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Subpixel land-cover classification for improved urban area
estimates using Landsat
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Agriculture and Environment, The University of Western Australia, Crawley, Australia; cUWA School of
Agriculture and Environment, The University of Western Australia, Crawley, Australia

ABSTRACT
Urban areas are Earth’s fastest growing land use that impact hydro-
logical and ecological systems and the surface energy balance. The
identification and extraction of accurate spatial information relating to
urban areas is essential for future sustainable city planning owing to its
importance within global environmental change and human–environ-
ment interactions. However, monitoring urban expansion using med-
ium resolution (30–250 m) imagery remains challenging due to the
variety of surface materials that contribute to measured reflectance
resulting in spectrallymixedpixels. This research integrates high spatial
resolution orthophotos and Landsat imagery to identify differences
across a range of diverse urban subsets within the rapidly expanding
Perth Metropolitan Region (PMR), Western Australia. Results indicate
that calibrating Landsat-derived subpixel land-cover estimates with
correction values (calculated from spatially explicit comparisons of
subpixel Landsat values to classified high-resolution data which
accounts for over [under] estimations of Landsat) reduces moderate
resolution urban area over (under) estimates by on an average 55.08%
for the PMR. This approach canbe applied toother urbanareas globally
through use of frequently available and/or low-cost high spatial resolu-
tion imagery (e.g. using Google Earth). This will improve urban growth
estimations to help monitor and measure change whilst providing
metrics to facilitate sustainable urban development targets within
cities around the world.
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1. Introduction

Urban areas are estimated to cover only 0.5% of Earth’s surface yet are one of the fastest
growing land use per area basis (Schneider, Friedl, and Potere 2010; Bettencourt and West
2010; Schneider, Friedl, and Potere 2009). Population growth has resulted in increased
urbanization with 54% of the planet’s seven billion people in 2014 residing in urban areas
with an additional 2.5 billion urban dwellers projected by 2050, whilst concurrently
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increasing the proportion of world’s urban population to 66% (Sexton et al. 2013; Powell
and Roberts 2010; Sharifi and Lehmann 2014; United Nations, Department of Economic and
Social Affairs, Population Division 2014; Powell et al. 2007; Song et al. 2016). Alteration of
natural land cover to anthropogenic impervious surfaces has been identified as the most
extreme cumulative effect of land-cover change, generating numerous socio-economic
consequences including amenity provision efficiency, ecological degradation, and the
Urban Heat Island (UHI) effect (Cai et al. 2016; Howard 1988; L. Hu and Brunsell 2015; Xie
and Zhou 2015). Accurate information on urban Land Cover and Land Use (LULC) is there-
fore imperative for monitoring expansion and planning policy targeting for future sustain-
able development of our cities (Bettencourt and West 2010; Wu and Murray 2003). Earth
Observation (EO) enables consistent, detailed characterization of the actual urban footprint
of a city having been mapped and monitored using remotely sensed data at a range of
spatial and temporal scales for associated implications (Schneider, Friedl, and Potere 2010;
Imhoff et al. 1997; Sexton et al. 2013; Akbari, Rose, and Taha 2003; Friedl et al. 2002).
However, accurate and consistent monitoring of urban land cover is frequently precluded
by coarse spatial (e.g. 1 km2Moderate Resolution Imaging Spectroradiometer (MODIS) land-
cover product) and temporal (e.g. 2000 and 2010 GlobeLand30 product) resolution of such
data sets (Song et al. 2016; Lu et al. 2014).

Urban mapping remains challenging due to the heterogeneity of surface materials
and surface structure which contributes to pixel surface reflectance that are often
difficult to disentangle (Herold et al. 2002; Lu, Moran, and Hetrick 2011; Varshney and
Rajesh 2014; Schneider 2012). When delineating urban land cover from remotely sensed
data, spatial resolution is considered the most important factor that provides increased
visibility of discrete surface features (e.g. buildings) and greater pixel homogeneity over
medium to coarse spatial resolution satellite imagery (e.g. Landsat and MODIS) (Myint
et al. 2011). Nevertheless, high spatial resolution data often lack temporal acquisition
consistency (e.g. airborne orthophotos) or are expensive to purchase (e.g. commercial
satellite imagery). Consequently, in order to best monitor urban LULC change, data sets
must have an adequate spatial and temporal resolution to discern change. In this regard,
data from the Landsat series of satellites provide the longest time-series of consistent,
medium spatial resolution imagery that has been extensively applied to urban area
mapping (Powell et al. 2007; Schneider and Mertes 2014; Sundarakumar et al. 2012;
Wilson et al. 2003; Yuan et al. 2005; Song et al. 2016).

Accurate quantification of anthropogenic landscape modification is of critical impor-
tance due to associated environmental, anthropogenic, and climatic impacts (Kalnay and
Cai 2003). Urban estimates from Landsat data have been used within global biogeo-
chemistry and climate models (Z. Zhu and Woodcock 2014), further scientific studies
such as UHI investigations (Y. Hu et al. 2015) and targeted urban development policies
(Schneider, Seto, and Webster 2005; Hepinstall-Cymerman, Coe, and Hutyra 2013). Whilst
comparative studies (e.g. Li et al. 2014) have shown marginal holistic image accuracy
difference between algorithm selection on per-pixel Landsat classification assuming
sufficient training data, traditional per-pixel methods, such as the Maximum Likelihood
Classifier (discussed in supplementary Section 1), have been found to significantly over
or underestimate urban area from Landsat data (Lu, Moran, and Hetrick 2011; Wu and
Murray 2003). Addressing this error is important when accurate classifications are
required for monitoring change in land-use patterns whereby calculations of urban
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extent can influence decision-making (e.g. policy for sustainable urban development)
(Schneider, Seto, and Webster 2005; Hepinstall-Cymerman, Coe, and Hutyra 2013; Miller
and Small 2003; Bagan and Yamagata 2014).

Due to the heterogeneity of urban areas, subpixel classification methodologies have
been increasingly applied to medium spatial resolution data to more accurately repre-
sent the mixture of land covers within a pixel (Lu, Moran, and Hetrick 2011; Lu and Weng
2006; Powell and Roberts 2008; Weng and Ruiliang 2013; Wang et al. 2013). This has
been achieved through variations of spectral mixture analysis (SMA) where a set number
of representative endmembers, frequently following the Vegetation, Impervious and Soil
(V-I-S) framework, are used to model the entire image based on their spectral character-
istics (Powell et al. 2007; Ridd 1995). However, endmembers may not fully represent
image spectral variability or a pixel may be modelled by endmembers that do not
represent materials within its field of view resulting in an inability to adequately portray
the high spectral heterogeneity of the urban landscape (Powell et al. 2007). Support
Vector Machine (SVM) spectral unmixing attempts to resolve this issue through con-
sideration of a large number of training pixels which provides preferential accuracy in
comparison to SMA although high dimensional data and large training samples can
hinder its performance (Wang et al. 2013).

Comparatively, the novel sub and hard pixel Import Vector Machine (IVM) classifier permits
simultaneous multi-class comparison whilst continuously testing training samples for validity
providing a more accurate solution (Roscher, Förstner, and Waske 2012). IVM has been found
to consistently outperform decision trees, artificial neural networks, and maximum likelihood
algorithms (Watanachaturaporn, Arora, and Varshney 2008; Kotsiantis, Zaharakis, and Pintelas
2006; Huang, Davis, and Townshend 2002), with preferential (Braun, Weidner, and Hinz 2012)
and comparable results to SVM (Roscher, Waske, and Forstner 2010). However, due to the
heterogeneity of urban areas, it is important to calibrate these subpixel approaches against
high spatial resolution data that capture the diverse characteristics found within urban
environments (Lu, Moran, and Hetrick 2011). Perth, Western Australia (WA), is characterized
by extensive urban diversity, surpassing all other major Australian and US cities in terms of
suburban development (Kelly, Weidmann, and Walsh 2011; U.S. Department of Commerce
2013). It therefore provides a suitable case study for assessing the ability of Landsat to map
urban development, which is a prerequisite for appropriate policy incorporation. This article
describes an approach tomap the urban extent of the PerthMetropolitan Region (PMR) using
an IVM classifier applied to medium spatial resolution imagery. The impact of subpixel land-
cover heterogeneity is investigated by comparing the urban area estimates to those derived
from very high spatial resolution (20 cm) imagery. An innovative, spatially explicit correction to
account for over (or under) estimation of urban area is derived which improves the urban
land-cover estimates from medium resolution imagery.

2. Study area

The PMR (Figure 1(a)), WA, has experienced sustained urban development since the twenty-
first century in response to a rapidly growing resource sector (Kennewell and Shaw 2008).
The majority of recent urban growth within the PMR has transpired as outward low-density
development resulting in a maximum population density of 3662 km2 which is 33.45% and
24.83% lower than Melbourne (10,827) and Sydney (14,747), respectively (Western
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Figure 1. Landsat 8 operational land imager (OLI) true colour image mosaic of the Perth
Metropolitan Region (9 August 2015 [path 112] and 17 September 2015 [path 113]). The locations
of the high spatial resolution aerial image subsets are indicated by coloured overlays (a), with
Western Australia identified in (b) and Perth city (c).
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Australian Planning Commission 2015; ABS 2015). The notion of the ‘Australian dream,’
depicted as detached living in a green suburb, is most pronounced in Perth (Western
Australian Planning Commission 2013a). As a result, 79% of the current housing is detached,
compared to 62% in Sydney, 72% in Melbourne, and a national average of 74% (Kelly,
Weidmann, and Walsh 2011; Western Australian Planning Commission 2013b). Globally,
Australia surpasses other developed countries in terms of detached suburban living with UK
having 42% of housing as either detached or semi-detached (Department for Communities
and Local Government 2015). Similarly, only 64.2% of USA housing stock is detached, with
Perth eclipsing all of the major 25 USA metropolitan areas in terms of detached housing (U.
S. Department of Commerce 2013). Low population density and outward expansion wit-
nessed in Perth have generated high demand for dispersed amenities and services in a non-
strategic, ‘lot-by-lot fashion’ (Dhakal 2014). Suburbanization of this nature has been identi-
fied as unsustainable due to impacts on ecological systems (e.g. habitat fragmentation) and
socio-economic issues (e.g. amenity provisioning costs), with accurate urban area identifica-
tion essential for sustainable future planning and maximum resource efficiency, particularly
in Perth owing to its globally high suburbanization and distributed population (Western
Australian Planning Commission 2013a).

Therefore, the PMR provides a globally diverse range of urban characteristics (e.g.
compact urban central business district, older residential areas, and new suburban devel-
opments) facilitating broad data set comparison opportunities between Landsat and high
spatial resolution urban area estimates. The high spatial resolution data identify the com-
plexity of these suburban and urban areas, which is obscured in medium and coarse spatial
resolution data sets. This permits the extraction of individual features such as buildings,
roads, and vegetation that compose the urban environment andwhich are represented as a
spectrally mixed pixel in Landsat imagery (illustrated in Figure 2) (Myint et al. 2011).

Definitive feature detection from high-resolution data can assist in refining urban area
estimates produced frommoderate spatial resolution satellite imagery (Lu, Moran, and Hetrick
2011; Wu and Murray 2003). More accurate satellite-derived urban area estimates are impera-
tive for ensuring appropriate data use for policy and environmental variable applications in
order tomitigate the consequences of unsustainable urban development. This aligns with the
criteria of effective land-use planning within the City Resilience Framework that is designed to
improve city resilience (ARUP, and The Rockefeller Foundation 2015).

3. Data

3.1. Landsat data

Cloud-free Landsat scenes were obtained for 2007 from Landsat 5 Thematic Mapper (TM),
coinciding with high-resolution orthophotos (described in Section 3.2). Imagery was
acquired within winter months (9 July 2007 for path 113 and 6 October 2007 for path
112) corresponding with peak vegetation green-up which limits issues concerning the
spectral separation between senescent vegetation, bare earth, and some impervious sur-
faces (Feyisa et al. 2016; Chen et al. 2014). Landsat imagery was processed to standard
terrain correction (Level 1T), geometrically and topographically corrected using ground
control points and a digital elevation model from the Global Land Survey 2000 data set
(Hansen and Loveland 2012). Landsat 5 TM surface reflectance values were derived from the
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Landsat Ecosystem Disturbance Adaptive Processing System (Hansen and Loveland 2012;
Jeffrey G. Masek et al. 2006) which corrects for atmospheric effects using the Second
Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model
(Vermote et al. 1997).

3.2. High spatial resolution airborne imagery

Radiometrically calibrated multispectral red (0.58–0.77 µm), green (0.48–0.63 µm), blue
(0.41–0.54 µm), and near-infrared (0.69–1.00 µm) orthophotos were acquired over 19
cloud-free days commencing on 14 March 2007 as part of the Perth and Peel Urban

Figure 2. Comparison of true colour high spatial resolution data (a) (acquired from 14 March 2007)
and Landsat surface reflectance (b) (acquired on 6 October 2007 [path 112]), highlighting the spatial
detail captured by high-resolution imagery (c) and the same areas as observed by Landsat (d) for the
subset East Beechboro used within this study.
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Monitor Programme (Caccetta et al. 2012). Aerial imagery, obtained between 10:00 and
14:00 to reduce shadow effects, was captured using a Microsoft UltraCAM-D at a height of
1300m resulting in a spatial resolution of 20 cm. Forward and side frame overlap of 60% and
30%, respectively, permitted automatic digital surface model (DSM) extraction using geo-
metric control points provided by WA’s land information authority (Landgate). Extraction of
ground points exclusively representing terrain variations facilitated derivation of a Ground
Elevation Model which, when subtracted from the DSM, generated a Relative Elevation
Model, depicting elevation relative to ground points.

Spatial and temporal inconsistencies in reflectance can arise from atmospheric scattering
and absorption, instrument noise and Bidirectional Reflection Distribution Function (BRDF)
effects. The latter describes the systematic variation in reflectance across an image due to
differences in view and illumination angles and which is dependent on the surface 3D
structure (Collings, Caccetta, and Campbell 2011). The orthophotos were provided as a
surface reflectance product, corrected for multiplicative and additive errors over frames
(e.g. instrument noise and atmospheric effects) and within frame viewing and illumination
geometry (Caccetta et al. 2012; Collings, Caccetta, and Campbell 2011). Image preprocessing
consisted of two steps. First, a combined BRDF and atmospheric correction procedure was
applied to retrieve surface reflectance for each image acquisition. Linear BRDF model
parameters from the Li Sparse reciprocal kernel (Wanner, Li, and Strahler 1995) were used
to correct for BRDF effects. Atmospheric perturbations were corrected by assuming that the
obtained digital number represented the relative reflectance affected by spatially depen-
dent multiplicative and additive terms. These combined steps generated an internally
consistent mosaicked data set. ‘True’ surface reflectance was estimated through fitting
global offset and gain values to replicate laboratory measured calibration targets based on
the assumption that relative reflectance requires a linear transformation to true reflectance
(Collings, Caccetta, and Campbell 2011).

4. Methodology

4.1. Landsat preprocessing

The two Landsat scenes covering the study area were combined to form a seamless
image mosaic following the methodology of Pan et al. (2009). Voroni diagrams were
created on the bisector between images with adjacent edges defined as seamlines,
identifying effective mosaic polygons that specify pixels from each image to include in
the final mosaic, facilitating less visible boundaries through blending of overlapping
pixels (Pan et al. 2009) (Figure 1(a)). Due to remaining residual noise in the mosaicked
imagery caused by factors such as the brightening effect of thin clouds and atmospheric
correction differences, surface reflectance values were standardized following the
approach identified by Sexton et al. (2013):

pi;b ¼ px;b
maxb

(1)

where pi;b is the standardized pixel value i, from band b based on the original surface
reflectance x, standardized through division by a waveband-specific upper reflectance
limit which are 0.10 (blue; 0.48 µm), 0.11 (green; 0.56 µm), 0.12 (red; 0.66 µm), 0.23
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(near-infrared; 0.84 µm), 0.21 (shortwave infrared; 1.65 µm), 0.15 (shortwave infrared 2;
2.22 µm). The standardized values (pi;b) were then normalized against the summed
band standardized values:

pj;b ¼ pi;bP
i pi;b

(2)

where
P

i pi;b is the sum of each standardized pixel across all bands (Sexton et al. 2013).
This approach has been found to satisfactorily reduce variations generated from inherent
residual noise across mosaicked imagery, for example due to differences in modelled
atmospheric parameters within the LEDAPS algorithm (Sexton et al. 2013; Luo et al. 2014)
(Figure 3(a)). Statistical assessment of image radiometric normalization provided in
MacLachlan et al. (2017a) found that the post-processed Landsat data exhibited significantly
lower inter- and intra-coefficient of variation when compared to the preprocessed data.

4.2. Landsat classification

The 2007 Landsat data were classified as a time series of data for seven sequential periods
between 1990 and 2015 using an IVM classifier produced in MacLachlan et al. (2017a). The

Figure 3. Summary of classification procedures for (a) Landsat and (b) high-resolution orthophoto data.
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method uses a hybrid strategy that assesses whether new samples (termed import vectors)
can be removed in each forward step in order to provide a smoother decision boundary that
ideally leads to a more accurate solution (Roscher, Förstner, and Waske 2012). Samples are
selected based on how much their incorporation decreases the objective function to
minimize the decision boundary to form the optimal separating hyperplane between over-
lapping clusters (e.g. land-cover types) in spectral feature space (Mountrakis, Jungho, and
Ogole 2011; Roscher, Förstner, and Waske 2012; J. Zhu and Hastie 2005). IVM generates two
outputs: a soft (subpixel) data set that defines the probability of a pixel containing a given
classification value (e.g. land-cover type) and a traditional ‘hardened’ classified data set
(Braun, Weidner, and Hinz 2012). Training samples were collected from the 12 and 19 July
2005 Landsat 5 TM image composite, coinciding with peak vegetation greenness which
provides the greatest spectral separability between vegetated and non-vegetated surfaces
(Feyisa et al. 2016; Chen et al. 2014). Six land-cover types were defined based on existing
literature (e.g. X. Hu and Weng 2009; Schneider 2012; Feyisa et al. 2016) and scene analysis
which are high reflectance urban (e.g. concrete), low reflectance urban (e.g. asphalt), forest,
water, grassland, and bare earth. Two urban land-cover classes are specified to reduce
spectral confusion between spectrally similarly classes (e.g. urban and bare earth) (X. Hu and
Weng 2009). For each land-cover type, 250 pixels were randomly identified from across the
image for training the IVM classifier that follows the approach used by Foody and Mathur
(2006) and Pal and Mather (2003). The IVM algorithm is parameterized using the training
data that generate a classification model consisting of spectral profiles for each land-cover
type, which are then matched to the Landsat mosaic during classification.

The resulting per-pixel (hardened) classification indicates that the total urban extent of
the PMR has increased 45.32% (subpixel estimate of 32.96%) between 1990 (hardened
estimate 706.88 km2, subpixel estimate 736.93 km2) and 2015 (hardened estimate
1027.22 km2, subpixel estimate 979.84 km2) (MacLachlan et al. 2017a). This can be broken
down into low reflectance urban cover expanding from a hardened value of 592.83 km2

(subpixel estimate 668.46 km2) to 839.00 km2 (subpixel estimate 850.87 km2) and high
reflectance urban cover increasing from a hardened value of 114.05 km2 (subpixel estimate
135.32 km2) to 188.20 km2 (subpixel estimate 214.06 km2) across the same temporal period.

4.3. Google Earth Landsat accuracy assessment

Google Earth imagery consistent with the Landsat acquisition date was used to assess
the accuracy of the hardened Landsat classification following previously published
methods (e.g. Dorais and Cardille 2011; Cunningham et al. 2015; Song et al. 2016; Sun
et al. 2015; Bagan and Yamagata 2014; Z. Zhu and Woodcock 2014). Using the Google
Earth imagery, 300 random locations (50 per land-cover class) within the PMR were
visually identified and compared to the classified land-cover data, consistent with
recommended land-cover accuracy sample size of Congalton (2001) (Song et al. 2016).
The 2007 Landsat classification obtained an accuracy of 84.00% and a kappa coefficient
of 0.78. Urban land-cover estimates had a producer’s accuracy of 83.00% and user’s
accuracy of 87.37%. MacLachlan et al. (2017a) provide a full breakdown of urban
temporal change and associated accuracy for all imagery in the Landsat time series
(1990–2015), with the Landsat classification data available from the pangea open access
publisher (DOI: 10.1594/PANGAEA.871017) (MacLachlan et al. 2017b).
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4.4. Aerial image classification

Urban areas are complex, heterogeneous environments that are challenging to classify even
when using high spatial resolution multispectral imagery (Varshney and Rajesh 2014; Lu,
Moran, and Hetrick 2011). Within urban areas, traditional moderate and coarse spatial resolu-
tion pixel-based classification methods present multiple challenges due to the land surface
spatial heterogeneity and the spectral similarity between urban and non-urban materials
(Myint et al. 2011). To characterize the influence of spatial resolution on the ability to map
urban areas, high spatial resolutionmultispectral ortho-imagery (20 cm) was classified into the
four broad land-cover types. To reduce data processing requirements, four 3 km2 subsetswere
chosen which are representative of the land-cover composition and spatial heterogeneity
found within Perth (Figure 1(a)). These subsets are an out of town development area (East
Beechboro), the Central Business District (CBD), an older suburban area (Palmrya,Melville), and
a largely vegetated region (Keysbrook). Using the high spatial resolutionmultispectral imagery
and a relative elevationmodel, an Object Based Image Analysis (OBIA) method was applied to
classify each subset into vegetation, urban, bare earth, and water (Figure 3(b)). OBIA methods
are often applied to high spatial resolution imagery as they include spatial, textural, and
spectral information to classify the scene (Myint et al. 2011). Incorporating surface elevation
measurements into urban classifications has been found to improve building (urban) extrac-
tion accuracy (Aguilar et al. 2012; Poznanska, Bayer, and Bucher 2013). Surface elevation
estimates and normalised difference vegetation index data provided additional urban classi-
fication parameters, with refinement (e.g. additions and alterations) made based on object
spatial, spectral, and textural properties. Unlike the Landsat imagery, the airborne imagerywas
collected during the late dry season when the grass was senescent which resulted in textural
and spectral similarity between bare earth and roads. To mitigate the impact of potential
misclassification between these features, Landgate road and, where appropriate, rail vector
data set was used for identification of coincident image objects for urban assignment.

4.5. Data set comparison and Landsat refinement

In order to compare the orthophoto and Landsat land-cover classifications, the two urban
(high and low reflectance) and two vegetation (woodland and grassland) Landsat land-
cover classes were merged so that both land-cover classifications contained four identical
classes. To facilitate comparison between the high spatial resolution orthophoto-derived
classification and the Landsat classification, the orthophoto land-cover data are aggre-
gated to Landsat spatial resolution to provide a ‘soft’ and a ‘hard’ land-cover data set. To
create the soft 30 m2 orthophoto-derived classification, each resampled 30 m2 pixel area
contains the proportion of each land-cover type within it (Lu, Moran, and Hetrick 2011)
(Figure 3(b)). This data set was subsequently ‘hardened’ by assigning the pixel land-cover
type according to the dominant land cover found within the 30 m2 area.

The comparison methodology is to first compare the per-pixel (i.e. hardened) Landsat
land-cover classification with the aggregated (30 m2) orthoimage classification.
Misclassified Landsat pixels are assessed further to establish the conditions that lead
to erroneous classification using the subpixel proportion information (i.e. soft classifica-
tion data sets). The latter are also used to identify a spatially explicit correction model to
improve urban area estimates from moderate spatial resolution imagery.
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5. Results

5.1. Orthophoto and Landsat land-cover comparison

A comparison is conducted between the orthophoto land-cover classification, aggre-
gated to 30 m2 spatial resolution using the majority land cover, and the IVM ‘hardened’
Landsat classification. At its native spatial resolution (20 cm; Figures 4(a–d(i))), the
orthophoto land-cover classification (Figures 4(a–d(ii))) captures the land-cover spatial
heterogeneity found within each region and highlights the difference in the spatial
structure between these regions.

A comparison is carried out between the orthophoto land-cover classification, aggre-
gated to 30 m2 spatial resolution, and the ‘hardened’ Landsat classification. Figure 4(iii)
illustrates the spatial agreement between these data sets and highlights those pixels
where the same land-cover type (true) has been assigned to a pixel in both classifica-
tions. The areas that are more homogeneous at Landsat’s spatial resolution, such as the
CBD (urban, Figure 4(b)) and Keysbrook (vegetation, Figure 4(d)), have greater level of
agreement (73.14% and 95.68%, respectively). In contrast, the more heterogeneous
subsets (East Beechboro and Palmrya, Figures 4(a,c)) have much lower levels of agree-
ment (56.09% and 32.03%, respectively). The differences in agreement result from the
subpixel heterogeneity at 30 m2 spatial resolution. Table 2 shows the percentage of
Landsat pixels which contain >50% of a given land-cover for each subset region.

To investigate the influence of subpixel heterogeneity on the ability of Landsat to identify
the pixel land-cover type, the classification accuracy is determined as a function of the
percentage of urban area within each Landsat pixel for all four subsets (Figure 5). The urban
percentage cover within each Landsat pixel is derived from the orthophoto land-cover
classification that has been aggregated to 30 m2 and that provides the proportion of each
land cover within each pixel. The accuracy of the hardened Landsat classification was
determined through comparison against the ‘hardened’ (e.g. aggregated to 30 m2) ortho-
photo land-cover classification where the per-pixel land-cover type was determined based on
the land-cover type with the greatest subpixel proportion. Figure 5 indicates that the
hardened Landsat classification results in a relatively high accuracy, with an average of
85.40% (excluding Keysbrook), for pixels containing >50% urban land cover (according to
the high spatial resolution land-cover classification). In the subsets of East Beechboro, the CBD,
and Palmrya, the overall Landsat classification accuracy drastically declines to 1.99–6.21%
when urban land cover within a 30 m2 pixel area decreases to 40–50%. The classification
accuracy then increases with decreasing subpixel urban cover which is particularly evident
with Landsat pixels containing 0–10% urban cover. Keysbrook, on the other hand, is a largely
vegetated region and exhibits lower accuracy with increasing urban land cover.

In order to understand the counter-intuitive behaviour of such as rapid decrease in
classification accuracy in pixels which contain between 40% and 50% urban area (Figure 5),
an analysis of the percentage of pixels classified as a given land-cover type is presented. To
do so, all pixels containing different ranges in urban percentage cover (e.g. 0–10%, 20–30%,
etc.) were identified using the high spatial resolution land-cover data set. The total percen-
tage of each land-cover type was calculated for all pixels that contained urban percentage
cover within each range urban percentage cover (e.g. 0–10%, 20–30%, etc.) using hardened
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Figure 4. (i) High spatial resolution true colour orthophotos, (ii) land-cover maps, and (iii) the
agreement between the orthophoto classification resampled to 30 m2 and the Landsat classifi-
cation for: (a) an out of town development area (East Beechboro), (b) old inner city urban area
(central business district), (c) older suburban area (Palmrya, Melville), and (d) predominantly
vegetated site (Keysbrook). In (iii), areas depicted as ‘true’ indicate those 30 m2 pixels where the
orthophoto land-cover type, based on the dominant land cover in the 30 m2 area, and Landsat
land-cover type are in agreement.
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IVM Landsat land-cover data set and the aggregated high spatial resolution land-cover data
set (i.e. defined by the dominant land-cover type within a 30 m2 pixel area).

Figure 6 illustrates the percentage of pixels identified as a given land-cover type as
indicated by the hardened Landsat land-cover data set and the hardened high spatial
resolution orthophoto land-cover data set for pixels which contain differing percentage

Figure 4. (Continued).

INTERNATIONAL JOURNAL OF REMOTE SENSING 5775

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
] 

at
 0

7:
49

 2
9 

A
ug

us
t 2

01
7 



urban cover (e.g. 0–10%) derived using the original high spatial resolution orthophoto
land-cover classification for the East Beechboro subset. This area was selected as it is an
intermediate area in terms of land-cover heterogeneity (Figures 2 and 4(a)). The results
indicate that the hardened Landsat classification consistently overestimates urban land
cover when compared to the ‘hardened’ high spatial resolution classification which has
been aggregated to 30 m2 based on the dominate land cover within the Landsat pixel
area for pixels with 10–50% urban defined by high-resolution data. Table 3 and Figure 7
illustrate the subpixel (30 m2) percentage urban land cover for East Beechboro with the
original reflectance imagery for this area shown in Figure 2. The hardened high spatial
resolution land-cover data set (left bar in each plot [Figure 6]) indicates that pixels
containing <50% urban land cover are largely dominated by vegetation. In contrast,
Landsat largely identifies these pixels as being either urban or vegetated to differing
extents and more correctly identifies pixels with 0–10% urban land cover as being
predominantly vegetated. For example, pixels containing 40–50% urban area are cor-
rectly identified as being vegetated (98.45% of pixels within this range) by the hardened
high spatial resolution land-cover data set since these pixels contain on an average
54.72% vegetation, 44.83% urban, and 0.45% bare earth. In contrast, the hardened
Landsat land-cover data set identifies 5.65% of pixels containing 40–50% urban cover
as being vegetation, 74.28% being urban, and 20.07% being bare earth. As the percen-
tage of urban land-cover decreases, the overall accuracy of the hardened Landsat
classification increases due to the increase in Landsat vegetation cover which increases
from 5.65% (40–50% urban cover) to 75.41% (0–10% urban cover). The results are similar
for the other regional subsets. The rapid decrease in accuracy between 40–50% and
50–60% (Figure 5) appears extreme as the subset regions are dominated by vegetation
and urban land cover (Table 1) which results in the aggregated 30 m2 pixels being

Figure 5. Landsat classification accuracy as a function of the percentage urban cover within Landsat
image pixels (as derived from the high spatial resolution land-cover data set) for each of the four
subsets. In the Keysbrook subset, no Landsat pixels contained >60% urban land cover.
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Figure 6. Land-cover type disaggregation for urban land cover (according to the orthophoto
imagery) Landsat pixels in East Beechboro. The left axis indicates the total percentage cover of a
given land-cover type using all of the pixels within a given range of urban percentage cover range
for: (a) 0–10%, (b) 10–20%, (c) 20–30%, (d) 30–40%, (e) 40–50%, (f) 50–60%, (g) 60–70%, (h)
70–80%, (i) 80–90%, and (j) 90–100%. For each percentage urban land-cover graph, the left bar
illustrates the overall percentage of pixels from the hardened high spatial resolution classification
identified as a given land types whilst the right bar indicates the percentage of hardened Landsat
pixels mapped as a given land-cover type.
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assigned to vegetation when the percentage urban cover is <50% (Figures 6(a–e)) or
urban when the percentage urban cover is >50% (Figures 6(f–j)).

The results in Figure 6 suggest that the spectral data used to train the IVM classifica-
tion (discussed in Section 4.2) contained spectrally ‘mixed’ pixels resulting in land-cover

Figure 7. Comparison of percentage urban area aggregated to 30 m2 from high-resolution data (a) and
IVM ‘soft’ Landsat classification (b) highlighting the (overestimation) between the high (c) and moderate
(d) spatial resolution estimates for the East Beechboro subset. The classified high spatial resolution data
are shown in (e) with the moderate spatial resolution grid (30 m2) overlaid for context (e).
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type misclassification. To investigate this, the spectral reflectance from Landsat pixels
containing 20–30% urban cover for the Palmrya subset, which had the lowest overall
agreement and which were identified as being mostly vegetated by the hardened high
spatial resolution land-cover data set, is extracted and compared to the spectral reflec-
tance profiles used to train the IVM classification algorithm. Figure 8 indicates that there
are strong similarities between the average spectral reflectance profile used to train the
IVM classification algorithm and the average spectral profile of the misclassified pixels.
This suggests that the IVM classification algorithm is accurately representing the Landsat
pixel spectral reflectance properties but that the training data used to develop the
classification model contained a high proportion of mixed pixels.

Pure (i.e. homogeneous) pixels are conventionally selected to train classification models
(e.g. Weng and Ruiliang 2013) but these are inherently difficult to identify in urban areas
owing to the multitude of land covers within a Landsat pixel area. Using the high spatial
resolution classification, the percentage of pure pixels, defined here as those containing
between 90% and 100% of a single land-cover type, was identified (Table 4). It is evident
that some regions contain a high percentage of pure pixels for a given land-cover type,
such as vegetation in Keysbrook (92.05%), but that other land-cover types within a region
typically have much lower percentages of pure pixels. Pure urban pixels are particularly
limited in all subset regions. Whilst the CBD subset obtains a high percentage of pure
urban pixels (28.77%), these are predominately urban areas with high spectral reflectance
(e.g. concrete), differing from subsets with urban areas which have urban areas with both
high and low spectral reflectance (e.g. East Beechboro; Figure 2).

5.2. Comparison between Landsat and high spatial resolution impervious
surface estimates

Landsat data have been widely applied to map impervious surface area in order to
assess its effects on: urban growth dynamics (J. G. Masek, Lindsay, and Goward 2000),
the UHI effect (Y. Hu et al. 2015), and surface run-off (Q. Weng 2001). Figure 6 indicates
that the ‘hardened’ Landsat IVM classification overestimates urban land cover,

Table 1. The percentage of different land-cover types within the classified high spatial resolution
subsets (Figure 1).
Subset Vegetation (%) Urban (%) Bare earth (%) Water (%)

East Beechboro 81.00 16.56 2.37 0.07
CBD 33.33 65.66 0.91 0.10
Palmrya 57.29 42.21 0.42 0.08
Keysbrook 97.36 0.90 1.56 0.18

Table 2. The percentage of pixels which contain >50% of a given land-cover type in each region.
Subset Vegetation (%) Urban (%) Bare earth (%) Water (%)

East Beechboro 87.57 9.84 1.89 0.06
CBD 26.14 72.81 0.74 0.05
Palmrya 66.71 32.33 0.21 0.07
Keysbrook 98.90 0.05 0.88 0.11
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particularly for pixels containing <50% urban area. The IVM classifier also provides a
‘soft’ land-cover data set that quantifies the subpixel land-cover proportions.

Here, we investigate the utility of the subpixel Landsat urban land-cover estimates by
comparing them to those derived from the high spatial resolution land-cover data set
(20 cm) which is used to provide the actual land-cover proportion within each 30 m2

pixel area. Urban area estimates from each of the four subsets (Figure 1(a)) were spatially
averaged over different size spatial windows (30 × 30, 90 × 90, 150 × 150, and
210 × 210 m) in order to account for any errors resulting from pixel heterogeneity,
spatial mis-registration, residual atmospheric and BRDF effects, and phenological differ-
ences (Ju et al. 2012; Liang, Fang, and Chen 2001; Maiersperger et al. 2013; Ghimire,
Rogan, and Miller 2010; Lu, Moran, and Hetrick 2011) that may increase the uncertainty
in estimating land-cover proportions (Sexton et al. 2013; Lu, Moran, and Hetrick 2011).
Comparison of impervious surface proportions at 30 m2, for example the CBD subset
(Figure 9), reiterates the overestimation of urban area at 30 m2 spatial resolution, with a
clustering of values towards the upper percentage boundaries associated with lower
urban area estimates from the high spatial resolution classification. When neighbour-
hood averaging is applied, the agreement in urban area typically improves with increas-
ing window size although the subset specific bias remains consistent (Table 5). It is also

Figure 8. Average spectral reflectance profile for misclassified pixels (red) from the Palmrya subset
for pixels containing 20–30% urban cover compared to the average spectral reflectance profile of
pixels used to train the IVM classification algorithm (blue). For (a) forest, (b) low urban reflectance,
(c) high urban reflectance, and (d) bare earth. The error bars show the standard deviation.

Table 4. Percentage of ‘pure’ pixels (defined here as comprising 90–100% of given land cover within
a Landsat pixel area) from the high-spatial resolution imagery.
Subset Vegetation (%) Urban (%) Bare earth (%) Water (%)

East Beechboro 53.93 0.15 0.34 0.03
CBD 8.98 28.77 0.35 0.00
Palmrya 5.80 2.13 0.00 0.01
Keysbrook 92.05 0.00 0.00 0.00
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evident that urban area is still overestimated with decreasing urban subpixel proportion
even when utilizing the subpixel IVM Landsat classification results.

5.3. Refining Landsat estimations using high spatial resolution data

Subpixel land-cover heterogeneity influences Landsat urban area overestimation which
must be considered in order to reduce the bias and improve Landsat-derived urban area
estimation (Herold et al. 2002; Lu, Moran, and Hetrick 2011; Varshney and Rajesh 2014;
Schneider 2012). The complexity and diversity of urban areas identified here from high
spatial resolution data, with biases ranging from −2.50% to −34.67%, highlights the
inappropriateness of applying a single model to adjust the moderate spatial resolution
urban area estimates in a metropolitan region (e.g. Lu, Moran, and Hetrick 2011). The
Landsat subpixel urban areas estimates from all four subsets were stratified based on the
Landsat subpixel derived urban area and calibrated against the percentage of urban
area from the high spatial resolution classification within each moderate spatial resolu-
tion pixel area. Both data sets were averaged at the neighbourhood level using a
210 × 210 m window as this provided the best overall relationship (Table 5).

Figure 9. Relationship between the subpixel urban area percentage cover estimated from the IVM
subpixel Landsat classification and the high spatial resolution orthophoto classification in the central
business district (CBD) subset for (a) 30 × 30 m window, (b) 90 × 90 m window, (c) 150 × 150 m
window, and (d) 210 × 210 m window.
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Stratification of Landsat subpixel urban estimates into divisions of 10%, consistent with
previous results, were selected to develop (using 50% of the data) and test (remaining
50% of the data) regression models to improve the data set agreement (Lu, Moran, and
Hetrick 2011).

The applied spatially explicit models reduced the bias and rootmean square error (RMSE)
between the predicted (moderate spatial resolution) and observed (high spatial resolution)
estimates (Table 6). It is evident from Table 6 that the adjustmentmade to the Landsat urban
area estimates reduced the overestimation difference of urban area by between 34.38% and
80.67%, with the largest improvement found within Keysbrook. Whilst the corrected
Landsat urban area estimates still overestimate the urban area compared to the high spatial
resolution data set, the corrected moderate spatial resolution urban area reduces moderate
resolution urban area over (under) estimation by on an average 55.08% in comparison to
the high spatial resolution data set reducing the average overestimation from 11.86 km2 per
subset to just 0.09 km2 (Table 6). In the case of this study area, this approach is appropriate
for producing more accurate urban area statistics. Due to the frequently reported over and
under estimation of land-cover estimates bymoderate spatial resolution data, this approach
can refine urban estimates for planning development policies that may inform decision-
makers (Z. Zhu and Woodcock 2014; Schneider, Seto, and Webster 2005; Hepinstall-
Cymerman, Coe, and Hutyra 2013). However, the derived correction values are not globally
applicable since the spatial structure and makeup of urban and suburban areas varies
regionally, nationally, and globally. Nevertheless, the methodology implemented here
could be replicated to produce localized correction values from other sources of high-
resolution imagery (e.g. digitization of Google Earth imagery) to calibrate urban area
estimates from moderate spatial resolution data.

6. Discussion

Refined urban estimates are vital in ensuring that suitable sustainable and strategic
planning decisions are implemented (Bettencourt and West 2010; Wu and Murray 2003).

Table 5. Comparison between high (20 cm2) and moderate (30 m2) spatial resolution subpixel
impervious surface estimates considering differing kernel sizes over four subsets (Figure 1) within
the PMR.
Subset Kernel size (m) R2 Scatter Bias Root mean square error (RMSE)

East Beechboro 30 × 30 0.41* 26.65 18.68 32.54
90 × 90 0.68* 16.95 18.66 25.21
150 × 150 0.75* 14.11 18.71 23.44
210 × 210 0.80* 12.52 18.74 22.54

CBD 30 × 30 0.26* 28.41 14.38 31.84
90 × 90 0.53* 16.65 14.37 22.00
150 × 150 0.61* 13.18 14.38 19.51
210 × 210 0.66* 11.30 14.36 18.28

Palmrya 30 × 30 0.04* 26.65 34.54 43.62
90 × 90 0.16* 13.56 34.61 37.17
150 × 150 0.19* 10.15 34.64 36.10
210 × 210 0.17* 8.45 34.67 35.69

Keysbrook 30 × 30 0.24* 11.85 2.51 12.11
90 × 90 0.52* 7.47 2.51 7.88
150 × 150 0.60* 5.89 2.50 6.40
210 × 210 0.63* 4.98 2.50 5.57

*Statistically significant relationship (p < 0.05).
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The hybrid spatial resolution approach applied here to estimate urban area was neces-
sary due to the difficulty in accurately estimating urban area using a traditional per-pixel
classification method. This was due to a combination of the sensors moderate (30 m2)
spatial resolution, land surface heterogeneity, and the selection of ‘mixed’ pixels for use
in training the classification algorithm. The overall classification accuracy, determined
using Google Earth imagery, was on an average 84.00%, which is similar to that found in
other studies, albeit for different urban areas (e.g. Gislason, Benediktsson, and Sveinsson
2006; Bagan and Yamagata 2014; Sundarakumar et al. 2012; Luo et al. 2014).

Closer examination of themoderate spatial resolution classification results using a higher
resolution data set indicates that when urban land cover within a 30 m2 area decreases to
40–50% (based on high spatial resolution classification), the Landsat classification accuracy
decreased from 85.40% to between 1.99% and 6.21%. This resulted from the Landsat
classification overestimating urban area in comparison to high spatial resolution data
(Figure 5) which more correctly identified these pixels as containing a greater per-pixel
proportion of vegetation. Pixels containing 40–50% urban cover contained on an average
54.50% vegetation cover excluding Keysbrook. The dominance of vegetation and urban
land covers in the regional subset, when ascribed to a 30m2 pixel area based on themajority
land cover, results in a rapid change in classification accuracy. Strong spectral similarities
between training data and misclassified pixels (Figure 8) suggest that the spectral reflec-
tance observations used to train the classification algorithm contained spectrally mixed
pixels. The average percentage urban area within a moderate spatial resolution pixel area
derived from the high-resolution data was 16.56%, 65.66%, 42.21%, and 0.90% for East
Beechboro, CBD, Palmyra, and Keysbrook, respectively. The percentage of ‘pure’ pixels,
defined as those containing over 90% urban land cover, was 28.77% for the CBD but
<2.50% for the suburban regional subsets. This highlights the difficulty in selecting pure
pixels at moderate spatial resolution and in accurately disentangling mixed spectral reflec-
tance’s without the aid of high spatial resolution data. Overestimation of urban extent was
most prominent in Keysbrook, where vegetation dominates the subset (97.36%, Table 1). In
this instance, Landsat-derived urban area corresponded to 0.28 km2 compared to 0.08 km2

fromhigh spatial resolution classification, a difference of only 0.20 km2 but which equates to
251.74%. In terms of total area difference, the East Beechboro and the CBD Landsat subsets
were found to contain 1.75 and 1.70 km2 more urbanized area, whilst Palmyra data over-
estimated urban area by 2.79 km2 compared to the high spatial resolution equivalent due to
its suburban nature and associated pixel heterogeneity (Figure 4).

Spatially averaging the Landsat and orthophoto land-cover classifications, to account
for potential errors in the data sets (Ghimire, Rogan, and Miller 2010), improved their
relationship although Landsat still overestimated urban area with differing bias per
subset. Over (under) estimation of urban land from Landsat estimations could result in
an under (over) prediction on further environmental variables (e.g. UHI) or policy
applications. Multiple studies have used classified per-pixel moderate spatial resolution
data to influence policy changes through monitoring urban growth (e.g. Schneider, Seto,
and Webster 2005; Hepinstall-Cymerman, Coe, and Hutyra 2013). However, per-pixel
methodologies fail to address the issue of mixed pixels, which, as shown here, can result
in overestimation of urban area (average: 126.25%, equivalent to 57.58 km2 within the
PMR) (Lu, Moran, and Hetrick 2011). Subpixel methods attempt to remedy this issue but
have been found to inaccurately separate impervious land cover from other land-cover
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types resulting in poor representation of impervious surface area (Lu, Moran, and Hetrick
2011). Consequently, overestimation of urban area may have resulted in suboptimal
policies that fail to maximize resource and amenity efficiency (Turner, Lambin, and
Reenberg 2010; Downs 2005).

Calibrating Landsat urban estimates using high spatial resolution data reduces the
bias, RMSE, and improves urban area estimation. However, the range of bias values
across subsets of differing urban land-cover characteristic highlights the inappropriate-
ness of a single regression model due to pixel heterogeneity influencing overestimation
(Lu, Moran, and Hetrick 2011). Spatially explicit models, as presented here, permit
varying moderate spatial resolution refinement by considering the influence of surface
heterogeneity. Whilst the limited availability of low-cost high spatial resolution data can
preclude analysis of this type, subset digitization of Google Earth or unmanned aerial
vehicle (UAV) imagery may provide a suitable alternative for calibrating Landsat data for
improved urban area estimates. Enhanced estimates of urban area would facilitate
planning policies that avoid potential environmental and socio-economic consequences
of urban development than can result from policies based on over (or under) predicted
urban area (ARUP, and The Rockefeller Foundation 2015). For example, classified Landsat
data were used to identify spatial clustering, peri urban development, and specialization
of land-use in Chengdu, Sichuan province, not considered by China’s original 1990 Go
West policy, aimed at economically boosting the West of the country. Results were used
to reform policy and remediate issues of urban management including service, infra-
structure, and resource deficiencies (Schneider, Seto, and Webster 2005). However,
traditional Landsat classification may over (or under) estimate urban area and result in
ineffective planning, environmental, and policy decisions (Miller and Small 2003;
Pravitasari et al. 2015). Therefore, classified subpixel data alongside high spatial resolu-
tion imagery (e.g. UAV, Google Earth, high spatial resolution aerial or satellite imagery)
as presented here can refine urban estimates facilitating improved decision-making
whilst maximizing often limited financial resources. This is especially important in
developing countries in regards to directing urban development and resources based
on factors including poverty, environmental hazards (e.g. flooding), and current amenity
centres (Marfai, Sekaranom, and Ward 2014; Suryahadi and Sumarto 2003).

7. Conclusion

Landsat imagery from 2007 was used tomap the urban extent within the PMR using an IVM
classifier that provides both a per-pixel and a subpixel classified data sets. The 2007 Landsat
classification overall average accuracy was 84.00%with associated kappa coefficient of 0.78.
Comparison between the Landsat per-pixel urban area and urban area estimates obtained
from a high spatial resolution (20 cm) orthophoto-derived classification indicates that the
moderate spatial resolution classification overestimates urban extent by 126.25% on an
average, which is equivalent to 57.58 km2 in the study area. Similarly, when the high spatial
resolution urban area estimates are compared to those derived using a subpixel Landsat
classification, the latter still overestimates urban extent by 120.25%.

Accurately quantifying urban expansion within the PMR due to the large population
growth over the last decade is important in order to make the efficient use of current
resources and to avoid additional amenity, environmental and health expenditure that can
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impact sprawling cities. Landsat data provide the longest time series of medium spatial
resolution imagery to map and monitor urban area. However, the reported over and
underestimation inhibits accurate quantification of urbanized land cover which increases
uncertainty within global climate models, environmental studies, and targeted urban
planning policy. Neighbourhood averaging, to account for potential errors in the data
sets, improved the agreement between the two data sets but Landsat subpixel over-
estimation still remained. The broad differences in bias between the difference subsets
indicate that a single regression model is inappropriate to heterogeneous urban land-cover
estimates. Therefore, the moderate spatial resolution urban area estimates were corrected
using spatially explicit regression models which, on an average, across the four subsets
reduced the bias and RMSE by 17.02 and 6.65 km2 respectively, whilst reducing moderate
resolution urban area over (under) estimation by 55.08%

Current and future EO satellites that provide complimentary data with enhanced
spatial, spectral, and temporal resolution, such as Sentinel-2, may further reduce over or
underestimation of urban area experienced by moderate spatial resolution sensors such
as Landsat. Similarly, high spatial resolution satellite sensors, such as Worldview-3, are
able to remediate discrepancies by capturing the fine spatial detail of urban environ-
ments but their cost and small swath limit their widespread application. This might
change with companies, such as Planet, which are launching large numbers of small
microsatellites that provide high spatial resolution data more frequently. Accurate urban
land-cover and land-use mapping is essential in understanding the impact of urban
expansion on, for example, social–ecological systems and human health and will
improve future sustainable planning of our cities.
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