.6
Oblique	Laplace	64.1	66.2	114.5
	Helmholtz	35.9	33.9	26.6
Standing	Laplace	169.1	16.6	34.4
	Helmholtz	59.9	10.0	9.0
Field	Regularization	PE-u	PE-v	PE-P
Focused	Laplace	34.0	43.4	39.5
	Helmholtz	17.5	19.8	18.8
Oblique	Laplace	38.7	66.4	34.2
	Helmholtz	16.0	61.8	13.9
Standing	Laplace	33.9	36.9	34.4
	Helmholtz	28.4	18.5	14.7

525 **Figure captions:**

526 Fig. 1. Schematic image of a synthetic schlieren setup.

527 Fig. 2. Schematic image of measurement setup of SST. Laboratory coordinates (x, y, z)
528 of the pressure field, local coordinates (x', y, z') of the rotating camera, and the imaged
529 target at a projection angle θ_n .

530 Fig. 3. Schematic image of simulation setups for a focused (left), an obliquely prop-
531 agating focused (middle), and a standing wave (right) ultrasound fields. Borders of
532 perfectly matched layers are shown by dashed lines.

533 Fig. 4. From left to right: Noisy unperturbed, perturbed, and their difference image
534 for the focused ultrasound field. Shown on the top row are full-sized images and on the
535 bottom row are the zoomed images.

536 Fig. 5. (Color online) From left to right: the optical flow fields u and v , and the
537 potential flow field P . Shown on the top are the true fields and on the bottom are
538 the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.
539 Fields are shown for the focused ultrasound field at a rotation angle of 45°. Colorbar
540 units from left to right: m, m, and m².

541 Fig. 6. (Color online) Coronal planes (top) and axial planes (bottom) of the focused
542 ultrasound field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates
543 when the Helmholtz regularization is used. Axial plane sections are shown by dashed
544 lines on coronal planes. Colorbar units are in Pa.

545 Fig. 7. (Color online) From left to right: the optical flow fields u and v , and the
546 potential flow field P . Shown on the top are the true fields and on the bottom are
547 the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.
548 Fields are shown for the obliquely propagating field at a rotation angle of 45° . Colorbar
549 units from left to right: m, m, and m^2 .

550 Fig. 8. (Color online) Coronal planes (top) and axial planes (bottom) of the obliquely
551 propagating field. From left to right: true pressure field, PE-u, PE-v, and PE-P esti-
552 mates when the Helmholtz regularization is used. Axial plane sections are shown by
553 dashed lines on coronal planes. Colorbar units are in Pa.

554 Fig. 9. (Color online) From left to right: the optical flow fields u and v , and the
555 potential flow field P . Shown on the top are the true fields and on the bottom are
556 the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.
557 Fields are shown for the standing wave-field at a rotation angle of 45° . Colorbar units
558 from left to right: m, m, and m^2 .

559 Fig. 10. (Color online) Coronal planes (top) and axial planes (bottom) of the standing
560 wave-field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates
561 when the Helmholtz regularization is used. Axial plane sections are shown by dashed
562 lines on coronal planes. Colorbar units are in Pa.