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ABSTRACT 

Successive fusion events between transport vesicles and their target membranes 

mediate trafficking of secreted, membrane- and organelle-localised proteins. During 

the initial steps of this process, termed the secretory pathway, COPII vesicles bud 

from the endoplasmic reticulum (ER) and fuse with the cis-Golgi membrane, thus 

depositing their cargo. This fusion step is driven by a quartet of SNARE proteins that 

includes the cis-Golgi t-SNARE Membrin, encoded by the GOSR2 gene. Mis-sense 

mutations in GOSR2 result in Progressive Myoclonus Epilepsy (PME), a severe 

neurological disorder characterized by ataxia, myoclonus and seizures in the 

absence of significant cognitive impairment. However, given the ubiquitous and 

essential function of ER-to-Golgi transport, why GOSR2 mutations cause 

neurological dysfunction and not lethality or a broader range of developmental 

defects has remained an enigma. Here we highlight new work that has shed light on 

this issue and incorporate insights into canonical and non-canonical secretory 

trafficking pathways in neurons to speculate as to the cellular and molecular 

mechanisms underlying GOSR2 PME.  
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GOSR2, Golgi SNAP Receptor complex member 2; PME, Progressive Myoclonus 

Epilepsy; ER, endoplasmic reticulum; COPII, Coat Protein complex II; ERGIC, ER-

Golgi Intermediate Compartment; EPSP, excitatory post-synaptic potential; AMPA, 

Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid; TRP, Transient 

Receptor Potential; CSP, Cysteine String Protein; ANCL, adult-onset neuronal ceroid 

lipofuscinosis; BMP, Bone Morphogenetic Protein; DIV, days in vitro.  
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INTRODUCTION 

The Progressive Myoclonus Epilepsies (PMEs) are a heterogeneous group of 

neurological disorders characterised by progressively worsening myoclonus 

(involuntary muscle jerks), ataxia (uncoordinated movement) and seizures. PMEs 

can be subdivided into those that are also associated with neurodegeneration and 

dementia (such as neuronal ceroid lipofuscinoses), and those where cognitive 

decline is absent or subtle (the prototypical example of which is Unverricht-Lundborg 

disease) (Minassian, 2014; Ramachandran et al., 2009). PME associated with 

mutations in GOSR2 (GOSR2-PME) is an example of the later subtype, in which 

cognitive function is largely preserved (Corbett et al., 2011). Patient symptoms in 

GOSR2-PME emerge early in development, beginning with ataxia with an average 

age of onset of 2 years old (Boisse Lomax et al., 2013). Action myoclonus of a 

cortical origin then develops (average onset, 6-7 years old), followed by tonic-clonic 

seizures (average onset, 13-14 years old), with patient symptoms worsening 

throughout life (Boisse Lomax et al., 2013; van Egmond et al., 2014). Other notable 

clinical features include an absence of deep tendon reflexes, scoliosis, syndactyly 

and partial motor neuron denervation (Boisse Lomax et al., 2013; Corbett et al., 

2011; van Egmond et al., 2014), though these are not fully penetrant. Early mortality 

prior to the age of 30 is common (Boisse Lomax et al., 2013).     

 The above description illustrates the devastating nature of GOSR2-PME. Yet 

given the fundamental cellular function of Membrin (the protein encoded by the 

GOSR2 gene), it is in fact surprising that GOSR2 mutations result in a predominantly 

neurological disease rather than system-wide dysfunction and lethality. This is 

because Membrin plays a critical and conserved cellular role in Eukaryotic species 

as diverse as yeast, fruit flies, and mammals (Hay et al., 1997; Praschberger et al., 

2017; Shim et al., 1991). During the early stages of the secretory pathway, secreted, 

membrane, lysosomal and endosomal proteins are inserted into the ER lumen or 

membrane and trafficked from the ER in COPII-coated vesicles, which bud from the 
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ER and fuse firstly with the ER-Golgi Intermediate Compartment (ERGIC) and 

subsequently the cis-Golgi (Appenzeller-Herzog and Hauri, 2006; Palade, 1975) 

(Figure 1). Lipids destined to be incorporated into the plasma membrane 

(plasmalemma) or membrane-enclosed organelles are similarly trafficked through 

this route (Pfenninger, 2009). Membrin and its yeast ortholog Bos1 are SNARE 

(SNAp REceptor) proteins essential for COPII vesicle fusion with the cis-Golgi (Hay 

et al., 1997; Hay et al., 1998; Shim et al., 1991) (Figure 1). Furthermore, Eukaryote 

genomes do not harbour redundant Membrin/Bos1 paralogs. Given the requirement 

of protein and membrane trafficking for cellular viability, it is thus unsurprising that 

null mutations in Membrin/Bos1 cause lethality in fruit flies and mice (Ghabrial et al., 

2011; Meehan et al., 2017; Praschberger et al., 2017), and inhibit mitotic growth in 

yeast (Shim et al., 1991). Yet despite the essential role of GOSR2/Membrin, GOSR2-

PME mutations are compatible with largely normal human development and 

cognition, notwithstanding numerous other neurological manifestations. Collectively, 

these observations raise important questions regarding how GOSR2-PME mutations 

predominantly impact neuronal function and/or development while leaving other 

organ systems comparatively intact. 

In this review we address this apparent paradox. We describe recent work 

from our group and others examining how GOSR2-PME mutations alter both 

vesicular fusion and neuronal development and excitability. We then expand beyond 

these proximal causes to hypothesise as to the downstream molecular mechanisms 

that might underlie multi-faceted neurological dysfunction in GOSR2-PME.   
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STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF GOSR2/MEMBRIN 

MUTATIONS 

Membrin is a single-pass transmembrane protein predominantly localised to the cis-

Golgi that harbours a critical SNARE domain comprising residues 129-182 (Kloepper 

et al., 2007; Volchuk et al., 2004). At the cis-Golgi membrane, Membrin acts as a 

target-SNARE (t-SNARE) in concert with Sec22p and Syntaxin-5 (Hay et al., 1997; 

Hay et al., 1998). The Membrin/Sec22p/Syntaxin-5 t-SNAREs form a fusogenic 

complex with the vesicle-SNARE (v-SNARE) Bet1, which is localised to COPII 

vesicle membranes (Hay et al., 1997; Hay et al., 1998) (Figure 1). Corresponding 

yeast orthologs perform analogous functions (Newman et al., 1992; Newman et al., 

1990; Shim et al., 1991).  

Fusion between COPII vesicle and cis-Golgi membranes is driven by 

interactions between the SNARE domains of Bet1 and the 

Membrin/Sec22p/Syntaxin-5 t-SNAREs. Fifteen mostly hydrophobic residues (termed 

layers -7 to +8) are located every 3-4 residues along the SNARE domain, with the 

central layer 0 composed of a positively charged arginine or glutamine residue 

(Sutton et al., 1998) (Figure 2). When in close proximity, SNARE domains ‘zipper up’ 

along these interacting layers (Sutton et al., 1998). The formation of this trans-

SNARE complex occurs via an initial slow N-terminal assembly followed by rapid C-

terminal zippering, with this last step imparting the driving force required for 

membrane fusion (Gao et al., 2012; Zorman et al., 2014).  

Interestingly, the two GOSR2 mutations associated with PME both alter 

residues in the Membrin SNARE domain (Corbett et al., 2011; Praschberger et al., 

2015) (Figure 2). All bar one GOSR2-PME patient studied to date has been 

homozygous for a mis-sense mutation resulting in a glycine to tryptophan substitution 

(G144W) in layer -3 of the SNARE domain (Boisse Lomax et al., 2013; Corbett et al., 

2011). In addition, a compound heterozygote patient harbouring the G144W allele in 

trans with a deletion of the codon encoding one of two consecutive lysines between 



	
6	

layers +2 and +3 of the SNARE domain (ΔK163/164) was also recently identified 

(Praschberger et al., 2015). This patient exhibited a milder disease course than 

previously reported G144W homozygotes, and at 61 years old was the oldest 

GOSR2-PME patient identified to date (Praschberger et al., 2015).  

Using yeast orthologs to model the cis-Golgi SNARE complex, we recently 

investigated the effect of these mutations on SNARE domain function. In liposome 

fusion assays where cis-Golgi v- and t-SNAREs are reconstituted into distinct vesicle 

pools (McNew et al., 2000; Parlati et al., 2000), we observed that both mutations 

acted as hypomorphic alleles, reducing but not abolishing liposome fusion. 

Furthermore, the yeast equivalent of the ΔK163/164 mutation (ΔD196-Bos1) acted as 

a stronger loss of function allele compared to G144W (G176W-Bos1) (Praschberger 

et al., 2017).  

Although appearing somewhat puzzling given the milder phenotype of the 

patient carrying both mis-sense and deletion GOSR2 alleles, these results are 

nonetheless consistent with the position and nature of each mutation within the 

SNARE domain. The G144W mutation alters an interacting hydrophobic residue 

within the N-terminal region, which facilitates the initial slow interaction of SNARE 

domains (Gao et al., 2012). Correspondingly, we found that simply pre-incubating the 

vesicle populations overnight at 4°C was sufficient to restore fusogenic competence 

to G176W-Bos1-containing vesicles, presumably by allowing sufficient time for N-

terminal SNARE interactions to occur (Praschberger et al., 2017). In contrast, the 

ΔK163/164 deletion causes a positional shift of several key hydrophobic residues in 

the critical C-terminal region of the SNARE domain, which likely disrupts the efficient 

assembly of this region that is required to drive membrane fusion (Gao et al., 2012). 

Consistent with this premise, vesicle pre-incubation at 4°C did not rescue fusogenic 

competence to ΔD196-Bos1-containing vesicles (Praschberger et al., 2017).  
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Using fluorescence anisotropy, Völker and colleagues also recently examined 

the effect of these mutations on interactions between yeast cis-Golgi SNARE 

proteins (Völker et al., 2017). Focusing on isolated SNARE domains in solution 

(rather than full-length proteins), they found that the ΔD196 mutation similarly 

reduced the formation of quaternary SNARE complexes. Surprisingly, SNARE 

complex formation was enhanced, not reduced, by the G176W mutation. However, 

wild-type Bos1 but not G176W-Bos1 also underwent substantial self-oligomerization 

in this assay (Völker et al., 2017). The inhibition of oligomerization by the G176W 

mutation may result in higher levels of free monomeric (and thus fusogenic) G176W-

Bos1 compared to wild-type Bos1, explaining the paradoxical increase in SNARE 

domain interaction observed for G176W-Bos1. In contrast, our liposome fusion 

assays utilised full-length, vesicle anchored v- and pre-assembled t-SNAREs. This 

approach avoided contamination by oligomeric SNARE proteins and allowed us to 

assess the effect of each mutation in the context of the entire functional SNARE 

complex (Praschberger et al., 2017).  

In vivo, the G147W and ΔK163/164 mutations could also potentially impact 

the localization and/or stability of the Membrin protein. Our recent work demonstrated 

that over-expressed Membrin containing either mutation correctly localizes to the cis-

Golgi in human fibroblasts and does not appear to be expressed at lower levels 

compared to a wild-type construct (Praschberger et al., 2017), suggesting a limited 

effect of either mutation on protein localization and stability. In apparent contrast, 

Membrin expression in fibroblasts derived from a single patient harbouring the 

G144W mutation was lower compared to cells from two control patients 

(Praschberger et al., 2017), yet there was substantial variability in Membrin 

expression even between control cell lines. Thus, a larger cohort of control and 

patient tissue is required to determine whether the G144W mutation in particular can 
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also affect the stability of endogenously expressed Membrin as well as inhibit 

SNARE domain assembly.   

Collectively, the above work suggests that homozygosity for the G144W 

GOSR2 allele – the predominant GOSR2 mutation linked to PME – results in a 

relatively subtle inhibition of ER-to-Golgi trafficking. Indeed, in our Drosophila model 

expressing the corresponding Membrin mutation (G147W), we found that steady-

state levels of a membrane-tagged fluorophore were reduced by ∼ 20% in axons of 

ddaC mechano-sensory neurons compared to a wild-type control (Praschberger et 

al., 2017). These data are consistent with a mild perturbation of secretory trafficking 

by G144W Membrin, which may account for the non-lethality of G144W Membrin 

compared to null alleles of GOSR2/membrin. When considered alongside the 

primarily neurological symptoms of GOSR2-PME, these results also suggest that the 

nervous system is particularly vulnerable to disruption of the ER-to-Golgi trafficking 

relative to other organ systems (Figure 2). To understand why this could be, we next 

examine the fundamental importance of the secretory pathway for controlling 

neuronal growth and excitability.    

 

ROLES OF THE SECRETORY PATHWAY IN NEURONS 

As in all cells, neuronal trafficking of lipids and proteins from the ER to the Golgi is 

essential for numerous cell biological processes, and we refer readers to several 

excellent reviews on the functions of ER-to-Golgi transport and the broader secretory 

pathway in relation to neuronal function and protein trafficking (Cornejo et al., 2017; 

Hanus and Ehlers, 2016; Jan and Jan, 2010; Lai and Jan, 2006; Pfenninger, 2009). 

Below, we briefly describe two roles of the secretory pathway that may be of 

particular relevance to GOSR2-PME.   

 

I. Plasmalemmal expansion 
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Compared to non-neuronal cells, the plasmalemmal surface area of neurons can be 

vast (Pfenninger, 2009), extending into the millions of square micrometers for 

neurons with elongated axons and/or highly elaborated dendritic trees (Bear et al., 

2001; Palay and Chan-Palay, 1977). The lipids required to drive plasma membrane 

growth in neurons are synthesized and transported through the ER and Golgi 

apparatus within the cell body (Pfenninger and Johnson, 1983). Indeed, the sheer 

volume of membrane trafficking required for neuronal growth has led to the 

hypothesis that neurons may be highly sensitive to perturbations in the secretory 

pathway (Pfenninger, 2009). We propose that GOSR2-PME represents a clinically 

relevant validation of this hypothesis.   

 Neuronal dendritic growth is particularly reliant on ER-to-Golgi trafficking. In 

cultured hippocampal neurons, the somatic Golgi apparatus is polarised and oriented 

towards the longest dendrite, preferentially directing cargo to this growing membrane 

domain (Horton et al., 2005). Consistent with this arrangement, pharmacological and 

genetic inhibition of post-Golgi and ER-to-Golgi trafficking dramatically suppresses 

dendritic growth of hippocampal neurons (Horton et al., 2005; Ye et al., 2007). 

Surprisingly, although axonal growth requires membrane trafficking through the Golgi 

(Jareb and Banker, 1997), growing axons appear more resilient in the face of 

reduced secretory trafficking compared to dendrites. For example, knockdown of 

Sar1 (a GTPase involved COPII vesicle budding from the ER (Nakano and 

Muramatsu, 1989)) in 2 DIV hippocampal neurons reduces dendritic but not axonal 

growth (Ye et al., 2007). In contrast, reducing Sar1 in cultured hippocampal neurons 

prior to plating causes a reduction in axonal growth (Aridor and Fish, 2009), 

suggesting that robust and early inhibition of secretory trafficking is required to 

impact the growing axon. In Drosophila ddaC sensory neurons dendritic growth is 

also profoundly reduced by mutations in Sar1, Sec23 and Rab1, all of which function 

in COPII vesicle budding or subsequent anchoring to the cis-Golgi membrane (Lee et 
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al., 2004; Ye et al., 2007). However, axonal growth remains largely preserved (Ye et 

al., 2007).  

Given the importance of Membrin in ER-to-Golgi transport (Hay et al., 1997; 

Shim et al., 1991), these findings are pertinent to our understanding of GOSR2-PME. 

In our recent work we generated Drosophila models harbouring the equivalent of 

either GOSR2-PME mutation and showed that expression of these mutant forms of 

Membrin strongly reduced dendritic but not axonal growth in ddaC sensory neurons 

(Praschberger et al., 2017). Consistent with our in vitro liposome fusion assays, the 

Drosophila equivalent of the ΔK163/164 mutation (ΔK166-Membrin) caused a more 

profound reduction in dendritic growth compared to the equivalent G144W mutation 

(G147W-Membrin) (Praschberger et al., 2017). Importantly, these results suggest 

that partially reducing COPII vesicle fusion can substantially impact dendritic but not 

axonal growth. This in turn may have significant consequences for synaptic 

integration and circuit function in the nervous system of GOSR2-PME patients.  

 

II. Ion channel trafficking 

In neurons, diverse ion channels control the propagation of dendritic graded 

potentials, axonal action potentials, dendritic back-propagating action potentials, and 

calcium-activated synaptic vesicle fusion (Lai and Jan, 2006). Thus, tight regulation 

of ion channel expression within dendrites, axons and the presynaptic domain is 

critical for robust information transfer within the nervous system. While local 

translation of transported mRNAs can occur in axons and dendrites (Cornejo et al., 

2017; Van Driesche and Martin, 2018), the canonical trafficking route of membrane-

localised ion channels involves directed transport via post-Golgi transport vesicles to 

the dendritic or axonal domains (Cornejo et al., 2017; Hirokawa and Takemura, 

2005), necessitating trafficking through the somatic ER and Golgi apparatus.   

Due to this requirement, hypomorphic mutations in GOSR2 might be expected 

to alter ion channel trafficking in neurons, with a concomitant impact on neuronal 
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excitability and neurotransmitter release. Consistent with this concept, in our 

Drosophila models of GOSR2-PME we observed an increase in seizure susceptibility 

at the larval stage that correlated with a broadening of excitatory post-synaptic 

potentials (EPSPs) during repetitive stimulations at the larval neuromuscular junction 

(Praschberger et al., 2017). Interestingly, this effect on motor neuron excitability was 

only observed during high-frequency firing; the amplitude and width of single EPSPs 

was unchanged (Praschberger et al., 2017). In this preparation, severed motor 

neuron axons are electrically stimulated with a suction electrode (Zhang and Stewart, 

2010), bypassing dendritic input. Furthermore, the amplitude and time course of 

spontaneous miniature EPSPs at the larval NMJ was unchanged in Drosophila 

models of GOSR2-PME (Praschberger et al., 2017), implying that the activity of 

postsynaptic glutamate receptors localized in the muscle are unaffected by GOSR2-

PME mutations. Collectively, these results suggest that reduced function of 

Drosophila Membrin results in an alteration in motor neuron excitability that modifies 

action potential waveforms and/or the dynamics of neurotransmitter release during 

high frequency firing. It is currently unclear which cargos contribute to this 

phenotype. However, we posit that it is unlikely to be simply due to a net reduction in 

ion channel trafficking. Instead, we propose that GOSR2 mutations result in an 

imbalance of ion channel activity due to at least two factors: parallel non-canonical 

trafficking pathways and differential sensitivity to changes in ion channel expression.  

Recent studies have shown that mammalian GluA1 AMPA Receptors 

(AMPARs) and Kv2.1 potassium channels can be trafficked to dendritic spines and 

the axon initial segment (AIS) respectively in a Golgi-independent manner (Bowen et 

al., 2017; Jensen et al., 2017). In the former case, GluA1 synthesised locally in 

dendrites is trafficked from the dendritic ER to the ERGIC and subsequently to 

Rab11-positive recycling endosomes, which facilitate insertion of GluA1 to dendritic 

spines (Bowen et al., 2017). In the latter case, somatodendritic targeting of Kv2.1 

channels occurs via the canonical secretory route whereas transport to the AIS is 
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Golgi-independent (Jensen et al., 2017), with the precise sequence of vesicular 

fusion events that deliver Kv2.1 to the AIS yet to be defined.  

These findings have implications for understanding alterations in neuronal 

excitability and plasticity in GOSR2-PME. Ion channels often undergo post-

translational modifications during the secretory pathway. In particular, immature 

‘core-glycans’ (transferred to specific ion channel asparagine residues in the ER) are 

trimmed and modified by Golgi-localised enzymes such as Mannosidases and 

Glycosyltransferases to produce mature N-glycosylated proteins (Moremen et al., 

2012). In the case of GluA1, core-glycosylated AMPARs that bypass the Golgi exhibit 

altered activation kinetics and turnover compared to mature glycosylated 

counterparts (Hanus et al., 2016). Inhibiting canonical ER-to-Golgi trafficking via 

GOSR2 mutations may alter the ratio of mature and immature glycosylated forms of 

GluA1 AMPARs (and potentially other channels), with consequences for synaptic 

plasticity and dendritic integration. Indeed, a recent study linking compound 

heterozygous c430G>T (G144W) and c.2T>G mutations in GOSR2 to muscular 

dystrophy and seizures (where c.2T>G likely results in aberrant use of a downstream 

start codon) found reduced glycolyslation of α-dystroglycan in fibroblasts derived 

from the above patient (Larson et al., 2018), demonstrating that partial loss of 

Membrin function may alter glycosylation patterns.  

For channels such as Kv2.1 that are trafficked to distinct cellular compartments 

through canonical and non-canonical routes, GOSR2 mutations may perturb non-

canonical pathways to a lesser degree relative to canonical secretory trafficking, 

resulting in cellular effects on excitability that are compartment-specific. We note that 

Membrin also localises to the ERGIC, albeit at relatively lower levels compared to the 

cis-Golgi (Hay et al., 1998; Volchuk et al., 2004). Thus, GOSR2 mutations may 

potentially affect non-canonical trafficking routes involving ERGIC. Nonetheless, we 

would expect the canonical secretory route, which incorporates several Membrin-
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dependent steps (ER to ERGIC, ERGIC to cis-Golgi, and intra-Golgi), to be more 

strongly affected by GOSR2 mutations compared to Golgi-independent routes. 

 Advances in epilepsy genetics have also revealed that the human nervous 

system exhibits a non-uniform sensitivity to perturbations in expression of 

membrane-associated ion channels and regulators of neurotransmitter release. For 

example, haploinsufficiency of the sodium channel SCN1A and the presynaptic 

SNARE STX1B cause Dravet syndrome and fever-associated epilepsy respectively 

(Claes et al., 2001; Schubert et al., 2014). In contrast, loss-of-function mutations in 

KCNMA1, HCN2, and KCNJ10 (encoding calcium-activated potassium channel, 

cyclic nucleotide-gated channels, and voltage-gated potassium channels 

respectively) are associated with epilepsy only when homozygous; heterozygote 

carriers are unaffected (Bockenhauer et al., 2009; DiFrancesco et al., 2011; Tabarki 

et al., 2016). Thus, nervous system function is robust to reductions in the expression 

of some proteins but not others. Since GOSR2 mutations are predicted to cause 

relatively mild trafficking defects, haploinsufficient ion channels and components of 

the synaptic release machinery may represent particularly relevant classes of cargos 

to GOSR2-PME pathophysiology, deficient trafficking of which may contribute to the 

generalized epilepsy and cortical myoclonus that are hallmarks of this disease.  

 

FUTURE DIRECTIONS: HYPOTHESES AND SPECULATIONS 

To date, our knowledge of the pathophysiological mechanisms underlying GOSR2-

PME has been hampered by the lack of in vivo models of this disorder. Our recent 

study, in which we generated Drosophila models of both GOSR2-PME mutations, 

represents an initial step towards understanding genotype-phenotype relationships in 

GOSR2-PME and elucidating how partial disruption of the secretory pathway 

selectively impacts neurons (Praschberger et al., 2017). However, two rounds of 

whole genome duplication are thought to have occurred in vertebrates following 

divergence of the insect and vertebrate lineages (Dehal and Boore, 2005). The 
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duplication and subsequent diversification of vertebrate ion channel paralogs may 

result in important differences in the complement of Membrin-dependent cargos 

between Drosophila and mammals. Moving forward, it will therefore be critical to 

perform neuroanatomical and electrophysiological analyses in mammalian models of 

GOSR2-PME and/or iPSC-derived neurons from GOSR2-PME patients. 

Encouragingly, heterozygous loss of GOSR2 has been recently been shown to 

cause an abnormal gait phenotype in male mice (Meehan et al., 2017), pointing to a 

conserved role for GOSR2 in regulating coordinated locomotion within mammalian 

species.    

Nonetheless, it is interesting to speculate as to which neuronal phenotypes 

might be shared between Drosophila and future mammalian GOSR2-PME models. 

Given the importance of the secretory pathway in controlling dendritic growth in both 

mammals and flies (Horton et al., 2005; Ye et al., 2007), we predict that GOSR2 

mutations will similarly reduce dendritic growth in mammalian neurons. Due to the 

increased diversity of ion channels and neuronal subtypes in the mammalian brain, 

as well as species-specific regulation of ion channel expression, it is more difficult to 

infer the impact of GOSR2 mutations on mammalian neuronal excitability from 

Drosophila data. Yet given that many key ion channel subtypes (including sodium, 

calcium, potassium and TRP channels) are strongly conserved between mammals 

and Drosophila (Wangler et al., 2015), it is tempting to hypothesize that GOSR2 

mutations also disrupt repetitive firing patterns in GOSR2-PME patients in a manner 

that contributes to seizure generation. With these speculations in mind, we suggest 

two avenues of exploration that may shed particular light on how nervous system 

dysfunction arises in GOSR2-PME.    

 

I. Differential susceptibility of neuronal subtypes  

In our initial study involving Drosophila models of GOSR2-PME (Praschberger et al., 

2017), we sought to address why neurons appeared particularly vulnerable to 
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GOSR2 mutations. While much work remains to fully comprehend this issue, we can 

now suggest at least two plausible answers: robust secretory trafficking is required to 

transport the large volume of plasma-lipid membrane required for dendritic growth, 

and precise spatio-temporal control of the trafficking of ion channels and synaptic 

proteins is critical to generate appropriate neuronal firing patters. These demands on 

the secretory pathway are largely unique to excitable cells within the nervous system.  

In future studies, a more intriguing question can now be tackled: not ‘why 

neurons?’ but instead ‘which neurons?’. Cognition is relatively unimpaired in the 

majority of GOSR2-PME patients (Boisse Lomax et al., 2013; Corbett et al., 2011; 

van Egmond et al., 2014), suggesting that neuronal function in many regions of the 

brain remains largely intact in the face of partial perturbation of the secretory 

pathway. Which cell-types might therefore be most likely to contribute to ataxia, 

myoclonus and tonic-clonic seizures in GOSR2-PME patients? Extrapolating from 

Drosophila models of GOSR2-PME (Praschberger et al., 2017), we hypothesise that 

two populations of neurons may be particularly impacted by reduced secretory 

trafficking (Figure 3). Firstly, neurons with complex dendritic arborisations, growth of 

which requires large volumes of membrane trafficking from the ER to the cis-Golgi 

(Pfenninger, 2009). Secondly, rapid-firing neurons, such as neocortical and Oriens-

alveus interneurons (Erisir et al., 1999; Lien and Jonas, 2003). Of note, cerebellar 

Purkinje cells fulfil both of the above criteria, since their dendritic fields are highly 

elaborate (Ramón y Cajal, 1995) and they exhibit spontaneous high-frequency action 

potentials, with a population mean of ~ 39 Hz but in some cases firing at rates of > 

80 Hz in cerebellar slices (Hausser and Clark, 1997). Given the well-documented link 

between Purkinje cell dysfunction and ataxia (Hoxha et al., 2018; Kasumu and 

Bezprozvanny, 2012), this neuronal subtype is a prime suspect for contributing to 

motor defects in GOSR2-PME. In support of this premise, data from the Allen Brain 

Atlas suggests that Membrin is highly expressed in the murine cerebellum, as well as 

the isocortex, olfactory areas and hippocampal formation (Lein et al., 2007). Such 
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cell-type-selective effects could potentially explain the relatively specific impact of 

GOSR2 mutations on brain regions controlling coordinated movement and seizure 

susceptibility.   

 

II. Critical cargos 

Given the sheer number of proteins that pass from the ER to the cis-Golgi in 

neurons, the challenge of identifying key pathogenic alterations in cargo trafficking in 

GOSR2-PME appears daunting. However, a small-scale analysis of synaptic proteins 

in GOSR2-PME Drosophila models suggests that robust reductions in protein 

expression are far from universal in the nervous system of GOSR2-PME patients. 

We assessed expression of six membrane-associated synaptic proteins at the larval 

neuromuscular junction in GOSR2-PME Drosophila models. Surprisingly, only one of 

these exhibited a significant reduction in steady-state levels (an ~ 30-40% decrease) 

at this synapse: cysteine-string protein (CSP) (Praschberger et al., 2017). The 

mammalian ortholog of CSP, cysteine-string protein alpha (CSPα), regulates 

synaptic proteostasis by controlling the conformation of synaptic proteins such as 

SNAP-25 (Sharma et al., 2012; Sharma et al., 2011). Furthermore, mutations in 

DNAJC5 (encoding CSPα) cause adult-onset neuronal ceroid lipofuscinosis (ANCL), 

which similarly to GOSR2-PME is characterised by ataxia, myoclonus and seizures 

(Noskova et al., 2011). Thus, in addition to suggesting a potential molecular link 

between aspects of GOSR2-PME and ANCL, these results raise the possibility that 

the number of neuronal proteins exhibiting large trafficking deficiencies in GOSR2-

PME may be smaller than at first expected. Future studies examining the expression 

of ion channels and synaptic proteins in mammalian GOSR2-PME models will again 

be critical for testing this prediction.  

 

CONCLUSIONS 
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GOSR2-PME is a multifaceted and devastating disorder. Several studies have 

provided detailed clinical characterisations of the effects of GOSR2-PME mutations 

on movement control, seizure generation, and motor neuron integrity (Boisse Lomax 

et al., 2013; Corbett et al., 2011; Praschberger et al., 2015; van Egmond et al., 2015; 

van Egmond et al., 2014). More recently, how GOSR2-PME mutations impact 

Membrin’s function as a cis-Golgi SNARE protein has been analysed (Praschberger 

et al., 2017; Völker et al., 2017). Drosophila models of this disease have further 

revealed widespread effects of GOSR2 mutations on dendritic growth and 

information transfer in an insect nervous system (Praschberger et al., 2017). Yet 

despite these works the precise downstream molecular underpinnings of GOSR2-

PME remain poorly understood, particularly since only one study to date has 

investigated the effect of GOSR2-PME mutations on neuronal function (Praschberger 

et al., 2017). Here we have sought to identify key knowledge gaps and generate 

hypotheses that may guide future investigations of GOSR2-PME. These hypotheses 

will require testing in mammalian models of this disease, complemented by high-

throughput systems such as Drosophila. While outside the scope of this review, cell 

adhesion molecules involved in trans-synaptic stability (Ribeiro et al., 2018), and 

secreted proteins involved in synaptogenesis such as Wnts and BMP ligands (Budnik 

and Salinas, 2011; Deshpande and Rodal, 2016; Osses and Henriquez, 2014) are 

also interesting candidates for involvement in GOSR2-PME pathophysiology. Future 

studies may identify critical secretory cargos underlying nervous system dysfunction 

in GOSR2-PME, which in turn may advance our knowledge of how ataxia, 

myoclonus and seizures arise in other neurological diseases. GOSR2-PME thus 

highlights the on-going clinical relevance of the study of secretory trafficking and 

SNARE function in neurons.  
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FIGURE LEGENDS 

Fig. 1. The role of Membrin in the secretory pathway. The early stages of secretory 

trafficking in a Eukaryotic cell are depicted. For simplicity, the ER-Golgi intermediate 

compartment (ERGIC) is not shown. Anterograde transport of cargo from the 

endoplasmic reticulum (ER) to the Golgi is mediated by COPII vesicles that bud from 

the ER and fuse with the cis-face of the Golgi stack. This fusion step is mediated by 

the v-SNARE Bet1 localized to the COPII vesicle membrane (magenta) and the t-

SNAREs Membrin, Sec22b and Syntaxin-5 in the cis-Golgi membrane (green). 

Membrin expression is maximally enriched on the cis-face of the Golgi and declines 

from the cis- to the trans-Golgi (Volchuk et al., 2004).     

 

Fig. 2. Location and functional impact of mutations in the Membrin SNARE domain 

linked to GOSR2-PME. Top: schematic illustrating location of the SNARE domain 

and transmembrane domain (TMD) within the Membrin amino-acid sequence. 

Bottom: alignment illustrates amino-acid conservation of the Eukaryotic 

Membrin/Bos1 SNARE domain between three metazoan (Homo sapiens, Mus 

musculus and Drosophila melanogaster) and two unicellular fungi (Saccharomyces 

pombe and Saccharomyces cerevisiae) spanning ~ 1 billion years of evolutionary 

divergence. Black shading indicates ≥ 80% amino-acid sequence conservation 

between the five species; grey shading indicates ≥ 80% functional conservation. 

Critical hydrophobic layers (-7 to +8) within the SNARE domain are shown in red. 

Locations of the G144W and K163/164 mutations linked to GOSR2-PME are 

indicated (Boisse Lomax et al., 2013; Corbett et al., 2011; Praschberger et al., 2015). 

Functional effects of each mutation, based on liposome fusion assays using S. 

cerevisiae Bos1, and likely overall impact on the secretory pathway, are summarized 

(Praschberger et al., 2017). Neurons may be selectively impacted by GOSR2-PME 

mutations due to their stringent requirement for robust and tightly regulated secretory 

trafficking.   
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Fig 3. A hypothetical model of the impact of GOSR2-PME mutations on distinct 

neuronal subtypes. We predict that due to their comparatively high secretory 

demands, neurons with elaborate dendritic fields may be particularly sensitive to mild 

disruption of the secretory pathway. Extrapolating from Drosophila models, we also 

predict that information transfer from rapid-firing neurons may be preferentially 

perturbed by GOSR2-PME mutations due to trafficking defects that disrupt the 

complex balance of ion channels required to maintain burst firing.  
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