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Abstract

Motivation: Protein-protein interactions (PPIs) are usually modelled as networks. These networks have
extensively been studied using graphlets, small induced subgraphs capturing the local wiring patterns
around nodes in networks. They revealed that proteins involved in similar functions tend to be similarly
wired. However, such simple models can only represent pairwise relationships and cannot fully capture
the higher-order organization of protein interactomes, including protein complexes.
Results: To model the multi-scale organization of these complex biological systems, we utilize simplicial
complexes from computational geometry. The question is how to mine these new representations of
protein interactomes to reveal additional biological information. To address this, we define simplets, a
generalization of graphlets to simplicial complexes. By using simplets, we define a sensitive measure of
similarity between simplicial complex representations that allows for clustering them according to their
data types better than clustering them by using other state-of-the-art measures, e.g., spectral distance, or
facet distribution distance.
We model human and baker’s yeast protein interactomes as simplicial complexes that capture PPIs and
protein complexes as simplices. On these models, we show that our newly introduced simplet-based
methods cluster proteins by function better than the clustering methods that use the standard PPI networks,
uncovering the new underlying functional organization of the cell. We demonstrate the existence of the
functional geometry in the protein interactome data and the superiority of our simplet-based methods to
effectively mine for new biological information hidden in the complexity of the higher order organization of
protein interactomes.
Availability: Codes and datasets are freely available at http://www0.cs.ucl.ac.uk/staff/natasa/Simplets/
Contact: natasa@cs.ucl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Motivation

Genome is the blueprint of a cell. DNA regions called genes are transcri-
bed into messenger RNAs that are translated into proteins. These proteins
interact with each other and with other molecules to perform their biolo-
gical functions. Deciphering the patterns of molecular interactions (also
called topology) is fundamental to understanding the functioning of the
cell (Ryan et al., 2013). In system biology, molecular interactions are
modeled as various molecular interaction networks, in which nodes repre-
sent molecules and edges connect molecules that interact in some way.

Examples include the well-known protein-protein interaction (PPI) netw-
orks in which nodes represent proteins and edges connect proteins that can
physically bind.

Because exact comparison between networks has long been known to
be computationally intractable (Cook, 1971), the topological analyses of
biological networks use approximate comparisons (heuristics), commonly
called network properties, such as the degree distribution, to approxima-
tely say whether the structures of networks are similar (Newman, 2010).
Advanced network properties that utilize graphlets (small induced subgra-
phs) (Pržulj et al., 2004) have been successfully used to mine biological
network datasets. Graphlet-based properties include measures of topologi-
cal similarities between nodes and between networks (Pržulj et al., 2004;
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Fig. 1. Illustration of a 3-dimensional simplicial complex. In the presented simplicial
complex, nodes 1, 2 and 3 are only connected by 1-dimensional simplices (edges, in black).
Nodes 2, 3 and 4 are connected by a 2-dimensional simplex (triangle, in magenta). Nodes
4, 5 , 6 and 7 are connected by a 3-dimensional simplex (tetrahedron, in blue).

Pržulj, 2007; Yaveroğlu et al., 2014), as well as between protein 3D stru-
ctures represented by networks (Malod-Dognin and Pržulj, 2014; Faisal
et al., 2017). In particular, graphlets have been used to characterize and
compare the local wiring patterns around nodes in a PPI network (Milen-
ković and Pržulj, 2008), which revealed that molecules involved in similar
functions tend to be similarly wired (Davis et al., 2015). These topological
similarities between nodes have also been used to guide the node mapping
process of network alignment methods (Kuchaiev et al., 2010; Kuchaiev
and Pržulj, 2011; Malod-Dognin and Pržulj, 2015; Vijayan et al., 2015),
which allowed for transferring of biological annotation between nodes in
different networks of well-studied species to less studied ones.

Despite significant progress, these simple network (also called graph)
models of molecular interaction data can only represent pairwise rela-
tionships and cannot fully capture the higher organization of molecular
interactions, such as protein complexes and biological pathways (Estrada
and Rodriguez-Velazquez, 2005). Hence, we need to model these data by
using new mathematical formalisms capable of capturing their multi-scale
organization. Furthermore, we need to design new algorithms capable
of extracting new biological information hidden in the wiring patterns
of the molecular interaction data modeled by using these mathematical
formalisms. This paper addresses these issues.

1.2 Simplicial complexes basics

A candidate model for capturing higher-order molecular organization is a
simplicial complex (Munkres, 1984). A simplicial complex is a set of sim-
plices, where a 0-dimensional simplex is a node, a 1-dimensional simplex
is an edge, a 2-dimensional simplex is a triangle, a 3-dimensional simplex
is a tetrahedron and their n-dimensional counterparts (illustrated in Figure
1). The dimension of a simplicial complex is the largest dimension of its
simplices.

The (n-1)-dimensional sub-simplices of an n-dimensional simplex
are called its faces (e.g., a triangle has three faces, the three edges). A
simplicial complex, K, is required to satisfy two conditions:

• For any simplex δ ∈ K, any face δ′ of δ is also in K.
• For any two simplices, δ1, δ2 ∈ K, δ1

⋂
δ2 is either ∅, or a face of

both δ1 and δ2.

In a simplicial complex, a facet is a simplex that is not a face of any higher
dimensional simplex. Because of this property, a simplicial complex can
be summarized by its set of facets.

Note that a network is a 1-dimensional simplicial complex and thus, our
proposed methodology is directly applicable to both traditional networks
and the higher dimensional simplicial complexes.

While simple network statistics, such as degrees, shortest paths and
centralities, have been generalized to simplicial complexes (Estrada and
Ross, 2018), the lack of more advanced statistics capturing the geometry
of simplicial complexes limits their usage in practical applications

1.3 Contributions

To comprehensively capture the multi-scale organization of complex mole-
cular networks, we propose to model them by using simplicial complexes.
To extract the information hidden in the geometric patterns of these models,
we generalize graphlets to simplicial complexes, which we call simplets.
Our simplets extend the applicability of graphlets to high-dimensional sim-
plicial complexes. When applied to one-dimensional simplicial complexes,
i.e., networks, they are identical to graphlets. On large scale real-world
and synthetic simplicial complexes, we show that simplets can be used to
define a sensitive measure of geometric similarity between simplicial com-
plexes. Then, on simplicial complexes capturing the protein interactomes
of human and yeast, we show that simplets can be used to relate the local
geometry around proteins in simplicial complexes with their biological
functions. Comparison between 1-dimensional protein-protein interaction
networks and the higher-dimensional simplicial complex representations
of the interactomes formed by protein interactions and protein complexes
shows that higher-order modeling enabled by simplicial complexes allows
for capturing more biological information, which can efficiently be mined
with our proposed simplets.

2 Methods

2.1 Datasets and their simplicial complex representations

2.1.1 Yeast and human protein interactomes
From BioGRID (v. 3.4.156)(Chatr-Aryamontri et al., 2017), we collected
the experimentally validated protein-protein interaction (PPI) networks of
human (H. sapiens) and of yeast (S. cerevisiae). From CORUM (Ruepp
et al., 2010), we collected (on the 2nd of July, 2017) the experimentally
validated protein complexes of human, and from CYC2008 (v.2.0) (Pu
et al., 2009) the experimentally validated protein complexes of yeast. We
consider two different models of an organism’s interactome.

The 1-dimensional PPI network: it is the usual PPI network, in which
proteins (nodes) are connected by an edge if they can physically bind.
Recall that a network is a 1-dimensional simplicial complexes on which
our new simplet methodologies can be applied and are equivalent to the
standard graphlet methodologies.

The higher-dimensional PPI Complex: starting from the PPI network,
we additionally connect by simplices all the proteins that belong to com-
mon complexes. I.e., the proteins belonging to a k-protein complex are
connected by a (k-1) dimensional simplex.

For human, the PPI network has 16,100 nodes and 212,319 edges.
When unifying the lower dimensional protein-protein interaction data and
the higher order protein complex data as described above, the resulting
PPI Complex is a 140-dimensional simplicial complex having 16,140
nodes (with 40 proteins being part of proteins complexes but not having
any reported protein-protein interaction) and 205,192 facets. For yeast,
the PPI network has 5,842 nodes and 80,900 edges. When unifying the
lower dimensional protein-protein interaction data and the higher order
protein complex data as described above, the resulting PPI Complex is a
80-dimensional simplicial complex having 5,842 nodes and 76,790 facets.

2.1.2 Other real-world datasets
We collected real-world higher-dimensional datasets from biology and
beyond.

• 1,569 simplicial complexes of protein 3D structures: Proteins are
linear arrangements of amino-acids that in the aqueous environment of
the cell fold and acquire specific three-dimensional (3D) shapes cal-
led tertiary structures. We collected from Astral-40 (SCOPe v.2.06)
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(Fox et al., 2013) the 3D structures of 1,569 protein domains that
are at-least 100 amino-acid long. Each protein domain is modeled
as a simplicial complex in which simplices connect together all the
amino-acids (nodes) that are less than 7.5 Å apart (as measured by the
distances between their α-carbons).

• 132 simplicial complexes of publication authorships: From the pre-
print repository arXiv, we collected all the scientific publications in
the “computer science” category over eleven years from 2007 to 2017.
For each month, we model the scientific collaborations as a simplicial
complex in which simplices are formed by all scientists (nodes) that
co-authored a scientific publication.

• 60 simplicial complexes of genes’ biological annotations: We col-
lected pathway annotations from Reactome database (v.63) (Fabregat
et al., 2017), as well as the experimentally validated Gene Ontology
(GO)(Ashburner et al., 2000) annotations from NCBI’s entrez web-
server (collected in February 2018). For GO, we consider biological
process, molecular function, and cellular component annotations sepa-
rately. For each annotation set, we model the functional annotations of
the genes of a given species as a simplicial complex in which simplices
are formed by all genes (nodes) that have a common annotation term
(restricted to terms annotating up-to 50 genes for computational com-
plexity issues). We only considered simplicial complexes having more
than 100 nodes. Following this procedure, we generated 18 pathway
simplicial complexes, 13 biological process simplicial complexes, 14
molecular function simplicial complexes and 15 cellular component
simplicial complexes.

• 14 simplicial complexes of protein-protein interactions: We colle-
cted the experimentally validated protein-protein interactions (PPIs)
from BioGRID database (v. 3.4.156)(Chatr-Aryamontri et al., 2017).
These PPIs are first modeled as networks in which proteins (nodes) are
connected by edges if they can interact. The corresponding networks
are converted into so-called clique complexes, by creating a simplex
between all nodes belonging to a maximal clique in the network.

2.1.3 Random simplicial complexes
To test our methods, we considered randomly generated simplicial com-
plexes, which we generate according to ten random models (detailed in
Supplementary material, section 1).

The first five models are based on randomly generated graphs, which
are converted into so-called clique complexes, in which simplices connect
nodes that belong to a clique in the graph.

• A random clique complex (RCC) is the clique complex of an Erdös-
Rènyi random graph (Erdös and Rényi, 1959).

• A Vietoris-Rips complex (VRC) (Hausmann et al., 1995) is the clique
complex of a geometric random graph (Penrose, 2003).

• A scale-free complex (SFC) is the clique complex of a Barabàsi-Albert
scale-free graph (Barabási and Albert, 1999).

• A Watts-Strogatz complex (WSC) is the clique complex of a small-
world graph (Watts and Strogatz, 1998).

• An nPSO complex (nPSOC) is the clique complex of a non-uniform
Popularity Similarity Optimization graph (Muscoloni and Cannistraci,
2018).

The five other models are extensions of the Linial-Meshulam model (Linial
and Meshulam, 2006; Meshulam and Wallach, 2009), which originally
consists in randomly connecting nodes with k-dimensional facets. We
extended this model to randomly connect nodes with facets while following
the facet distribution of an input simplicial complex. In this way, we can

Fig. 2. Illustration of 2- to 4-nodes simplets. The 18 2- to 4-nodes simplets are denoted
by S1 to S18 . Within each simplet, geometrically interchangeable nodes, belonging to the
same orbit, have the same color. These simplets have 32 different orbits, denoted from 1
to 32. Note that simplets S4 , S8 , S11 and S14 have only one 2D face (triangle, in blue),
while S12 and S15 have two triangles, S16 has 3 triangles and S17 has four triangles.
S18 has four triangles and one 3D face (tetrahedron, in red).

create Linial-Meshulam variant of the five clique complex-based models
presented above.

• A Linial-Meshulam random clique complex (LM- RCC) is a Linial-
Meshulam complex that follows the facet distribution of an input
random clique complex.

• A Linial-Meshulam Vietoris-Rips complex (LM- VRC) is a Linial-
Meshulam complex that follows the facet distribution of an input
Vietoris-Rips complex.

• A Linial-Meshulam scale-free complex (LM-SFC) is a Linial-
Meshulam complex that follows the facet distribution of an input
scale-free complex.

• A Linial-Meshulam Watts-Strogatz complex (LM-WSC) is a Linial-
Meshulam complex that follows the facet distribution of an input
Watts-Strogatz complex.

• A Linial-Meshulam nPSO complex (LM-nPSOC) is a Linial-
Meshulam complex that follows the facet distribution of an input nPSO
complex.

For each model we choose three node sizes, 1,000, 2,000, and 3,000
nodes, and three edge densities, 0.5%, 0.75% and 1%. We generated 25
random simplicial complexes for each model and each of these node sizes
and edge densities. Hence, in total, we generated 10×3×3×25 = 2,250
random simplicial complexes. We chose these node sizes and edge densi-
ties to roughtly mimic the sizes and densities of real-world data detailed
above.

2.2 Capturing the local geometry around nodes in a
simplicial complex with simplets

We define simplets as small, connected, non-isomorphic, induced simpli-
cial complexes of a larger simplicial complex. Figure 2 shows the eighteen
2- to 4-node simplets (denoted byS1 toS18). Within each simplet, because
of symmetries, some nodes can have identical geometries. Analogous to
automorphism orbits in graphlets (Pržulj, 2007), we say that such nodes
belong to a common simplet orbit group, or orbit for brevity. Figure 2
shows the thirty-two orbits of the 2- to 4-node simplets (denoted from 1
to 32). Similar to graphlets, we use simplets to generalize the notion of
the node degree: the ith simplet degree of node v, denoted by vi, is the
number of times node v touches a simplet at orbit i.
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We define the simplet degree vector (SDV) of a node as the 32 dimen-
sional vector containing the simplet degrees of the node in the simplicial
complex as its coordinates. Hence, the SDV of a node describes the
local geometry around the node in the simplicial complex and comparing
the SDVs of two nodes provides a measure of local geometric similarity
between them.

We define the SDV similarity between two nodes as an extension of the
graphlet degree similarity (Milenković and Pržulj, 2008). It is computed as
follows. The distance, Di(u, v), between the ith simplet orbits of nodes
u and v is defined as:

Di(u, v) = wi ×
|log(ui + 1)− log(vi + 1)|

log(max{ui, vi}+ 2)
, (1)

where wi is the weight of orbit i that accounts for dependencies between

orbits. Weight, wi, is computed as wi = 1 −
log(oi)

log(32)
, where oi is the

number of orbits that orbit i depends on, including itself. For instance, the
count of orbit 2 (the middle of a three node path) of a node depends on its
count of orbit 0 (i.e. its node degree) and on itself, so o2 = 2. For orbit 9,
o9 = 3, since it is affected by orbits 0, 2, and itself. The values of oi for all
2- to 4-nodes simplet orbits are listed in Supplementary Table 1. Finally,
the SDV similarity, S(u, v), between nodes u and v is defined as:

S(u, v) = 1−
∑

i|(ui ̸=0) or (vi ̸=0) Di(u, v)∑
i|(ui ̸=0) or (vi ̸=0) wi

. (2)

S(u, v) is in (0, 1], where similarity 1 means that the SDVs of nodes u

and v are identical.

2.3 Capturing the global geometry of a simplicial complex
with simplets

To the best of our knowledge, researchers from computational geometry
have not considered the problem of comparing two simplicial complexes.
However, the comparison of biological networks is a foundational pro-
blem of system biology. Instead, computational geometry focus on the
comparison of two spaces, each represented by a collection of simplicial
complexes, e.g. (Collins et al., 2004). Thus, we build upon network analy-
sis and extend graphlet and non-graphlet based network distance measures
to directly compare simplicial complexes as follows.

2.3.1 Simplet correlation distance
Simplets are like Lego pieces that assemble with each other to build larger
simplicial complexes. We exploit this property to summarize the complex
structures of simplicial complexes and to compare them, by generalizing
Graphlet Correlation Distance (Yaveroğlu et al., 2014), which is a sensitive
measure of topological similarity between networks.

Analogous to graphlets, the statistics of different simplet orbits are
not independent of each other. The reason behind this is the fact that
smaller simplets are induced sub-simplicial complexes of larger simplets.
In Supplementary material, section 2, we present the four, non-redundant
dependency equations between the simplet degrees of a given node u that
we used to assess the correctness of our exhaustive simplet counter.

In addition to these redundancies there also exist dependencies betw-
een simplets, which are dataset dependent. We use these dataset dependent
simplet orbit dependencies to characterize the global geometry of simpli-
cial complexes. We capture the dependencies between simplet orbits by the
simplicial complex’s Simplet Correlation Matrix (SCM), which we define
as follows. We construct a matrix whose rows are the simplet degree vectors
of all nodes of the simplicial complex. We calculate the Spearman’s cor-
relation between each two pairs of columns in the resulting matrix, i.e.,
correlations between the orbits over all nodes of the simplicial complex.

We present these correlations in a 32× 32 dimensional Simplet Correla-
tion Matrix (SCM): it is symmetric and contains Spearman’s correlation
values in [-1,1] range. As presented in Supplementary Figure 1, the SCMs
of simplicial complexes from different random simplicial complex models
are indeed very different. We exploit these differences in SCMs to compare
simplicial complexes.

We define the Simplet Correlation Distance (SCD) to measure the
distance between two simplicial complexes, K1 and K2, by the Euclidean
distance between the upper-triangles of their SCMs:

SCD(K1,K2) =

√√√√ 32∑
i=1

32∑
j=i+1

(SCMK1 [i][j]− SCMK2 [i][j])
2,

(3)
where SCMK1 [i][j] is the (i, j)th entry in the SCM of K1 (similar for
K2). The ability of SCD to group together simplicial complexes according
to their underlying models is demonstrated in section 3.2.

2.3.2 Facet distribution distance
In analogy to degree distribution and graphlet degree distribution (Pržulj,
2007), we define the measure of connectivity of a k-dimensional simplicial
complex, K, as the distribution of its facets, dK : it is ak-dimensional facet
distribution vector whose ith entry is the percentage of the facets in K

having dimension i. The Facet Distribution Distance (FDD) measures the
distance between two simplicial complexes, K1 and K2, by the Euclidean
distance between their facet distribution vectors, dK1

and dK2
:

FDD(K1,K2) =

√∑
i

(dK1 [i]− dK2 [i])
2. (4)

2.3.3 Spectral distance
Spectral theory captures the topology of networks and simplicial comple-
xes by using the eigen-values and eigen-vectors of matrices representing
them, such as the adjacency matrix, or Laplacian matrix (Wilson and Zhu,
2008). Let H be the incidence matrix of a simplicial complex, K, having
n nodes and f facets: H is a n× f matrix in which entry H[i][j] = 1 if
node i is in facet j, and 0 otherwise. The corresponding degree matrix, D,
is a n× n diagonal matrix in which entry D[i][i] is the number of facets
containing node i. The adjacency matrix, A, of a simplicial complex is:
A = HHT − D, where HT is the transpose of H (Zhou et al., 2007).

The corresponding Laplacian matrix, L, is: L =
1

2
D−1/2AD−1/2.

The eigen-decomposition of the Laplacian matrix, L, of simplicial
complex, K, is L = ϕλKϕT , where λK = diag(λ1

K , λ2
K , ..., λn

K)

is the diagonal matrix with the ordered eigen-values, λi
K as elements

and ϕ = (ϕ1|ϕ2|...|ϕn) is the matrix with the ordered eigen-vectors as
columns. The spectrum of simplicial complex, K, is the set of its eigen-
values SK = {λ1

K , λ2
K , ..., λn

K}, which are reordered so that λ1
K ≥

λ2
K ≥ ... ≥ λn

K .
We define the spectral distance (SD) between two simplicial comple-

xes, K1 and K2, as the Euclidean distance between their spectra (Wilson
and Zhu, 2008):

SD(K1,K2) =

√∑
i

(λi
K1

− λi
K2

)2. (5)

When the two spectra are of different sizes, 0 valued eigen-values are
added at the end of the smaller spectrum.

3 Results and discussion

3.1 Comparing simplicial complexes

A sensitive measure of simplicial complex similarity should find smaller
distances between simplicial complexes from the same model than between
simplicial complexes from different models.
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We visually assess if our simplet correlation distance (SCD, presented
in section 2.3.1) has this property by embedding simplicial complexes
as points in 3-dimensional (3D) space, so that the Euclidean distances
between the points in the 3D space best approximate the SCD distances
between the corresponding simplicial complexes. We do by using multi-
dimensional scaling, MDS (Borg and Groenen, 2005). As presented in
Figure 3, when using the 2,250 model simplicial complexes described in
Section 2.1.2, we observe that simplicial complexes from the same models
are grouped together (i.e., they have small SCD distances), while simplicial
complexes from different models are well separated (i.e., they have larger
SCD distances).

We apply SCD and of the two other distances measures described in
Section 2.3 on the 2,250 model simplicial complexes described in Section
2.1.2, which results for each distance measure between all 2,530,125 pairs
of these 2,250 simplicial complexes. We formally assess the ability of
the distance measure to group together the simplicial complexes from the
same model by using the standard Precision-Recall and Receiver Opera-
ting Characteristic (ROC) curves analyses. The resulting Precision-Recall
and ROC curves, which are presented in Supplementary Figures 2 and 3,
confirm our visual illustration of the ability of SCD to classify simplicial
complexes. We find that SCD achieves the highest classification perfor-
mance with average precision (AP) of 97.58% and an area under the ROC
curve (AUC) of 84.93%. It is followed by the facet distribution distance
(AP of 96.00% and AUC of 78.73%) and by the spectral distance (AP of
91.42% and AUC of 60.52%).

We further validate our methodology by assessing its ability to cor-
rectly group our 1,775 real-world simplicial complexes. We calculate the
distances between all pairs of the 1,775 real-world simplicial complexes,
which results in distances between

(1,775
2

)
= 1,574,425 pairs for each of the

three distance measures presented in Section 2.3. As illustrated in Figure
4, when the real-world simplicial complexes are embedded into 3D space
based on their SCD distances by using multi-dimensional scaling, the sim-
plicial complexes from the same data type group well together. Out of the
four types of real-world simplicial complexes, the ones capturing protein-
protein interactions are less well clustered, i.e., these simplicial complexes
are more variable than the other ones. This could be due to the incomple-
teness and noisiness of protein-protein interaction data (Sprinzak et al.,
2003), as well as to evolutionary differences in the wiring patterns of the
species’ interactomes, as our dataset includes diverse species, such as Ara-
bidopsis thaliana (a plant), Homo sapiens (a mammal), and Saccharomyces
cerevisiae (a fungus).

Nevertheless, the precision-recall curves presented in Supplementary
Figures 4 and 5 show that SCD achieves the highest classification perfor-
mances (AP of 98.72% and AUC of 99.58%), followed by spectral distance
(AP of 94.93% and AUC of 98.64%) and by facet distribution distance (AP
of 76.10% and AUC of 93.11%). Taken altogether, our results demonstrate
that SCD is a very sensitive measure of simplicial complex similarity.

3.2 Uncovering biological information from PPI Complexes

In the experiments presented above, we measured the ability of simplets to
capture global geometric features of simplicial complexes. In this section,
we focus on the local geometry around nodes in simplicial complexes.
We assess if the local geometries of proteins in PPI Complexes (which
we capture with simplet degree vectors, see section 2.2) relate to their
functional annotations using two different methodologies: clustering and
enrichment analysis of the resulting clusters, and canonical correlation
analysis.

3.2.1 Clustering and enrichment analysis
In system biology, studies such as Davis et al. (2015) have shown that
proteins having similar local wiring patterns in PPI networks tend to have

Fig. 3. Illustration of MDS-based embedding of simplicial complexes from ten random
models. The randomly generated simplicial complexes (color-coded) are embedded into 3D
space according to their pairwise SCD distances using multi-dimensional scaling (MDS).
The ten models and simplicial complex sizes and densities are described in Section 2.1.2. As
described in Section 2.1.2, 25 simplicial complexes are generated for each model and each
of its sizes and densities. The grouping of the same colored nodes correspond to simplicial
complexes from the same model, which may be of different sizes and densities.

Fig. 4. Illustration of MDS-based embedding of real-world simplicial complexes based
on their SCDs. The real-world simplicial complexes (color-coded) are embedded into 3D
space according to their pairwise SCD distances using multi-dimensional scaling.

similar biological functions. This suggests that specific protein functions
are performed through specific patterns of protein-protein interactions,
and that the biological functions of unnanotated proteins can be predicted
from their wiring patterns in the PPI network (Milenković and Pržulj,
2008). This may be explained by evolutionary processes, as genomes are
believed to have evolved through gene (and sometimes entire genome)
duplication and mutation events. Genes with the same origin have similar
sequences and their protein product structures, resulting in similarities in
the wiring patterns of their PPIs.

Here, we investigate if a similar property holds in our higher dimen-
sional representations of interactomes, i.e., if proteins with similar local
geometries (as captured by simplets) also tend to have similar biological
functions. To this aim, we cluster proteins having similar local geometries
(i.e., having similar simplet degree vectors) and assess if the obtained clu-
sters are functionally enriched in biological functions as follows. For both
human and yeast, we computed the simplet degree similarity of the pro-
teins in each of the two models of their interactomes (PPI network and PPI
Complex, see section 2.1.1). We used these pairwise similarities as input
for spectral clustering (Von Luxburg, 2007), which performs k-means clu-
stering on the eigen-vectors of the matrix encoding the pairwise simplet
degree similarities between the nodes. Spectral clustering is favored over
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traditional k-means as it does not make strong assumptions on the shape
of the clusters. While k-means produces clusters corresponding to convex
sets, spectral clustering can solve a more general problem such as inter-
twined spirals (Von Luxburg, 2007). To account for the randomness of the
underlying k-means, each clustering experiments is repeated 10 times. As
there is no gold-standard way of setting the number of clusters, k, we cho-
ose the frequently used rule of thumb (Kodinariya and Makwana, 2013),

k =
√

n
2

, where n in the number of nodes in the simplicial complex. To
further motivate our choice of k, we performed 10 spectral clusterings for
each k from 10 to 150 in steps of 10. For each value of k, we measured the
consistency of the obtained clusterings by using both their sum of square
error and their normalized mutual information scores. We observe that the
rule of thumb leads to stable clusterings, as k =

√
n
2

is after the elbows of
the two consistency scores. I.e., we set k = 90 for human and k = 54 for
yeast data-set. For comparison purposes, we also generated for both human
and yeast one hundred random clusterings having same cluster sizes as the
ones obtained by spectral clustering on the PPI Complexes.

Then, we measure the biological coherence of the obtained clustering
by the percentage of clusters that are statistically significantly enriched
in at least one Gene Ontology (GO) annotation (Ashburner et al., 2000).
To this aim, we collected the experimentally validated GO annotations
of genes from NCBI’s entrez web portal (collected on the 8th of March,
2018). We considered GO biological process (GO-BP), GO molecular
function (GO-MF), and GO cellular component (GO-CC) annotations
separately. A cluster is statistically significantly enriched in a given anno-
tation if the corresponding enrichment p-value is lower than or equal to 5%
after Benjamini-Hochberg (Benjamini and Hochberg, 1995) correction for
multiple hypothesis testing.

As presented in Figure 5, over all ten runs, for both species and for
the three GO annotation types, the biological coherence in terms of enri-
ched clusters is larger for the PPI Complexes than for the PPI networks.
On average, 79.5% of the clusters from the PPI Complexes are signifi-
cantly enriched in GO biological process annotations, versus 50.7% for
the clusters from the PPI networks. Similarly, 69.8% of the clusters from
the PPI Complexes are significantly enriched in GO molecular function
annotations, versus 44.8% for the clusters from the PPI networks. Finally,
74.2% of the clusters from the PPI Complexes are significantly enriched in
GO biological process annotations, versus 53.1% for the clusters from the
PPI networks. These results are all statistically significant (with empirical
p-values ≤ 1%), as the randomly generated clusters are never observed to
be as enriched in biological functions than the clusters obtained from the
PPI Complex (the random clusterings have, on average, less than 1% of
their clusters with at least one enriched function).

These results demonstrate that proteins having similar geometries in
PPI Complexes, i.e., that form complex interactions in similar ways, indeed
tend to have similar biological functions. This may be due to duplicati-
ons and divergence of the genome regions coding for these molecular
machines. Also, our results show that PPI Complex representation captu-
res more biological annotations than simple PPI network representation
of these complex data. This illustrates the importance of modelling and
wiring of protein interactomes.

3.2.2 Canonical correlation analysis
To quantify the relationships between the local geometry around proteins
in simplicial complexes and their biological functions, i.e., to measure
how well the simplet degrees of the proteins are predictive of their GO
biological process annotations, we adapt the canonical correlation analysis
(CCA) methodologies from Yaveroğlu et al. (2014). The local geometry
around n proteins in a simplicial complex is captured in an n×32 matrix,
R, whose entry R[v][i] is the ith simplet degree of node v. Similarly,
the biological functions of the proteins is captured in an n × f matrix,
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Fig. 5. Biological relevance of clusters of genes, as measured by the percentage of clusters
having at least one enriched GO annotation. For PPI networks and PPI Complexes, the error
bars present minimum, average and maximum enrichment values over 10 runs of spectral
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A, whose entry A[v][i] is 1 if protein v is annotated by term i, and 0
otherwise. For both matrices, we excluded the genes that do not have
any GO biological process annotations. CCA is an iterative process that
identifies linear relationships between the 32 simplet degrees and the f GO
biological process annotations. First, CCA outputs two weight vectors,
called canonical variates, so that the weighted sum of R is maximally
correlated with the weighted sum of A. The correlation between the two
weighted sums is called their canonical correlation. After finding the first
canonical variates, CCA iterates min {32, f} times to find more weight
vectors, such that the resulting canonical variates are not correlated with
any of the previous canonical variates. We refer the interested reader to
Weenink (2003) for the mathematical aspects of CCA.

As presented in Figure 6 and Supplementary Figure 6, the PPI Com-
plex allows for uncovering a larger number of linear relationships that
the PPI network model. This is because only 15 out of the 32 simplets
can appear in a 1-dimensional simplicial complexes, i.e., a PPI network,
which correspond to the 15 2- to 4-node graphlets. Hence, CCA can only
produce up-to 15 variates for a PPI network and up-to 32 variates for the
PPI Complex. Moreover, these linear relationships have higher canonical
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correlations. This means that by using simplets on the PPI Complexes we
can capture more and better quality relationships between local geometry
around nodes in simplicial complexes and their biological functions than if
we use PPI networks. The same is observed when using GO cellular com-
ponent and GO molecular function annotations (not shown due to space
limitations).

4 Conclusion
We demonstrate that by the new way of accounting for multi-scale orga-
nization of PPI data both through modeling and new algorithms that we
propose, we can uncover substantially more biological information than
can be obtained by considering only pairwise interactions between pro-
teins in PPI networks. This pioneering observation can further be utilized
to predict biological functions of unnanotated genes, which is a subject of
further research.

We demonstrate the existence of the functional geometry in the PPI
data by capturing the higher-order organization of these molecular netw-
orks by using simplicial complexes. To mine the geometry of simplicial
complexes, we propose simplets, which generalize graphlets to simplicial
complexes. On randomly generated and real-world datasets, we define a
sensitive measure of global geometrical similarity between simplicial com-
plexes. Also, we propose a higher-dimensional, simplicial complex-based
model of a species’ interactome that we call PPI Complex, which combines
protein-protein-interaction and protein complex data. On human and yeast
interactomes, by using clustering based on our new simplet-based measu-
res of geometric similarity and cluster enrichment analysis, we show that
our PPI Complexes are more biologically coherent than protein-protein
interaction networks and that our simplets can efficiently mine PPI Com-
plexes as a new source of biological knowledge. Furthermore, while we
focus on simplicial complexes emerging from molecular network orga-
nization, our methodology is generic and can be applied to multi-scale
datasets from any scientific field, such as the multi-scale network data
from physics, social sciences and economy.
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Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V.,
Karapandza, R., Stojmirovic, A., and Pržulj, N. (2014). Revealing the
hidden language of complex networks. Scientific Reports, 4, 4547.

Zhou, D., Huang, J., and Schölkopf, B. (2007). Learning with hypergra-
phs: Clustering, classification, and embedding. In Advances in neural
information processing systems, pages 1601–1608.


