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Synthetic schlieren tomography is a recently proposed three-dimensional optical imag-1

ing technique for studying ultrasound fields. The imaging setup is composed of an2

imaged target, a water tank, a camera, and a pulsed light source that is stroboscopi-3

cally synchronized with an ultrasound transducer to achieve tomographically station-4

ary imaging of an ultrasound field. In this technique, ultrasound waves change the5

propagation of light rays by inducing a change in refractive index via acousto-optic6

effect. The change manifests as optical flow in the imaged target. By performing7

the imaging in a tomographic fashion, the two-dimensional tomographic dataset of8

the optical flow can be transformed into a three-dimensional ultrasound field. In9

this work, two approaches for acoustic pressure field estimation are introduced. The10

approaches are based on optical and potential flow regularized least square opti-11

mizations where regularization based on the Helmholtz equation is introduced. The12

methods are validated via simulations in a telecentric setup and are compared quan-13

titatively and qualitatively to a previously introduced method. Cases of a focused,14

an obliquely propagating, and a standing wave ultrasound fields are considered. The15

simulations demonstrate efficiency of the introduced methods also in situations in16

which the previously applied method has weaknesses.17
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I. INTRODUCTION18

Ultrasound imaging is a fundamental part of medical diagnostics.1 In addition to diag-19

nostics, ultrasound has therapy applications, such as, treatment of cancer2 and essential20

tremor3 and targeted drug delivery.4 To guarantee patient safety and quality of diagnostics21

or therapy, ultrasound devices need to be calibrated. This requires measurement of the ul-22

trasound field, commonly accomplished using cumbersome and time-consuming hydrophone23

measurements.5,6 Thus, calibration and quality assurance of ultrasound devices could benefit24

from new ultrasound measurement and characterization techniques.25

Various optical imaging methods, namely schlieren imaging7–9 and its variations, such26

as shadowgraphy,10–12 background oriented schlieren (BOS) imaging,13–15 and synthetic27

schlieren,16–18 have been applied in imaging of pressure fields. Thus, they can potentially28

serve as alternatives for traditional measurement methods to characterize ultrasound fields.29

These methods rely on observing deflection of light passing through a heterogeneous re-30

fractive index field that carries information of a density or a pressure field.19,20 In schlieren31

imaging, deflection of light is observed accurately using an expensive lens setup and an32

optical stop blocking non-deflected light arriving to a camera.19,21 In the simplest variation,33

shadowgraphy, no optical setup is needed and the light is simply projected to a screen.2034

The deflected light is then observed as intensity variations. Shadowgraphy is mainly used35

for qualitative inspection of an ultrasound field due to its lack of sensitivity19 and challenges36

in obtaining absolute pressure values.10,11 The more recent schlieren variations are BOS22
37

and synthetic schlieren23 that use inexpensive and easy-to-use setups. In these methods,38
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deflection of light is observed as optical distortions in an imaged target and thus, they39

can produce quantitative measurements after post-processing of the images. In ultrasound40

community, both BOS and synthetic schlieren methodologies have been used in imaging of41

ultrasound fields.14,17,1842

In synthetic schlieren tomography (SST) for imaging of ultrasound fields, refractive index43

field distribution is induced via acousto-optic effect.18 This results in light rays travelling44

curved paths through the heterogeneous refractive index field, causing optical distortions in45

an imaged target. Various optical flow methods exist to determine optical displacements46

(gradient projections) from the captured images, such as Lucas-Kanade,24 Horn-Schunck47

(HS),25 and cross correlation-methods.15,26 Of these methods, HS has good quality and48

accuracy.27 In addition, potential flow28 can be used to determine potential functions (pro-49

jections) of a pressure field. Since the determined optical distortions are two-dimensional50

(2D), a tomographic dataset is required for reconstructing a three-dimensional (3D) ultra-51

sound field. In SST, an ultrasound field is imaged stationarily using a stroboscopic setup52

based on synchronizing a pulsed light source with the refractive index perturbations. To-53

mographic imaging is achieved by rotating the refractive index field or the camera, the light54

source, and the imaged target.55

In this work, two new approaches for estimating acoustic pressure fields in SST are in-56

troduced. The approaches are based on the optical and potential flow problems, which are57

solved using a regularized least squares in a form similar to HS. For the regularizations,58

Laplace and Helmholtz equations are applied. The estimated flow solutions are then used59

with an inverse Radon transform to obtain estimates of the pressure field. The approaches60
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FIG. 1. Schematic image of a synthetic schlieren setup.

are compared to the previously introduced method using numerical simulations in qualita-61

tive and quantitative fashion. Comparison is conducted using three ultrasound fields that62

represent real measurement scenarios: a focused, an obliquely propagating focused, and a63

standing wave ultrasound fields.64

II. MATERIALS AND METHODS65

In this work, a SST setup consisting of a stationary ultrasound transducer and a rotat-66

ing camera, a light source, and an imaged target all immersed in the imaging medium is67

considered. A schematic image of such a setup is shown in Fig. 1. The camera is modelled68

as telecentric, meaning it performs imaging using orthographic view with respect to the69

captured light rays that all propagate in parallel. The coordinate system described in the70

Fig. 1 is adapted throughout this work.71
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A. Theory of SST72

In a simple medium, such as water, refractive index of light behaves linearly as a function73

of adiabatic pressure due to the acousto-optic effect29,3074

n(x, y, z) = n0 +
(∂n
∂p

)
p(x, y, z), (1)

where n0 is the refractive index of the ambient medium, (∂n/∂p) is the adiabatic piezo-75

optic coefficient,29 and p(x, y, z) is the acoustic pressure as a function of spatial coordinates76

(x, y, z).77

Heterogeneous refractive index field results in curving of light rays passing through it.78

The path of a light ray, according to a ray equation31 is79

d

ds

(
n(γ(s))

dγ

ds
(s)
)

= ∇n(γ(s)), (2)

where γ is an optical path vector and s is the geometrical length of the optical path. In80

general, the optical path is a complex curve and the ray equation is non-linear. However,81

for small refractive index perturbations, Eq. (2) can be linearized.15,26,32 It follows that the82

propagation can be modelled as light rays experiencing a deflection that is proportional83

to the projection of the refractive index field gradient along a straight path through the84

perturbation. The linearized deflection angles can be expressed as85 
φx(x, y) =

1

n0

∫
Z

∂n

∂x
(x, y, z)dz,

φy(x, y) =
1

n0

∫
Z

∂n

∂y
(x, y, z)dz,

(3)

where φx(x, y) is the horizontal and φy(x, y) is the vertical deflection angle towards x and y86

axes, and Z is the integration path over the width of refractive index perturbation. Within87
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paraxial approximation, the displacement of the light ray originating from (x, y, z = 0) can88

be expressed as89 
u(x, y) = Dφx(x, y),

v(x, y) = Dφy(x, y),

(4)

where u(x, y) is the horizontal and v(x, y) is the vertical displacement, and D is the distance90

between the thin schlieren object and the camera. The relations for displacements and91

pressure gradient are obtained by combining Eqs. (1)–(4)92


u(x, y) = κ

∫
Z

∂p

∂x
(x, y, z)dz,

v(x, y) = κ

∫
Z

∂p

∂y
(x, y, z)dz,

(5)

where κ = (D/n0)(∂n/∂p) is a factor relating the line integral of the pressure gradient93

projections to absolute displacements. In the above formulations (1)–(5), we have assumed94

that the light pulses are infinitely short and the light ray propagation through the perturbed95

water is instantaneous. These assumptions are reasonable since the speed of light in water96

is much faster than the speed of ultrasound, hence the change in the refractive index is97

negligible during the propagation of a light pulse.98

The optical displacements can be determined from a non-perturbed image, I(x, y), and99

the perturbed image, Iδ(x, y) assuming the same exposure and illumination conditions. The100

relation between these images holds that33101

Iδ(x, y) = I(x+ u(x, y), y + v(x, y)), (6)

where (x+ u(x, y), y + v(x, y)) is an absolute position of a displaced light ray.102
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B. Estimating optical flow103

In this work, HS method is used for determining the optical displacements from the104

image distortions due to its good performance for continuous and smooth displacements105

under noisy conditions. In addition to the traditional HS,25 a potential flow approach is also106

used.28107

1. Optical flow108

The traditional HS method is an approach for estimating the perturbed image with a109

first order truncated Taylor series as110

Iδ(x, y) = I(x+ u(x, y), y + v(x, y))

≈ I(x, y) + u(x, y)
∂I

∂x
(x, y) + v(x, y)

∂I

∂y
(x, y).

(7)

Estimating the displacements is an ill-posed problem and has a non-unique solution due to111

more unknowns than equations. Uniqueness of a solution is obtainable by alleviating the112

ill-posedness via regularization.34 Horn and Schunck introduced the unknown displacements113

as the minimizers of a global smoothness constraint.25 In addition to a unique solution,114

the regularization fills in information from the neighbourhood at locations where the image115

gradient vanishes (∇I ≈ 0). The HS regularized linear least squares problem in a continuous116

form is expressed as117

(û, v̂) = arg min
(u,v)

∫
A

(
Iδ − I − u∂I

∂x
− v∂I

∂y

)2
dxdy

+ α2

∫
A

(Lu)2 + (Lv)2dxdy,

(8)
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where (û, v̂) is an estimate of the image displacements, α is a regularization parameter, L118

is a regularization operator, and A is the surface area over which the integration is carried119

over. The regularization operator L is used to impose soft constraints on the estimates,120

thus making the problem less ill-posed. For smooth fields, first or second order differential121

operators are often used to impose differentiability of orders one and two.25,33122

In practice, numerical solving of this regularized least squares problem requires disretiza-123

tion of the problem by expressing the images and displacements as vectors that compose124

of pixel intensities. Images and displacements expressed as vectors are I = (I1, ..., IJ)>,125

Iδ = (Iδ1 , ...I
δ
J)>, u = (u1, ..., uJ)>, and v = (v1, ..., vJ)>, where Ij and Iδj are the pixel inten-126

sities of unperturbed and perturbed images, and uj and vj are the horizontal and vertical127

displacements, for pixels j = 1, ..., J . The discrete regularized least squares can then be128

expressed as129

(û, v̂) = arg min
(u,v)

∣∣∣∣Iδ − I −Dxu−Dyv
∣∣∣∣2

+ α2
(∣∣∣∣Lu∣∣∣∣2 +

∣∣∣∣Lv∣∣∣∣2), (9)

where
∣∣∣∣ · ∣∣∣∣ is the Euclidean 2-norm, Dx = diag{I1,x, ..., IJ,x} and Dy = diag{I1,y, ..., IJ,y}130

are diagonal matrices of first order centered finite difference approximations35 of the x and131

y derivatives of I for pixels j, and L is a regularization matrix (see Sec. II B 3). For details132

on solving least squares optimization problems of form Eq. (9), see e.g. Ref.34,36133
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2. Potential flow134

In potential flow method, the optical flow fields in Eq. (5) are described as a gradient of135

a potential function136

P = κ

∫
Z

p(x, y, z)dz, (10)

such that (u, v) = ∇P and the regularized least squares problem (8) then becomes137

P̂ = arg min
P

∫
A

(
Iδ − I −

(∂I
∂x

∂

∂x

+
∂I

∂y

∂

∂y

)
P
)2

dxdy + α2

∫
A

(LP )2dxdy.

(11)

The problem in a discrete form is138

P̂ = arg min
P

∣∣∣∣Iδ − I − (DxGx + DyGy

)
P
∣∣∣∣2

+ α2
∣∣∣∣LP ∣∣∣∣2, (12)

where P = (P1, ..., PJ)> is the potential function in vector form, and Gx and Gy are the first139

order centered finite difference approximation operator matrices for the x and y derivatives.140

For details on solving least squares optimization problems of form Eq. (12), see e.g. Ref.34,36141

Because potential flow method estimates the potential function P , the problem has equal142

number of unknowns and equations. However, regularization is still needed due to noise and143

zero image gradient locations (∇I ≈ 0).144

3. Regularization operator145

In this work, we use two different regularization operators. The first is a Laplace operator146

∇2 =
(
∂2

∂x2
+ ∂2

∂y2

)
that promotes smooth solutions25,33 of optimization problems (9) and (12).147

The second regularization operator ∇2 + k2 is based on the Helmholtz equation for acoustic148
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fields, where k = 2π/λ = ω/c is the wavenumber, λ is the wavelength, ω is the angular149

frequency, and c is the speed of sound of the acoustic field.37 The operator promotes solutions150

with acoustic wave-like features. In discrete forms, Laplace and Helmholtz operators are151

expressed as152

∇2 ≈ Gxx + Gyy = L, (13)

∇2 + k2 ≈ Gxx + Gyy + k2I = L, (14)

where Gxx and Gyy are matrix operators corresponding to second order centered finite differ-153

ence approximations38 of second partial derivatives along x- and y-axes, and I is an identity154

matrix, and L is a discrete regularization matrix. Since the optical flow fields in Eq. (5)155

can be expressed as the gradient of potential flow (10), imposing a second order differentia-156

bility with the regularization operators (13) and (14) causes a higher level differentiability157

assumption on the solution of optical flow (9) than potential flow (12).158

C. Tomographic imaging159

The principle of tomographic imaging in SST with a stationary ultrasound field and a160

rotating camera, a light source, and an imaged target is visualized in Fig. 2. Each of the161

captured images at different angles are 2D projections and carry information of the pressure162

field.163

In order to describe the projections in tomographic coordinates, a mapping from the164

pressure fields’ laboratory coordinates (x, y, z) to the local coordinates (x′, y′, z′) of the165

rotating camera is needed. The angle of rotation θ around the y-axis connects the two166
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FIG. 2. Schematic image of measurement setup of SST. Laboratory coordinates (x, y, z) of the

pressure field, local coordinates (x′, y, z′) of the rotating camera, and the imaged target at a

projection angle θn.

coordinate systems167



x = x′ cos(θ)− z′ sin(θ),

y = y′,

z = x′ sin(θ) + z′ cos(θ).

(15)

Expressing the line integral along the optical path over the pressure field in rotated coordi-168

nates is equivalent to a Radon transform39,40 R{·}(x′, θ) as169

R{p(x, y, z)}(x′, θ) =

∫ ∞
−∞

p(x′ cos(θ)− z′ sin(θ),

y, x′ sin(θ) + z′ cos(θ))dz′.

(16)
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Expressing the optical displacements of Eq. (5) and the potential function (10) similarly as170

the Radon transform (16) results in171

u(x′, y, θ) = κ
∂

∂x′
R{p(x, y, z)}(x′, θ), (17)

v(x′, y, θ) = κ
∂

∂y′
R{p(x, y, z)}(x′, θ), (18)

P (x′, y, θ) = κR{p(x, y, z)}(x′, θ). (19)

The above formulations (15)–(19) also apply to imaging with a rotating ultrasound field and172

a stationary camera, a light source, and an imaged target.173

D. Tomographic pressure field estimations174

The previous pressure field estimation method introduced in Ref.18 uses the vertical175

displacement to form an estimate for the pressure. For completeness, the method is para-176

phrased here. According to Eq. (18), v(x′, y, θ) is the Radon transform of the y-derivative of177

the pressure field. Hence, we can use an inverse Radon transform (filtered back-projection178

algorithm in practice39,41) to estimate the y-derivative of the pressure field. Furthermore,179

for strongly forward directed pressure fields, a plane-wave approximation can be made. In180

a lossless medium, the Helmholtz equation37 is181

∇2p+ k2p = 0. (20)

Assuming plane-wave propagation along the y-direction, the derivatives in x- and z-182

directions become negligible and an approximate wave-equation holds that183

∂2p

∂y2
+ k2p ≈ 0, (21)
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from which a plane-wave approximation for the pressure can be obtained using184

p = − c
2

ω2

∂

∂y

(∂p
∂y

)
, (22)

where ∂p/∂y can be obtained using the inverse Radon transform.39,41 The pressure estimation185

can thus be expressed as186

p(x, y, z) = −1

κ

c2

ω2

∂

∂y
R−1{v(x′, y, θ)}(x, z), (23)

The approach (23) is referred to as pressure estimation based on the v-displacement (PE-v).187

In this work, two new pressure field estimation methods are introduced. The first pressure188

estimation approach is based on the horizontal displacement u(x′, y, θ). By integrating189

Eq. (17) along the x′-direction, we obtain190

U(x′′, y, θ) =

∫ x′′

−∞
u(x′, y, θ)dx′

= κR{p(x, y, z)}(x′′, θ),

(24)

where U(x′′, y, θ) is now a quantity related to the Radon transform of pressure field that can191

be readily obtained by applying the inverse Radon transform as192

p(x, y, z) =
1

κ
R−1{U(x′′, y, θ}(x, z). (25)

The approach (25) is referred to as pressure estimation based on the u-displacement (PE-u).193

The second new approach uses the potential flow estimate (19) and the inverse Radon194

transform to obtain the pressure field as195

p(x, y, z) =
1

κ
R−1{P (x′, y, θ}(x, z). (26)

The approach (26) is referred to as pressure estimation based on the pressure potential196

function P (PE-P).197
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III. SIMULATION SETUP AND ANALYSIS198

In this work, the simulation setup is telecentric, that is, the light rays travel along parallel199

lines from the light source to the camera. Tomographic imaging is achieved by rotating200

the camera, the light source and the imaged target over a span of 180◦ at 1◦ increments.201

All numerical computations were implemented in matlab R2017b (The MathWorks Inc.,202

Natick, MA, USA).203

A. Acoustic field simulations204

Three acoustical simulation setups, shown in Fig. 3, were investigated: a focused ultra-205

sound transducer sonicating along the rotation axis and obliquely at an angle of 45◦ with206

respect to the rotation axis, and a piston transducer sonicating along the rotation axis to-207

wards a reflecting target creating a standing wave. Both of the transducers were simulated208

at a medically relevant frequency of f = 1.01 MHz. The pressure fields were simulated in209

an isotropic medium using k-Wave42 that is based on a k-space pseudospectral method for210

time domain acoustic simulations. The simulation parameters are shown in Table I.211

In the focused acoustic field simulation, the geometrically focused transducer had an212

element diameter and a focal length of 45.2 mm similar to Ref.18 The transducer operated213

in a burst mode of 50 cycles (49.5 µs burst duration, 73.6 mm propagation distance in214

water). A snapshot of the simulation was taken at a time point of 55.1 µs, corresponding215

to a sound burst being centered at the focus after a propagation distance of 82.0 mm. The216

size of the simulated acoustic field was 68.61 × 113.37 × 68.61 mm in (x, y, z) coordinates.217
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FIG. 3. Schematic image of simulation setups for a focused (left), an obliquely propagating focused

(middle), and a standing wave (right) ultrasound fields. Borders of perfectly matched layers are

shown by dashed lines.

The obliquely propagating focused ultrasound wave was obtained by rotating the focused218

ultrasound field by 45◦ with respect to the rotation axis.219

In the standing wave-field simulation, the piston transducer had an element diameter of220

12.5 mm and was driven with a continuous wave. A reflecting steel layer with thickness of221

1.47 mm, corresponding to the wavelength of ultrasound, was simulated to be placed on the222

bottom of the domain, perpendicularly to the piston transducer. The distance between the223

steel layer and transducer was set to correspond a near-field length (D
2

4λ
≈ 26.6 mm, where224

D is the diameter of the transducer). A snapshot of the standing wave was taken after the225

ultrasound’s propagation distance of 2.5 times the near-field length, corresponding to 44.5226

µs in time duration. The size of the simulated acoustic field was 28.12 × 25.02 × 25.02 mm.227

A perfectly matched layer of thickness 1.47 × 2.94 × 1.47 mm was added outside the228

acoustic simulation domains to avoid unphysical reflections from the open simulation bound-229

aries.230
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B. Optical simulations231

The optical simulations were carried out in dense grids with ∆h = 24.54 µm corresponding232

to 60 points per wavelength (PPW) similar in order of magnitude to Ref.18 In order to233

perform the optical simulations, the simulated acoustic fields were interpolated to denser234

grids. Furthermore, to avoid unnecessarily large domains, they were cropped to smaller235

regions of interest. The acoustic field sizes were then 24.12 × 38.84 × 24.12 mm, 24.42 ×236

24.42 × 24.12 mm, and 25.00 × 26.48 × 25.00 mm for the focused, the obliquely propagating,237

and the standing wave acoustic fields.238

Furthermore, the linearized optical model assumes small optical displacements, and there-239

fore the acoustic fields were normalized with the factor κ using Eqs. (23), (25), and (26) by240

limiting the maximum magnitude of the optical displacements to 4.4 µm (0.18 pixels).241

Using the denser grid, an imaged target composed of individual Gaussian bumps was242

generated. The peak separation and cut-off width of the bumps were 368 µm (15 pixels)243

using a standard deviation of 147 µm (6 pixels). This corresponds to roughly four Gaussian244

bumps per wavelength of 1.47 mm (60 pixels) with intensity range from zero to one. The245

imaged targets were generated at sizes of 34.18 × 38.84 mm, 34.38 × 24.42 mm, and 35.41 ×246

26.48 mm for the focused, the obliquely propagating, and the standing wave acoustic fields.247

From these images, perturbed images were interpolated using a spline interpolation based248

on displacement fields computed using Eqs. (17)–(19).249

In order to avoid performing an inverse crime,43 the synthetic unperturbed and perturbed250

images were interpolated into new discretizations with a grid size of ∆h = 25.55 µm. Addi-251
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tive and spatially uncorrelated normal distributed noise with a standard deviation of 0.01,252

corresponding to 1 % of the maximum intensity, was added to the intensity images.253

The discretized regularization operators (13) and (14) explicitly include a homogeneous254

Dirichlet type boundary condition, causing the optical and potential flow estimates fall to-255

wards zero near the boundaries. To avoid this, the noisy unperturbed and perturbed images256

were zero padded in the y-direction. Following the optical and potential flow estimations,257

the estimated u, v, and P fields were cropped to regions of interest, which were used in258

analysis. For the focused, the obliquely propagating, and the standing wave fields, the sizes259

of the zero padded images were 34.18 × 44.95 mm, 34.38 × 30.52 mm, and 35.41 × 32.60260

mm respectively. The corresponding sizes of regions of interest used in analysis were 28.05 ×261

38.83 mm, 28.25 × 24.4 mm, and 29.28 × 26.47 mm. The noisy unperturbed and perturbed262

images, and their difference image of the region of interest for the focused ultrasound field263

is shown in Fig. 4.264

The pressure fields were estimated based on the optical and potential flow fields. The sizes265

of the estimated pressure fields were 24.1 × 44.95 × 24.1 mm, 24.40 × 30.52 × 24.12 mm,266

and 24.99 × 32.6 × 24.99 mm for the focused, the obliquely propagating, and the standing267

wave fields respectively. These estimates contained boundary artefacts arising from the268

optical and potential flow, and thus regions of interests of sizes 19.75 × 38.83 × 19.76 mm,269

20.06 × 24.40 × 19.78 mm, and 20.65 × 26.47 × 20.65 mm for each of the fields was chosen270

for analysis.271
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focused ultrasound field. Shown on the top row are the full-sized images and on the bottom row

are the zoomed images.

C. Estimations and analysis272

The optical flow displacements were estimated using the HS method (9) and the poten-273

tial flow was estimated using Eq. (12) from the unperturbed and perturbed images. The274

regularization parameters for the optical and potential flow methods were chosen based on275

a qualitative inspection of the estimates at a range of different parameter values. The regu-276

larization parameter for the optical flow estimations was chosen separately for the pressure277

estimation approaches PE-v (23) and PE-u (25) in order to avoid favouring either of them.278

The optical flow estimates are referred to as vertical HS-v (18) and horizontal HS-u (17)279
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displacements based on the separate HS estimations, and the potential function estimate is280

denoted as PF (19).281

The optical and potential flow estimates were then used as an input in PE-v (23), PE-282

u (25), and PE-P (26) pressure estimation methods. The inverse Radon transform used in283

the estimation methods was performed using a Hamming-filtered back-projection algorithm284

that is suitable for noisy data. It was applied individually on the (x′, θ)-planes for each285

y-slice and the reconstructed 2D pressure (x, z)-planes were then stacked in the y-direction286

to obtain the full 3D pressure field.287

The optical and potential flow estimates, and the pressure estimates were analyzed using288

relative error (RE), expressed as289

RE = 100% · ‖ĝ − gTrue‖
‖gTrue‖

, (27)

where ĝ refers to either the estimated optical and potential flow components û, v̂, and P̂ , or to290

the estimated 3D pressure field p̂, and gTrue is the corresponding true field. Relative error was291

computed by interpolating the true displacement fields, pressure projection, and pressure292

fields into the discretization of the estimates. The boundary regions in the optical and293

potential flow estimates, and the corresponding boundary regions in the pressure estimates294

were excluded from the analyzes.295
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IV. RESULTS296

A. Focused ultrasound field297

Fig. 5 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential298

flow estimate PF for the focused ultrasound field when using the Helmholtz regularization.299

The REs for the optical and potential flow estimates using the Laplace and the Helmholtz300

regularizations are shown in Table II. Based on the results, the optical and potential flow301

estimates are improved in comparison to the Laplace regularization, when the Helmholtz302

regularization is used. Of the Helmholtz regularization estimates, HS-v has the lowest RE303

followed by PF. They both have similar resemblance to their corresponding true fields. The304

high RE of HS-u is due to the acoustic field having smaller horizontal gradients than vertical,305

making it more ill-posed to estimate.306

Fig. 6 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal307

planes yx (z = 0 mm) and the axial planes xz (y = 0 mm) when using the Helmholtz308

regularization. Table II shows REs of the estimates when using the Laplace and Helmholtz309

regularizations. Of the Helmholtz regularized pressure estimates, PE-u has the lowest RE,310

followed by PE-P. All the estimates seem similar and close to the true pressure values on311

the coronal plane. On the axial plane, pressure values of PE-P and PE-u are closer to the312

true values than PE-v that has smaller pressure values.313
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FIG. 5. (Color online) From left to right: the optical flow fields u and v, and the potential flow

field P . Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v,

and PF estimates using the Helmholtz regularization. Fields are shown for the focused ultrasound

field at a rotation angle of 45◦. Colorbar units from left to right: m, m, and m2.

B. Obliquely propagating focused ultrasound field314

Fig. 7 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential315

flow estimate PF for the obliquely propagating ultrasound field when using the Helmholtz316

regularization. The REs for the optical flow estimates using the Laplace and the Helmholtz317

regularizations are shown in Table II. Of the Helmholtz regularization estimates, HS-u and318

HS-v have similar REs and visual appearance due to the propagation angle of the ultrasound.319

The estimate PF has the lowest RE and the closest resemblance to its corresponding true320

field.321
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FIG. 6. (Color online) Coronal planes (top) and axial planes (bottom) of the focused ultrasound

field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz

regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar

units are in Pa.

Fig. 8 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal322

planes yx (z = 0 mm) and the axial planes xz (y = 0 mm) when using the Helmholtz323

regularization. Table II shows REs for the estimates when using the Laplace and Helmholtz324

regularizations. The Helmholtz regularized estimate PE-P has the lowest RE and resembles325

the true field the closest, followed by PE-u. In comparison to the results in Section IV A,326

the smaller focal pressure values of PE-v are more visible. These arise from the plane-wave327

approximation, that assumes propagation of sound principally along the y-axis.328
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FIG. 7. (Color online) From left to right: the optical flow fields u and v, and the potential flow field

P . Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v, and

PF estimates using the Helmholtz regularization. Fields are shown for the obliquely propagating

field at a rotation angle of 45◦. Colorbar units from left to right: m, m, and m2.

C. Standing wave ultrasound field329

Fig. 9 shows the true and the estimated optical flow fields HS-u, HS-v, and the potential330

flow estimate PF for the standing wave ultrasound field when using the Helmholtz regu-331

larization. The REs for the optical and potential flow estimates using the Laplace and the332

Helmholtz regularizations are shown in Table II. The Helmholtz regularized PF estimate has333

the smallest RE, followed by HS-v. Both of them appear similar to their corresponding true334

fields. The horizontal displacement magnitudes are lower than the vertical displacement335

magnitudes. This leads to greater artefacts in the HS-u estimate, seen by the high RE and336

visual inspection of the region of interest.337
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FIG. 8. (Color online) Coronal planes (top) and axial planes (bottom) of the obliquely propagating

field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz

regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar

units are in Pa.

Fig. 10 shows the true pressure field, PE-u, PE-v, and PE-P estimates on the coronal338

planes yx (z = 0 mm) and the axial planes xz (y = 0 mm) when using the Helmholtz339

regularization. Table II shows REs of the estimates when the Laplace and Helmholtz reg-340

ularizations are used. The Helmholtz regularized PE-P has the lowest RE, followed by the341

RE of PE-v. On the coronal plane near the ultrasound transducer, PE-P and PE-u resemble342

the local high-amplitude focus regions well, whereas PE-v has smaller amplitudes. On the343

other hand, PE-u has lower amplitudes when approaching the steel layer. Inspection of the344

axial plane shows coarser but more accurate pressure values for PE-P and smoother but345

lower pressure values for PE-v.346
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FIG. 9. (Color online) From left to right: the optical flow fields u and v, and the potential flow

field P . Shown on the top are the true fields and on the bottom are the corresponding HS-u, HS-v,

and PF estimates using the Helmholtz regularization. Fields are shown for the standing wave-field

at a rotation angle of 45◦. Colorbar units from left to right: m, m, and m2.

V. DISCUSSION347

In this work, two acoustic pressure estimation methods for SST were introduced. The348

pressure estimation methods are based on regularized least squares optical and potential flow349

optimizations. These methods allow promotion of smooth solutions via Laplace regulariza-350

tion or acoustic wave-like features via Helmholtz regularization. The pressure estimation351

approaches were tested using numerical simulations for a focused, an obliquely propagat-352

ing focused, and a standing wave ultrasound fields. The pressure estimation methods were353

compared quantitatively and qualitatively to a previously introduced method (See Ref.18).354

The results show that the Helmholtz regularization is more accurate than the Laplace355

regularization when estimating optical and potential flow. In this work, the Helmholtz356
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FIG. 10. (Color online) Coronal planes (top) and axial planes (bottom) of the standing wave-

field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates when the Helmholtz

regularization is used. Axial plane sections are shown by dashed lines on coronal planes. Colorbar

units are in Pa.

prior was imposed as a soft constraint in a regularized least squares problem. While the357

distortions are not strictly pressure waves, they inherit the wave-like nature of the pressure358

wave. Several other studies have used the Helmholtz prior both as soft and hard constaints359

and support the suggestion that it is effective in reconstructing pressure fields using optically360

measured data as an input.9,44,45 However, it should be noted that, since discretization affects361

regularization, Helmholtz regularization may not be optimal if a low discretization is used.362

Furthermore, the results indicate that the potential flow based pressure estimation363

method PE-P with the Helmholtz regularization is the most accurate in estimating arbitrary364

ultrasound propagation. In comparison to a typical hydrophone measurement uncertainty365
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of 10 %,46 the PE-P pressure estimates are comparable to it with an average relative error366

of 15.8 % for the studied pressure fields.367

When comparing PE-P estimates to PE-u and PE-v estimates, PE-P outperforms them368

in feasibility too. Although, PE-u and PE-v both use the HS algorithm to estimate the369

horizontal or vertical displacement components, they require different regularizations for370

optimal estimates depending on the propagation direction of the ultrasound beam. When371

the propagation angle of ultrasound is small with respect to the rotation axis of the camera,372

estimation accuracy of the horizontal component reduces and hence affects the accuracy of373

PE-u. For the vertical component, a small propagation angle is optimal. Accuracy of PE-v is374

affected by both the accuracy of the vertical component and directly of the propagation angle375

of the ultrasound. This is due to the plane-wave approximation that assumes ultrasound376

propagation along the rotation axis. Thus, while PE-P is more robust in comparison to377

PE-u and PE-v, it also performs similarly or better in accuracy.378

In addition to accuracy of PE-P, it is based on estimating only one scalar potential flow379

field, and thus it is faster than estimating two optical flow components. Estimating 180 im-380

ages in average took approximately 474 minutes for the optical flow fields and 81 minutes for381

the potential flow fields, that is over 5.8 times faster. The computations were implemented382

using matlab R2017b on a workstation equipped with 2.53 GHz Xeon E5649 (Intel Cor-383

poration, Santa Clara, CA) processor. The computational time for image processing can be384

further reduced utilizing parallel computing.385

While this study concentrated on estimating ultrasound fields, the proposed new methods,386

PE-u and PE-P, can be adopted for estimating non-acoustically induced refractive index387
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field as well. PE-u assumes that the refractive index field has a gradient along the plane388

perpendicular to the rotational imaging axis. For PE-P however, it is intrinsic that the389

refractive index field can be expressed using a scalar potential. This limits the method to390

applications with curl-free refractive index fields.28 In comparison, the previously introduced391

method PE-v explicitly approximates the refractive index field as a wave-field. Thus, the392

new estimation methods can be thought as more general approaches.393

The regularization parameter was not optimized but it was selected qualitatively by in-394

specting the estimates at a range of different regularization parameter values and choosing an395

estimate resembling a wave-field the most. This mimics conventional approach for choosing396

the regularization parameter. In comparison to Laplace regularization, Helmholtz regular-397

ization is much less sensitive to the choice of the regularization parameter as it was easier398

to narrow down a qualitatively optimal regularization parameter (results omitted). Clas-399

sical regularization parameter selection methods, such as L-curve47 and generalized cross-400

validation48 methods exist but were not found suitable for this study (results omitted): an401

algorithm for this would benefit in selecting the parameter faster and more consistently. No402

thorough optimization for the imaged target was made. Optimizing the imaged target, such403

as the lattice spacing of details, could possibly improve the results.404
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TABLE I. Acoustic simulation parameters. Grid step ∆h, time step ∆t, pixels per wavelength

(PPW), Courant-Friedrichs-Lewy (CFL) condition,42 speed of sounds SOSw and SOSs, and densi-

ties ρw and ρs in water and steel.

Parameter ∆h ∆tw
a ∆ts

b PPW CFL

Value 147.2 µm 29.70 ns 9.75 ns 10 px 3

Parameter SOSw SOSs ρw ρs

Value 1487 m
s 4529 m

s 1000 kg
m3 7800 kg

m3

a The time step in the focused ultrasound field simulation is calculated based on SOSw.

b The time step in the standing wave-field simulation is calculated based on SOSs.
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TABLE II. Relative errors (RE) in percentage for the Laplace and the Helmholtz regularized optical

flow estimates HS-u and HS-v, potential flow estimate PF, and the consecutive pressure estimates

PE-u, PE-v, and PE-P for the focused ultrasound field (Focused), the oblique propagating focused

ultrasound field (Oblique), and the standing wave ultrasound field (Standing).

Field Regularization HS-u HS-v PF

Focused Laplace 136.4 44.4 83.7

Helmholtz 70.0 24.6 26.6

Oblique Laplace 64.1 66.2 114.5

Helmholtz 35.9 33.9 26.6

Standing Laplace 169.1 16.6 34.4

Helmholtz 59.9 10.0 9.0

Field Regularization PE-u PE-v PE-P

Focused Laplace 34.0 43.4 39.5

Helmholtz 17.5 19.8 18.8

Oblique Laplace 38.7 66.4 34.2

Helmholtz 16.0 61.8 13.9

Standing Laplace 33.9 36.9 34.4

Helmholtz 28.4 18.5 14.7

37



Figure captions:525

Fig. 1. Schematic image of a synthetic schlieren setup.526

Fig. 2. Schematic image of measurement setup of SST. Laboratory coordinates (x, y, z)527

of the pressure field, local coordinates (x′, y, z′) of the rotating camera, and the imaged528

target at a projection angle θn.529

Fig. 3. Schematic image of simulation setups for a focused (left), an obliquely prop-530

agating focused (middle), and a standing wave (right) ultrasound fields. Borders of531

perfectly matched layers are shown by dashed lines.532

Fig. 4. From left to right: Noisy unperturbed, perturbed, and their difference image533

for the focused ultrasound field. Shown on the top row are full-sized images and on the534

bottom row are the zoomed images.535

Fig. 5. (Color online) From left to right: the optical flow fields u and v, and the536

potential flow field P . Shown on the top are the true fields and on the bottom are537

the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.538

Fields are shown for the focused ultrasound field at a rotation angle of 45◦. Colorbar539

units from left to right: m, m, and m2.540

Fig. 6. (Color online) Coronal planes (top) and axial planes (bottom) of the focused541

ultrasound field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates542

when the Helmholtz regularization is used. Axial plane sections are shown by dashed543

lines on coronal planes. Colorbar units are in Pa.544
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Fig. 7. (Color online) From left to right: the optical flow fields u and v, and the545

potential flow field P . Shown on the top are the true fields and on the bottom are546

the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.547

Fields are shown for the obliquely propagating field at a rotation angle of 45◦. Colorbar548

units from left to right: m, m, and m2.549

Fig. 8. (Color online) Coronal planes (top) and axial planes (bottom) of the obliquely550

propagating field. From left to right: true pressure field, PE-u, PE-v, and PE-P esti-551

mates when the Helmholtz regularization is used. Axial plane sections are shown by552

dashed lines on coronal planes. Colorbar units are in Pa.553

Fig. 9. (Color online) From left to right: the optical flow fields u and v, and the554

potential flow field P . Shown on the top are the true fields and on the bottom are555

the corresponding HS-u, HS-v, and PF estimates using the Helmholtz regularization.556

Fields are shown for the standing wave-field at a rotation angle of 45◦. Colorbar units557

from left to right: m, m, and m2.558

Fig. 10. (Color online) Coronal planes (top) and axial planes (bottom) of the standing559

wave-field. From left to right: true pressure field, PE-u, PE-v, and PE-P estimates560

when the Helmholtz regularization is used. Axial plane sections are shown by dashed561

lines on coronal planes. Colorbar units are in Pa.562
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