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Synthetic schlieren tomography is a recently proposed three-dimensional optical imag-
ing technique for studying ultrasound fields. The imaging setup is composed of an
imaged target, a water tank, a camera, and a pulsed light source that is stroboscopi-
cally synchronized with an ultrasound transducer to achieve tomographically station-
ary imaging of an ultrasound field. In this technique, ultrasound waves change the
propagation of light rays by inducing a change in refractive index via acousto-optic
effect. The change manifests as optical flow in the imaged target. By performing
the imaging in a tomographic fashion, the two-dimensional tomographic dataset of
the optical flow can be transformed into a three-dimensional ultrasound field. In
this work, two approaches for acoustic pressure field estimation are introduced. The
approaches are based on optical and potential flow regularized least square opti-
mizations where regularization based on the Helmholtz equation is introduced. The
methods are validated via simulations in a telecentric setup and are compared quan-
titatively and qualitatively to a previously introduced method. Cases of a focused,
an obliquely propagating, and a standing wave ultrasound fields are considered. The
simulations demonstrate efficiency of the introduced methods also in situations in

which the previously applied method has weaknesses.
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I. INTRODUCTION

Ultrasound imaging is a fundamental part of medical diagnostics.’ In addition to diag-
nostics, ultrasound has therapy applications, such as, treatment of cancer? and essential
tremor® and targeted drug delivery.* To guarantee patient safety and quality of diagnostics
or therapy, ultrasound devices need to be calibrated. This requires measurement of the ul-
trasound field, commonly accomplished using cumbersome and time-consuming hydrophone
measurements.”’ Thus, calibration and quality assurance of ultrasound devices could benefit

from new ultrasound measurement and characterization techniques.

Various optical imaging methods, namely schlieren imaging’ ™’ and its variations, such

13715 and synthetic

as shadowgraphy,'”!'? background oriented schlieren (BOS) imaging,
schlieren,'®"'® have been applied in imaging of pressure fields. Thus, they can potentially
serve as alternatives for traditional measurement methods to characterize ultrasound fields.
These methods rely on observing deflection of light passing through a heterogeneous re-
fractive index field that carries information of a density or a pressure field.'>?" In schlieren
imaging, deflection of light is observed accurately using an expensive lens setup and an
optical stop blocking non-deflected light arriving to a camera.'®?! In the simplest variation,
shadowgraphy, no optical setup is needed and the light is simply projected to a screen.?’
The deflected light is then observed as intensity variations. Shadowgraphy is mainly used
for qualitative inspection of an ultrasound field due to its lack of sensitivity'’ and challenges

in obtaining absolute pressure values.'”'' The more recent schlieren variations are BOS*

and synthetic schlieren®® that use inexpensive and easy-to-use setups. In these methods,
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deflection of light is observed as optical distortions in an imaged target and thus, they
can produce quantitative measurements after post-processing of the images. In ultrasound
community, both BOS and synthetic schlieren methodologies have been used in imaging of

ultrasound fields.'*!7!%

In synthetic schlieren tomography (SST) for imaging of ultrasound fields, refractive index
field distribution is induced via acousto-optic effect.'® This results in light rays travelling
curved paths through the heterogeneous refractive index field, causing optical distortions in
an imaged target. Various optical flow methods exist to determine optical displacements
(gradient projections) from the captured images, such as Lucas-Kanade,”* Horn-Schunck
(HS),” and cross correlation-methods.'>*® Of these methods, HS has good quality and
accuracy.”’ In addition, potential flow”® can be used to determine potential functions (pro-
jections) of a pressure field. Since the determined optical distortions are two-dimensional
(2D), a tomographic dataset is required for reconstructing a three-dimensional (3D) ultra-
sound field. In SST, an ultrasound field is imaged stationarily using a stroboscopic setup
based on synchronizing a pulsed light source with the refractive index perturbations. To-
mographic imaging is achieved by rotating the refractive index field or the camera, the light

source, and the imaged target.

In this work, two new approaches for estimating acoustic pressure fields in SST are in-
troduced. The approaches are based on the optical and potential flow problems, which are
solved using a regularized least squares in a form similar to HS. For the regularizations,
Laplace and Helmholtz equations are applied. The estimated flow solutions are then used
with an inverse Radon transform to obtain estimates of the pressure field. The approaches

4
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FIG. 1. Schematic image of a synthetic schlieren setup.

are compared to the previously introduced method using numerical simulations in qualita-
tive and quantitative fashion. Comparison is conducted using three ultrasound fields that
represent real measurement scenarios: a focused, an obliquely propagating focused, and a

standing wave ultrasound fields.

II. MATERIALS AND METHODS

In this work, a SST setup consisting of a stationary ultrasound transducer and a rotat-
ing camera, a light source, and an imaged target all immersed in the imaging medium is
considered. A schematic image of such a setup is shown in Fig. 1. The camera is modelled
as telecentric, meaning it performs imaging using orthographic view with respect to the
captured light rays that all propagate in parallel. The coordinate system described in the

Fig. 1 is adapted throughout this work.
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A. Theory of SST

In a simple medium, such as water, refractive index of light behaves linearly as a function

of adiabatic pressure due to the acousto-optic effect?”*

o ,2) = o+ (5 )p(o.v,2), (1)

where ng is the refractive index of the ambient medium, (dn/dp) is the adiabatic piezo-

C
t,QJ

optic coefficient,” and p(x,y, z) is the acoustic pressure as a function of spatial coordinates

(x,y, 2).
Heterogeneous refractive index field results in curving of light rays passing through it.

The path of a light ray, according to a ray equation®' is

d

= (nr() L s)) = Tl (), ®)

where v is an optical path vector and s is the geometrical length of the optical path. In
general, the optical path is a complex curve and the ray equation is non-linear. However,
for small refractive index perturbations, Eq. (2) can be linearized.'>*%%? Tt follows that the
propagation can be modelled as light rays experiencing a deflection that is proportional
to the projection of the refractive index field gradient along a straight path through the

perturbation. The linearized deflection angles can be expressed as

1 on
¢I(x7y) = n_O %(‘rﬂya Z)dZ,
: z 5 (3)
n
z, = =\ Y, d )
(by( y) No 7 ay( y Z) <

where ¢, (z,y) is the horizontal and ¢,(x,y) is the vertical deflection angle towards x and y

axes, and Z is the integration path over the width of refractive index perturbation. Within



88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

paraxial approximation, the displacement of the light ray originating from (z,y,z = 0) can

be expressed as

u(,y) = Dou(2,y),
(4)

v(r,y) = Doy(z,y),

where u(x,y) is the horizontal and v(x,y) is the vertical displacement, and D is the distance
between the thin schlieren object and the camera. The relations for displacements and
pressure gradient are obtained by combining Eqs. (1)—(4)

_ [ o
u(xvy)ﬁ/zax(x7yaz>dz7

5 (5)
v(z,y) = R/Za—zzj(:v,y,z)dz,

where k = (D/ng)(On/0p) is a factor relating the line integral of the pressure gradient
projections to absolute displacements. In the above formulations (1)—(5), we have assumed
that the light pulses are infinitely short and the light ray propagation through the perturbed
water is instantaneous. These assumptions are reasonable since the speed of light in water
is much faster than the speed of ultrasound, hence the change in the refractive index is
negligible during the propagation of a light pulse.

The optical displacements can be determined from a non-perturbed image, I(z,y), and
the perturbed image, I°(x,y) assuming the same exposure and illumination conditions. The

relation between these images holds that**

P(z,y) = Iz +u(z,y),y + v(z,y)), (6)

where (x 4+ u(z,y),y + v(z,y)) is an absolute position of a displaced light ray.

7



103 B. Estimating optical flow

104 In this work, HS method is used for determining the optical displacements from the
05 image distortions due to its good performance for continuous and smooth displacements
s under noisy conditions. In addition to the traditional HS,*” a potential flow approach is also

wr used.?®

108 1. Optical flow

109 The traditional HS method is an approach for estimating the perturbed image with a

no first order truncated Taylor series as

=

P(z,y) =1z +u(z,y),y +v(z,y)) @
< Ilay) + uley) g 5,0) + o) 5 (220).

m Estimating the displacements is an ill-posed problem and has a non-unique solution due to

[

2 more unknowns than equations. Uniqueness of a solution is obtainable by alleviating the

13 ill-posedness via regularization.* Horn and Schunck introduced the unknown displacements

-

s as the minimizers of a global smoothness constraint.?” In addition to a unique solution,

1

jan

s the regularization fills in information from the neighbourhood at locations where the image

1

=

o gradient vanishes (VI & 0). The HS regularized linear least squares problem in a continuous

w7 form is expressed as

2
(a,0) = argmin/ <I§ —I- ug — vg> dzdy
(u,v) A Ox ay
’ (8)

+ o? / (Lu)® + (Lv)*dzdy,
A
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where (u,0) is an estimate of the image displacements, « is a regularization parameter, £
is a regularization operator, and A is the surface area over which the integration is carried
over. The regularization operator £ is used to impose soft constraints on the estimates,
thus making the problem less ill-posed. For smooth fields, first or second order differential

operators are often used to impose differentiability of orders one and two.?>*?

In practice, numerical solving of this regularized least squares problem requires disretiza-
tion of the problem by expressing the images and displacements as vectors that compose
of pixel intensities. Images and displacements expressed as vectors are I = (Iy,...,1;)T,
=1 1" u=(u,..,u;),and v = (vy,...,v;) ", where I; and ]]‘-S are the pixel inten-
sities of unperturbed and perturbed images, and u; and v; are the horizontal and vertical
displacements, for pixels j = 1,...,J. The discrete regularized least squares can then be

expressed as

(@, ) = argmin|[I° — I — D,u — Dw||’
) (9)

+ o (|[Lul "+ ||Lo][).

where || - || is the Euclidean 2-norm, D, = diag{/1,, ..., I;,} and D, = diag{I, ..., 1;,}
are diagonal matrices of first order centered finite difference approximations® of the x and
y derivatives of I for pixels j, and L is a regularization matrix (see Sec. I1 B 3). For details
on solving least squares optimization problems of form Eq. (9), see e.g. Ref.?*3°

9
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2. Potential flow

In potential flow method, the optical flow fields in Eq. (5) are described as a gradient of

a potential function
P = /-g/p(:c,y, z2)dz, (10)
z

such that (u,v) = VP and the regularized least squares problem (8) then becomes

A ol 0
— ; S _ g7 _ (22 2
P = arg;mn/ (I I (8x B
. (11)
)
oy Jy

The problem in a discrete form is

2
)P) dedy + o? / (LP)2dady.
A

P = arg min|[I° — I — (Dme‘FDyGy)PHQ
P (12)

+o||LP[,
where P = (P, ..., P;)" is the potential function in vector form, and G, and G, are the first
order centered finite difference approximation operator matrices for the x and y derivatives.
For details on solving least squares optimization problems of form Eq. (12), see e.g. Ref.?*
Because potential flow method estimates the potential function P, the problem has equal

number of unknowns and equations. However, regularization is still needed due to noise and

zero image gradient locations (VI = 0).

3. Regularization operator

In this work, we use two different regularization operators. The first is a Laplace operator

V2= (8—2 + 53—;2) that promotes smooth solutions®>*

e of optimization problems (9) and (12).

The second regularization operator V2 + k? is based on the Helmholtz equation for acoustic

10
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fields, where k = 2w/\ = w/c is the wavenumber, A is the wavelength, w is the angular
frequency, and c is the speed of sound of the acoustic field.*” The operator promotes solutions
with acoustic wave-like features. In discrete forms, Laplace and Helmholtz operators are

expressed as

\Y& Gu+ Gy =L, (13)

Q

V2 + k2

Q

G+ Gy + FI=1L, (14)

where G, and G, are matrix operators corresponding to second order centered finite differ-
ence approximations® of second partial derivatives along x- and y-axes, and I is an identity
matrix, and L is a discrete regularization matrix. Since the optical flow fields in Eq. (5)
can be expressed as the gradient of potential flow (10), imposing a second order differentia-
bility with the regularization operators (13) and (14) causes a higher level differentiability

assumption on the solution of optical flow (9) than potential flow (12).

C. Tomographic imaging

The principle of tomographic imaging in SST with a stationary ultrasound field and a
rotating camera, a light source, and an imaged target is visualized in Fig. 2. Each of the
captured images at different angles are 2D projections and carry information of the pressure
field.

In order to describe the projections in tomographic coordinates, a mapping from the
pressure fields’ laboratory coordinates (z,y,z) to the local coordinates (z’,y',z") of the
rotating camera is needed. The angle of rotation # around the y-axis connects the two

11



Ultrasound field s

]

X K
X’

? é
el

_\ Projection n
_/

1> Rotation of
A

v
N

v\

Camera

camera

y

X, ¥,2) Laboratory coordinates

(x’,¥,2)  Local coordinates

FIG. 2. Schematic image of measurement setup of SST. Laboratory coordinates (x,y, z) of the
pressure field, local coordinates (z’,y,2’) of the rotating camera, and the imaged target at a

projection angle 6,,.

17 coordinate systems

(

x = 2’ cos(0) — 2’ sin(h),

y="1, (15)

z =2’ sin(f) + 2’ cos(6).

\

18 Expressing the line integral along the optical path over the pressure field in rotated coordi-

1o nates is equivalent to a Radon transform®*’ R{-}(2’,0) as

oo

Rip(z,y,2)} ', 0) = / p(z’ cos(0) — 2’ sin(h),
- (16)

y, 2 sin(6) + 2’ cos())dz’.

12



o Expressing the optical displacements of Eq. (5) and the potential function (10) similarly as

1 the Radon transform (16) results in

(e, .6) = g RAD(r . 2)} (), (17)
0le',1.0) = g R{p(o, . 2)} ', 0), (18)
P(3.0) = R{p(r, 5, )} &', 6). (19)

12 The above formulations (15)—(19) also apply to imaging with a rotating ultrasound field and

73 a stationary camera, a light source, and an imaged target.

174 D. Tomographic pressure field estimations

175 The previous pressure field estimation method introduced in Ref.'® uses the vertical
e displacement to form an estimate for the pressure. For completeness, the method is para-
177 phrased here. According to Eq. (18), v(2’,y, 0) is the Radon transform of the y-derivative of
s the pressure field. Hence, we can use an inverse Radon transform (filtered back-projection

39,41)

179 algorithm in practice to estimate the y-derivative of the pressure field. Furthermore,

1

@

o for strongly forward directed pressure fields, a plane-wave approximation can be made. In

121 a lossless medium, the Helmholtz equation®” is
V2p 4 k*p = 0. (20)

122 Assuming plane-wave propagation along the y-direction, the derivatives in x- and z-
13 directions become negligible and an approximate wave-equation holds that

Fp

Iy + k*p =~ 0, (21)

13
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from which a plane-wave approximation for the pressure can be obtained using

where Op/dy can be obtained using the inverse Radon transform.*”! The pressure estimation

can thus be expressed as

p(:L',y,Z) = ————R‘l{v(x’,yﬁ)}(x,z), (23>

The approach (23) is referred to as pressure estimation based on the v-displacement (PE-v).
In this work, two new pressure field estimation methods are introduced. The first pressure
estimation approach is based on the horizontal displacement u(x’,y,6). By integrating

Eq. (17) along the 2/-direction, we obtain

1

U(x”,y,@):/ u(2',y, 0)da’
e (24)

= sR{p(x,y,2)}(z",0),

where U(z”,y,0) is now a quantity related to the Radon transform of pressure field that can

be readily obtained by applying the inverse Radon transform as
1 -1 "
p(xvyu Z) = E’R’ {U(.CL’ 73/79}(3372)' (25)

The approach (25) is referred to as pressure estimation based on the u-displacement (PE-u).
The second new approach uses the potential flow estimate (19) and the inverse Radon

transform to obtain the pressure field as

pr.9.2) = R g0} o). (26)

The approach (26) is referred to as pressure estimation based on the pressure potential
function P (PE-P).

14
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III. SIMULATION SETUP AND ANALYSIS

In this work, the simulation setup is telecentric, that is, the light rays travel along parallel
lines from the light source to the camera. Tomographic imaging is achieved by rotating
the camera, the light source and the imaged target over a span of 180° at 1° increments.
All numerical computations were implemented in MATLAB R2017b (The MathWorks Inc.,

Natick, MA, USA).

A. Acoustic field simulations

Three acoustical simulation setups, shown in Fig. 3, were investigated: a focused ultra-
sound transducer sonicating along the rotation axis and obliquely at an angle of 45° with
respect to the rotation axis, and a piston transducer sonicating along the rotation axis to-
wards a reflecting target creating a standing wave. Both of the transducers were simulated
at a medically relevant frequency of f = 1.01 MHz. The pressure fields were simulated in
an isotropic medium using k-Wave'® that is based on a k-space pseudospectral method for

time domain acoustic simulations. The simulation parameters are shown in Table I.

In the focused acoustic field simulation, the geometrically focused transducer had an
element diameter and a focal length of 45.2 mm similar to Ref.'"® The transducer operated
in a burst mode of 50 cycles (49.5 us burst duration, 73.6 mm propagation distance in
water). A snapshot of the simulation was taken at a time point of 55.1 us, corresponding
to a sound burst being centered at the focus after a propagation distance of 82.0 mm. The
size of the simulated acoustic field was 68.61 x 113.37 x 68.61 mm in (z,y, z) coordinates.

15
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FIG. 3. Schematic image of simulation setups for a focused (left), an obliquely propagating focused
(middle), and a standing wave (right) ultrasound fields. Borders of perfectly matched layers are

shown by dashed lines.

The obliquely propagating focused ultrasound wave was obtained by rotating the focused

ultrasound field by 45° with respect to the rotation axis.

In the standing wave-field simulation, the piston transducer had an element diameter of
12.5 mm and was driven with a continuous wave. A reflecting steel layer with thickness of
1.47 mm, corresponding to the wavelength of ultrasound, was simulated to be placed on the
bottom of the domain, perpendicularly to the piston transducer. The distance between the
steel layer and transducer was set to correspond a near-field length (4D—j ~ 26.6 mm, where
D is the diameter of the transducer). A snapshot of the standing wave was taken after the
ultrasound’s propagation distance of 2.5 times the near-field length, corresponding to 44.5

ps in time duration. The size of the simulated acoustic field was 28.12 x 25.02 x 25.02 mm.

A perfectly matched layer of thickness 1.47 x 2.94 x 1.47 mm was added outside the
acoustic simulation domains to avoid unphysical reflections from the open simulation bound-

aries.
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B. Optical simulations

The optical simulations were carried out in dense grids with Ah = 24.54 ym corresponding
to 60 points per wavelength (PPW) similar in order of magnitude to Ref.'® In order to
perform the optical simulations, the simulated acoustic fields were interpolated to denser
grids. Furthermore, to avoid unnecessarily large domains, they were cropped to smaller
regions of interest. The acoustic field sizes were then 24.12 x 38.84 x 24.12 mm, 24.42 X
24.42 x 24.12 mm, and 25.00 x 26.48 x 25.00 mm for the focused, the obliquely propagating,

and the standing wave acoustic fields.

Furthermore, the linearized optical model assumes small optical displacements, and there-
fore the acoustic fields were normalized with the factor x using Egs. (23), (25), and (26) by

limiting the maximum magnitude of the optical displacements to 4.4 pm (0.18 pixels).

Using the denser grid, an imaged target composed of individual Gaussian bumps was
generated. The peak separation and cut-off width of the bumps were 368 pum (15 pixels)
using a standard deviation of 147 um (6 pixels). This corresponds to roughly four Gaussian
bumps per wavelength of 1.47 mm (60 pixels) with intensity range from zero to one. The
imaged targets were generated at sizes of 34.18 x 38.84 mm, 34.38 x 24.42 mm, and 35.41 X
26.48 mm for the focused, the obliquely propagating, and the standing wave acoustic fields.
From these images, perturbed images were interpolated using a spline interpolation based

on displacement fields computed using Eqs. (17)—(19).

In order to avoid performing an inverse crime,*® the synthetic unperturbed and perturbed
images were interpolated into new discretizations with a grid size of Ah = 25.55 pm. Addi-

17
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tive and spatially uncorrelated normal distributed noise with a standard deviation of 0.01,

corresponding to 1 % of the maximum intensity, was added to the intensity images.

The discretized regularization operators (13) and (14) explicitly include a homogeneous
Dirichlet type boundary condition, causing the optical and potential flow estimates fall to-
wards zero near the boundaries. To avoid this, the noisy unperturbed and perturbed images
were zero padded in the y-direction. Following the optical and potential flow estimations,
the estimated u, v, and P fields were cropped to regions of interest, which were used in
analysis. For the focused, the obliquely propagating, and the standing wave fields, the sizes
of the zero padded images were 34.18 x 44.95 mm, 34.38 x 30.52 mm, and 35.41 x 32.60
mm respectively. The corresponding sizes of regions of interest used in analysis were 28.05 X
38.83 mm, 28.25 x 24.4 mm, and 29.28 x 26.47 mm. The noisy unperturbed and perturbed
images, and their difference image of the region of interest for the focused ultrasound field

is shown in Fig. 4.

The pressure fields were estimated based on the optical and potential flow fields. The sizes
of the estimated pressure fields were 24.1 x 44.95 x 24.1 mm, 24.40 x 30.52 x 24.12 mm,
and 24.99 x 32.6 x 24.99 mm for the focused, the obliquely propagating, and the standing
wave fields respectively. These estimates contained boundary artefacts arising from the
optical and potential flow, and thus regions of interests of sizes 19.75 x 38.83 x 19.76 mm,
20.06 x 24.40 x 19.78 mm, and 20.65 x 26.47 x 20.65 mm for each of the fields was chosen
for analysis.
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FIG. 4. From left to right: Noisy unperturbed, perturbed, and their difference image for the
focused ultrasound field. Shown on the top row are the full-sized images and on the bottom row

are the zoomed images.

C. Estimations and analysis

The optical flow displacements were estimated using the HS method (9) and the poten-
tial flow was estimated using Eq. (12) from the unperturbed and perturbed images. The
regularization parameters for the optical and potential flow methods were chosen based on
a qualitative inspection of the estimates at a range of different parameter values. The regu-
larization parameter for the optical flow estimations was chosen separately for the pressure
estimation approaches PE-v (23) and PE-u (25) in order to avoid favouring either of them.
The optical flow estimates are referred to as vertical HS-v (18) and horizontal HS-u (17)
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displacements based on the separate HS estimations, and the potential function estimate is

denoted as PF (19).

The optical and potential flow estimates were then used as an input in PE-v (23), PE-
u (25), and PE-P (26) pressure estimation methods. The inverse Radon transform used in
the estimation methods was performed using a Hamming-filtered back-projection algorithm
that is suitable for noisy data. It was applied individually on the (z’,6)-planes for each
y-slice and the reconstructed 2D pressure (z, z)-planes were then stacked in the y-direction

to obtain the full 3D pressure field.

The optical and potential flow estimates, and the pressure estimates were analyzed using

relative error (RE), expressed as

19 — grruell
HgTrueH

RE = 100% - , (27)

where g refers to either the estimated optical and potential low components 4, v, and P, orto
the estimated 3D pressure field p, and gy, is the corresponding true field. Relative error was
computed by interpolating the true displacement fields, pressure projection, and pressure
fields into the discretization of the estimates. The boundary regions in the optical and
potential flow estimates, and the corresponding boundary regions in the pressure estimates

were excluded from the analyzes.
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IV. RESULTS

A. Focused ultrasound field

Fig. 5 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential
flow estimate PF for the focused ultrasound field when using the Helmholtz regularization.
The REs for the optical and potential flow estimates using the Laplace and the Helmholtz
regularizations are shown in Table II. Based on the results, the optical and potential flow
estimates are improved in comparison to the Laplace regularization, when the Helmholtz
regularization is used. Of the Helmholtz regularization estimates, HS-v has the lowest RE
followed by PF. They both have similar resemblance to their corresponding true fields. The
high RE of HS-u is due to the acoustic field having smaller horizontal gradients than vertical,

making it more ill-posed to estimate.

Fig. 6 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal
planes yx (z = 0 mm) and the axial planes zz (y = 0 mm) when using the Helmholtz
regularization. Table II shows REs of the estimates when using the Laplace and Helmholtz
regularizations. Of the Helmholtz regularized pressure estimates, PE-u has the lowest RE,
followed by PE-P. All the estimates seem similar and close to the true pressure values on
the coronal plane. On the axial plane, pressure values of PE-P and PE-u are closer to the

true values than PE-v that has smaller pressure values.
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FIG. 5. (Color online) From left to right: the optical flow fields v and v, and the potential flow
field P. Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v,
and PF estimates using the Helmholtz regularization. Fields are shown for the focused ultrasound

field at a rotation angle of 45°. Colorbar units from left to right: m, m, and m?.

B. Obliquely propagating focused ultrasound field

Fig. 7 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential
flow estimate PF for the obliquely propagating ultrasound field when using the Helmholtz
regularization. The REs for the optical flow estimates using the Laplace and the Helmholtz
regularizations are shown in Table II. Of the Helmholtz regularization estimates, HS-u and
HS-v have similar REs and visual appearance due to the propagation angle of the ultrasound.
The estimate PF has the lowest RE and the closest resemblance to its corresponding true
field.
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FIG. 6. (Color online) Coronal planes (top) and axial planes (bottom) of the focused ultrasound
field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz
regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar

units are in Pa.

Fig. 8 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal
planes yz (z = 0 mm) and the axial planes 2z (y = 0 mm) when using the Helmholtz
regularization. Table IT shows REs for the estimates when using the Laplace and Helmholtz
regularizations. The Helmholtz regularized estimate PE-P has the lowest RE and resembles
the true field the closest, followed by PE-u. In comparison to the results in Section [V A,
the smaller focal pressure values of PE-v are more visible. These arise from the plane-wave

approximation, that assumes propagation of sound principally along the y-axis.
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FIG. 7. (Color online) From left to right: the optical flow fields u and v, and the potential flow field
P. Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v, and
PF estimates using the Helmholtz regularization. Fields are shown for the obliquely propagating

field at a rotation angle of 45°. Colorbar units from left to right: m, m, and m?.

C. Standing wave ultrasound field

Fig. 9 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential
flow estimate PF for the standing wave ultrasound field when using the Helmholtz regu-
larization. The REs for the optical and potential flow estimates using the Laplace and the
Helmholtz regularizations are shown in Table II. The Helmholtz regularized PF estimate has
the smallest RE, followed by HS-v. Both of them appear similar to their corresponding true
fields. The horizontal displacement magnitudes are lower than the vertical displacement
magnitudes. This leads to greater artefacts in the HS-u estimate, seen by the high RE and
visual inspection of the region of interest.
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field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz
regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar

units are in Pa.

Fig. 10 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal
planes yx (z = 0 mm) and the axial planes zz (y = 0 mm) when using the Helmholtz
regularization. Table II shows REs of the estimates when the Laplace and Helmholtz reg-
ularizations are used. The Helmholtz regularized PE-P has the lowest RE, followed by the
RE of PE-v. On the coronal plane near the ultrasound transducer, PE-P and PE-u resemble
the local high-amplitude focus regions well, whereas PE-v has smaller amplitudes. On the
other hand, PE-u has lower amplitudes when approaching the steel layer. Inspection of the
axial plane shows coarser but more accurate pressure values for PE-P and smoother but

lower pressure values for PE-v.

25



347

348

349

350

351

352

353

354

355

356

-0.02 0 0.02 -0.15 0 0.15 -1.5 0 1.5
I T B I T

-10 R
£ o
>
10
-10 0 10
X (mm)
-10
E
>
10 _
-10 0 10
X (mm)

FIG. 9. (Color online) From left to right: the optical flow fields v and v, and the potential flow
field P. Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v,
and PF estimates using the Helmholtz regularization. Fields are shown for the standing wave-field

at a rotation angle of 45°. Colorbar units from left to right: m, m, and m?.

V. DISCUSSION

In this work, two acoustic pressure estimation methods for SST were introduced. The
pressure estimation methods are based on regularized least squares optical and potential flow
optimizations. These methods allow promotion of smooth solutions via Laplace regulariza-
tion or acoustic wave-like features via Helmholtz regularization. The pressure estimation
approaches were tested using numerical simulations for a focused, an obliquely propagat-
ing focused, and a standing wave ultrasound fields. The pressure estimation methods were
compared quantitatively and qualitatively to a previously introduced method (See Ref.'®).

The results show that the Helmholtz regularization is more accurate than the Laplace
regularization when estimating optical and potential flow. In this work, the Helmholtz
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FIG. 10. (Color online) Coronal planes (top) and axial planes (bottom) of the standing wave-
field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz
regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar

units are in Pa.

prior was imposed as a soft constraint in a regularized least squares problem. While the
distortions are not strictly pressure waves, they inherit the wave-like nature of the pressure
wave. Several other studies have used the Helmholtz prior both as soft and hard constaints
and support the suggestion that it is effective in reconstructing pressure fields using optically
measured data as an input.”*** However, it should be noted that, since discretization affects

regularization, Helmholtz regularization may not be optimal if a low discretization is used.

Furthermore, the results indicate that the potential flow based pressure estimation
method PE-P with the Helmholtz regularization is the most accurate in estimating arbitrary
ultrasound propagation. In comparison to a typical hydrophone measurement uncertainty
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of 10 %,*° the PE-P pressure estimates are comparable to it with an average relative error

of 15.8 % for the studied pressure fields.

When comparing PE-P estimates to PE-u and PE-v estimates, PE-P outperforms them
in feasibility too. Although, PE-u and PE-v both use the HS algorithm to estimate the
horizontal or vertical displacement components, they require different regularizations for
optimal estimates depending on the propagation direction of the ultrasound beam. When
the propagation angle of ultrasound is small with respect to the rotation axis of the camera,
estimation accuracy of the horizontal component reduces and hence affects the accuracy of
PE-u. For the vertical component, a small propagation angle is optimal. Accuracy of PE-v is
affected by both the accuracy of the vertical component and directly of the propagation angle
of the ultrasound. This is due to the plane-wave approximation that assumes ultrasound
propagation along the rotation axis. Thus, while PE-P is more robust in comparison to

PE-u and PE-v, it also performs similarly or better in accuracy.

In addition to accuracy of PE-P, it is based on estimating only one scalar potential flow
field, and thus it is faster than estimating two optical low components. Estimating 180 im-
ages in average took approximately 474 minutes for the optical flow fields and 81 minutes for
the potential flow fields, that is over 5.8 times faster. The computations were implemented
using MATLAB R2017b on a workstation equipped with 2.53 GHz Xeon E5649 (Intel Cor-
poration, Santa Clara, CA) processor. The computational time for image processing can be

further reduced utilizing parallel computing.

While this study concentrated on estimating ultrasound fields, the proposed new methods,

PE-u and PE-P, can be adopted for estimating non-acoustically induced refractive index
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field as well. PE-u assumes that the refractive index field has a gradient along the plane
perpendicular to the rotational imaging axis. For PE-P however, it is intrinsic that the
refractive index field can be expressed using a scalar potential. This limits the method to
applications with curl-free refractive index fields.?® In comparison, the previously introduced
method PE-v explicitly approximates the refractive index field as a wave-field. Thus, the
new estimation methods can be thought as more general approaches.

The regularization parameter was not optimized but it was selected qualitatively by in-
specting the estimates at a range of different regularization parameter values and choosing an
estimate resembling a wave-field the most. This mimics conventional approach for choosing
the regularization parameter. In comparison to Laplace regularization, Helmholtz regular-
ization is much less sensitive to the choice of the regularization parameter as it was easier
to narrow down a qualitatively optimal regularization parameter (results omitted). Clas-
sical regularization parameter selection methods, such as L-curve’” and generalized cross-
validation® methods exist but were not found suitable for this study (results omitted): an
algorithm for this would benefit in selecting the parameter faster and more consistently. No
thorough optimization for the imaged target was made. Optimizing the imaged target, such

as the lattice spacing of details, could possibly improve the results.
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TABLE I. Acoustic simulation parameters. Grid step Ah, time step At, pixels per wavelength
(PPW), Courant-Friedrichs-Lewy (CFL) condition,® speed of sounds SOS,, and SOS;, and densi-

ties pyp and ps in water and steel.

Parameter Ah JAN Aty P PPW CFL
Value 147.2 pm 29.70 ns 9.75 ns 10 px 3
Parameter SOSy SOS; Pw Ps

Value 1487 4529 1000 5% 7800 5%

& The time step in the focused ultrasound field simulation is calculated based on SOS,,.

b The time step in the standing wave-field simulation is calculated based on SOS;.
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TABLE II. Relative errors (RE) in percentage for the Laplace and the Helmholtz regularized optical

flow estimates HS-u and HS-v, potential flow estimate PF, and the consecutive pressure estimates

PE-u, PE-v, and PE-P for the focused ultrasound field (Focused), the oblique propagating focused

ultrasound field (Oblique), and the standing wave ultrasound field (Standing).

Field Regularization HS-u HS-v PF
Focused Laplace 136.4 44.4 83.7
Helmholtz 70.0 24.6 26.6
Oblique Laplace 64.1 66.2 114.5
Helmholtz 35.9 33.9 26.6
Standing Laplace 169.1 16.6 34.4
Helmholtz 59.9 10.0 9.0
Field Regularization PE-u PE-v PE-P
Focused Laplace 34.0 43.4 39.5
Helmholtz 17.5 19.8 18.8
Oblique Laplace 38.7 66.4 34.2
Helmholtz 16.0 61.8 13.9
Standing Laplace 33.9 36.9 34.4
Helmholtz 28.4 18.5 14.7
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525 Figure captions:

526 Fig. 1. Schematic image of a synthetic schlieren setup.

527 Fig. 2. Schematic image of measurement setup of SST. Laboratory coordinates (z, y, )
528 of the pressure field, local coordinates (', y, z') of the rotating camera, and the imaged
529 target at a projection angle 6,,.

530 Fig. 3. Schematic image of simulation setups for a focused (left), an obliquely prop-
531 agating focused (middle), and a standing wave (right) ultrasound fields. Borders of
532 perfectly matched layers are shown by dashed lines.

533 Fig. 4. From left to right: Noisy unperturbed, perturbed, and their difference image
534 for the focused ultrasound field. Shown on the top row are full-sized images and on the
535 bottom row are the zoomed images.

536 Fig. 5. (Color online) From left to right: the optical flow fields u and v, and the
537 potential flow field P. Shown on the top are the true fields and on the bottom are
538 the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.
530 Fields are shown for the focused ultrasound field at a rotation angle of 45°. Colorbar
540 units from left to right: m, m, and m?.

541 Fig. 6. (Color online) Coronal planes (top) and axial planes (bottom) of the focused
542 ultrasound field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates
543 when the Helmholtz regularization is used. Axial plane sections are shown by dashed
544 lines on coronal planes. Colorbar units are in Pa.

38



545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

Fig. 7. (Color online) From left to right: the optical flow fields u and v, and the
potential flow field P. Shown on the top are the true fields and on the bottom are
the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.
Fields are shown for the obliquely propagating field at a rotation angle of 45°. Colorbar

units from left to right: m, m, and m?.

Fig. 8. (Color online) Coronal planes (top) and axial planes (bottom) of the obliquely
propagating field. From left to right: true pressure field, PE-u, PE-v, and PE-P esti-
mates when the Helmholtz regularization is used. Axial plane sections are shown by

dashed lines on coronal planes. Colorbar units are in Pa.

Fig. 9. (Color online) From left to right: the optical flow fields u and v, and the
potential flow field P. Shown on the top are the true fields and on the bottom are
the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.
Fields are shown for the standing wave-field at a rotation angle of 45°. Colorbar units

from left to right: m, m, and m?.

Fig. 10. (Color online) Coronal planes (top) and axial planes (bottom) of the standing
wave-field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates
when the Helmholtz regularization is used. Axial plane sections are shown by dashed

lines on coronal planes. Colorbar units are in Pa.
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