
Reachability Analysis for AWS-Based
Networks

John Backes1, Sam Bayless1,4, Byron Cook1,2, Catherine Dodge1,
Andrew Gacek1(B), Alan J. Hu4, Temesghen Kahsai1, Bill Kocik1,

Evgenii Kotelnikov1,3, Jure Kukovec1,5, Sean McLaughlin1, Jason Reed6,
Neha Rungta1, John Sizemore1, Mark Stalzer1, Preethi Srinivasan1,

Pavle Subotić1,2, Carsten Varming1, and Blake Whaley1

1 Amazon, Seattle, USA
gacek@amazon.com

2 University College London, London, UK
3 Chalmers University of Technology, Gothenburg, Sweden

4 University British Columbia, Vancouver, Canada
5 TU Wien, Vienna, Austria

6 Semmle Inc, San Francisco, USA

Abstract. Cloud services provide the ability to provision virtual net-
worked infrastructure on demand over the Internet. The rapid growth
of these virtually provisioned cloud networks has increased the demand
for automated reasoning tools capable of identifying misconfigurations
or security vulnerabilities. This type of automation gives customers the
assurance they need to deploy sensitive workloads. It can also reduce
the cost and time-to-market for regulated customers looking to establish
compliance certification for cloud-based applications. In this industrial
case-study, we describe a new network reachability reasoning tool, called
Tiros, that uses off-the-shelf automated theorem proving tools to fill this
need. Tiros is the foundation of a recently introduced network security
analysis feature in the Amazon Inspector service now available to millions
of customers building applications in the cloud. Tiros is also used within
Amazon Web Services (AWS) to automate the checking of compliance
certification and adherence to security invariants for many AWS services
that build on existing AWS networking features.

1 Introduction

Cloud computing provides on-demand access to IT resources such as compute,
storage, and analytics via the Internet with pay-as-you-go pricing. Each of these
IT resources are typically networked together by customers, using a growing
number of virtual networking features. Amazon Web Services (AWS), for exam-
ple, today provides over 30 virtualized networking primitives that allow cus-
tomers to implement a wide variety of cloud-based applications.

Correctly configured networks are a key part of an organization’s security
posture. Clearly documented and, more importantly, verifiable network design
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 231–241, 2019.
https://doi.org/10.1007/978-3-030-25543-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-25543-5_14


232 J. Backes et al.

is important for compliance audits, e.g. the Payment Card Industry Data Secu-
rity Standard (PCI DSS) [10]. As the scale and diversity of cloud-based services
grows, each new offering used by an organization adds another dimension of pos-
sible interaction at the networking level. Thus, customers and auditors increas-
ingly need tooling for the security of their networks that is accurate, automated
and scalable, allowing them to automatically detect violations of their require-
ments.

In this industrial case-study, we describe a new tool, called Tiros, which
uses off-the-shelf automated theorem proving tools to perform formal analysis of
virtual networks constructed using AWS APIs. Tiros encodes the semantics of
AWS networking concepts into logic and then uses a variety of reasoning engines
to verify security-related properties. Tools that Tiros can use include Soufflé
[17], MonoSAT [3], and Vampire [23]. Tiros performs its analysis statically: it
sends no packets on the customer’s network. This distinction is important. The
size of many customer networks makes it intractable to find problems through
traditional network probing or penetration testing. Tiros allows users to gain
assurance about the security of their networks that would be impossible through
testing.

Tiros is used directly today by AWS customers as part of the Amazon
Inspector service [11], which currently checks six Tiros-based network reach-
ability invariants on customer networks. The use of Tiros is especially pop-
ular amongst security-obsessed customers, e.g., the world’s largest hedge fund
Bridgewater Associates, an AWS customer, recently discussed the importance of
network verification techniques for their organization [6], including their usage
of Tiros.

Related Work. Several previous tools using automated theorem proving have
been developed in an effort to answer questions about software defined networks
(SDNs) [1,2,5,12,13,16,19,25]. Similar to our approach, these tools reduce the
problems to automated reasoning engines. In some cases, they employ over-
approximative static analysis [18,19]. In other cases, they use general purpose
reasoning engines such as Datalog [12,15], BDD [1], SMT [5,16], and SAT
Solvers [2,25]. VeriCon [2], NICE [8], and VeriFlow [19] verify network invari-
ants by analyzing software-defined-network (SDN) programs, with the former
two applying formal software verification techniques, and the latter using static
analysis to split routes into equivalence classes. SecGuru [5,16] uses an SMT
solver to compare the routes admitted by access control lists (ACLs), routing
tables, and border gateway protocol (BGP) policies, but does not support full-
network reachability queries. In our approach we employ multiple encodings and
reasoning engines. Our SMT encoding is similar in design to Anteater [25] and
ConfigChecker [1]. Anteater performs SAT-based bounded model checking [4],
while ConfigChecker uses BDD-based fixed-point model checking [7]. Previous
work has applied Datalog to reachability analysis in either software or network
contexts [12–14,24]. The approach used in Batfish [13,24] and SyNET [12] is
similar to our Datalog approach; they allow users to express general queries
about whole-network reachability properties using an expressive logic language.



Reachability Analysis for AWS-Based Networks 233

Batfish presents results for small but complex routing scenarios, involving a few
dozen routers. SyNET [12] also uses a similar Datalog representation of network
reachability semantics, but rather than verifying network reachability properties,
they provide techniques to synthesize networks from a specification. The focus in
Tiros’s encoding is expressiveness and completeness; it encodes the semantics of
the entire AWS cloud network service stack. It scales well to networks consisting
of hundreds of thousands of instances, routers, and firewall rules.

2 AWS Networking

AWS provides customers with virtualized implementations of practically all
known traditional networking concepts, e.g. subnets, route tables, and NAT
gateways. In order to facilitate on-demand scalability, many AWS network fea-
tures focus on elasticity, e.g. Elastic Load Balancers (ELBs) support autoscaling
groups, which customers configure to describe when/how to scale resource usage.
Another important AWS networking concept is that of Virtual Private Cloud
(VPC), in which customers can use AWS resources in an isolated virtual net-
work that they control. Over 30 additional networking concepts are supported
by AWS, including Elastic Network Interfaces (ENIs), internet gateways, transit
gateways, direct connections, and peering connections.

Figure 1 is an example AWS-based network that consists of two subnets
“Web” and “Database”. The “Web” subnet contains two instances (sometimes
called virtual machines) and the “Database” subnet contains one instance. Note
that these machines are in fact virtualized in the AWS data center. The “Web”
subnet’s route table has a route to the internet gateway, whereas the “Database”
subnet’s route table only has local routes (within the VPC). In addition, each
of the subnets has an ACL that contains security access rules. In particular, one
of the rules forbids SSH access to the database servers.

Fig. 1. An example VPC network

AWS-based networks frequently start small and grow over time, accumulating
new instances and security and access rules. Customers or regulators want to



234 J. Backes et al.

make sure that their VPC networks retain security invariants as their complexity
grows. A customer may ask network configuration questions such as:

1. “Are there any instances in subnet ‘Web’ that are tagged ‘Bastion’?” or net-
work reachability questions such as:

2. “Are there any instances that can be accessed from the public internet over
SSH (TCP port 22)?”

To answer such questions we must reason about which network components are
accessible via feasible paths through the VPC, either from the internet, from
other components in the VPC, or from other components in a different VPC via
a peering connection or transit gateway.

3 AWS Networking Semantics as Logic

Tiros statically builds a model of an AWS network architecture to check reach-
ability properties. The model of the network consists of two parts, the formal
specification and the snapshot of the network. The specification formalizes the
semantics of the AWS networking components, e.g., how a route table directs
traffic from a subnet, in which order a firewall applies rules in a security group,
and how load balancers route traffic. The snapshot describes the topology and
details of the network. For example, the snapshot contains the list of instances,
subnets, and their route tables in a particular VPC (or set of VPCs). To answer
reachability questions, Tiros combines the formal specification, the snapshot,
and a query into a formula that represents the answer. Tiros uses up to three
reasoning engines to answer queries: the Datalog solver Soufflé [17], the SMT
solver MonoSAT [3], or the first-order theorem prover Vampire [23]. Due to
the differing limitations and capabilities of each of these tools, we maintain three
independent encodings of network semantics into logic, one for each of solver.

Datalog Encoding. In the Datalog encoding, a network model is a set of Datalog
clauses (stratified, possibly recursive or negated Horn clauses without function
symbols) using the theory of bit vectors to describe ports, IPv4 addresses, and
subnet masks. The specification part of the network model contains types, pred-
icates, constants, and rules that describe the semantics of the networking com-
ponents in Amazon VPCs. The specification of Amazon VPC networks maps to
approximately 50 types, 200 predicates, and over 240 rules. For example, a spec-
ification of the semantics of SSH tunneling is defined recursively: An instance
can SSH tunnel to another instance iff it can either SSH to it directly, or through
a chain of intermediate instances. We express this with predicates canSshTunnel
and canSsh, of the type Instance × Instance, and rules:

canSshTunnel(I1, I2) ← canSsh(I1, I2).
canSshTunnel(I1, I2) ← canSshTunnel(I1, I3) ∧ canSshTunnel(I3, I2).

The snapshot part of the network model contains constants and facts (ground
clauses with no antecedents) that describe the configuration of a specific AWS



Reachability Analysis for AWS-Based Networks 235

network. Constants have the form typeid. For example, the snapshot of a network
with an instance with id 1234 in a subnet with id web consists of the constants
instance1234 and subnetweb, and the fact hasSubnet(instance1234, subnetweb).

We illustrate the Datalog encoding using examples from Sect. 2. The network
configuration question, q(I), is encoded as q(I) ← hasSubnet(I, subnetweb) ∧
hasTag(I, tagbastion). The network reachability question, r(I, E), is encoded as:

r(I, E) ← hasEni(I, E) ∧ isPublicIP (Address) ∧
reachPublicTcpUdp(diringress,proto6, E,port22, Adress,port40000).

In our Datalog encoding, we use the theory of bitvectors to reason about
ports, IP addresses, and CIDRs. We use Soufflé as our Datalog solver, but in
principle other Datalog solvers could also be used, so long as they also support
bitvectors. We direct the reader to our co-author’s dissertation (cf. Chapter
7 [28]) for a more detailed explanation of the Datalog encoding.

protocol bv:8
srcAdr bv:32
dstAdr bv:32
srcPort bv:16
dstPort bv:16

Fig. 2. (Left) The symbolic graph corresponding to the VPC in Fig. 1. (Right) A
simplified symbolic packet, composed of bitvectors.

SMT Encoding. Our SMT encoding models network reachability as a symbolic
graph of network components, along with one or more symbolic packet headers
consisting of bitvectors for the source and destination addresses and ports. A
symbolic graph consists of a set of nodes and directed edges, where the edges
may be traversable or untraversable. Predicate edge(u, v), where u and v are
nodes, is true iff the corresponding edge is traversable. The assignment of the
edge(u, v) atoms in the formula determines which paths exist in the graph.

Figure 2 shows a symbolic graph corresponding to the VPC from Fig. 1. In our
encoding, nodes represent networking components (such as instances, network
interfaces, subnets, route tables, or gateways), and edges represent possible paths
that packets may take between those components (such as between an instance
and its network interface). Constraints between edge atoms and bitvectors in
the packet headers define the routes that a packet can take.

For example, our encoding introduces an edge between each network interface
node, Eni-a, and its containing Subnet-web node, edge(Eni-a,Subnet-web). As
shown in Fig. 3, we also introduce constraints that force edge(Eni-a,Subnet-web)



236 J. Backes et al.

to be false if the packet’s source address does not match the ENI’s IP address.
This ensures that packets leaving the ENI must have that ENI’s IP address as
their source address. Similar constraints ensure that packets entering the ENI
must have that ENI’s IP address as their destination address.

We encode reachability constraints into this graph using the SMT solver
MonoSAT [3], which supports a theory of finite graph reachability. Specifically,
we add a start and end node to the graph, with edges to the source components
of the query and from the destination components of the query, and then we
enforce a graph reachability constraint reaches(start, end), which is true iff there
is a start-end path under assignment to the edge literals. To encode the query
“Are there any instances that can be accessed from the public internet over
SSH?”, we would add an edge from the start node to the internet, and from each
EC2 instance to the end node. Additionally, we would add bitvector constraints
forcing the protocol of the symbolic packet to be exactly 6 (TCP), and the
destination port to be exactly 22.

edge(Subnet-web,Eni-a)

edge(Eni-a, Subnet-web)
ip10.0.0.5

protocol bv:8
srcAdr bv:32
dstAdr bv:32
srcPort bv:16
dstPort bv:16

((srcAdr �= 10.0.0.5) =⇒ ¬edge(Eni-a, Subnet-web))
((dstAdr �= 10.0.0.5) =⇒ ¬edge(Subnet-web,Eni-a))

Fig. 3. A small portion of the VPC graph, with constraints over the edges between an
ENI and its subnet enforcing that packets entering or leaving the ENI have that ENI’s
source or destination address.

The SMT encoding described above is intended specifically for answering
network reachability queries, and does not currently take into account other
properties (such as tags) that would be required to model the more general
network configuration queries supported by our datalog encoding.

First-Order Encoding. In our encoding for superposition solvers such as Vam-
pire [23], we translate each network configuration question into a many-sorted
first order logic problem that is unsatisfiable iff the answer to the question is true,
and each network reachability question into a FOL problem that only has finite
models, each corresponding to an answer to the question. For this encoding,
we assume that network configuration questions have strictly yes/no answers,
while network reachability questions return lists of solutions. In addition to its
default saturation mode, Vampire implements a MACE-style [26] finite model
builder for many-sorted first-order logic [27]. Thus we use Vampire both as a



Reachability Analysis for AWS-Based Networks 237

saturation-based theorem prover and a finite model builder, running both modes
in parallel and recording the result of the fastest successful run.

Our encoding begins with the same set of facts as were generated from
the network model by our Datalog encoding, represented here by the symbols
(A1, A2, . . .). From there, we handle network configuration and network reach-
ability questions differently, with network-configuration encodings optimized
for proof-by-contradiction, while reachability configurations are optimized for
model-building. Proof-by-contradiction for yes/no questions is potentially faster
than model-building, as intermediate variables need not be enumerated.

We encode a network configuration question ϕ in negated form: A1 ∧ . . . ∧
An ⇒ ¬ϕ. If Vampire can prove a contradiction in the negated formula, then ϕ
holds. We encode a network reachability question ϕ into a formula of the form
A1 ∧ . . . ∧ An ∧ (∀z̄)(q(z̄) ⇔ ϕ) ⇒ (∀z̄)q(z̄), where q is a fresh predicate symbol,
and z̄ are free variables of the network question ϕ. Each substitution of z̄ that
satisfies q corresponds to a distinct solution to the reachability question.

Our encoding targets Vampire’s implementation of many-sorted first-order
logic with equality, extended with the theory of linear integer arithmetic, the
theory of arrays [22], and the theory of tuples [20]. We encode types, constants,
and predicates using Clark completion [9]. We direct the reader to our co-author’s
dissertation (cf. Chapter 5 [21]) for a more detailed explanation of the Vampire
encoding, including a detailed analysis of the performance trade-offs considered
in this encoding.

4 Usage and Performance

In this section we describe the performance of the various solvers when used by
Tiros in practice. Recall that our MonoSAT implementation can only answer
reachability questions, whereas the other implementations also answer more gen-
eral network configuration questions (such as the examples in Sect. 2).

In our experiments with Vampire, we found that the first order logic encod-
ing we used does not scale well. As we were not able to obtain good performance
from our Vampire-based implementation, in what follows we only present the
experimental results for MonoSAT and Soufflé. We explain the poor perfor-
mance of the Vampire encoding mainly by the fact that large finite domains,
routinely used in network specifications, are represented as long clauses coming
from the domain closure axioms. Saturation theorem provers, including Vam-
pire, have a hard time dealing with such clauses.

Amazon Inspector. To compare the performance of Soufflé and MonoSAT
in the context of the Tiros-based Amazon Inspector feature we randomly
selected 10,000 network snapshots evaluated in December 2018. On these queries
Soufflé required 4.1 s in the best-case, 45.1 s in the worst case, with 50th-
percentile runtime of 5.1 s and 90th-percentile runtime of 5.5 s. MonoSAT
required 0.8 s in the best case, 2.6 s in the worst case, with a 50th-percentile
runtime of 1.39 s and 90th-percentile runtime of 1.79 s. To give the reader an



238 J. Backes et al.

idea of the relative size of the constraint systems solved, in the smallest case
our Soufflé encoding consisted of 2,856 facts, and the MonoSAT encoding
consisted of 609 variables, 21 bitvectors, and 2,032 clauses. In the largest case,
our Soufflé encoding consisted of 7517 facts, and the MonoSAT encoding
consisted of 2,038 variables, 21 bitvectors, and 17,731 clauses.

Scalability Tests. MonoSAT and Soufflé scale to all queries evaluated
using Amazon Inspector. To help understand the limits of the Soufflé and
MonoSAT-based backends on larger networks, in Fig. 4 we compare the perfor-
mance of the solvers on a series of artificially generated networks of increasing
size, with 100, 1000, 10,000, and 100,000 instances. In each case, the query is
“list all open paths from the Internet to any instance in the VPC”. We can
see from the figure that neither approach dominates. In most cases the Data-
log encoding is able to scale to 10,000 instances, but in no cases can it scale
to 100,000 instances. In most cases the SMT encoding is able to scale to net-
works with 100,000 instances, but for the ‘benchmark-2’ networks, MonoSAT
requires almost a full hour to solve the 10,000 instance network that Soufflé
solves in 81 s. The SMT encoding performs poorly on ‘benchmark-2’ because
that benchmark has a vast number of distinct feasible paths through the net-
work, each requiring a separate SMT solver call. Other benchmarks have fewer
distinct paths.

Fig. 4. Comparison of runtime in seconds for the different solver backends. Each bench-
mark uses a different color, e.g. Soufflé on benchmark-1 is a solid blue line, and
MonoSAT on benchmark-1 is a dashed blue line. In these experiments, Soufflé
recompiles each query before solving it, which adds ≈ 45 s to the runtime of each
Soufflé query. In practice this cost can be amortized by caching compiled queries.
(Color figure online)

Automating PCI Compliance Auditing. Many AWS services are built using other
AWS services, e.g. AWS Lambda is built using AWS EC2 and the various AWS
networking features. Thus within AWS we are using Tiros to prove the cor-
rectness of our own internal requirements. As an example, we use Tiros to



Reachability Analysis for AWS-Based Networks 239

partially automate evidence generation for compliance audits of Payment Card
Industry Data Security Standard (PCI DSS) [10]. Tiros is used across the many
customer-facing AWS services that are built using AWS networking to establish
controls supporting PCI DSS requirements 1.2, 1.3.1, 1.3.2, 1.3.4, and 1.3.7a.

Custom Application. AWS’s Professional Services team works with some of the
most security-obsessed customers to use advanced tools such as Tiros to achieve
custom-tailored solutions. For example, as discussed in a public lecture [6],
Bridgewater Associates worked with AWS Professional Services to build a Tiros-
based solution which proves invariants of new AWS-based network designs before
they are deployed in Bridgewater’s AWS environment. Proof of these invariants
assures the absence of possible data exfiltration paths that could be leveraged
by an adversary.

5 Conclusion

We have described the first complete formalization of AWS networking semantics
into logic. For customers of AWS services, Tiros provides deep insights into AWS
networking. Via the incorporation of Tiros into the Amazon Inspector service,
millions of AWS customers are able to automatically and continuously maintain
their network-based security posture. They can now show compliance with secu-
rity requirements at a scale that was impossible before. Internally within AWS,
we are also able to automate some aspects of compliance evidence generation,
which lowers our costs and increases our ability to quickly launch new features
and services.

References

1. Al-Shaer, E., Marrero, W., El-Atawy, A., Elbadawi, K.: Network configuration
in A box: towards end-to-end verification of network reachability and security.
In: Proceedings of the 17th Annual IEEE International Conference on Network
Protocols, 2009. ICNP 2009, Princeton, NJ, USA, 13–16 October 2009, pp. 123–
132 (2009). https://doi.org/10.1109/ICNP.2009.5339690

2. Ball, T., et al.: VeriCon: towards verifying controller programs in software-
defined networks. In: ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, Edinburgh, UK, 9–11 June 2014, pp.
282–293 (2014). https://doi.org/10.1145/2594291.2594317, http://doi.acm.org/10.
1145/2594291.2594317

3. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories.
In: Proceedings of AAAI, pp. 3702–3709 (2015)

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

5. Bjørner, N., Jayaraman, K.: Checking cloud contracts in Microsoft azure. In:
Natarajan, R., Barua, G., Patra, M.R. (eds.) ICDCIT 2015. LNCS, vol. 8956,
pp. 21–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14977-6 2

https://doi.org/10.1145/2594291.2594317
http://doi.acm.org/10.1145/2594291.2594317
https://doi.org/10.1007/3-540-49059-0_14
http://doi.acm.org/10.1145/2594291.2594317
https://doi.org/10.1109/ICNP.2009.5339690
https://doi.org/10.1007/978-3-319-14977-6_2


240 J. Backes et al.

6. Bridgewater Associates: Bridgewater’s model-based verification of AWS secu-
rity controls. AWS New York Summit (2018). https://www.youtube.com/watch?
v=gJhV35-QBE8

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

8. Canini, M., Venzano, D., Peresini, P., Kostic, D., Rexford, J.: A nice way to test
openflow applications. In: Proceedings of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI). No. EPFL-CONF-170618
(2012)

9. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Springer, Boston (1977). https://doi.org/10.1007/978-1-4684-
3384-5 11

10. CSS Council. Payment Card Industry (PCI) Data Security Standard Requirements
and Security Assessment Procedures Version 3.2.1. PCI Security Standards Council
(2018)

11. Dodge, C., Quigg, S.: A simpler way to assess the network exposure of EC2
instances: AWS releases new network reachability assessments in amazon inspec-
tor. AWS Security Blog (2018). https://aws.amazon.com/blogs/security/amazon-
inspector-assess-network-exposure-ec2-instances-aws-network-reachability-
assessments/

12. El-Hassany, A., Tsankov, P., Vanbever, L., Vechev, M.: Network-wide configuration
synthesis. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp.
261–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 14

13. Fogel, A., et al.: A general approach to network configuration analysis. In: Proceed-
ings of the 12th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI 2015, pp. 469–483. USENIX Association, Berkeley (2015). http://dl.
acm.org/citation.cfm?id=2789770.2789803

14. Hajiyev, E., Verbaere, M., de Moor, O.: codeQuest : scalable source code queries
with datalog. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 2

15. Hoder, K., Bjørner, N., de Moura, L.: µZ– an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 36. http://dl.acm.org/citation.cfm?id=2032305.2032341

16. Jayaraman, K., Bjørner, N., Outhred, G., Kaufman, C.: Automated analysis and
debugging of network connectivity policies. In: Microsoft Research, pp. 1–11 (2014)

17. Jordan, H., Scholz, B., Subotić, P.: Soufflé: on synthesis of program analyzers.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 422–430.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 23

18. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: NSDI, vol. 12, pp. 113–126 (2012)

19. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: verifying
network-wide invariants in real time. In: Proceedings of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2013, Lombard,
IL, USA, 2–5 April 2013, pp. 15–27 (2013). https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/khurshid

20. Kotelnikov, E., Kovács, L., Voronkov, A.: A FOOLish encoding of the next state
relations of imperative programs. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 405–421. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94205-6 27

http://dl.acm.org/citation.cfm?id=2789770.2789803
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-642-22110-1_36
https://www.youtube.com/watch?v=gJhV35-QBE8
http://dl.acm.org/citation.cfm?id=2032305.2032341
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-319-94205-6_27
https://aws.amazon.com/blogs/security/amazon-inspector-assess-network-exposure-ec2-instances-aws-network-reachability-assessments/
https://www.youtube.com/watch?v=gJhV35-QBE8
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://doi.org/10.1007/11785477_2
https://aws.amazon.com/blogs/security/amazon-inspector-assess-network-exposure-ec2-instances-aws-network-reachability-assessments/
https://doi.org/10.1007/978-3-319-63390-9_14
http://dl.acm.org/citation.cfm?id=2789770.2789803
https://aws.amazon.com/blogs/security/amazon-inspector-assess-network-exposure-ec2-instances-aws-network-reachability-assessments/
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11


Reachability Analysis for AWS-Based Networks 241

21. Kotelnikov, E.: Checking network reachability properties by automated reasoning
in first-order logic. In: Kotelnikov, E. (ed.) Automated Theorem Proving with
Extensions of First-Order Logic, chap. 5, pp. 114–131. Chalmers University of
Technology, Gothenburg (2018). https://research.chalmers.se/publication/504640/
file/504640 Fulltext.pdf

22. Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The vampire and the FOOL.
In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs 2016,
pp. 37–48 (2016). https://doi.org/10.1145/2854065.2854071, http://doi.acm.org/
10.1145/2854065.2854071

23. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

24. Lopes, N.P., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.: Checking
beliefs in dynamic networks. In: Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation, NSDI 2015, pp. 499–512. USENIX
Association, Berkeley (2015). http://dl.acm.org/citation.cfm?id=2789770.2789805

25. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, B., King, S.T.: Debug-
ging the data plane with anteater. In: Proceedings of the ACM SIGCOMM
2011 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Toronto, ON, Canada, 15–19 August 2011, pp.
290–301 (2011). https://doi.org/10.1145/2018436.2018470, http://doi.acm.org/10.
1145/2018436.2018470

26. McCune, W.: A Davis-Putnam program and its application to finite first-order
model search: Quasigroup existence problems. Technical report, Argonne National
Laboratory (1994)

27. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-
order logic. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
323–341. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 20

28. Subotić, P.: Logic defined static analysis. Ph.D. thesis, University College London
(2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://doi.acm.org/10.1145/2854065.2854071
https://doi.org/10.1145/2018436.2018470
https://research.chalmers.se/publication/504640/file/504640_Fulltext.pdf
http://doi.acm.org/10.1145/2018436.2018470
http://doi.acm.org/10.1145/2854065.2854071
https://doi.org/10.1007/978-3-642-39799-8_1
http://doi.acm.org/10.1145/2018436.2018470
https://doi.org/10.1007/978-3-319-40970-2_20
https://doi.org/10.1145/2854065.2854071
http://dl.acm.org/citation.cfm?id=2789770.2789805
http://creativecommons.org/licenses/by/4.0/
https://research.chalmers.se/publication/504640/file/504640_Fulltext.pdf

	Reachability Analysis for AWS-Based Networks
	1 Introduction
	2 AWS Networking
	3 AWS Networking Semantics as Logic
	4 Usage and Performance
	5 Conclusion
	References


