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Abstract—Mutation testing is expensive due to the large
number of mutants, a problem typically tackled using selective
techniques, thereby raising the fundamental question of how
to evaluate the selection process. Existing mutant selection
approaches rely on one of two types of metrics (or assessment
criteria), one based on adequate test sets and the other based on
inadequate test sets. This raises the question as to whether these
two metrics are correlated, complementary or substitutable for
one another. The tester’s faith in mutant selection as well as the
validity of previous research work using only one metric rely on
the answer to this question, yet it currently remains unanswered.
To answer it, we perform qualitative and quantitative comparis-
ons with 104 different projects, consisting of over 600,000 lines of
code. Our results indicate a strong connection between the two
types of metrics (R2 = 0.8622 on average), providing evidence
that it may be valid to adopt only one metric.

I. INTRODUCTION

Software testing plays an essential role in assuring soft-
ware quality. Well-designed tests1 may detect more faults
than poorly-designed ones [3], [4], [5]. Mutation testing has
been shown to have powerful fault-revealing ability [6], [7],
[8], [9]. Recent advanced mutation tools have also gained
adoptions from industry, e.g., mutation testing has been used
by developers from The Ladders, Sky, Amazon, State Farm,
Norways e-voting system, and the Linux kernel [10], [11],
[12]. In (first order [13]) mutation testing, a set of faulty
programs (i.e., mutants) are generated by injecting one error at
a time according to some transformation rules (i.e., mutation
operators). A test set is said to kill a mutant when at least
one of its tests causes behavioral differences between this
mutant and the original program. The proportion of killed
mutants is called the mutation score. Higher mutation scores
are preferred, because they indicate that the test set may
potentially detect more real faults.

Although powerful in evaluating software tests, mutation
testing is currently believed to be expensive, mainly due to
the requirements of running a large number of mutants against
the test set under evaluation. To tackle this problem, selective
mutation testing was proposed [14], and has become a popular
way of reducing the costs: it is adopted by many mutation
tools (e.g., PIT [10], Major [15], and Javalanche [16]), and is
also widely used in various mutation testing applications, such
as real fault simulation [17], [18], test generation [19], [20],

1 In this paper, following existing work on selective mutation testing [1], [2],
we regard each test method as a “test”.

[21], fault localization [22], regression testing [23], [24], and
program repair [25].

In selective mutation testing, it is crucial to select a subset
of mutants that can represent the whole set of mutants [26].
Therefore, mutant selection assessment metrics (abbreviated
as “metrics” in this paper) to measure the representativeness
of the selected mutants are important. To date, two types of
mutant selection assessment metrics have been proposed: the
adequate-test-based type and inadequate-test-based type [26].
Both types of metrics compare the selected mutants and the
whole set of mutants in evaluating the fault-revealing ability of
test sets. The former type is based on constructing adequate
test sets that can kill all the selected mutants, whereas the
latter is based on constructing inadequate test sets that do
not necessarily kill all the selected mutants (see details in
Section II).

These two types of metrics, although having different fo-
cuses, could be both adoptd for measuring how well the
selected mutants represent the whole set of mutants. It is thus
important to learn their association for better understanding
and application, which is important for both testers and
researchers. For testers, if they learn that these two metrics
provide different conclusions regardint the same mutant subset,
they may get confused with which metric to choose and
even wonder whether the metrics are designed properly. For
researchers, we found that the current work exploring mutant
selection either adopts only one type of metric or uses both
without further comparison. For example, Barbosa et al. [27]
used the adequate-test-based metric to determine sufficient
mutation operators in C language; Zhang et al. [28] used
the adequate-test-based metric to compare different mutant
selection techniques; Zhang et al. [1] and Gopinath et al. [29]
used the adequate-test-based and inadequate-based metrics
respectively to investigate the scalability of selective mutation
testing; Zhang et.al. [2] investigated different mutant selection
techniques using both types of metrics separately but without
any comparison between them. A big difference in the metric
values may reveal that it is essential to consider both metrics
in the experiments.

In this paper, we present the first study to investigate the
relationship of the two types of mutant selection assessment
metrics. We first make direct comparison between different
metrics through collecting the their values calculated based
on identical mutant subsets. Additionally, in selective mutation



testing, with different experimental factors (e.g., the number of
tests, test density, and the number of mutants), the mutants se-
lected in the same strategy may have very different represent-
ativeness. We then investigate whether the two types of metrics
show similar or different patterns regarding their associations
with the factors. For each of the two aspects mentioned
above, we conduct qualitative analysis through presenting and
observing figures, as well as quantitative analysis through
regression analysis. The analysis results reveal that the values
of the two types of metrics have strong connection, with an
average Adjusted R2 of 0.8622. Additionally, they have similar
associations with different experimental factors. These results
provide proof that the two types of metrics could be substituted
for one another with high probability.

In the paper, by default, we use mutation tool PIT to
generate mutants, and adopt the random mutant selection
strategy2 following previous related work [28], [1]. To reduce
the threats caused by such default experimental design, we
replicate our study with another popular mutant selection
strategy: operator based mutant selection3. The replication
shows similar results which further verify the validity of our
conclusions.

To summarize, the paper makes the following contributions:
(1) Empirical evidence on the strong association of the
two metrics. We perform our study on 104 GitHub projects
(summing up to 606,886 SLOC and 827,971 mutants). The
results indicate that the two types of metrics are strongly
connected with an average Adjusted R2 of 0.8622. We also
observe similar patterns regarding their associations with the
seven experimental factors. The findings firstly provide evid-
ence that the metrics have strong association, and thus that it
may be reasonable to adopt only one metric when assessing
the representativeness of selected mutants in scientific research
activities.
(2) Advice and implication. Our study also reveals a number
of other interesting findings and practical implications based
on regression analysis: the strategy for dealing with equivalent
mutants has negligible impact on the mutant selection results
(validating the treatment of equivalent mutants in most previ-
ous work on selective mutation testing [2], [26], [30], [31],
[1], [28] for the first time). We also confirm the previous
finding [1], [32] that larger projects may need smaller ratio
of mutants to achieve an expected representativeness.

The rest of this paper is organized as follows. Section II
introduces the background of the two types of metrics. Sec-
tion III introduces the experimental design process. Section IV
presents the comparison results. Section V discusses the threats
through empirical comparison between two mutant selection
approaches and two most popular mutation tools. Section VII
concludes.

II. MUTANT SELECTION METRICS

In selective mutation testing, the selected mutants are sup-
posed to represent the whole set of mutants in evaluating the

2 To select mutants from the whole mutant set randomly.
3 To select mutants generated by a subset of mutation operators.

fault-revealing ability of tests. Previous work have proposed
three categories of mutant selection techniques: operator-based
mutant selection [33], [28], random-based mutant selection [1],
[28], [1], and element-based mutant selection [2]. In this paper,
as in previous work [1], we choose random-based mutant
selection, which has been found to represent the state-of-the-
art for mutant selection approaches [2], [28].

To measure the representativeness of the selected mutants,
two types of mutant selection assessment metrics have been
proposed: the first one is based on tests that are adequate
for the selected mutants [26]; the other one is based on
inadequate tests [34]. To explain the details of the two types
of metrics, for a program, we use Me to represent the set of
equivalent mutant4 that are not killed by any way, and thus
should be removed as they are useless in evaluating the test.
The remaining mutants are called non-equivalent mutants, i.e.,
Mne. We use Ms to represent the subset of mutants selected
from Mne (i.e., Ms ⊂ Mne). Ms is supposed to represent Mne

in selective mutation testing.
Adequate-Test-based Metric. This metric is calculated based
on adequate test sets for the selected mutants [26]. In par-
ticular, for the set of selected mutants Ms , we first construct
a group of adequate test sets {AT1, AT2, ..., ATn}, each of
which (i.e., ATi , where 1 ≤ i ≤ n) is required to kill all
the mutants in Ms . Then we execute the whole set of mutants
Mne against each ATi , recording the number of mutants within
Mne killed by each ATi (denoted as #Mne(ATi)). We use
MS(Mne, ATi) to represent the mutation score of ATi on Mne

(i.e., MS(Mne, ATi) =
#Mne(ATi)

#Mne
). Finally, we calculate to

what extent Ms represents Mne using these adequate test sets
through the following formula:

S(Ms) =
1
n

∑n

i=1
MS(Mne, ATi) (1)

In this formula, S(Ms) is the representativeness of selected
mutants Ms when evaluating any test set. The values of S(Ms)

range from 0 to 1. The larger S(Ms) is, the better Ms can
represent Mne. Ideally, when S(Ms) is equal to 1, Ms is as
sufficient as the whole set Mne in evaluating a test set.
Inadequate-Test-based Metric. The inadequate-test-based
metric is defined as the correlation criteria between the real
mutation score calculated on Mne and the approximate muta-
tion score calculated on Ms [34]. In particular, we randomly
construct a group of test sets {NT1, NT2, ..., NTn}, each of
which (i.e., NTi where 1 ≤ i ≤ n) is not necessarily adequate
to Ms (i.e., may not kill all the mutants in Ms). Then, we
execute each test set NTi against both Ms and Mne, recording
the mutation score of NTi on the selected mutants Ms (denoted
as MS(Ms, NTi)) and the mutation score of NTi on the whole
set of non-equivalent mutants Mne (denoted as MS(Mne, NTi)).
Finally, we calculate the correlation coefficient based on

4 Strictly speaking, equivalence is not decidable, but we use the term here
to decide those mutants that are unkillable with the test suite (see more in
Section III-D).



Table I
THE 7 EXPERIMENTAL FACTORS

Category Factor Explanation

Program

SLOC program size (i.e.,the executable lines of code)
M total number of mutants
Mne number of non-equivalent mutants

scale Rne proportion of non-equivalent mutants to all mutants

Tests T total number of tests (i.e., test methods in JUnit testing)
Td test density (i.e., the number of tests per hundred mutants)

Metric Tc average size of constructed test sets

the pairs between MS(Ms, NTi) and MS(Mne, NTi) using the
following formula:

C(Ms) = Corr(〈MS(Ms, NTi), MS(Mne, NTi)〉, 1 6 i 6 n) (2)

In this formula, C(Ms) represents the representativeness of
selected mutants Ms at evaluating any test set, while Corr
represents a correlation coefficient. Note that the ideal C(Ms)

is supposed to be around 1. The closer to 1 C(Ms) is, the better
Ms can represent the whole set of mutants Mne. So far, the
most widely adopted correlation coefficient function in select-
ive mutation testing are R2, Kendall τb , and Pearson [35],
[2]. In particular, R2 [36] is a determination coefficient that is
used to evaluate how close the data are to the fitted regression
line; Kendall τb [36] is a rank correlation coefficient, and
can be used to evaluate the concordance of the orderings of
MS(Ms, NTi) and MS(Mne, NTi)5; Pearson [37] is a linear
correlation coefficient that measures the strength of the linear
relationship between MS(Ms, NTi) and MS(Mne, NTi). The
value range is [0,1] for R2, and [-1,1] for Kendall τb and
Pearson.

III. EXPERIMENTAL DESIGN

We statistically compare the two types of metrics in terms
of their values, and their associations with seven different
experimental factors that might have influence on them (see
Section III-B).

Our experimental study aims to answer the following three
research questions:
RQ1: Are the two types of metrics consistent with each
other qualitatively? This research question investigates the
consistency of different metrics through observing the asso-
ciations between different variables (i.e., metrics and experi-
mental factors), presented by figures.
RQ2: Are the two types of metrics consistent with each
other quantitatively? This research question investigates the
consistency of different metrics through observing the results
of regression analysis between different variables.

The research questions check whether the two types of
metrics are complementary or substitutable for one another.
They are important for researchers: the outcome would indic-
ate whether the previous related work using only one type of
metric have serious threats. It would also provide guidelines
on future research investigating selective mutation testing on
whether both types of metrics should be adopted.

5 The concordance refers to the fact that if Ms evaluates NTi to be better than
another test set NTj , Mne will do the same. Thus, high Kendall τb may
indicate that Ms can differentiate the quality of different test sets as well as
Mne does.

Additionally, to reduce the threats caused by mutant selec-
tion strategies (random mutant selection by default), we rep-
licate our experiments with another popular mutant selection
strategy: operator based mutant selection. These threat studies
are presented in Section V.

A. Subjects, Tests, and Mutants

To avoid bias in subject selection, we started from the top
1000 popular Java projects from Github in June of 2015. 712
projects are removed since they are either multi-module or
cannot be successfully processed by the tools we used (i.e.,
Maven6 and PIT7). Furthermore, 184 very small projects are
removed, since there is not enough data to perform effective
analysis. Specifically, we remove the projects that belong to
one of the following three criteria: (1) the program size is
smaller than 100 SLOC (i.e., lines of code), (2) the number of
tests is smaller than 10, (3) the number of generated mutants
is smaller than 200. Finally, the remaining 104 projects are
regarded as the target subjects in this study.

The sizes of the remaining projects range from 170 to
77,593 SLOC8, adding up to 606,886 SLOC. Each subject has
a suited test suite, which is collected by the developers during
its development. For each subject, we use PIT (i.e., with all its
14 mutation operators9) as the base tool to generate mutants,
as PIT has been demonstrated to be more robust [39] to enable
a large-scale experimental study. More details of the experi-
mental study (including the implementation, the subjects, and
experimental data) are available on our homepage [40].

B. Independent Variables

We consider the following independent variables:
IV1: Mutant Selection Metrics. We study two types of
mutant selection metrics: (1) adequate-test-based metric, rep-
resented as AMetric; (2) inadequate-test-based metric, repres-
ented as BMetric. For BMetric, following previous work [35],
[2], we use three widely adopted correlation coefficient func-
tions: R2, Kendall τb , and Pearson. For ease of presentation,
we refer to R2, Kendall τb , and Pearson based BMetric as
BMetricr , BMetrick , and BMetricp , respectively.
IV2: Experimental Factors. Based on Formulae (1) and (2),
we realize that the two types of mutant selection assessment
metrics may be affected by the number of mutants, the total
number of tests, and the approach to test suite construction
when calculating the metric values. Thus, we check all the
possible experimental factors in terms of three aspects: the
program scale, the tests, and metric construction. Finally,
seven factors are identified, as Table I shows, and are used
to investigate their associations with the two types of metrics.
IV3: Ratios of Selected Mutants. Random mutant selection
has been shown to be state-of-the-art selective mutation testing

6 https://maven.apache.org/
7 PIT is a popular mutation tool for Java programming language, which is

accessible at http://pitest.org/.
8 The number of lines of executable code is reported by LocMetrics, http://

www.locmetrics.com.
9 Note that with all the mutation operators, PIT does not have the issue of not

subsuming branch coverage [38].

https://maven.apache.org/
http://pitest.org/
http://www.locmetrics.com
http://www.locmetrics.com


approach [2], [41], [1], [28]. According to previous work [1],
[2], for most projects, 1% mutants may have a metric value
above 0.8 [1], and 5% mutants can provide precise mutation
testing results (i.e., mutation score) [2]. Therefore, in this
study, we use five ratios of randomly selected mutants (denoted
as r):1%, 2%, 3%, 4%, and 5%.

Additionally, to reduce the threats of validity of our results,
we explore the following independent variable in Section V:
IV4: Mutant Selection Strategies. Random mutant selection
and operator-based mutant selection are the two dominant
mutant selection strategies [2]. In this paper, we mainly
investigate the former strategy, and also check if using the
latter strategy would yield similar results afterwards.

C. Dependent Variables

We use regression analysis to statistically analyze the associ-
ations between the metric values and the experimental factors.
The same as previous work on statistics [43], [44], we consider
the following two widely adopted dependent variables as a
measurement of our regression analysis.
DV1: p-value. In statistics, the p-value [45] is used to test the
null hypothesis that the coefficient of the variable of interest
is equal to zero (no effect). A low p-value (the 0.05 threshold
is typically adopted) indicates that the null hypothesis can be
rejected, and thus the responding variable has a non-zero effect
on the outcome of the model.
DV2: Adjusted R2. The Adjusted R2 [46] is widely adopted
to measure how well the data fit a statistical model. It is a
modified version of R2, which is adjusted for the number of
predictors in the model. The closer Adjusted R2 is to 1, the
better the data fit the model.

D. Experimental Procedure

To perform qualitative and quantitative analysis to com-
pare the two types of metrics, we firstly conduct selective
mutation testing to collect raw data on the 104 subjects (see
Section III-D1) and use figures to present the associations
between different sets of data (see Section III-D2). We then
perform regression analysis to further confirm the associations.
In the end, we replicate our experiments with another popular
mutation tool and another mutant selection strategy to invest-
igate the validity of the results. In this section, we present the
experimental process of each step. More details can be further
referred in Section IV and Section V.

1) Data Collection: First, we conduct mutation testing
on all the subjects with the PIT, and collect the set of
non-equivalent mutants for each subject. Following the same
procedures in the previous work [34], [28], [2], [1], we adopt
the mutants that cannot be killed by any test to approxim-
ate equivalent mutants, i.e., taking the mutants that can be
killed by any test as non-equivalent mutants. More discussion
about the impacts of equivalent mutants can be referred to
Section IV-B1.

Second, we randomly select mutants from the set of non-
equivalent mutants to construct different ratios of selected
mutant sets (i.e., r ∈ {1%, 2%, 3%, 4%, 5%}). To reduce the

bias of random selection, for each subject, we randomly
construct 50 sets of mutants M1, M2, ..., M50 for each ratio r
following the previous work [2].

Third, for each set of selected mutants Mi(1 6 i 6 50), we
construct test sets according to the mutant selection metrics.
For AMetric, as previous work [2], [1] did, we construct 20
adequate test sets for Mi , each of which is constructed by
randomly including one test at a time, until all the mutants
in Mi are killed. For BMetric, as previous work did [2], we
use 100 different test sets each of which is constructed by
randomly selecting tests from the original test suite. Thus, the
size of each test set (i.e., number of tests in a test set) is a
random number between 1 and the total number of tests for
the subject. Note that when constructing the adequate test sets,
the newly added tests are not guaranteed to kill additional
mutants that were not killed by the existing tests, since in
practice developers construct such test suites without knowing
whether each test kills additional mutants ahead of time.

Fourth, for each set of selected mutants, we calculate the
metric values according to Formulae (1) and (2). Following the
previous work [28], [2], [1], [29], we calculate the average
results for AMetric based on the 50 mutant sets selected
with specific r each of which has 20 adequate test sets and
the average results for BMetric based on the 50 mutant sets
selected with specific r each of which has 100 non-adequate
test sets by using each of the three correlation values (i.e., R2,
Kendall τb , and Pearson).

Through the preceding procedure, we collect raw data
for AMetric and BMetric, which serve as the object of the
following statistical analysis.

2) Qualitative Analysis: To analyze the data we collected,
we use figures to present the metric values that belong to
the same proportion of selected mutants10, and observe the
consistency.

Next, to compare the two metrics’ associations with the
seven experimental factors, we plot figures between each
metric and each experimental factor to observe the general
association patterns.

3) Quantitative Analysis: To further confirm the observa-
tions and conclusions drawn from the data collected qualit-
atively, we perform simple and multiple regression analysis
between different metrics and between metrics and different
experimental factors. If the association is non-linear, we trans-
form the factors into other forms (e.g., its logarithmic value)
using curve fitting so that linear models still fit [47]. In partic-
ular, we perform simple regression analysis to test the simple
hypothesis of association [48], i.e., how an experimental factor
is associated with a metric.

4) Experiments Replication: Lastly, to check whether
mutant selection strategies are threats to the observed conclu-
sions, we reproduce the results with different mutant selection
strategies (random and operator-based mutant selection). We
then check if we can get similar conclusions. Positive results

10 The values of the two metrics for each proportion are calculated based on
identical mutant subsets.



would reveal that our results and conclusions are reliable
on different mutation tools and different mutant selection
strategies.

IV. RESULTS AND ANALYSIS

In this section, we present our results and analysis of the
qualitative analysis (in Section IV-A) and quantitative analysis
(in Section IV-B). For each kind of analysis, we introduce the
results of direct comparison between different metric values
and the results of factor association comparison respectively.
The investigation about whether mutation tools or mutant
selection strategy would yield similar results is presented not
in this section but in Section V.

It is worth mentioning that both types of metrics are
proposed to measure the representativeness of the selected
mutants, it is interesting to check the consistency of their
measurement results. In our study, all the values of AMetric
and BMetric are collected based on identical selected mutants,
and thus are comparable.

A. Qualitative Analysis

We introduce the associations between different metrics in
Section IV-A1, and the associations between the metrics and
some experimental factors in Section IV-A2.

1) Qualitative Direct Comparison: Based on the experi-
mental procedure described in Section III-D, for each project
we would get the values of different metrics under each
ratio r (i.e., r ∈ {1%, 2%, 3%, 4%, 5%}) of selected mutants.
When performing direct comparison, we then plot these metric
values and observe the associations between the two types
of metrics. In particular, as BMetric has three types (i.e.,
BMetricr , BMetrick , BMetricp), three figures are presented,
with the AMetric as the horizontal axis, and each of the
BMetric as the vertical axis.

Figure 1 presents the qualitative comparison results. The
black line in each figure represents the function y = x. The
first sub-figure shows the association between AMetric and
BMetricr . From this sub-figure, there is a lot of space between
the colorful lines and the black line, and the space becomes
less as the values of AMetric increase. Additionally, there is
no obvious difference between different colorful lines. Thus,
the values of AMetric are larger than BMetricr ; when the
values of AMetric increases, AMetric and BMetricr become
closer; the ratios of selected mutants have no influence on
the relations between the two metrics. The second sub-figure
shows the association between AMetric and BMetrick . From
this sub-figure, the correlation between the values of AMetric
and BMetrick is similar to that in the first sub-figure. Besides,
the values of AMetric also tend to be larger than BMetrick .
The third sub-figure shows the association between AMetric
and BMetricp . From this sub-figure, the values of AMetric
and BMetricp are the closest among all the three sub-figures.
Additionally, the same as the first two sub-figures, there is no
obvious difference between the colorful lines, demonstrating
that both types of metrics are well designed and are stable
for different selective mutation testing techniques. Thus, the

values of AMetric tend to be very close to BMetricp for the
five ratios of selected mutants.

From Figure 1, there is obvious qualitative assosiation
between AMetric and BMetricr /BMetricp/BMetrick . We fur-
ther present the quantitative analysis results between all the
metrics in Section IV-B.
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Figure 1. Comparison between metric values. The horizontal and vertical
axises are different metrics. The black line in each sub-figure represents the
function y = x. Each colorful line represents the smoothed conditional mean
values for some ratio of selected mutants. The closer these colorful lines are
to the black line, the closer the values of the horizontal axis are to those of
the vertical axis. From this figure, the metric values are not necessarily equal
to each other, but have obvious associations.

2) Qualitative Factor Comparison: We plot figures
between each metric and each experimental factor to observe
the general association patterns.

In practice, selective mutation testing is often applied with
certain experimental settings, and thus it is crucial to compare
different metrics in terms of the impacts of different experi-
mental factors on them. For example, previous work [1] found
that when using AMetric as the mutant selection assessment
criterion, larger projects tend to require smaller proportion of
selected mutants, while it is still unknown whether such pattern
still exists for BMetric, or whether such pattern exists for other
experimental factors.

Based on the experimental procedure described in Sec-
tion III-D, for each project we would get the values of different
metrics as well as the seven experimental factors under each
mutant selection ratio. To further compare the two types of
metrics on their associations with different factors and search
for implications for practical selective mutation testing, we
then plot each metric value and each experimental factor to
observe and compare their associations. Because there are four
metrics and seven experiemntal factors, we present 4*7 = 28
(sub)figures all together. For each figure, we treat the factor
value as the horizontal axis, and the metric value as the vertical
axis.

Figure 2 presents the results. Each sub-figure includes one
experimental factor. From these figures, for the two types
of metrics, the shapes of the lines in different sub-figures
are similar, indicating that the two types of metrics have
similar associations with the seven factors. For all the metrics,
the lines of code, the number of non-equivalent mutants,
the test number, and size of adequate tests show non-linear
associations with the metric values, and may impact the metric
values in a great deal. Specifically, among different projects,
when the values of these factors increase, the metric values (of
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Figure 2. Associations between the seven factors and metrics. The left column presents the results of AMetric, and the remaining columns present the results
of BMetric. BMetric Rs, BMetric Ken, BMetric Pear represent BMetricr , BMetrick , and BMetricp seperately. In each sub-figure, the horizontal
axis represents the value of each factor; the vertical axis represents the value of AMetric or BMetric. Different colors represent the five ratios of selected
mutants. Each point in the figure represents the corresponding metric value for each experimental factor, and the lines represent the smoothed conditional
mean values of points.

the same ratio of selected mutants) would increase rapidly at
first, then begin to flatten, and finally reach a stable value that
is close to 1.0. For example, consistent with previous work [1],
[32], a program with more mutants tend to have higher metric
values under the same ratio of mutant selection.

The findings above indicate that developers should adjust
the proportion of selected mutants according to the sizes of

different projects: smaller projects may need larger proportion
of mutants to have a good representativeness.

Also, our results firstly show that no metric has clear
changing trend with the growth of test density or proportion
of non-equivalent mutants, indicating that these two factors do
not have clear impact on the metric values. For BMetric, as
the average size of the non-adequate test sets is nearly half



of the size of the total tests, the association between the size
of non-adequate test sets and the metric is very similar to the
association between the size of the total tests and the metric
values. More details for the analysis of the impacts of different
experimental factors can be referred to Section IV-B1.

Based on our observations from the above qualitative
analysis in dicrect value comparison and factor association
comparison, we have the following conclusion:

Finding 1: The adequate-test-based metric (i.e., AMet-
ric) and the inadequate-test-based metrics (i.e., BMetricr ,
BMetrick , and BMetricp) are consistent with each other
qualitatively.

B. Quantitative Analysis

From previous results presented in Section IV-A and Sec-
tion IV-A2, there are associations between different metrics as
well as between the metrics and some experimental factors.
In this section, we further explore the associations through
regression analysis.

Table II
TRANSFORMATION RULES FOR METRIC VALUES. Y AND t REPRESENT

THE VALUE OF THE TWO TARGET METRICS. b0 , b1 , AND b2 ARE THE
FITTED COEFFICIENTS.

Curve Fitting Models Equation

Logarithmic Y = b0 + (b1 ∗ ln(t ))
Inverse Y = b0 + (b1/t )
Power Y = b0 ∗ (t

b1 )
Quadratic Y = b0 + (b1 ∗ t ) + (b2 ∗ t

2)
Exponential Y = b0 ∗ e

(b1∗t )

1) Quantitative Factor Comparison: From Figure 2, we
observe that: 1) The two types of metrics have similar patterns
towards their associations with factor values; 2) Some factors,
such as the number of non-equivalent mutants and the total
lines of code, have obvious non-linear association with the two
types of metrics. In this section, to quantitatively measure and
compare the association between each factor and the metric
values, we again use curve fitting, and check the Adjusted R2

of the fitted models.
In particular, for each factor, we do curve fitting based on

the five curve estimation models introduced in Table II. Each
factor has five transformations under each ratio r on each
metric. Thus, we perform 5∗7∗5∗4 = 700 regression analysis.

The same as previous related work [49], [50], we divide the
correlation degree between the metric values and the factors
into three categories according to the values of Adjusted R2:
(1) strong correlation: Adjusted R2 > 50% ; (2) moderate
correlation: 25%6 Adjusted R2< 50%; (3) weak correlation:
Adjusted R2< 25%.

The analysis results are shown in Table III. The last seven
columns show the Adjusted R2 values of the fitted model
between each factor and the corresponding metric. For ex-
ample, when analyzing the association between the lines of
code (SLOC) and AMetric, the Adjusted R2 is 0.3271 when
using curve estimation model AMetricx = b0+ b1 ∗ ln(SLOC),
while is 0.2399 when using curve estimation model AMetric =

Table III
BIVARIATE REGRESSION RESULTS.

r Metric IV
Experimental factors

SLOC M Mne Rne T Td Tc

1%

AMetric

lnx 0.31 0.28 0.57 0.04 0.22 -0.01 0.32
x 0.13 0.02 0.30 0.00 0.03 -0.01 0.03
−1/x 0.23 0.27 -0.01 0.09 0.17 0.04 0.31
x + x2 0.22 0.35 0.47 0.04 0.08 -0.02 0.08

BMetricr

lnx 0.43 0.39 0.58 0.00 0.27 0.00 0.27
x 0.18 0.06 0.36 -0.01 0.04 -0.01 0.04
−1/x 0.34 0.32 -0.01 0.03 0.22 0.00 0.23
x + x2 0.29 0.39 0.53 0.01 0.10 -0.02 0.10

BMetrick

lnx 0.44 0.38 0.52 -0.01 0.30 -0.01 0.30
x 0.22 0.09 0.45 -0.01 0.06 -0.01 0.06
−1/x 0.30 0.25 0.00 0.01 0.21 0.00 0.22
x + x2 0.33 0.38 0.57 0.01 0.14 -0.02 0.14

BMetricp

lnx 0.40 0.36 0.56 0.00 0.25 0.00 0.25
x 0.16 0.05 0.33 -0.01 0.03 -0.01 0.03
−1/x 0.33 0.31 -0.01 0.04 0.22 0.01 0.23
x + x2 0.26 0.36 0.49 0.01 0.09 -0.02 0.09

2%

AMetric

lnx 0.27 0.28 0.51 0.01 0.18 0.00 0.25
x 0.11 0.04 0.24 0.00 0.018 -0.01 0.02
−1/x 0.21 0.26 -0.01 0.01 0.18 0.00 0.29
x + x2 0.18 0.25 0.39 0.03 0.05 -0.02 0.06

BMetricr

lnx 0.36 0.35 0.51 0.00 0.23 0.00 0.23
x 0.14 0.07 0.28 -0.01 0.03 -0.01 0.03
−1/x 0.30 0.28 -0.01 0.01 0.22 -0.01 0.22
x + x2 0.23 0.30 0.43 0.01 0.07 -0.02 0.07

BMetrick

lnx 0.42 0.39 0.50 -0.01 0.29 -0.01 0.29
x 0.20 0.12 0.41 -0.01 0.05 -0.01 0.05
−1/x 0.29 0.25 0.00 -0.01 0.23 -0.01 0.23
x + x2 0.31 0.35 0.53 0.00 0.12 -0.02 0.12

BMetricp

lnx 0.32 0.31 0.49 0.00 0.21 0.00 0.21
x 0.12 0.06 0.25 -0.01 0.02 -0.01 0.02
−1/x 0.27 0.25 -0.01 0.00 0.22 -0.01 0.22
x + x2 0.21 0.27 0.40 0.01 0.06 -0.02 0.06

3%

AMetric

lnx 0.26 0.26 0.50 0.02 0.19 -0.01 0.23
x 0.01 0.03 0.22 0.00 0.02 -0.01 0.02
−1/x 0.20 0.26 -0.01 0.03 0.19 0.01 0.29
x + x2 0.17 0.25 0.37 0.03 0.05 -0.02 0.05

BMetricr

lnx 0.34 0.32 0.51 0.00 0.23 -0.01 0.22
x 0.13 0.05 0.27 -0.01 0.03 -0.01 0.03
−1/x 0.30 0.28 -0.01 0.01 0.23 0.00 0.23
x + x2 0.22 0.29 0.42 0.01 0.07 -0.02 0.07

BMetrick

lnx 0.43 0.40 0.51 -0.01 0.30 -0.01 0.30
x 0.21 0.11 0.42 -0.01 0.06 -0.01 0.06
−1/x 0.30 0.27 0.00 0.00 0.22 -0.01 0.22
x + x2 0.32 0.36 0.55 0.00 0.13 -0.02 0.13

BMetricp

lnx 0.32 0.30 0.49 0.00 0.22 -0.01 0.21
x 0.12 0.05 0.25 -0.01 0.02 -0.01 0.02
−1/x 0.28 0.27 -0.01 0.01 0.23 0.00 0.23
x + x2 0.20 0.27 0.39 0.01 0.06 -0.02 0.06

4%

AMetric

lnx 0.27 0.26 0.49 0.02 0.17 0.00 0.20
x 0.10 0.02 0.22 -0.01 0.02 -0.01 0.02
−1/x 0.20 0.27 -0.01 0.04 0.17 0.01 0.24
x + x2 0.17 0.26 0.36 0.03 0.05 -0.02 0.05

BMetricr

lnx 0.33 0.30 0.50 0.01 0.22 -0.01 0.22
x 0.13 0.05 0.26 -0.01 0.02 -0.01 0.02
−1/x 0.27 0.26 -0.01 0.02 0.21 0.00 0.21
x + x2 0.21 0.29 0.41 0.01 0.07 -0.02 0.07

BMetrick

lnx 0.43 0.39 0.51 -0.01 0.31 -0.01 0.30
x 0.20 0.10 0.43 -0.01 0.06 -0.01 0.06
−1/x 0.30 0.26 0.00 0.00 0.23 -0.01 0.23
x + x2 0.32 0.36 0.56 0.01 0.13 -0.02 0.13

BMetricp

lnx 0.31 0.29 0.49 0.01 0.21 -0.01 0.21
x 0.12 0.04 0.25 -0.01 0.02 -0.01 0.02
−1/x 0.26 0.25 -0.01 0.02 0.21 0.00 0.21
x + x2 0.20 0.27 0.39 0.01 0.06 -0.02 0.06

5%

AMetric

lnx 0.29 0.30 0.51 0.01 0.18 0.00 0.20
x 0.11 0.05 0.24 -0.01 0.02 -0.01 0.02
−1/x 0.22 0.30 -0.01 0.01 0.16 0.00 0.20
x + x2 0.19 0.26 0.39 0.03 0.05 -0.02 0.05

BMetricr

lnx 0.33 0.30 0.50 0.01 0.22 -0.01 0.22
x 0.12 0.04 0.26 -0.01 0.02 -0.01 0.02
−1/x 0.29 0.28 -0.01 0.02 0.22 0.00 0.23
x + x2 0.20 0.27 0.40 0.01 0.07 -0.02 0.07

BMetrick

lnx 0.45 0.40 0.51 -0.01 0.31 -0.01 0.31
x 0.21 0.11 0.43 -0.01 0.06 -0.01 0.06
−1/x 0.32 0.28 0.00 0.00 0.23 -0.01 0.23
x + x2 0.32 0.36 0.56 0.01 0.14 -0.02 0.14

BMetricp

lnx 0.32 0.29 0.49 0.01 0.21 -0.01 0.21
x 0.12 0.04 0.25 -0.01 0.02 -0.01 0.02
−1/x 0.28 0.27 -0.01 0.02 0.22 0.00 0.23
x + x2 0.19 0.26 0.39 0.01 0.06 -0.02 0.06

b0 + 1/SLOC. Different colors in the table represent different
degrees of association. Darker color represents stronger cor-
relation.

Next, we statistically compare the two types of metrics from
their curve fitting results, and analyze some factors from the
aspect of the associations between metrics and their values.
Factor comparison. From table III, when we make vertical
comparison between the Adjusted R2 of different metrics, we



can observe a lot of similarity from several aspects. First,
different curve estimation models have similar performance
rankings on the two types of metrics. For example, from
the color of different cells, the first three models are better
than the remaining two models no matter for which metric
and which selective mutation testing technique. Second, each
curve estimation model has similar performance on different
metrics. For example, when choosing 1% mutants, model
y = b0 + b1ln(x) for factor Mne has Adjusted R2 values of
0.7552, 0.7857, 0.8185, 0.7531 for each metric separately,
which are very close.

When we make horizontal comparison between the Adjusted
R2 with different factors, we can also observer a lot of simil-
arity. For example, for each metric we can sort the correlated
factors in the descendent order of correlation degrees: the
number of non-equivalent mutants > the total number of
mutants > the lines of code > the number of constructed tests
> the total number of tests.

The similarity of fitting results between different metrics
further confirms our initial finding through qualitative analysis,
i.e., the two types of metrics have similar patterns regarding
their associations with the seven experimental factors.
Specific factor analysis. All the five related factors mentioned
above (i.e., the number of non-equivalent mutants, the total
number of mutants, the lines of code, the number of construc-
ted tests, the total number of tests) are direct measurements of
programs, mutants, and tests. The measurements of programs
and mutants (i.e., SLOC, M , and Mne) have impacts on the
mutant selection values because they are directly related to the
number of mutants under selection. The fact that the number
of non-equivalent mutants has the strongest correlation with
metric values confirm our reasoning, since the set of non-
equivalent mutants are the base mutants under selection. The
direct measurements of tests (i.e., T and Tc) also have impacts
on the mutant selection metrics. There are two guesses. First,
the number of tests have impacts simply because projects
with more tests tend to have larger size and thus have more
base mutants under selection. Second, the number of tests
have impacts even when projects have similar size, i.e., due
to test density. However, also consistent with the qualitative
observations, our results demonstrate that test density Td does
not have clear impact on metric values. Therefore, the direct
measurements of tests have impacts on metric values may
simply due to their correlation with the number of base
mutants under selection.

We further focus on the remaining factor, Rne (i.e., the
proportion of non-equivalent mutants). As prior work did [34],
[28], [2], [1], we take the mutants that cannot be killed by the
original test suite as equivalent mutants, which may actually
include some non-equivalent mutants that are not killed by the
original test suites. That is, this traditional equivalent mutant
handling approach may induce some threat to the research in
mutation testing, including our own study. We realize that the
projects with high-quality test suites would have a very small
number of such missing non-equivalent mutants and usually
have large Rne due to its high-quality test suites. Therefore,

projects with higher Rne may suffer less from the threat to
validity, i.e., Rne can actually be used to reflect the bias
resulting from such equivalent mutant handling. Surprisingly,
according to Table III and Figure 2, all the metric values
have negligible correlation with factor Rne, indicating that
the fault-revealing ability of original test suites does not have
impacts on mutant selection. That is, strategy for dealing with
equivalent mutants in selective mutation testing (including our
own work) is observed not to be a threat to validity.

Finding 2: We do not observe clearn correlation between
the proportion of non-equivalent mutants and the metric
values, indicating that strategies for dealing with equival-
ent mutants barely impact mutant selection results.

Although the metrics are consistent with each other in
values and the association patterns with the seven experimental
factors, minor differences can be observed: compared with
AMetric, BMetricr , and BMetricp , BMetrick shows a slightly
different association pattern. To illustrate, in Figure 2, the sub-
figures related to the Kendall τb usually have more divergent
data points. Additionally, from these figures, as the lines
of code and the number of non-equivalent mutants increase,
AMetric, BMetricr and BMetricp increase dramatically at first,
then become steady and approach 100%, while BMetrick keeps
increasing all the time, and is only around 0.9 even for the
largest projects. Note that R2 and Pearson can reflect the
linear association between two test-evaluation techniques (i.e.,
using selected mutants or using all mutants), while Kendall τb
can reflect whether two test-evaluation techniques perform
equally in differentiating the quality of different test sets [35].
Thus, in selective mutation testing, the selected mutants may
have high linear association with the whole set of mutants in
evaluating the quality of test sets, but are slightly less stable in
differentiating the fault-revealing ability of different test sets.

Based on the above observations from the quantitative ana-
lysis including direct value comparison and factor association
comparison, we have the following conclusion:

Finding 3: The adequate-test-based metric (i.e., AMet-
ric) and the inadequate-test-based metrics (i.e., BMetricr ,
BMetrick , and BMetricp) are consistent with each other
quantitatively.

V. EXTENDED ANALYSIS

In this section, we explore whether mutant selection
strategies would yield different results and conclusions.

We then try to reproduce our experimental results with
operator-based mutant selection strategy. Similar with previous
work [2], we choose mutants generated by four mutation oper-
ators of PIT: InlineConstantMutator, MathMutator, VoidMeth-
odCallMutator, NegateConditionalsMutator. Because some
projects do not have mutants generated from one or several of
these four operators, we remove them from the total subjects.



Finally 87 projects are left, and thus our results are based on
these 87 projects.

1) Metric Value Comparison: Figure 3 lists the metric com-
parison results of operator-based mutants selection strategy,
which shows similar patterns as Figure 1, and thus we get
the same conclusions as we did for random mutant selection:
AMetric is very close to BMetricp , and has obvious correlation
with BMetricr and BMetrick .

At the same time, we observe minor differences between
the comparison results for random and operator-based mutant
selection. In particular, both AMetric and BMetric have higher
values in operator-based mutant selection (most values are
above 0.7), mainly because operator-based mutant selection
using the four mutation operators selects more mutants than
random mutant selection which selects 1% to 5% mutants in
our experiments.

2) Association Analysis: We also compare the comparison
results in terms of the associations between metric values
and the seven experimental factors. Similarly, we present the
association patterns between the number of non-equivalent
mutants and the metric values, shown in Figure 4. Comparing
with Figure 4, the patterns are similar as in random mutant
selection. For BMetricr , the smooth line of operator-based
mutant selection is less smoothy than random mutant selection.
We suspect the reason to be that in operator-based mutant
selection, the number of subjects is smaller than in random
mutant selection (i.e., 87 vs 104).
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Figure 3. Metric values comparison for operator-based mutant selection,
which shows very similar patterns to Figure 1.

In summary, the comparison results above indicate that
mutant selection strategy does not affect our correlation and
comparison results on AMetric and BMetric.

Finding 7: Mutant selection strategies do not affect
our correlation and comparison results on AMetric and
BMetric based on our observation.

A. Threats to Validity

The threat to internal validity lies in the code implement-
ation of the empirical study. To reduce the possible faults in
implementation, the first two authors reviewed the code and
experimental scripts of the empirical study carefully.

The threats to external validity mainly lie in the subjects,
tests, and mutants. To reduce the threat from subjects, we
collected and used a large number of Java projects from open-
source community, but they may be not representative for other

programs, especially programs in other languages. To reduce
the threat from tests, following previous work [2], [1], we use
the original test suites collected during software development.
These threats can be further reduced by repeating our study
on more projects in various programming languages (e.g., C,
C++, C#, and Python), with different types of tests, as well as
using more mutation testing tools.

The threats to construct validity lie in how we measure the
influence of the possible factors and the number of sampling
points in regression analysis. To reduce this threat, we used
two types of regression analysis (i.e., bivariate regression and
multiple regression) and two widely used measurements in
statistics (i.e., p-value and Adjusted R2). Also, we chose the
number of points similarly as the previous work did [35], [2]
to reduce the corresponding threat.

VI. RELATED WORK

First proposed by DeMillo et al. [6] and Hamlet [7],
mutation testing is drawing more and more attention in both
the academia and industry. Jia and Harman [53] provided a
comprehensive survey for mutation testing. Due to the high
cost of mutation testing, selective mutation testing has been
widely studied and even applied to recent applications of
mutation testing. In this section we first introduce the related
work on reducing the cost of mutation testing. Then, we further
discuss the application of selective mutation testing in the main
applications of mutation testing.

A. Cost Reduction Techniques

As it is usually very expensive to execute tests on each
mutant, many researchers focus on designing various tech-
niques to reduce the cost of mutation testing. In particular,
we divide these techniques into two categories: techniques
on reducing the number of mutants in mutation testing (i.e.,
selective mutation testing) and techniques on reducing the
compilation/execution time of mutants (denoted as optimized
mutation testing in this work).

1) Selective Mutation Testing: To reduce the number of
mutants in mutation testing, selective mutation testing is
proposed to select a subset of mutants to represent all the
mutants. The techniques in selective mutation testing are
mainly classified into operator-based mutant selection [54],
[55], [33], [27], [34], [31], [56], [57] and random mutant
selection [58], [55], [28], [54].

Operator-based mutant selection aims to reduce the number
of mutants by carefully choosing mutation operators before
generating mutants. In particular, Offutt et al. [33] proposed
to use five sufficient mutation operators to generate mutants
that achieve almost the same effectiveness as the mutants gen-
erated by all mutation operators. Following their work, many
researchers focused on detecting sufficient mutation operators.
In particular, Barbosa et al. [27] presented 6 guidelines to de-
termine sufficient mutation operators, with which they finally
determined 10 sufficient mutation operators for C programs.
Gligoric et al. [31] studied the sufficient mutation operators for
concurrent programs. Furthermore, Namin et al. [34] proposed
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Figure 4. Associations between the number of non-equivalent mutants and the metric values for operator-based mutant selection. The patterns are similar
patterns to those shown in Figure 1.

to combine the execution information of a subset of mutants,
and identified 28 sufficient mutation operators based on their
result analysis.

Random mutant selection aims to randomly select mutants
from the whole set of mutants, which are generated by all the
mutation operators. After Acree et al. [58] proposed the first
random mutant selection technique, Mathur and Wong [54],
[55] empirically studied this technique by randomly selecting
x% mutants, which are generated by the 22 mutation operators
in Mothra [59]. Although random mutant selection seems
trivial, it has been demonstrated to be at least as effective
as operator-based mutant selection [28].

Most of these work in selective mutation testing focuses on
presenting various selection techniques. They simply directly
used one or two of the selection metrics without much consid-
eration. In this work, we studied how different factors impact
the metrics used in those work, and how different metrics
compare and correlate with each other.

2) Optimized Mutation Testing: Another way of reducing
the cost of mutation testing is to reduce the compilation or
execution time of mutants. To reduce the compilation time of
mutants, Demillo et al. [60] changed a compiler to compile
all mutants in the same pass to save mutant generation and
compilation time. Later on, Untch et al. [61] proposed the
schema-based mutation testing to encode all mutants into one
meta-mutant. Note that mutant compilation time reduction
is not widely studied recently, since (1) the compilation
time can be negligible compared with mutant execution time;
(2) modern mutation tools mainly operate on the bytecode,
assembly code, or intermediate representation levels.

To reduce the execution time of a mutant, Howden [62]
proposed the concept of weak mutation testing, which treats
a mutant as being weakly killed when the mutant causes any
internal state change. In this way, the mutants do not need to be
executed completely, and thus test execution time can be saved.
Later, Woodward and Halewood [63] proposed firm mutation
testing, which is a compromise of weak mutation testing and
traditional mutation testing. Offutt and Lee [64] conducted
an empirical study on weak mutation testing and found that
weak mutation testing can be better applied in unit testing
of non-critical applications. Krauser et al. [65] and Offutt et
al. [66] ran mutants in parallel to speed up mutation testing.
Zhang et al. [67] proposed to prioritize and reduce tests to
speed up mutation testing. To facilitate mutation testing for
evolving programs, Zhang et al. [68] also proposed to speed
up mutation testing for the current program by reusing the

mutant execution results of the previous version. Recently, Just
et al. [52] analyzed the infected states of mutant execution to
speed up mutant execution by 40% on average.

B. Applications of Mutation Testing

Although mutation testing was originally proposed for eval-
uating test suites, it is gaining more and more applications
recently. Many researchers have used mutation testing to
provide guidance in test generation to automatically generate
high-quality tests [69], [70], [71], [72], [21], [73], [19], [13].
Since real faults can be hard to find and small in number,
mutation testing is also widely used to simulate faults in the
evaluation of software testing techniques [74], [75], [76], [77].
Researchers have demonstrated that mutants can be used as
valid substitute for real faults in software testing experiment-
ation [74], [18], [17]. More recently, mutation testing has also
been used to help with program debugging. A number of
mutation-based fault localization techniques [22], [78], [79],
[80] have been proposed to use mutation faults to localize
real faults based on their similarity. Debroy and Wong also
utilized mutation testing to suggest potential fixes for buggy
programs [25]. Zhang et.al. [81] used program variants, which
can be regarded as mutants, to make the current tests execute
more paths and help to detect more software bugs.

Effective selective mutation testing is also crucial for almost
all the new applications of mutation testing. For example,
using all mutant-killing contraints to guide test generation may
choke the underlying test generation solver or engine, and
using all mutants to help fault localization can be expensive.
In fact, a number of previous work already applied selective
mutation testing to the new applications of mutation testing,
e.g., test generation [73] and fault localization [22]. Therefore,
our study on the mutant selection metrics can also better guide
those new applications of mutation testing.

Besides the related work above, Papadakis et.al. [82] found
that the presence of subsumed mutants can be a threat to
mutation testing. In our work we are investigating the effect
of metrics that are defined, by previous work, in terms of
all mutants, and as such, include all subsuming mutants and
the mutants they subsume. This means we are not at liberty
to pick and choose the subsuming mutants we might want
to include when assessing the metric. However, future work
might investigate whether the results could change when
considering only subsuming mutants.



VII. CONCLUSION

In this paper, we presented the first study to compare
two types of mutant selection assessment metrics. The ex-
perimental results on 104 GitHub projects provide the first
scientific justification of the strong connection between the
exisiting two metrics in measuring the representativeness of a
mutant subset. We also found that the strategy for dealing with
equivalent mutants and test density have negligible impact for
mutant selection.
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