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Abstract Triaxial experiments and direct fluid injection experiments have been conducted at
confining pressures up to 100 MPa on Mancos shale, Whitby mudstone, Penrhyn slate, and Pennant
sandstone. Experiments were conducted with sample axes lying both parallel and perpendicular to
layering in the materials. During triaxial failure Penrhyn slate was stronger for samples with cleavage
parallel to maximum principal stress, but the two orientations in the shales displayed similar failure
stresses. Initial flaw sizes of around 40 μm were calculated from the triaxial data using the wing crack
model, with the shales having shorter initial flaws than the nonshales. During direct fluid injection,
breakdown was rapid, with no discernible gap between fracture initiation and breakdown. Breakdown
pressure increased linearly with confining pressure but was less sensitive to confining pressure than
expected from existing models. A fracture mechanics-based model is proposed to determine the initial
flaw size responsible for breakdown in injection experiments. Flaw sizes determined in this way agree
reasonably with those determined from the triaxial data in the nonshales at low confining pressures. As
confining pressure rises, a threshold is reached, above which the fluid injection experiments suggest a
lower initial flaw length of around 10 μm. This threshold is interpreted as being due to the partial closure
of flaws. In the shales an initial flaw length of around 10 μm was determined at all confining pressures,
agreeing reasonably with those determined through the triaxial experiments.

1. Introduction
Mechanical properties of shales are of interest due to the worldwide exploitation of gas shale resources, as
source or cap rocks in oil and gas exploration, and as a potential repository for radioactive waste. Hydraulic
fracturing has become increasingly commonplace as a method of increasing hydrocarbon recovery from
low-permeability reservoir rocks such as shale and tight sandstones, leading to increased interest in fracture
growth properties in these materials (Rutter & Hackston, 2017). This increased interest has led to a number
of recent studies investigating fracture mechanics properties in shale materials both through experimental
measurements (Chandler et al., 2016, 2018; Forbes Inskip et al., 2018; Lee et al., 2015; Luo et al., 2018) and
modeling studies (Dutler et al., 2018; Gao et al., 2018; Zia et al., 2018).

1.1. Fracture Mechanics in Rock Mechanics
The field of fracture mechanics seeks to understand failure of materials in the presence of initial flaws and
is concerned with finding the relationship between the material, the stresses applied, and the size of the
flaw that leads to failure (Janssen et al., 2002). The material's resistance to fracture is represented through
the critical stress intensity factor of a mode-I fracture, known as the fracture toughness, KIc. Equation (1)
defines the failure stress according to Linear Elastic Fracture Mechanics through the Griffith criterion. The
failure stress, 𝜎f, is given as a function of the fracture toughness, KIc, the initial flaw size, a, and a geometric
factor, 𝜄, accounting for the geometry of the flaw within the material (Paterson & Wong, 2005). Tada et al.
(2000) summarize the calculation of 𝜄 for a wide range of geometries. The greater the size, a, of the initial
flaw, the lower the failure stress.

𝜎f =
KIc

𝜄
√
𝜋a

(1)
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Figure 1. Tensile strength, 𝜎T, as a function of mode-I fracture toughness,
KIc, for a range of rock materials. The nonshale materials are from Zhang
(2002) and Chandler et al. (2016), while the shale materials are from
Schmidt and Huddle (1977), Chandler et al. (2016), Forbes Inskip et al.
(2018), and Chandler et al. (2018). The dashed and solid lines are least
squares fits made to the nonshale and shale data sets, respectively (and
forced to intercept the origin).

While the recent studies referenced above provide a great deal of insight
into KIc in low-permeability materials, determining the required failure
stresses also requires knowledge of the size of the initial flaws. During
fracture toughness experiments, this requirement is sidestepped by man-
ufacturing a large artificial flaw (a notch) into the material prior to the
experiment. 𝜄 and a are therefore known prior to the experiment, and 𝜎f is
determined while loading. These values can then be used with equation
(1) to determine KIc for the material.

In principle, the same relationship can be used in a material of known KIc
(measured through previous experiments), to determine the initial flaw
size, a, from 𝜎f if a realistic geometry (i.e., 𝜄) can be assumed. Here, tri-
axial experiments and direct fluid injection experiments were performed
on two shales: the Mancos shale and Whitby mudstone, a tight-gas sand-
stone analogue; Pennant sandstone, and a slate with anisotropy derived
from cleavage planes; Penrhyn slate. For each of these materials, fracture
toughness measurements exist in the scientific literature (Chandler et al.,
2018), and it is therefore possible to analyze the results in terms of the
characteristic flaw size controlling the sample failure, in addition to the
more standard experimental data processing associated with each type of
experiment.

Zhang (2002) suggest that fracture toughness and tensile strength should
be related under quasi-static loading because the tensile fracture occurs
due to the extension of a single crack in each case, and similar fracture
surfaces are seen in each type of experiment. Figure 1 shows the tensile
strength, 𝜎T, of a wide range of rock types all plotted as a function of their
mode-I fracture toughness, KIc. These data were compiled from Zhang
(2002), Schmidt and Huddle (1977), Chandler et al. (2016), Forbes Inskip
et al. (2018), and Chandler et al. (2018). The relationship between 𝜎T and

KIc should be independent of the method used to determine each parameter, provided the samples were of
sufficient size in each case. The various shale rocks are plotted in solid blue circles, while all other rocks
are plotted in black and white. The shales demonstrate a slightly stronger dependence of 𝜎T on KIc than the
other rock types in general, by sitting slightly above the main trend.

By rearranging equation (1) to show 𝜎T∕KIc, it is apparent that the steeper dependence of 𝜎T on KIc in the
shale suggests that mode-I fracture initiation in shale may be controlled by a smaller flaw size than that
in other rock types in general. These initial flaws are important controllers of bulk failure within rocks,
because the initiation of ruptures over a wide range of length scales will be caused by stress concentrations
on these small initial flaws. Hence, the mechanical data are used here in order to attempt to derive flaw
sizes controlling the observed mechanical behavior, and whether these differ between shales and other rock
materials.

1.2. Laboratory-Scale Fluid Injection Experiments
Laboratory-scale fluid injection experiments on rock materials are quite rare in the literature. Experiments
fall into two distinct types, being direct fluid injection and sleeve fracturing. Direct fluid injection exper-
iments similar to those conducted here involve the injection of pressurized fluid directly into a borehole,
with the injected fluid having access to the progressing fracture. The fluid pressure rises until a fracture ini-
tiates from the borehole wall. Once the fracture reaches the edge of the sample, the injected fluid leaks out
and the injection pressure drops rapidly.

Lockner and Byerlee (1977), Zoback et al. (1977), Song et al. (2001), and Stanchits et al. (2015) all con-
ducted direct fluid injection of low-viscosity fluids into sandstones under pressurization rate control.
Each of these studies found a linear increase in breakdown pressure with confining pressure, and rapid,
uncontrolled breakdown once the peak injection pressure was reached. Zoback et al. (1977), Bunger and
Detournay (2008), Stanchits et al. (2015), and Lecampion et al. (2017) found that for experiments inject-
ing higher-viscosity fluids, the breakdown pressure can be higher than the fracture initiation pressure, in
agreement with the models summarized by Detournay (2016).
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Most studies into laboratory-scale fluid injection experiments find borehole failure through one or two radial
fractures from the borehole wall. Lockner and Byerlee (1977) observed a shift from failure in shear at low
injection rates toward opening mode failure with faster injection. In anisotropic shales, failure geometries
can be more complex. Li et al. (2016) observe fail along the bedding planes and normal to the borehole direc-
tion in their Green River oil shale samples, while Rutter and Mecklenburgh (2017) observed short opening
mode fractures connected by bedding-parallel shear mode segments in 60-mm-diameter samples of Whitby
mudstone. Warpinski et al. (1987) performed fluid injection experiments into cuboid samples featuring
machined joints and found a complex dependency of the fracture propagation on parameters relating to the
joints, including joint orientation, spacing, and frictional properties.

Sleeve fracturing experiments involve the pressurization of a polymer tube within the borehole. These exper-
iments behave similarly to direct fluid injection experiments except that the injection fluid does not have
access to the developing fracture, effectively simulating the fast pressurization state described by Ito and
Hayashi (1991) and Detournay and Carbonell (1997). These experiments remove the complex poroelastic
effects potentially caused by the injection fluid seeping into the pores of the rock sample (Abou-Sayed et al.,
1978; Clifton et al., 1976; Schmitt & Zoback, 1992).

Sleeve fracturing experiments have been performed by Vinciguerra et al. (2004) and Stoeckhert et al.(2014,
2015) on samples of Darley Dale sandstone, Berbetal sandstone, and anisotropic Fredeburg slate, respec-
tively. In each study, gradual fracture propagation was observed, with fracture length increasing as a function
of Pinj. Stoeckhert et al. (2015) found that in the slate under uniaxial compression, fracture orientation was
controlled by cleavage planes at low applied pressure (strength-dominated fracture orientation) but found
a transition to a stress-dominated fracture orientation at around 5- to 10-MPa applied stress.

Ishida et al. (2004) compared sleeve fracturing and direct fluid injection experiments into 190-mm cubic
samples of Kurokamijima granite at constant injection rate under low confining pressures. Using the
sleeve fracturing technique, they were able to propagate fractures gradually but found unstable fracture
propagation during their direct fluid injection experiments, independent of injection fluid viscosity.
1.2.1. Theoretical Models for the Variation of Breakdown Pressure on Confining Pressure During
Fluid Injection Experiments
A variety of models exist for the dependence of the breakdown pressure on the far-field stresses during
fluid injection experiments, which are described briefly here. Breakdown criteria in the literature fall into
three main groups: those based on the circumferential stress on the wellbore surface (Haimson & Fairhurst,
1967; Hubbert & Willis, 1972), those based on the circumferential stress over a characteristic length scale
(Detournay & Cheng, 1992; Ito & Hayashi, 1991; Song et al., 2001), and those based on fracture mechanics
(Abou-Sayed et al., 1978; Detournay & Carbonell, 1997; Zhang et al., 2017). Throughout this section, a ver-
tical borehole is assumed in a body where 𝜎V > 𝜎H,max > 𝜎H,min, so that 𝜎1 is acting parallel to the wellbore
axis, and 𝜎2, 𝜎3 are acting in the plane normal to the borehole direction.

Both the Hubbert and Willis (1972) and Haimson and Fairhurst (1967) breakdown criteria are based on the
assumption that the failure occurs when the circumferential Terzaghi effective stress at the borehole wall
reaches the tensile strength of the sample. Hubbert and Willis (1972) derived the solution for the breakdown
pressure of a circular borehole in a case where there is no fluid penetration into the borehole wall:

Pbreakdown = 3𝜎3 − 𝜎2 + 𝜎T − Ppore, (2)

where 𝜎3 and 𝜎2 are the minimum and maximum horizontal far-field stresses, 𝜎T, is the tensile strength of
the material, and Ppore is the far-field pore pressure. Haimson and Fairhurst (1967) derived an expression
that is valid for permeable rocks by assuming that the rock near to the wellbore behaves poroelastically:

Pbreakdown =
3𝜎3 − 𝜎2 + 𝜎T − 2

[
𝛼(1−2𝜈)
2(1−𝜈)

]
Ppore

2(1 −
[
𝛼(1−2𝜈)
2(1−𝜈)

]
)

, (3)

where 𝜈 is Poisson's ratio and 𝛼 is the Biot effective stress parameter, which defines the relative effects of
confining and pore pressure on effective stress through

𝜎eff = Pconf − 𝛼Ppore. (4)
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However, various authors have noted the difficulties in resolving the Hubbert and Willis (1972) and Haimson
and Fairhurst (1967) criteria, in that there is no discrete cutoff between permeable and impermeable in rock
materials. There is also a disagreement between equations (2) and (3) in that for the limit of an impermeable
system (𝛼 = 0 in equation (3)), the Hubbert and Willis (1972) model predicts the breakdown pressure to
depend twice as strongly on the confining pressure as the Haimson and Fairhurst (1967) model.

Neither the Hubbert & Willis criterion nor the Haimson & Fairhurst criterion features any dependence on
the pressurization rate, despite this having a strong effect on breakdown pressure in some studies (Haimson
& Zhao, 1991; Ito & Hayashi, 1991; Schmitt & Zoback, 1992).

Ito and Hayashi (1991), Detournay and Cheng (1992), and Song et al. (2001) argue that because the pores
around a borehole in a permeable rock are connected, it is difficult to envisage exactly what an initial flaw
corresponds to. They develop criteria in which fracture occurs at the borehole surface when the effective
stress reaches the tensile strength at a point that is some distance, d, into the rock from the borehole surface.
Distance d is a material constant known as the characteristic length of tensile failure.

Ito and Hayashi (1991) derive functions for the breakdown pressure in two limiting cases of borehole pres-
surization rate, A. The fast pressurization case (A → ∞) is analogous to an impermeable material and the
fluid pressure in the cracks remains at its initial value while the borehole pressure rises. The slow pressuriza-
tion case (A → 0) is analogous to a highly permeable material, and the fluid pressure in the cracks remains
at its initial value while the borehole pressure rises.

Pbreakdown =

⎧⎪⎪⎨⎪⎪⎩

(
1 + d

rbore

)2 (
𝜎T − S𝜃 − Ppore

)
+ Ppore , (A → ∞)

2(𝜎T−S𝜃−Ppore )⎛⎜⎜⎜⎝1+ 1(
1+ d

rbore

)2

⎞⎟⎟⎟⎠
(

2−𝛼 1−2𝜈
1−𝜈

) + Ppore , (A → 0) (5)

where

S𝜃 =
𝜎1 + 𝜎3

2

(
1 +

r2
bore

(d + rbore )2

)
−
𝜎1 − 𝜎3

2

(
1 +

3r4
bore

(d + rbore )4

)
+

r2
bore

(d + rbore )2 Ppore (6)

and

d = 1
2𝜋

(
KIc

𝜎T

)2

(7)

rbore is the radius of the borehole. When d∕rbore becomes very large, the two conditions in equation (5) reduce
to equations (2) and (3), respectively (Zhang et al., 2017). Song et al. (2001) expand this type of model by
allowing the material to have different sensitivities to pore and confining pressures.

Abou-Sayed et al. (1978), Detournay and Carbonell (1997), and Zhang et al. (2017) use fracture mechan-
ics to consider a borehole with two symmetric small radial flaws. Detournay and Carbonell (1997) consider
the borehole walls to be impermeable and the same two limiting pressurization rates proposed by Ito and
Hayashi (1991). They are able to show that for slow pressurization, crack propagation will always be unstable
but that fracture propagation can be stable under fast pressurization. However, for cracks of any meaningful
size this limiting case is impossible to reach unless the borehole is jacketed as in a sleeve fracturing exper-
iment. They are also able to show that their solution is equivalent to the Hubbert and Willis (1972) and
Haimson and Fairhurst (1967) criteria in the case of fast and slow pressurization, respectively. Zhang et al.
(2017) expand these models by considering permeation effects at the borehole walls.

2. Materials and Methods
Triaxial deformation experiments and fluid injection experiments were conducted on four rock types. For the
shales, cores were taken parallel and perpendicular to bedding, while in the slate cores were taken parallel
and perpendicular to the cleavage planes. Pennant sandstone samples were taken perpendicular to bedding.
KIc values for these materials were determined by Chandler et al. (2018) and are listed in Table 1.
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Table 1
Properties of the Materials Tested Here

Whitby Mancos Penrhyn Pennant
mudstone shale slate sandstone

Bedding Bedding Bedding Bedding Cleavage Cleavage Bedding
Parameter Units parallel perpendicular parallel perpendicular parallel perpendicular perpendicular
KIc MPa.m1/2 0.06 0.37 ± 0.23 0.31 ± 0.01 0.44 ± 0.07 0.94 ± 0.13 0.88 ± 0.08 0.32 ± 0.06
𝜎T MPa 2.86 ± 1.14 3.21 ± 0.64 4.54 ± 0.16 5.81 ± 0.57 — — 15.1
Reference Chandler et al. (2018) Chandler et al. (2016) - Chandler et al. (2018)

d̄grain mm 0.010–0.050 (silt) 0.002–0.063 (silt) 0.030–0.075 0.2000 (quartz)

0.001–0.010 (clay) <0.002 (clay)
Reference McKernan et al. (2017) Leckie et al. (1991) Cárdenes et al. (2014) Hackston and Rutter (2016)

𝜀dry 11% 24% 20% 7.5%

𝜙open 6–9% 4% 1% 4.57 ± 0.23%

Reference McKernan et al. (2017) Chandler et al. (2016) This study Hackston and Rutter (2016)

Note. KIc values are reproduced from Chandler et al. (2018) except for the Penryhn slate. For the Penrhyn slate, KIc was determined using the same method.
Mean grain diameters, d̄grain, P wave anisotropies, 𝜀dry, and open porosities, 𝜙open, are also listed alongside the references from which they are reproduced.

2.1. Rock Types Tested
Triaxial experiments were conducted on Whitby mudstone, Mancos shale, Pennant sandstone, and Penrhyn
slate.

Whitby mudstone was deposited within the Cleveland basin, (NE England) during the Jurassic period and is a
silty mudstone, which is often used as an analogue for Posidonia shale. The material used here was collected
from the intertidal zone at Runswick Bay, Yorkshire, UK, and is described in some detail by McKernan et
al.(2014, 2017) who used helium porosimetry to measure porosities between 6% and 9%. Ultrasonic P wave
velocity anisotropy was measured at ambient conditions on dry samples with a diameter of 50.8 mm. In the
bedding-parallel orientation, vP was found to be 3.47 ± 0.04 km/s, with a lower velocity of 3.06 ± 0.05 km/s
found in the bedding-perpendicular direction. Following the method described by Berryman (2008, their
equation 32), these velocities imply a P wave anisotropy of 𝜀dry = 11%.

Mancos shale is an Upper Cretaceous shale deposited 90–70 Ma in the Rocky Mountain area of western Col-
orado and eastern Utah (USA) and provides the source for many of the shale plays in the Rockies (Longman
& Koepsell, 2005). The material used here is made up of thinly laminated interbedded silt and claystones
and is described in detail by Chandler et al. (2016), who found an open helium porosity of 𝜙open = 4%, a
total helium porosity of 𝜙total = 9%, and a dry P wave anisotropy of 𝜀dry = 24%.

Pennant sandstone is an Upper Carboniferous quartz sandstone from South Wales (UK), described in detail
by Hackston and Rutter (2016). Pennant sandstone is near mechanically isotropic and is made up of 70%
quartz grains and 15% feldspar, with the interstices filled with muscovite, oxides, and clay minerals. Hack-
ston and Rutter (2016) measured an open porosity of 𝜙open = 4.57 ± 0.23% using gravimetry and helium
pycnometry, and measured an ultrasonic P wave anisotropy of 𝜀dry = 7.5%.

Penrhyn slate is a metamorphosed Lower Cambrian mudstone from North Wales (UK; McCrae et al., 1979).
The slate features cleavage planes at a high angle to the original bedding planes. The orientation of these
cleavage planes can be identified by the ellipsoidal reduction spots visible in the material. X-ray diffraction
measurements were conducted on these samples and found the rock to be made up of 49% quartz, 13%
clinochlore, 10% albite, 10% muscovite, 7% hematite, and 11% epidote. 𝜙open was found to be ≃1% using
Helium porosimetry. Ultrasonic P wave anisotropy was found to be 𝜀dry = 20% following the method of
Berryman (2008).

2.2. Sample Dimensions and Manufacture
Cylindrical rock samples cut to nominal dimensions of 25.4 ± 0.4-mm diameter and 50.8 ± 3.0-mm length
were fabricated by coring from blocks of the sample materials. The sample ends were ground flat and parallel
to an accuracy of 0.01 mm using a lapping wheel. Shale samples were dried at ambient conditions until their
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mass stabilized to within 0.01-g variation over 24 hr. This took approximately 3 weeks, but these shales have
previously been found to delaminate when dried at 60◦. Pennant sandstone and Penrhyn slate samples were
dried to the same accuracy, but within an oven kept at 60 ◦C. All experiments were conducted on dry samples.
Chen et al. (2019) found the presence of water to reduce KIc by approximately 50% in clay-rich shales. For
the analyses presented here, the saturation state of the samples is the same as that used by Chandler et
al. (2018), from which KIc was determined. Therefore, the KIc values used should correspond to the same
saturation state as the experiments conducted here.

Chandler et al. (2018) found the yielding zone around progressing fractures in these materials to be around
ry ∼ 40 μm, and the critical radii as defined by Schmidt and Huddle (1977) to be around rc ∼ 250 μm. These
correspond to rsample∕ry ∼ 600 and rsample∕rc ∼ 50, respectively. Therefore, the zone of inelastic deformation
around the fracture tip is expected to be small relative to the sample size, and consequently, these sample
sizes are expected to be large enough to maintain the small-scale yielding criterion.

These cylindrical samples were used for both the triaxial experiments and the fluid injection experiments. A
blind-ending borehole with a diameter of 1.2 mm was drilled 25.4 ± 1 mm into each fluid injection sample,
along the cylinder axis. In Whitby mudstone and Penrhyn slate, experiments were not conducted in the
bedding-/cleavage-parallel orientation. While drilling the central borehole, these materials were prone to
axial splitting along the bedding/cleavage planes, and sample manufacture was not successful.

Haimson and Zhao (1991) investigated the effect of borehole size on breakdown pressure in samples of Lac
du Bonnet granite and Indiana limestone. They found a large sensitivity to borehole diameter for diameters
less than 13 mm, but it should be noted that the materials tested by Haimson and Zhao (1991) feature grain
diameters 2–4 orders of magnitude larger than those tested here. Cuss et al. (2003) and Meier et al. (2013)
investigate size effects relating to borehole failure under increasing confining pressure with zero borehole
pressure. Cuss et al. studied samples of sandstones, while Meier et al. conducted their experiments on sam-
ples of Posidonia shale. Both studies found a nonlinear increase in breakout pressure with reducing borehole
diameter. Each study found that as borehole diameter falls toward a point where the borehole wall curvature
is comparable to grain size, breakout pressure becomes increasingly sensitive to borehole diameter. Cuss et
al. (2003) demonstrated that for breakdown driven by grain-crushing, a range of rocks lay on a single trend
when breakdown pressure was normalized according to dbore∕(𝜙dgrain), with breakdown pressure becoming
increasingly insensitive to dbore once dbore∕(𝜙dgrain) rose above ≃400. In the experiments conducted here,
dbore∕(𝜙dgrain) is in the region of ≃900 for Pennant sandstone, up to ≃20,000 for the shales. Therefore, while
the mechanics of the borehole failure do vary between the borehole breakout experiments of Cuss et al.
(2003), Meier et al. (2013) and those conducted here, the experiments conducted here are believed to be
within a regime where the sensitivity of breakdown pressure to borehole diameter is low.

2.3. Triaxial Experimental Method
Standard triaxial experiments were conducted using the “Phoenix” triaxial deformation apparatus at the
University of Manchester rock deformation laboratory. The samples were jacketed to isolate them from the
Di-ethylhexyl sebacate confining fluid (Rheolube DOS®) using heat-shrink polymer tubing, which does not
contribute any load-bearing capacity to the sample assembly (≤0.1 MPa). The desired confining pressure
was applied using an air-driven pump. The samples were not stress cycled to a higher confining pressure
prior to the experiments, and no friction reducing material was used on the interface between sample and
steel loading pistons.

Axial stress was applied via a balanced piston driven by an actuator system at the bottom of the pressure
vessel assembly to provide a constant strain rate of .

𝜖 = 2 × 10−5 s−1 at constant confining pressure, and
the sample was loaded until failure. Axial stress and strain were recorded using a Heard-type internal force
gauge and an externally mounted potentiometric displacement transducer respectively. Confining pressure
was servo controlled. A steel sample was used to measure a machine stiffness of 0.036 ± 0.008 mm∕kN,
allowing the determination of axial machine distortion and hence the true axial specimen displacement.

The triaxial data were processed to obtain the failure criterion as the tangent to a family of Mohr circles,
following the steps laid out by Zhao (2000). The 𝜎1 at failure is plotted as a function of 𝜎3 for each rock type
in Figure 4. The intercept of this plot corresponds 𝜎C, the uniaxial compressive strength. The tan(𝜁 ) is the
slope of the strength envelope in principal stress space (i.e., the gradient of 𝜎1,fail(𝜎3)). The friction angle, 𝜑,

CHANDLER ET AL. 5505



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017207

Figure 2. The wing crack model of Ashby and Sammis (1990). A small flaw
of length 2a oriented at an angle 𝜓 to the largest principal stress, 𝜎1 begins
to slide, causing a mode-I stress intensity factor, KI at either end of the flaw.
At the point that this stress intensity reaches the fracture toughness,
(KI = KIc), wing cracks initiate from the flaw in a direction parallel to 𝜎1.
Figure modified after Ashby and Sammis (1990).

was then calculated through

𝜑 = arcsin
(

tan 𝜁 − 1
tan 𝜁 + 1

)
. (8)

The sliding friction coefficient was calculated through

𝜇s = tan𝜑. (9)

The cohesion, C was calculated by

C =
𝜎C

2(tan 𝜁 )
1
2

(10)

following Zhao (2000).

2.4. Flaw Size Determination Using the Wing Crack Model
of Triaxial Failure
Following Bonnelye et al. (2017), the triaxial data presented here were
processed using a method based on the wing crack model of Ashby and
Sammis (1990), as shown in Figure 2. The wing crack model explains
failure of a rock sample under compressive stresses as being due to slid-
ing on shear-oriented small flaws that could be cracks or grain boundary
segments, causing the opening of mode-I “wing” cracks at the flaw tips.

These cracks and flaws are eventually able to interconnect, leading to failure of the material.

The wing crack model can be expressed as

𝜎1 =

[
(1 + 𝜇2

i )
1∕2 + 𝜇i

(1 + 𝜇2
i )1∕2 − 𝜇i

]
𝜎3 −

[ √
3

(1 + 𝜇2
i )1∕2 − 𝜇i

]
KIc√
𝜋a
, (11)

where 𝜎1 and 𝜎3 are the principal stresses at the point at which the propagation of wing cracks begins. KIc is
the fracture toughness of the material, the critical value of the stress intensity beyond which a fracture will
propagate rapidly. The internal friction coefficient, 𝜇i accounts for small-scale grain on grain sliding, and a is
the half-length of the small flaw from which the wing cracks nucleate (Bonnelye et al., 2017). Equation (11)
was derived by Ashby and Hallam (1986) for an angle, 𝜓 (as defined in Figure 2), at which the stress inten-
sity is maximized. Essentially then, a population of flaws with a random distribution of angles is assumed,
and failure is assumed to be controlled by the most preferentially aligned flaws. In shales and slates, the
population of flaw angles within the sample material is unlikely to have a random distribution of angles,
but here we follow Bonnelye et al. (2017) in assuming that sufficient flaws do exist at this angle to initiate
the bulk failure.

The stress required for the initialization of growth is lower than the stress at which bulk failure actually
occurs in compression, even if a proportionality might be expected between them. Here, the axial stress at
the onset of nonlinearity, 𝜎1,nonlinearity, is taken to correspond to this initial growth of wing cracks. Essentially,
the initiation of these wing cracks is assumed to cause the deviation of the axial stress-strain curve from
linear. This is likely to overestimate slightly the stress at which the wing cracks begin to open, as axially
opening flaws would be observed in the circumferential strain prior to the axial strain. The circumferential
strain was not measured during these experiments, so the value found from the axial strain was used instead
and should be thought of as a maximum value for the stress at the onset of opening.

Using equation (11), it can be seen that a plot of 𝜎1 at the onset of nonlinearity as a function of 𝜎3 should be
linear with a gradient dependent solely on 𝜇i (through the function in the first set of square brackets). The
intercept of the same plot is then dependent on 𝜇i, KIc, and a through the function in the second set of square
brackets. Hence, for a material of known fracture toughness, the internal friction coefficient and initial flaw
size can be determined from a series of triaxial experiments conducted at different confining pressures.

It should be noted that while the wing crack model is applied here in a preliminary analysis, it is not neces-
sarily universally applicable, as opening mode cracks can form without any sliding on a shearing interface.
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Mode-I cracks can also form as the result of an indentation effect or elastic contrasts between grains for
example. Using machined flaws in Gypsum, Bobet (2000) also identifies shear mode secondary cracks as
a cause of rock sample failure under loading. These secondary cracks initiate at the same stresses as wing
cracks during uniaxial compression. However, at elevated confining pressure, Bobet (2000) does not observe
wing cracks to initiate at all, and only observe secondary cracks. They observe crack coalescence to be pro-
duced from the linkage of wing cracks for overlapping flaw geometries (in the direction of loading) but
by secondary cracks for nonoverlapping geometries. Therefore, the assumption presented here that sample
failure is caused by coalescence of wing cracks is likely to be accurate at low confining pressures and in sam-
ples loaded perpendicular to bedding. During experiments conducted at high confining pressures, or with
samples loaded parallel to bedding may be more prone to failure due to secondary shear cracks.

2.5. Fluid Injection Experimental Method
As with the triaxial experiments, fluid injection were conducted using the “Phoenix” triaxial deformation
apparatus. Sample jacketing and confining pressure were applied in the same way as described in section
2.3. At the borehole end of the sample, a brass disk was mounted at the interface between the sample and
piston. This disk featured a single concentric O-ring circumscribing the central borehole and was used to
form a pressure seal around the borehole. Unlike previous studies by Vinciguerra et al. (2004) and Li et al.
(2016), no differential axial stress was required to maintain this seal.

Experiments were conducted under hydrostatic confinement (𝜎1 = 𝜎2 = 𝜎3), with no differential axial stress
applied. As with the triaxial experiments, the samples were not stress-cycled to a higher confining pressure
prior to the experiments, and no friction reducing material was used on the interface between sample and
piston.

A low-viscosity (2.4 × 10−2 Pa·s) synthetic ester (Rheolube DOS® Di-ethylhexyl sebacate) fluid was injected
into the borehole of each sample. In each experiment, the borehole pressure was initially raised rapidly to
meet the confining pressure. Air was not specifically removed from the borehole prior to fluid injection. Once
the injection and confining pressures were equivalent, injection was continued at a constant volume rate of
0.1 mm3/min until breakdown, at which point the borehole pressure would fall rapidly to approximately the
confining pressure. Here, injection volume rate was not investigated, but the materials tested here are 2–3
orders of magnitude less permeable than those tested by Zoback et al., so no dependence should be expected.
A second series of experiments was conducted in the Pennant sandstone with a much higher-viscosity 2 ×
103-Pa·s silicone oil fluid in order to investigate the effect of fluid viscosity. A constant volume injection rate
was used in all injection experiments to control the fluid injection rather than a constant pressurization rate.
This was expected to ensure that the breakdown pressure was independent of pressurization rate, following
Zoback et al. (1977) who suggest that the dependence on rate that they observe in constant pressurization
rate experiments was caused by diffusion of the injection fluid into the samples at lower pressurization
rates. It might be expected that this effect would be significantly smaller for the materials tested here, which
have permeabilities on the order of 10−19 m2 (Rutter & Hackston, 2017), as opposed to the ≃10−16 m2 of the
materials tested by Zoback et al.

2.6. Determination of Initial Flaw Size From Fluid Injection Experiments
Abou-Sayed et al. (1978) derived the stress intensity at the tip of a preexisting flaw in the wall of a
two-dimensional borehole, for a situation where there are two independent horizontal stresses, 𝜎2 and 𝜎3.
In the case that the horizontal stress is uniform (𝜎2 = 𝜎3), the orientation of the flaw is unimportant, and
the solution is therefore simplified considerably. Figure 3a shows the situation described, with rbore being
the borehole radius and lflaw the initial flaw length. Assuming that breakdown occurs when the stress inten-
sity reaches the fracture toughness (i.e., KI = KIc), and substituting 𝜎2 = 𝜎3 into the solution derived by
Abou-Sayed et al. (1978), the fracture toughness is found to be given by

KIc = (Pbreakdown − 𝜎3)
(

F(𝛽)(𝜋lflaw)1∕2) , (12)

where F is a known function of the dimensionless crack length, 𝛽 = lflaw∕rbore, which is tabulated by Paris
and Sih (1965) and Abou-Sayed et al. (1978). F is tabulated separately for cases where the borehole wall has
two flaws (as shown in Figure 3a) or a single flaw.

The fractures observed on the flat surface of each postexperiment sample were seen to be one sided (as seen
in Figure 3b); hence, the single crack form of F(𝛽) from Abou-Sayed et al. (1978) was used for all experiments.
KIc values for each material were taken from Chandler et al. (2018) and are listed in Table 4.

CHANDLER ET AL. 5507



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017207

Figure 3. (a) Preexisting flaws in a borehole wall, following the analysis of Abou-Sayed et al. (1978). A circular
borehole of radius rbore has notches of length lflaw extending radially from the borehole wall. The borehole (and
notches) are pressurized by a fluid pressure, Pinj. The configuration shown here corresponds to two radial cracks in the
borehole wall and a uniform horizontal stress, 𝜎3. Figure is modified after Abou-Sayed et al. (1978). (b) Photograph of
samples of Mancos shale after a fluid injection experiments.

Each fluid injection experiment provides a value for both Pbreakdown and 𝜎3, so for a borehole of known radius
in a material of known KIc, each experiment can be used to find an initial flaw length, lflaw by rearranging
equation (12) into the form

lflaw =

(
KIc[

Pbreakdown − 𝜎3
]

F(𝛽)
√
𝜋

)2

(13)

This analysis assumes that the flaws in question lie parallel to the initial borehole and that the vertical stress
(𝜎1) has no effect on the fracture propagation. The simplification of the geometry to two dimensions follows
Stoeckhert et al. (2014) and essentially assumes that the extension of the initial flaw in the third dimen-
sion along the length of the borehole requires a negligible amount of energy compared to that expended in
lengthening the fracture away from the borehole. It is likely that this extension along the borehole length
does require less energy than extension radially away from the borehole, because the circumferential stress
caused by the pressurized borehole will have a greater influence in the region closer to the borehole. How-
ever, no attempt to quantify this difference has been made. Once the crack has ceased propagation in this
borehole-parallel direction, the extent of the initial flaw in this dimension should not be expected to have
a significant effect on this analysis, as the crack opening force is provided by a fluid pressure. The applied
force will therefore scale in direct proportion to the crack width, so the problem can be approximated to
two-dimensional as long as the crack length is reasonably constant along its entire width, and the flaw lies
parallel to the borehole. The 𝜎1 may, however, be expected to affect the hoop stress through the effect of
Poisson's ratio, so the values of lflaw derived through equation (13) should be thought of as minimum values.

3. Results
3.1. Triaxial Experimental Results
Table 2 lists the experimental results from the triaxial experiments. The Young's modulus, E, was deter-
mined from the gradient of the linear region of the differential stress-axial strain curves. A 50-mm-long steel
dummy specimen was used to confirm the accuracy of E values determined this way. This calibration was
conducted at 25, 45, and 80 MPa and found E to lie within 10% of the manufacturer quoted value. The onset
of nonlinearity was picked by eye and corresponds to the points in the stress-strain curves when the curve
ceases to increase linearly. Figure 4 shows the axial failure stress and axial stress at the onset of nonlinearity
as a function of confining pressure.

CHANDLER ET AL. 5508



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017207

Table 2
Summary of Triaxial Experiments

𝜎3 Ppore Peff E 𝜎1,fail 𝜎1,nonlinearity

Material 𝜎1 Orientation (MPa) (MPa) (MPa) (GPa) (MPa) (MPa)
Whitby Bedding 4.4 0.0 4.4 12.6 56.9 50.5
mudstone Parallel 13.5 0.0 13.5 11.6 69.2 66.6

28.9 0.0 28.9 15.1 107.0 100.2
43.6 0.0 43.6 16.3 116.6 105.8
59.4 0.0 59.4 18.2 169.3 143.6
83.5 0.0 83.5 1.9 196.8 170.7

Bedding 3.9 0.0 3.9 8.4 56.1 54.3
perpendicular 14.6 0.0 14.6 8.4 84.2 71.2

29.1 0.0 29.1 10.0 127.7 114.1
44.1 0.0 44.1 11.1 143.5 127.0
58.6 0.0 58.6 11.6 174.4 155.2

Mancos Bedding 8.2 0.0 8.2 32.1 127.0 106.7
shale parallel 28.1 0.0 28.1 42.4 161.2 128.2

49.6 0.0 49.6 45.9 195.6 153.9
68.0 0.0 68.0 42.6 208.2 168.8
88.5 0.0 88.5 57.7 235.6 203.1

Bedding 8.7 0.0 8.7 16.6 99.6 87.0
perpendicular 28.2 0.0 28.2 32.9 138.6 110.0

51.0 0.0 51.0 34.7 189.2 147.7
68.4 0.0 68.4 39.9 200.3 162.0
88.6 0.0 88.6 30.0 248.0 184.3

Pennant Bedding 38.7 0.0 38.7 23.6 266.8 241.8
sandstone perpendicular 43.9 0.0 43.9 24.3 245.1 222.1

56.8 0.0 56.8 29.3 311.1 292.1

Penrhyn Cleavage 8.4 0.0 8.4 36.4 177.8 177.8
slate parallel 28.5 0.0 28.5 37.2 217.8 209.2

43.6 0.0 43.6 38.7 253.0 240.3
58.4 0.0 58.4 48.1 269.6 248.1
59.3 0.0 59.3 36.9 350.3 350.3

119.6 0.0 119.6 43.2 597.1 570.5
Cleavage 3.4 0.0 3.4 21.1 262.2 262.2

perpendicular 14.6 0.0 14.6 23.2 300.1 300.1
28.7 0.0 28.7 25.0 347.7 347.7
87.4 0.0 87.4 36.9 578.8 391.8

119.8 0.0 119.8 35.7 678.0 678.0

3.2. Fluid Injection Experimental Results
Table 3 lists the experimental results from the fluid injection experiments. Figure 5 shows an example plot
of injection pressure as a function of injected volume. Figure 6 shows breakdown pressures as a function of
confining pressure for each material.

4. Discussion
4.1. Anisotropy in Failure Strength and Stress at Onset of Nonlinearity in Triaxial Experiments
Table 4 lists parameters including the uniaxial compressive strength 𝜎c and cohesion, C, determined from
linear least squares fits to the failure stresses as a function of the confining pressures, alongside their
corresponding R2 values.
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Figure 4. Peak axial stress (solid points) and axial stress at the point of deviation from linearity (hollow points), as a
function of confining pressure for triaxial experiments conducted at confining pressures between 5 and 90 MPa.
Experiments were conducted on Whitby mudstone (a), Mancos shale (b), Penrhyn slate (c), and Pennant sandstone (d).
In each case the black data have 𝜎1 (and the cylinder axis) oriented layering parallel, and the red data have 𝜎1 oriented
layering perpendicular. The shaded region around each line corresponds to the root-mean-square uncertainty in 𝜎1,
and the R2 values associated with the failure stresses are listed in Table 4.

Intact rock shear failure strengths for samples loaded parallel and perpendicular to bedding are generally
assumed to be the same in cases where anisotropic rock strength is caused by a single plane of weakness
(Paterson & Wong, 2005; Sone & Zoback, 2013). In the case of shales, the bedding planes provide such a
plane of weakness, but due to the anisotropic nature of the shale matrix, it is worth investigating the fail-
ure strengths of the bedding-parallel and bedding-perpendicular samples separately. McLamore and Gray
(1967), Sone and Zoback (2013), and Bonnelye et al. (2017) all find samples of shales to support a slightly
higher maximum differential stress in the bedding-parallel orientation than in the bedding-perpendicular
orientation over a range of confining pressures. Ambrose (2014) found the same in Bossier shale but found
no difference between the two orientations in the Vaca Muerta shale. Ambrose (2014) additionally con-
ducted triaxial experiments at a range of intermediate angles to bedding, finding that the shear strength falls
between the two axes, reaching a nadir at 60◦ to bedding perpendicular. In the shales tested here, the failure
stresses measured in the bedding-parallel and bedding-perpendicular orientations are very similar.

Hackston and Rutter (2016) found a substantially steeper dependence of 𝜎1,fail on 𝜎3 in Pennant sandstone
than is observed here. The trend presented here in Pennant sandstone was determined from only three
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Table 3
Summary of Fluid Injection Experiments

𝜈inj 𝜎3 Pbreakdown

Material Borehole orientation (Pa · s) (MPa) (MPa)
Whitby mudstone Bedding perpendicular 10−2 19.5 50.8

10−2 38.0 107.9
10−2 39.4 71.0
10−2 58.7 130.4
10−2 59.5 108.3
10−2 79.8 118.4
10−2 98.4 151.8

Mancos shale Bedding parallel 10−2 29.0 36.0
10−2 38.4 44.8
10−2 59.6 98.1
10−2 78.1 125.7
10−2 98.9 141.6
10−2 99.6 111.8

Mancos shale Bedding perpendicular 10−2 18.4 24.4
10−2 39.1 60.0
10−2 59.4 77.6
10−2 78.6 94.3
10−2 98.3 121.5

Penrhyn slate Cleavage perpendicular 10−2 18.3 67.5
10−2 39.6 76.6
10−2 56.4 102.8
10−2 78.9 181.5
10−2 98.0 164.8

Pennant sandstone Bedding perpendicular 10−2 18.4 44.5
10−2 19.4 48.7
10−2 21.3 51.8
10−2 28.8 51.9
10−2 29.5 59.5
10−2 39.5 83.9
10−2 43.5 106.6
10−2 50.4 101.5
10−2 58.2 109.6
10−2 59.1 103.1
10−2 68.8 102.8
10−2 79.8 125.9
10−2 99.5 155.9

2 × 103 18.9 43.8
2 × 103 39.1 113.1
2 × 103 58.9 120.1
2 × 103 78.5 154.8
2 × 103 99.1 160.5

Note. 𝜈inj is the viscosity of the injected fluid.
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Figure 5. Injection pressure as a function of injected volume of fluid viscosity 2.4 × 10−2 Pa·s, for a fluid injection
experiment conducted in Whitby mudstone at 40-MPa confining pressure. The final stress drop corresponds to
breakdown of the sample, as a fracture reaches the sample surface.

experiments conducted at confining pressures between 38 and 57 MPa and is associated with a low R2 value
of 0.67. Therefore, the triaxial results in Pennant sandstone are much less well constrained than in the other
materials tested here but are included for comparison with the fluid injection experiments.

In the Penrhyn slate, failure stresses in the cleavage-perpendicular orientation are significantly higher than
in the cleavage-parallel orientation. This agrees with the results of Donath (1972) in Martinsburg slate. This
anisotropy is likely due to the increased difficulty in the formation of microcracks perpendicular to cleavage.
However, this is the opposite of the trend observed in an unnamed slate by McLamore and Gray (1967), who
found a slightly higher failure stress in the cleavage-parallel orientation.

4.2. Flaw Sizes Determined Using the Wing Crack Model of Triaxial Failure
Table 4 lists all of the standard parameters determined from the triaxial experiments using the
Mohr-Coulomb analysis described in section 2.3, as well as those additional parameters derived from the
wing crack analysis presented in section 2.4. Table 4 additionally lists average grain sizes, d̄grain, for each

Figure 6. Breakdown pressure, Pbreakdown, as a function of confining pressure for samples of Penrhyn slate and
Pennant sandstone (a), and for samples of Whitby mudstone and Mancos shale, in bedding-perpendicular and
bedding-parallel orientations (b). For the Pennant sandstone, two fluid viscosities are shown. The shaded region
around each line corresponds to the root-mean-square uncertainty in Pbreakdown.

CHANDLER ET AL. 5512



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017207

Table 4
Parameters Derived From Triaxial Experiments, Following the Standard Triaxial Method as Described by Zhao (2000) and the Wing Crack Model Following
Bonnelye et al. (2017)

Whitby Mancos Penrhyn Pennant
Parameter Units mudstone shale slate sandstone

Bedding Bedding Bedding Bedding Cleavage Cleavage Bedding
parallel perpendicular parallel perpendicular parallel perpendicular perpendicular

𝜑 Radians 0.30 ± 0.05 0.37 ± 0.07 0.14 ± 0.04 0.29 ± 0.05 0.63 ± 0.14 0.61 ± 0.02 0.52 ± 0.41
𝜇s 0.31 ± 0.06 0.38 ± 0.08 0.14 ± 0.04 0.30 ± 0.06 0.73 ± 0.22 0.61 ± 0.03 0.56 ± 0.38
C MPa 17.7 ± 2.6 18.4 ± 2.5 52.9 ± 3.2 32.4 ± 3.0 26.8 ± 8.1 64.9 ± 1.7 39.8 ± 16.3
𝜎c MPa 47.9 ± 6.7 53.5 ± 6.9 121.5 ± 5.7 87.0 ± 7.6 105.6 ± 31.0 248.0 ± 5.8 174.7 ± 15.8
𝜇i 0.21 ± 0.04 0.31 ± 0.05 0.08 ± 0.03 0.11 ± 0.03 0.70 ± 0.08 0.76 ± 0.18 0.63 ± 0.31
2a mm 0.023 ± 0.008 0.019 ± 0.003 0.012 ± 0.001 0.038 ± 0.027 0.028 ± 0.007 0.030 ± 0.001 0.065 ± 0.010
R2 0.98 0.98 0.98 0.98 0.93 0.99 0.67

Note. The listed R2 value is that of the linear fits to the data shown in Figure 4. Uncertainties were generated through standard uncertainty propagation of the
uncertainties on 𝜎C and tan(𝜁 ) found through a least squares regression through the data.

material. It might be reasonably assumed that the dimensions of the flaws within the material will scale
with the grain dimensions (e.g., Wong & Baud, 1999). In the two shales, the initial flaw sizes, 2a, are seen to
correspond closely with the silt grain sizes, but equally in the nonshales, 2a is much shorter than the grain
scales.

According to the wing crack model, bulk failure is caused by a critical density of flaws connecting and
forming a fault. Therefore, the coefficient of sliding friction on the fault might differ from that on each
individual flaw, so that 𝜇s ≠ 𝜇i. In actuality, 𝜇s and 𝜇i agree reasonably closely in all materials tested here
(Table 4), except for Whitby mudstone in the bedding-perpendicular orientation where 𝜇i ≪ 𝜇s. The flaws
within the Whitby mudstone and Mancos shale have a preferred orientation, as shown by Chandler et al.
(2017). However, no discrepancy between 𝜇s and 𝜇i is observed in Mancos shale, and therefore, a preferred
orientation of flaw does not explain the discrepancy between 𝜇s and 𝜇i in Whitby mudstone.

4.3. Physical Form of the Fluid Injection Fractures and Comparison With Existing Literature
Fluid Injection Data
In each fluid injection experiment conducted here, a single-sided borehole-parallel fracture was observed
on the flat surface of the cylindrical sample as shown in Figure 3b. While the fractures were easily observed
on the cylinder ends, the fractures were very difficult to observe on the curved outer surface of the sample,
so it is not known whether there were secondary, borehole-perpendicular fractures generated during some
experiments. While linking shear mode fractures similar to those observed by Rutter and Mecklenburgh
(2017) were not observable here, this could be due to the much smaller diameter of the samples used here
making the offsets much smaller. A further study of the forms of these fractures using X-ray tomography is
currently ongoing.

Furthermore, in each material and orientation tested here, the same linear increase in Pinjected with Vinjected,
and rapid breakdown was observed. The distinct initiation and breakdown observed by Zoback et al. (1977)
and Stanchits et al. (2015) was not observed in our experiments with high-viscosity fluid. Ishida et al. (2004)
and Li et al. (2016) also did not observe this distinction, and this may be due to the small scale of the
samples used.

4.4. Theoretical Models for the Dependence of Breakdown Pressure on Confining Pressure
During Fluid Injection Experiments
Figure 7 shows the breakdown pressure data from both orientations in Mancos shale compared to the models
of Hubbert and Willis (1972), Haimson and Fairhurst (1967), and Ito and Hayashi (1991; from equations (2),
(3), and (5), respectively). The data are the same as plotted in Figure 6b. It can be seen that all of the models
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Figure 7. Breakdown pressure data for Mancos shale compared to the models of Hubbert and Willis (1972) and
Haimson and Fairhurst (1967) and the lower and upper limits of the model proposed by Ito and Hayashi (1991). These
models are given by equations (2), (3), and (5), respectively. Plots for the other materials tested here are not included
here but demonstrated the same trends. The values of KIc used in plotting these models are listed in Table 1. The values
of 𝜎T are from Chandler et al. (2016).

predict a greater dependence on confining pressure than the data demonstrates. This discrepancy was also
observed in all of the other materials tested here.

For the model of Ito and Hayashi (1991), the 𝜎T values were taken from Chandler et al. (2016). McKernan et
al. (2017) found a mean value of 𝛼 = 0.71 ± 0.22 in Whitby mudstone during permeability measurements,
and values of≃0.7 were assumed in the other materials tested here. In our experiments𝜎2 = 𝜎3 and Ppore = 0,
and the breakdown pressure according to Hubbert and Willis or Haimson and Fairhurst (from equations (2)
and (3), respectively) should therefore be purely a function of the confining pressure for a material of known
𝜎T, 𝜈, and 𝛼. The permeability of these materials is extremely low (on the order of 10−18–10−19 m2) so the
assumptions behind equation (2) are expected to be valid. The models of Detournay and Cheng (1992), Song
et al. (2001), Detournay and Carbonell (1997), and Zhang et al. (2017) are not plotted here as they require
the determination of parameters that are outside the scope this study.

4.5. Flaw Sizes Determined From Fluid Injection Experiments
Figure 8 shows the variation of flaw sizes determined during fluid injection experiments, as a function of
confining pressure for each material. In Pennant sandstone and Penrhyn slate, flaw sizes around 0.02 mm
were found at low confining pressures, falling to ≃0.005 mm as confining pressure rises above 40 MPa. In
the two shales, flaw sizes around 0.01 mm were found throughout the range of confining pressures.

In the Pennant sandstone, identical injection experiments were conducted using two different viscosities of
fluid. The 2.4×10−2-Pa·s ester fluid employed in all other tests was used, and an additional set of experiments
was conducted using a 2 × 103-Pa·s silicone oil. Figure 8d shows the derived flaw length as a function of
confining pressure for Pennant sandstone with the two different fluids. At confining pressures above ≃40
MPa the low-viscosity fluid appears to encounter a≃2-μm longer flaw than does the high-viscosity fluid. This
effect is very small but could be interpreted as the same population of flaws but with the higher-viscosity
fluid being unable to reach the entire way into the flaw. This type of lag between the fluid front and the tip
of a fracture has been shown to have a large effect on the propagation regime of a fluid-driven fracture by
Garagash and Detournay (2000), who identify distinct “viscosity dominated” and “toughness dominated”
propagation regimes for fluid-driven fractures.
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Figure 8. (a and b) Flaw lengths as a function of confining pressure, derived from the fluid injection experiments
conducted on (a) Penrhyn slate and Pennant sandstone and (b) Whitby mudstone and Mancos shale. (c) Flaw lengths
as a function of confining pressure, derived from the fluid injection experiments conducted on Pennant sandstone with
injected fluids of two different viscosities.

4.6. Comparison Between the Flaw Sizes Derived From the Triaxial and Fluid Injection
Experiments
Initial flaw sizes derived from triaxial experiments are listed in Table 4. Initial flaw sizes derived from fluid
injection experiments are plotted in Figures 8b–8d.

In the nonshale materials, there is a reasonable agreement between the flaw sizes derived from the triaxial
data and those derived from the fluid injection experiments conducted at low confining pressures. Neither
derived flaw size are particularly close to the grain diameters of the material, as listed in Table 1. At confin-
ing pressures above ≃30 MPa, the fluid injection experiments display a shorter initial flaw size. Figure 8d
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shows that a slightly shorter flaw size is observed in this range when using a lower-viscosity fluid. This might
suggest that each failure mode is controlled by the same population of flaws but that during fluid injections
at confining pressures greater than ≃30 MPa, the confining pressure is able partially to close up the ini-
tial flaws. The low-viscosity fluid is able to reach slightly further into these partially closed flaws than the
higher-viscosity fluid.

In the shale materials, the flaw sizes derived from triaxial experiments are longer than those derived from
the fluid injection experiments. Flaw sizes derived from triaxial experiments lie in the region of 15–40 μm,
which is a similar range to the silt grain sizes. Flaw sizes derived from the fluid injection experiments are
around 5–15 μm. Here, the type of feature that will act as a flaw for these two types of experiment should
be considered. In a fluid injection experiment a flaw must be able to open in mode-I, either by the fluid
directly accessing the flaw or opening due to the circumferential stress around the pressurized borehole.
These two possibilities are equivalent to the slow and fast pressurization cases defined by Ito and Hayashi
(1991). During axial compression the initial flaw can be any sliding contact. There is no requirement that the
initial flaw must be open during a triaxial experiment, as it moves in shear, during compression. Therefore,
the discrepancy between the large flaw sizes derived for the shales in triaxial experiments and the shorter
flaws derived from the fluid injection experiments could be seen as evidence of two populations of flaws
within the materials. A population of long but closed flaws controls triaxial failure but is inaccessible to
the fluid during injection experiments. A second population of shorter, but open flaws controls breakdown
during the fluid injection.

In the triaxial experiments, a mean flaw length of 2ā = 0.024 ± 0.010 mm was measured in the shales,
while the equivalent mean length in the nonshales was 2ā = 0.042 ± 0.009 mm. The uncertainty is high,
but this corresponds to a ratio of 0.56:1, with the shales having a mean flaw length approximately half of
that determined in the nonshales. Through equation (1), this suggests that 𝜎T should be more dependent
on KIc in shales by a factor of ≃

√
2. In fact, the results plotted in Figure 1 suggest a larger difference, of ≃2

although again, the uncertainties involved are large.

Flaw sizes calculated through both methods rely on the assumption that KIc does not vary as a function
of confining pressure. Various studies including Schmidt and Huddle (1977) and Stoeckhert et al. (2016)
have suggested that KIc may increase linearly as a function of confining pressure. Yew and Liu (1993) and
Khazan and Fialko (1995) suggest that this increase could be caused by inhibition of the dilatation within the
inelastic zone. If this is the case, then through equation (13), the reduction in lflaw with confining pressure
would be significantly lower during fluid injection experiments. If KIc increases with confining pressure,
then some component of the experimentally observed increase in 𝜎1 with 𝜎3 during triaxial experiments will
be caused by the increase in KIc. Therefore, through equation (11), this would imply lower values of 𝜇i and a.

5. Conclusions
A suite of triaxial deformation experiments and direct fluid injection experiments have been conducted at
confining pressures up to 100 MPa, on samples of Mancos shale, Whitby mudstone, Penrhyn slate, and
Pennant sandstone.

Triaxial failure stresses were found to be similar between the two orientations in the shale. The similarity
between these two orientations does not rule out significantly lower failure stresses at angles intermediate
between the two, following the plane-of-weakness model, and similar to the results of Ambrose (2014). In
Penrhyn slate, significantly higher failure stresses were observed in the cleavage-perpendicular orientation.
In the shale materials, more strain is accumulated for samples manufactured for loading perpendicular to
layering than those manufactured for loading parallel to bedding. This is believed to be due to the compres-
sion of existing microcracks which are preferentially oriented parallel to bedding, as these samples were not
stress-cycled prior to the experiments.

The wing crack model was employed to determine the internal friction coefficient from each series of triaxial
experiments, which was found to agree well with the friction coefficient determined using Mohr-Coulomb
analysis. Initial flaw size was also calculated using the wing crack model and was found to be in the region
of 40 𝜇m for the materials tested here, with the shales demonstrating slightly shorter initial flaws than the
nonshales. This agrees broadly with the the trend in 𝜎T(KIc) shown in Figure 1, with the results for shales
implying a slightly shorter initial flaw length than a range of other rock types. The flaw sizes determined
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for the shales were close to the diameters of the silt grains, while the flaw sizes in the slate and sandstone
did not appear to correlate closely with the grain sizes. Further work in adapting this method to account for
anisotropically inclined populations of initial flaws could improve the accuracy of this method in anisotropic
materials such as shales.

During direct fluid injection experiments with a low-viscosity fluid, breakdown was seen to be rapid and
uncontrolled. In Pennant sandstone, a very high viscosity fluid was also trialed, with breakdown still
observed to be rapid and uncontrolled. Breakdown pressure increased linearly with confining pressure but
was observed to be less sensitive to confining pressure than the models of Hubbert and Willis (1972), Haim-
son and Fairhurst (1967), and Ito and Hayashi (1991) suggest should be the case. This potentially implies a
lower dependence on depth for breakdown pressures measured in field fluid injections, although the rela-
tionship is complicated, with fluid pressure equilibration governing a large proportion of energy dissipation
at the initiation of hydraulic fractures. A fracture mechanics model based on the work of Abou-Sayed et al.
(1978) was proposed to determine the initial flaw size responsible for the breakdown in direct fluid injection
experiments. Flaw sizes determined in this way agree with those determined from the triaxial data in the
nonshale materials at low confining pressures. As confining pressure rises, a threshold is reached at around
30 MPa, above which the fluid injection experiments suggest a lower initial flaw length of around 10 μm.
The threshold in flaw length with confining pressure is interpreted as being due to the partial closure of a
population of flaws, restricting the distance to which the injection fluid can reach prior to fracture.

In the shale materials an initial flaw length of around 10 μm was determined from the fluid injection
experiments at all confining pressures. This is ≃2.5 times smaller than that determined from the triaxial
experiments. The discrepancy between flaw sizes determined using each method could be interpreted as evi-
dence of two populations of flaws. A first population of long, closed flaws is responsible for the triaxial failure
but inaccessible to fluid during injection. A second population of shorter, open flaws could be responsible for
failure during fluid injection. While this work provides experimental data and evidence suggesting approxi-
mate flaw sizes leading to fracture propagation, further work is required to investigate exactly what features
within each material might correspond to these flaws and thereby validate this method. Microscopy studies
of the materials could potentially be used to characterize flaw populations, or in situ X-Ray tomography dur-
ing this type of experiment could help to characterize the locations where fractures nucleate. Additionally,
modeling work to extend the 2-D model of fluid injection experiments (as described in section 2.6) into the
third dimension would aid significantly in both this type of flaw size analysis and future studies attempting
to determine KIc from fluid injection.

Nomenclature
𝛼 Biot effective stress parameter.
𝛽 Dimensionless crack length, 𝛽 = lflaw∕rbore.
𝛿 Diffusion length.
𝛿ij Kronecker delta function.
.
𝜖 Axial strain rate.
𝜖 Axial strain.
𝜄 A dimensionless geometric factor involved in relating stress intensity to a flaw in a material.
𝜅 An effective stress parameter, defined by Schmitt and Zoback (1989).
𝜇i Internal friction coefficient.
𝜇s Sliding friction coefficient.
𝜈 Poisson's ratio.
𝜈inj Viscosity of the injected fluid.
d̄ grain Average grain diameter.
𝜙open Open porosity.
𝜙total Total porosity.
𝜓 Angle between an inclined flaw and the 𝜎1 in the wing crack model.
𝜎eff

i𝑗 Terzaghi effective stress.
𝜎1 The highest principal stress.
𝜎2 The intermediate principal stress.
𝜎3 The lowest principal stress.

CHANDLER ET AL. 5517



Journal of Geophysical Research: Solid Earth 10.1029/2018JB017207

𝜎C Compressive strength.
𝜎f The failure stress of an arbitrary sample.
𝜎H,max Maximum horizontal stress.
𝜎H,min Minimum horizontal stress.
𝜎T Tensile strength.
𝜎V Vertical stress.
𝜎𝜃 Circumferential stress.
𝜎1,fail Axial stress at failure during a triaxial experiment.
𝜎1,nonlinearity Axial stress at the onset of nonlinearity during a triaxial experiment.
𝜀dry P wave anisotropy, as defined in equation (32) of Berryman (2008).
𝜑 Friction angle.
𝜁 The tangent to the gradient of a 𝜎1(𝜎3) plot from a series of triaxial experiments.
A Borehole pressurization rate.
a Initial flaw half-length in the wing crack model.
C Cohesion, as defined by Zhao (2000).
d Characteristic length of tensile failure.
E Young's modulus.
F(𝛽) A known function of 𝛽, tabulated by Paris and Sih (1965) and Abou-Sayed et al. (1978).
KIc Mode-I fracture toughness: The critical mode-I stress intensity, above which a fracture propagates.
KI Mode-I stress intensity.
l Length of an initiating wing crack.

lflaw The initial flaw length during a fluid injection experiment.
Pbreakdown Breakdown pressure (the peak value of Pinjected) during a fluid injection experiment.
Pconf The confining pressure (= 𝜎3).
Peff Effective pressure (= Pconf − Ppore).
Pinjected The pressure of the injected fluid, during a fluid injection experiment.
Ppore Pore pressure.
R2 Coefficient of determination.
rbore Borehole radius.
S𝜃 Defined in equation (6).
Vinjected The volume of fluid injected during a fluid injection experiment.
vP P wave velocity measured at 1 MHz.
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