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1 Overview
The nature of astrophysical jets is a central theme in many areas of astrophysical research. Jets
form and propagate under conditions covering a wide range of size and mass scales in a variety of
astrophysical systems, including proto-stars, white dwarfs, neutron stars, stellar-mass black holes,
and supermassive black holes. Jets are typically observed as an outflow along the rotation axis of
an accretion disk and result from the conversion of inflowing energy into axially directed energy,
by mechanisms not yet thoroughly understood, though probably intimately connected to MHD
physics.

Many aspects of astrophysical jets (launching, energization, propagation, composition, and
emission) can be studied by measuring the polarization of the prompt emission from γ-ray bursts
(GRBs). Theoretically associated with the formation of stellar- mass black holes, GRBs are among
the most distant objects observed. The instantaneous electromagnetic intensity released during a
typical GRB is eclipsed only by the Big Bang. The intense prompt emission is short-lived, typ-
ically lasting < 100 s and is believed to be associated with the formation of an ultra-relativistic
jet. Extensive observational and theoretical studies in recent years have largely focused on time
histories, spectra, and spatial distributions. Theoretical models show that a more complete under-
standing of the inner structure of GRBs, including the geometry and physical processes close to
the central engine, can only be achieved by γ-ray polarimetry. Studies of ultra-relativistic GRB
jets could broaden our understanding of one of the most ubiquitous phenomena in the Universe.
After years of investigating time variability and spectra, now is the time to study GRBs in a new
and revolutionary way using γ-ray polarimetry. NASA’s 2014 Astrophysics Roadmap (”Enduring
Quests, Daring Visions”) echoed the sentiment that X-ray and γ-ray polarimetry should be a goal
of future missions.

2 Approach
A complete picture of the GRB phenomena requires an understanding of the prompt emission
from the inner part of the jet closest to where the black hole is formed. We have only a limited
understanding of the inner jet, as it depends on the short-lived, high-energy prompt emission,
which is difficult to study given the unpredictable nature of these sources. GRBs have spectra that
typically peak in the 50–300 keV range, are isotropically distributed on the sky, and have durations
from < 1 s to 100s of seconds [31]. Long-duration bursts (> 2 s) are believed to be associated
with the death of massive stars, whereas short-duration bursts (< 2 s) are believed to be associated
with the merger of compact star binaries (neutron star-neutron star, neutron star-black hole, etc.)
with the resulting gravitational wave signal. Regardless of the progenitor, a generic fireball shock
model [21, 30, 33] suggests that a relativistic jet is launched from the center of the explosion. The
internal dissipation within the fireball (e.g., via internal shocks or internal magnetic dissipation
processes) leads to emission in the X-ray and γ-ray band, corresponding to the observed GRB
prompt emission. Eventually, the outflow is decelerated by the circumburst medium that leads to a
long-lasting forward shock, producing well-studied afterglow emission at longer wavelengths.

Prompt emission spectra of GRBs are typically well fit with empirical models [4], many of
which are based on the so-called Band function [2], consisting of a broken power-law with a
smooth break at a characteristic energy, commonly referred to as “E-peak” (Ep). Variations on
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the Band function include: 1) a Band function plus a high-energy, power-law tail [1, 15, 18]; 2)
a Band function plus a low-energy blackbody component, likely due to thermal emission from an
expanding photosphere [36]; and 3) a Band function with a high-energy cutoff. These empirical fits
do not yield physical insight. As an example, they often result in spectral fits that are inconsistent
with a pure, optically thin synchrotron emission spectrum [9, 34].

Attempts to fit spectra with physics-based emission models, such as synchrotron (often ex-
pected to be the dominant emission mechanism) require an additional low-energy (< Ep) black-
body component. This is generally interpreted to be evidence of photospheric emission [5, 4].
From such spectral analyses, kinematic shock models are equally as likely as magnetically dom-
inated jets and leave open questions about the composition, structure, energy dissipation mecha-
nisms, and radiation mechanisms. These questions can only be probed by polarization measure-
ments of the prompt emission [14].

Initial measurements derived from gamma ray missions not specifically designed for polarime-
try suggest that prompt GRB emission is polarized at levels between 30 and 100% [8, 16, 20, 29,
35, 41, 42, 43, 44], and that the polarization angle varies during a burst [44]. More recent mea-
surements based on Compton events in the CZTI instrument on the AstroSat mission [7, 6] and
from the POLAR instrument on the Tiangong-2 space laboratory [47] have provided additional
data. The POLAR data suggest lower polarization levels than some earlier measurements and also
provides evidence of variable polarization levels during a GRB. With such a wide range of results,
most of limited significance, a consistent picture of GRB polarization [28] remains elusive. High-
sensitivity polarization measurements will be required to substantially advance our understanding
of GRBs.

3 Science Objectives
Current models for GRB polarization are classified as either intrinsic or geometric [10, 24, 40].
Intrinsic models assume a globally-ordered magnetic field in the emission region so that electron
synchrotron emission in this field gives a net linear polarization [17, 27, 40]. In this case, the
polarization properties are derived from the intrinsic characteristics of the jet and reflect the distri-
bution function of the electrons. Shocked electrons develop a power-law distribution that produces
Band function-like photon spectra. High polarization values (Π > 20%) are predicted for a broad
range of viewing angles, with maximum values reaching Π ∼ 70%. These models suggest a highly
magnetized jet composition (dominated by Poynting flux), with reconnection as the most probable
dissipation mechanism and synchrotron radiation as the emission mechanism. Geometric models
predict a dependence on the degree of polarization with viewing angle relative to the jet axis. The
magnetic field structure is presumed to be approximately random in the emission region, so that
no net polarization is detected if the viewing angle is along the jet axis. If the viewing direction is
near the edge of the jet, a high degree of polarization may be observed due to loss of emission sym-
metry [24, 37]. These models assume a matter-dominated outflow and internal shocks as the most
likely dissipation mechanism. Possible radiation mechanisms include both synchrotron and inverse
Compton (IC) processes. Geometric models involving synchrotron emission predict Π as high as
∼ 40%. Inverse Compton models, also known as Compton drag models [24], achieve Π ∼ 85%.
In general, geometric models predict Π < 20% for most viewing angles. The energy dependence
of Π can serve to discriminate between the IC and synchrotron mechanisms (see below).
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These observational differences provide an opportunity to probe the physics of GRB jets, since
several of the science objectives can be addressed by determining which of these models is most
dominant.

The measurements outlined above can collectively be used to achieve the following science
objectives, which may provide different results for different types of GRBs (i.e., long vs. short):

Determine the jet magnetic field structure. Magnetic B-fields are thought to play a significant
role in both launching and collimating the jet, but the precise details are not yet understood.
Lower polarization values would indicate that the B-fields are oriented at random [40], sug-
gesting that they have been generated within shocks [22, 38, 39]. Higher polarization values
would indicate an ordered structure, suggesting that the B-fields have been carried outward
from the central engine by the ejecta. Time variable polarization may be indicative of an
evolving magnetic field structure (e.g., from ordered to disordered).

Determine the jet composition (matter vs. Poynting flux). Kinetic energy can be transported away
from the central engine by matter, dominated by ions, or by B-fields, as a Poynting flow. This
in turn is determined by conditions at the very base of the jet, before the outflow has become
optically thin. For matter-dominated GRB jets, a bright photospheric emission is expected
[3, 13, 32], while for Poynting flux-dominated outflows, the photosphere emission is sup-
pressed [46, 45].

Determine the jet energy dissipation process (internal shocks or reconnection). If GRB jet com-
position is matter-dominated, the dissipation is likely through mildly relativistic internal
shocks near or above the photosphere, with particle acceleration taking place via the first or-
der Fermi mechanism. This process can generate the observed time variability in the prompt
GRB emission, but the radiative efficiency and associated polarization is quite low. On the
other hand, if the energy of the jet outflow is dominated by B-fields (Poynting-flux), the en-
ergy dissipation mechanism is through magnetic reconnection, and particles are accelerated
during reconnection events [46]. The radiative efficiency and associated polarization of this
process is much higher than that of internal shocks.

Determine the prompt emission mechanism(s). It is generally believed that synchrotron emis-
sion of relativistic electrons contributes significantly to the spectrum. In addition, the contri-
bution of the thermal blackbody emission from the expanding photosphere [36] also appears
to play an important role. Contrary to what might be expected, this photospheric emission
is not completely depolarized; skin-depth/limb effects increase polarization above zero. A
likely third mechanism is the inverse Compton scattering of thermal or synchrotron seed
photons near the photosphere [3, 23, 25, 46].

4 Key Measurements
The optimal energy range for GRB polarization measurements is that which encompasses the typ-
ical values for Ep, which is nominally from 50–500 keV. This corresponds not only to the energy
range where most of the energy is emitted; it also corresponds to the range where energy-dependent
measurements are most useful for elucidating the emission mechanism(s). To place the polarization
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Figure 1: Distribution of predicted polarization values as measured in the 50–500 keV energy
range for three different models. (Distributions are based on data from [39].)

measurements in proper context, the GRB spectrum must be measured over an energy range that is
characteristic of the full source spectrum. For GRBs, this is typically from ∼30 keV up to at least
1 MeV. The energy resolution should be sufficient (< 20%) to provide an accurate determination
of the Ep value, which is necessary for the 2-D distribution studies.

The full set of science objectives can be addressed with the following studies:

Distribution of GRB Polarization Levels. As an example of what could be measured, Figure 1
shows the distribution of expected polarization values for each of three principal models : a)
an intrinsic model for synchrotron emission with ordered B-fields (SO), b) a geometric model
for synchrotron emission in random B-fields (SR), and c) a geometric model for Compton
drag (CD). Distinguishing between these models provides a direct diagnostic of the B-field
structure, energy dissipation process, and radiation mechanism of GRB jets. The fraction of
bursts with measured polarization above some given value can be used to distinguish these
three models. For example, the fraction of bursts exhibiting Π > 30% is significantly smaller
in the geometric models than in the intrinsic model. The observation of bursts with higher
polarization (Π > 45%) would favor the CD model.

2-D Distribution of GRB Polarization Levels. A more powerful diagnostic is the distribution of
Π as a function of spectral Ep. Toma et al. [39] have studied the distribution of polariza-
tion values (assuming random viewing angles) in this parameter space for the three models
described above. These distributions (Figure 2) indicate a more distinctive structures in
this parameter space. The correlation between Ep and Π for the SO model is particularly
striking. The true distribution depends on the relative admixture of these models. Sensi-
tive measurements of polarization, coupled with spectral measurements to determine Ep, are
used to identify the dominant model and to place constraints on the relative contributions
from additional models.

Energy dependence of GRB Polarization. The nature of the GRB radiation mechanism(s) is also
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Figure 2: Distribution of predicted polarization values (as measured in the 50–500 keV energy
range) as a function of Ep for different three models. [Figure adapted from [39].]

derived from the energy- dependence of the polarization, as different emission mechanisms
are distinguished by their polarization signatures [12, 26]. For example, the contribution of
a photospheric component is expected to decrease the net polarization in the energy range
near typical values of Ep where the thermal spectrum is most pronounced [19]. This requires
the ability to resolve energy-dependent differences in polarization on the order of 5%.

Temporal dependence of GRB Polarization. The temporal evolution of polarization properties
(both fraction and angle) also carries essential information with which to diagnose the GRB
mechanism. For example, in the Internal-Collision- induced MAgnetic Reconnection and
Turbulence (ICMART) model of GRBs [46, 11], each broad pulse in the GRB light curve
is related to one event that destroys the ordered magnetic fields through reconnection to
produce radiation. In this case, a decrease of the polarization with time is expected across
each broad pulse.

5 Summary
Some of the existing data suggest relatively high levels of polarization in GRBs, indicative of an
ordered magnetic field within the jet structure. Other data suggest relatively low levels (or perhaps
varying levels) of polarization. High-significance data on a large number of GRBs will be required
before a consistent picture can be developed. An instrument designed for GRB polarimetry must
have a very large FoV (preferably covering close to 2π steradian) in order to capture a number of
GRB events and must have sufficient sensitivity for measuring polarization levels well below 10%
in some of the larger GRBs. A mission designed to measure at least 30-50 GRBs with a Minimum
Detectable Polarization (MDP) of < 30% would contribute much to our understanding of the GRB
phenomenon. This would provide sufficient sensitivity to distinguish between GRB models and
(for the brighter GRBs) to study the time evolution of the polarization parameters.
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