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44 Abstract
45
46 Invasive placentation with extended pregnancy is a shared derived characteristic unique to 
47 eutherian mammals which possess a highly effective system of haemostasis, platelets. These 
48 are found in all mammals but no other group of animals. We propose that platelets and 
49 megakaryocytes (large polyploid nucleated bone marrow cells that produce platelets) evolved 
50 from an ancestral 2N thrombocyte by polyploidization and that the possession of platelets 
51 enabled the evolution of invasive placentation. This could explain why invasive placentation is 
52 limited to mammals. 
53
54 Key Words
55
56 Evolution, placenta, platelet, megakaryocyte, mammal.
57
58
59 Introduction
60
61 Mammals have many unique traits, two of which are: the megakaryocyte/platelet system 
62 (MK/P) and invasive (endothelio- and haemochorial) placentation. MK/P is not found in birds or 
63 reptiles 1.  Haemochorial placentation is only found in eutherian mammals 2-5 but not in 
64 marsupials and monotremes (Figure 1). We propose that haemochorial placentation required 
65 MK/P for its evolution, thus explaining this nested distribution. 
66
67 Giving birth to live neonates (viviparity) rather than laying eggs is widespread. It has evolved 
68 many times in fishes, frogs, salamanders, lizards, snakes and mammals6,7. Among vertebrates, 
69 viviparous lineages are only absent from the cyclostomes and the archosaurs including birds. 
70 Probably viviparity has evolved more than 100 times in lizards and snakes alone8-10. Viviparity 
71 and placentation are also found in some invertebrates11. 
72
73 Surprisingly only eutherian mammals have evolved invasive, haemochorial placentation even 
74 though many lineages have evolved various complex forms of placentation 8,12,13.  Although 
75 viviparity is simple to evolve14, the evolution of haemochorial placentation is limited to animals 
76 with MK/P. We suggest that MK/P was an  ‘exaptation’  sensu Gould and Vrba15: a trait that has 
77 a biological role in an organism, not originating for that function but acquiring its role by 
78 transfer of function. We argue that the preceding evolution of platelets was the exaptation 
79 necessary for the origin of invasive placentation. 
80
81 The evolution of mammalian reproduction
82
83 There are four types of reproduction in mammals: egg-laying in monotremes, short embryo 
84 attachment in marsupials, deep placentation in ancestral placental mammals, and reversion to 
85 non-invasive placentation as in horses and bovines3-5. The most ancestral form of mammalian 
86 reproduction is found in monotremes, egg-laying mammals, (Platypus and the Echidna) 16,17, 
87 which already have some degree of oviparous matrotrophy through the eggshell18. Marsupial 

Page 3 of 15

http://mc.manuscriptcentral.com/bl

Submitted to Biology Letters



For Review Only

3

88 reproduction is characterized by a relatively long period of egg retention with “hatching” from 
89 the egg within the uterus, then a brief period of attachment to the uterine mucosa; a step 
90 towards placental mammals. In non-macropod marsupials embryo attachment is very brief 
91 producing immature neonates19,20. There is longer gestation in macropods 21.  Molecular 
92 phylogeny studies of mammals 3-5suggest that the ancestral fetal-maternal interface in 
93 eutherians was haemo- or at least endotheliochorial. 
94
95 In marsupials, the very brief embryo attachment involves uterine inflammation followed by 
96 parturition22,23. In eutherian mammals, embryo implantation also involves inflammatory 
97 activation24, followed by an anti-inflammatory state. Hence the key event in the evolution of 
98 placental pregnancy was the ability to suppress the implantation related inflammation allowing 
99 deep implantation with destruction of maternal blood vessels creating the hemochorial fetal-

100 maternal interface 22,25. This progression towards deeply invasive placentation in eutherians 
101 was only possible in animals that could handle the challenging hemostatic consequences of 
102 hemochorial implantation. 
103
104 The evolution and function of megakaryocytes and platelets
105
106 Platelets are small enucleate secretory cells, produced from megakaryocytes26. They aggregate 
107 to occlude a site of bleeding, to initiate thrombus formation and secrete growth factors to 
108 repair blood vessels. Platelets have similar function and structure in all mammals including 
109 monotremes27. For haemostasis reptiles and birds rely on the aggregation of circulating 
110 nucleated cells called thrombocytes28 which are less efficient than platelets29 30. Thrombocyte 
111 like cells occur in arthropods: coagulocytes in insects31 and amoebocytes in the limulus crab32. 
112
113 The physical and biological conditions of the pulmonary circulation support platelet production 
114 from megakaryocytes that have travelled in the venous circulation from the bone marrow. 33-36 
115 Platelets are produced by physical fragmentation of megakaryocyte cytoplasm in the 
116 pulmonary circulation37. Megakaryocytes undergo true endomitosis: increase in nuclear DNA 
117 content within an intact nuclear membrane 38. The unique step in the change from a 2N 
118 thrombocyte to a large polyploid megakaryocyte would have been a late failure of cytokinesis 
119 giving incomplete mitosis aborted in anaphase, then repeated up to 128N 38. There is selective 
120 gene expression in higher ploidy cells 39,40. 
121
122 Fragmentation of the polyploid nucleated cell to platelets would have given reproductive 
123 advantage due to enhanced haemostasis after attack or injury. MK/P was a quantitative 
124 haemostatic advance as small size gave a large increase both in cellular surface area and speed 
125 of granule secretion. A further, qualitative, advantage over 2N thrombocytes is that in response 
126 to bleeding megakaryocytes can increase their DNA content rapidly, up to 128N, producing 
127 even more active  platelets with increased receptor density, more organelles per unit cellular 
128 volume, and increased capacity to produce pro thrombotic proteins and to reduce bleeding 
129 time 41 42 43 44 45 46 47 48 49. Platelet granules contain about a hundred cargo proteins produced by 
130 the megakaryocyte. Platelet secreted proteins that are known to promote tumor growth 
131 (analogous to fetal growth) are VEGF, PDGF, EGF and TGF beta. 
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132
133
134
135
136 The Role of Platelets in Eutherian Reproduction
137
138 In eutherian pregnancy fertilization is associated with mild thrombocytopenia in mice 50 and 
139 women 51,52, due to the secretion of embryo derived platelet activating factor (ePAF) 53 which 
140 also induces early pregnancy factor (EPF). Pretreatment of mice with PAF leaves them 
141 unresponsive to ePAF and is associated with reduced implantation rate 54.  Platelets are a major 
142 storage compartment of serotonin (5HT). Maternal 5HT is essential for early development of 
143 the mouse embryo55,56. 5HT in early gestation is entirely supplied by maternal platelets57. This is 
144 surprising, given a pre-neuronal role of 5HT in embryo development in the frog Xenopus58 and 
145 sea urchins59 which lack placentas. 
146
147 After extra villous trophoblasts (EVTs) lose proliferative activity they migrate towards uterine 
148 spiral arteries 60. EVTs express the chemokine receptor CCR161. Platelets secrete MIPI-1alpha 
149 and MCP-3 which are CCR1 ligands62. Probably these agents play a role in EVT migration and 
150 infiltration of the maternal arteries. Also, platelet alpha granule secreted EGF, VEGF and PDGF 
151 enhance trophoblast invasion63,64 and encourage trophoblasts to infiltrate arteries65. 
152
153 Safe disconnection of the placenta from the uterus is essential for the survival of the mother. 
154 Contraction of the myometrium and endometrium are as important as is cellular haemostasis. 
155 Haemostatic balance tilts towards hypercoagulability during human pregnancy66. Evidence that 
156 platelets are important comes from human mothers with Bernard Soulier syndrome and 
157 Glanzmann’s thrombasthenia, conditions manifesting a platelet dysfunction. Either primary or 
158 secondary hemorrhage occurs in 73% of pregnancies in patients with Bernard Soulier syndrome 
159 67, and in 50% of mothers giving birth with Glanzmann’s thrombasthenia68.  KO experiments in 
160 mice show that maternal platelet defect is compatible with successful pregnancy 69. 
161
162
163 The role of platelets in postpartum haemostasis alone is sufficient to support their role in the 
164 evolution of eutherian pregnancy. Other roles are rather specific to a sub-set of species and are 
165 thus likely derived, e.g. extra-villous trophoblasts are a cell type limited to hominids. Fetal 
166 dependency on maternal 5HT in early development also has to be a derived condition, given 
167 that amphibian and sea urchin embryos can supply their own 5HT. A process with potential 
168 generality is platelet activation by embryo derived PAF and its role in early implantation. The 
169 role of platelets in implantation, however, is likely part of the inflammatory nature of 
170 implantation24, which probably evolved from an inflammatory attachment reaction in the stem 
171 lineage of therians, i.e. before the most recent common ancestor of marsupials and 
172 eutherians22,25. 
173
174 An evolutionary scenario
175
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176 The evolution of haemochorial, invasive placentation faced at least two obstacles: inflammation 
177 caused by embryo-attachment to the uterine lining, and later, haemostasis. In marsupials, with 
178 the noted exception of Macropods [see above], fetal attachment to the uterine lining is 
179 followed quickly by various signs of inflammation, including neutrophil infiltration and 
180 parturition. In contrast, in eutherians the attachment/implantation of the fetus is followed by 
181 an anti-inflammatory phase that allowed the extension of pregnancy beyond the limits of the 
182 length of the estrus cycle22. The fact that inflammatory processes are involved in both 
183 marsupial and eutherian mammals, though with different outcomes, is correlated with the 
184 ‘generic’ aggressiveness of the therian blastocysts. In eutherians it leads to implantation. Even 
185 in marsupials without implantation the fetus is quite aggressive in attacking the luminal 
186 epithelium (LE) of the uterus ; in the gray short tailed opossum, Monodelphis domestica, at the 
187 end of gestation, cytoplasmic extensions of trophoblast cells can be seen to penetrate between 
188 the epithelial cells and  breach the basal membrane of the LE70,71 (Wagner pers. obs.), also in 
189 the Philander opossum72, and bandicoots (Peramelidae)73. Differences in the invasiveness of the 
190 trophoblast between marsupials and eutherians are not differences in the fetus but rather in 
191 the way the maternal organism handles the situation. In marsupials, the partial invasion leads 
192 to expulsion (parturition) and in eutherians the inflammatory reaction is attenuated and 
193 pregnancy extended. 
194
195 The situation in reptiles is not as clear. In most cases of placental viviparous lizards the placenta 
196 does not erode the luminal epithelium but is in apposition with the luminal epithelium and is 
197 held in place by uterine muscle contraction74. The lack of invasiveness could be explained by a 
198 lower aggressiveness of the fetus, as demonstrated in the case of an ectopic pregnancy in the 
199 southern grass skink (Pseudemoia entrecasteauxii75), which is a placentotrophic lizard. Any form 
200 of invasiveness is extremely rare in lizards given the large number of viviparous lizards. In one , 
201 the African skink Trachylepis ivensi (Scincidae), a rare example of lizard  ‘invasion’ does not lead 
202 to the establishment of a haemochorial placenta76. It is unclear whether this less invasive form 
203 may have been a way of lizards evolving a sustainable fetal maternal relationship. 
204
205 As soon as the mother had evolved a way of suppressing and managing the foetally induced 
206 inflammation another problem arose, haemostasis. Haemochorial implantation leads to the 
207 partial destruction of the maternal blood vessels in the endometrium and thus raises the 
208 question of how the bleeding is limited to the area of placentation. This second problem arises 
209 at parturition, where the fetal-maternal interface is dissociated, leaving, in many species, a 
210 broad exposed lesion in the uterus. Fast and reliable haemostasis at the wound is essential for 
211 the survival of the mother. Mammalian neonates rely on lactation for survival and maternal 
212 demise thus also leads to neonatal demise. We argue that the fact that mammals have a much 
213 more effective system for haemostasis than other vertebrates (the MK/P system) may have 
214 been a key exaptation for the evolutionary establishment of haemochorial placentation. 
215
216 Eutherians vary greatly in how the haemochorial interface is organized which may lead to 
217 different needs for haemostasis at parturition. One extreme example is that of the nine-banded 
218 armadillo, Dasypus novemcintus, whose placenta is technically hemochorial, in that the villi of 
219 the placenta are in direct contact with maternal blood 77,78.  However, this is achieved in a 
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220 minimally invasive way. Single villi penetrate the endometrium and grow towards preformed 
221 maternal blood spaces and only expand and ramify once they have reached the varicosities 
222 (Figure 2A). Hence haemostasis during implantation and gestation is a minimal concern for 
223 armadillos, given that they have a well contained space preformed into which placental 
224 extensions reach. Never the less, even the armadillo has to face the danger of a major 
225 hemorrhage at parturition (Figure 2B). Another example is the massive postpartum bleeding in 
226 the African elephant, an animal with endotheliochorial placentation79 and possibly also the 
227 dugong, also an afrotherian mammal80 and the manatee81. Hence, we think the most important 
228 reason why haemochorial placenta is limited to eutherian mammals is that parturition of a 
229 haemochorial placenta leads to profuse bleeding in the uterus that needs to be arrested. 
230
231 Conclusion
232
233 Deeply invasive haemochorial placentation is limited to the eutherian mammals. This is 
234 surprising given the large number of non-mammalian animals that have evolved viviparity and 
235 placentation. As well as the role of platelets in implantation we argue that hemochorial 
236 placentation is limited to a clade of mammals, because mammals are the only vertebrate group 
237 that has evolved a highly effective and unique system of haemostasis: platelets. The 
238 effectiveness of haemostasis is essential at parturition where even minimally invasive placentae 
239 can hemorrhage. 
240
241 All neonatal mammals, regardless of how developed they are at birth, rely on maternal 
242 lactation for their initial growth and survival after birth, and thus the survival of the mother is 
243 critical. Consequently, the evolution of invasive placentation is most likely to succeed in a 
244 lineage that has already a highly effective system of haemostasis before the origin of deep 
245 placentation. From the standpoint of evolutionary theory, platelets are an exaptation, sensu 
246 Gould and Vrba15, for the evolution of haemochorial placenta, i.e. a trait that has an important 
247 role but which evolved for another purpose and prior to taking over this role. Platelets could be 
248 called a permissive exaptation as it may have permitted the evolution of a novel trait, 
249 haemochorial placentation, rather than acquiring a new function itself. 
250
251 Platelet production from megakaryocytes is an important area for research in thrombosis. The 
252 ideas presented here may help stimulate new research into the powerful thrombotic forces 
253 associated with evolution of the placenta but which also cause thrombosis of human arteries 
254 41,82.
255
256
257
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258
259
260

261
262 Figure 1: phylogenetic relationships of the major clades of mammals and the taxonomic 
263 distribution of haemostatic and reproductive characters. Platelets and megakaryocytes are 
264 found in all three clades of mammals but not in reptiles. Therians, i.e. eutherians and 
265 marsupials, share viviparity. In reptiles the mode of reproduction is variable. Only eutherians 
266 have hemochorial placenta. This condition is ancestral in eutherians, but there are some 
267 derived groups that have re-evolved non-invasive, epitheliochorial placentation: dot is shaded, 
268 with darker shading at the bottom, indicating ancestral condition.  
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269
A B

Figure 4270
271 Figure 2: the need for haemostasis in a minimally invasive hemochorial animal Dasypus 
272 novemcintus, which belongs to the eutherian clade most distantly related to humans. A) the 
273 minimally invasive placenta of armadillo in third month gestation. The thin threads indicated by 
274 yellow arrows are the projections of the placenta entering the endometrium to the left. Arrow 
275 heads indicate penetration. The invasion though hemochorial is minimally destructive. B) 
276 postpartum uterus of armadillo, showing copious coagulated blood in the uterine cavity, 
277 indicating the need for effective haemostasis. 
278
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