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3 × 3Mueller polarimetry has shown potential for tissue char-
acterization applications, however, calibration has not been
fully addressed. We demonstrate a 3 × 3 Mueller polarimeter
eigenvalue calibration method, inspired by those for full
Mueller polarimeters. We also investigate the optimal combi-
nation of calibration measurements. Our method does not
rely on modeling the polarization state generator, polariza-
tion state analyzer, or precise knowledge of calibration sample
properties or orientations. It is therefore easy to implement,
and the experimental results of a linear polarizer test sample,
as well as a biological specimen, are presented.
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3 × 3Muellerpolarimetrymeasures the topleft3 × 3 sub‐matrixof
a 4 × 4Mueller matrix, conveying a substantial proportion of the
sample polarization properties [1–3]. PartialMueller matrices can
be determined without using phase retarders, simplifying the sys-
tem and measurement procedures by only using linear polarizers.
3 × 3 Mueller polarimetry has been demonstrated as feasible in
several potential applications, including endoscopy [4–9].

The polarization state generator and analyzer (PSG/PSA) of
a 3 × 3Mueller polarimeter only involve linear polarizers (LPs).
The 4 × 4 Mueller matrix of a general LP is given by
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where θ is the orientation angle, and q and r are the maximum
and minimum attenuations along two principal axes of the LP.
In practice, θ, q, and r of the LPs used in the PSG and PSA of
3 × 3Mueller polarimeters may deviate from their nominal val-
ues. The light source (considered as a part of the PSG) may also
not be perfectly unpolarized. Therefore, it is important to
develop a calibration method to obtain the actual PSG and
PSA instrumental matrices.

A traditional calibration method uses an additional LP with
the orientation precisely controlled, an unpolarized light
source, and a detector, thereby calibrating the orientation of
the LPs within the PSG and PSA, based on the established null
intensity calibration method (NICM) [4,5,10]. This empha-
sizes the calibration of θ for the LPs, rather than q and r.
Ignoring the calibration of q is problematic, especially for
PSGs/PSAs with multiple LPs such as division-of-focal-plane
PSAs or division-of-amplitude PSAs [4,6] that usually have dif-
ferent q values. Ignoring the calibration of r might lead to er-
rors, e.g., in multispectral polarimetry, where r may not be 0 for
all wavelengths. Obtaining an additional unpolarized light
source and precisely controlling the orientation of the addi-
tional LP also requires extra time and effort. Another calibra-
tion method [6] uses nine gain coefficients obtained by fitting
data for an additional rotating LP to correct radiometric
measurements. This method assumes that the transformation
matrix between the actual and the nominal PSG/PSA matrix
is diagonal, which is normally not the case.

Here we demonstrate a calibration method for 3 × 3Mueller
polarimeters inspired by that for complete Mueller polarimeters
[11]. This method does not require to (1) model the PSG/PSA,
so θ, q, and r of the PSG/PSA LPs, and unpolarized light
sources are calibrated altogether; or (2) precisely know the
properties and orientations of the calibration samples (CSs).
This method is easy, quick, and convenient to implement.

Eigenvalues of calibration measurements. In complete
Mueller polarimetry, the Mueller matrix is solved from [2]:

P � MPSAM�4×4�MPSG, (2)
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whereMPSA,MPSG,M�4×4�, and P are the PSG/PSA instrumen-
tal matrices, complete Mueller matrix of a sample, and radio-
metric intensity matrix, with each element corresponding to
each individual PSG/PSA state. In 3 × 3 Mueller polarimetry,
because only LPs are used, the fourth columns of MPSA/MPSG

are zero. Equation (2) can be rewritten in partitioned form as

P�a×g� �
�
A�a×3� 0�a×1�

�"M�3×3� Xa�3×1�
Xb�1×3� Xc�1×1�

��G�3×g�
0�1×g�

�

� A�a×3�M�3×3�G�3×g�: (3)

A and G are the reduced PSA and PSG instrument matrices for
a 3 × 3Mueller polarimeter,M�3×3� is the 3 × 3Mueller sample
matrix. Symbols and numbers inside brackets stand for the ma-
trix or matrix partition. The calibration can be considered as a
process to obtain A and G from the radiometric measurements
(P) of CSs whoseM�3×3� are not precisely known. Equation (3)
has the same form as Eq. (2) and lays the foundation to extend
the eigenvalue calibration method of complete Mueller polar-
imeters to 3 × 3 Mueller polarimeters.

The null response of the polarimetric system can be acquired
by measurements of air, represented by

Pair � AG: (4)

A calibration measurement Pi is characterized by

Pi � AMi�3×3�G, (5)

in which Mi�3×3� is the 3 × 3 Mueller matrix of the CS. An
intermediate matrix Di can then be constructed:

Di � Pair−1Pi � G−1Mi�3×3�G: (6)

According to Eq. (6), Di and Mi�3×3� are similar matrices and
have the same eigenvalues.

Characteristics of CSs. Inspired by Ref. [11], we explored
using the polarization components that follow a dichroic retarder
(DR) model as the CS, which has form
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θ, Δ, q, and r are the orientation, retardance, and attenuation
along the two principal axes of the DR. When q > r, and
Δ � 0, the DR reduces to a LP. When q is similar to r, the
DR reduces to a linear retarder with retardance Δ.

The eigenvalues of M �3×3� for a CS should also contain the
necessary information such that M �3×3� can be partially con-
structed, another important premise to extend 4 × 4 Mueller
polarimeter eigenvalue calibration to the 3 × 3 case. It is easy
to derive Eq. (8) from Eq. (7) based on partition matrix multi-
plication to obtain the 3 × 3 Mueller matrix Mi�3×3� of a DR
with orientation θ given by

Mi�3×3� � Rot�θ�
2
4 q � r q − r 0
q − r q � r 0
0 0 2

ffiffiffiffiffiqrp
cos Δ

3
5Rot�−θ�:

(8)

Thus, the three eigenvalues ofMi�3×3� for a DR are independent
of θ and can be obtained analytically by

λ1 � 2q, λ2 � 2r, λ3 � 2
ffiffiffiffiffi
qr

p
cos Δ: (9)

Thus, it is possible to partially reconstruct Mi�3×3� (only with θ
undetermined) of the CS from the eigenvalues
of the intermediate matrix Di.

Calibration of polarimeters. Equation (6) is rewritten as:

GDi −Mi�3×3�G � 0, (10)

and can be solved by matrix vectorization and
diagonalization [11]. After G’s columns are stacked into a col-
umn vector (vec�G�), Eq. (10) is transformed to Kronecker
product (denoted by ⊗) form [12]:

Hi vec�G�� 0

Hi �Di�g×g� ⊗ I�3×3� − I�g×g� ⊗Mi�3×3�: (11)

I is an identity matrix. To ensure that Hi is diagonalizable,
Eq. (11) is multiplied on both sides by HT

i to construct a
Hermitian matrix:

HT
i Hi vec�G� � 0: (12)

Obviously, vec�G� exists in the eigenspace of HT
i Hi which

corresponds to the null eigenvalue. vec�G� can be uniquely
determined by choosing a suitable CS/measurement so
that the constructed matrix K in Eq. (13) only has one null
eigenvalue:

K vec�G� � 0, where K �
X

i�1, 2,…, n

HT
i Hi : (13)

The subscript i is the sequence number of each CS/measure-
ment. It is noted thatMi�3×3�, along with Hi and K, is partially
determined with the orientation θi of each unknown CS. θi
can be determined through optimization by finding those
corresponding to the minimal ratio between the smallest
and second smallest eigenvalues of K denoted by μ1 and
μ2, respectively [11]:

θi�1,2,…,n � arg min
θi�1,2,…,n

ffiffiffiffiffi
μ1

μ2

r
: (14)

K and G, can then be fully determined from Eq. (13). With G
obtained, A can be calculated from Eq. (4).

The optimal combination of calibration measurements.
It is crucial to find a combination of CSs/measurements, so that
G can be uniquely and accurately determined from Eq. (13). It
is therefore necessary to balance the nonzero eigenvalues of K,
i.e., maximizing the ratio (referred to as SSLE-R) between the
second smallest and largest eigenvalues [11]. We restricted the
CS to readily available LPs and imperfect quarter-wave plates
(QWPs), whose retardance may not be 90°. Two PSG/PSA
congifurations for a 3 × 3 Mueller polarimeter were studied.
The first PSG generates 0°, 60°, and 120° linearly polarized
light with 0°, 60°, and 120° LPs as analyzers, referred to as
a three-state PSG/PSA here. This configuration minimizes
the number of radiometric acquisitions to reconstruct [2].
The second PSG generates 0°, 45°, 90°, and 135° linearly
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polarized light with 0°, 45°, 90°, and 135° linear analyzers,
referred to as four-state PSG/PSA [13].

It is found that at least one LP measurement is required to
guarantee that G can be uniquely determined. Nine possible
Confs. of the combination of CS have been explored, as shown
in Table 1. The LP in the first calibration measurement is
always oriented at 0° by definition. The optimal orientations
of CSs for Confs. (1)–(9) were first investigated individually.

SSLE-R of K is considered as a function of the orientation
angles of the CS in the process of finding the optimal combi-
nation of the CSs. The optimal combination can then be ob-
tained by finding the argument of the SSLE-R function
corresponding to the maximum SSLE-R value.

The optimal orientations of CSs and maximum SSLE-R
value under each configuration is provided in Table 1. For
Confs. 1 and 2, K has more than one null eigenvalue when
the LP has infinitely large extinction ratio (ER). G would be
solvable when LP has finite ER. Here we assumed the LP
has ER 100:1 for Confs. 1 and 2. In general, the maximum
SSLE-R value under Confs. 1 and 2 is three orders of magnitude
lower than the other configurations. Therefore, any combina-
tion of CSs under Confs. 1 and 2 is extremely sensitive to noise
and is not the optimal Confs. For Confs. 3–5, which all entail
three measurements of CS, Conf. 5 has the higher maximum
SSLE-R value at 0.1198. As shown in Fig. 1(a), one of the maxi-
mum SSLE-R value for Conf. 5 is achieved by using a 19° and
162° QWP, together with 0° LP. Among the four CS measure-
ment Confs. 6–9, Conf. 6 has the maximum SSLE-R value. The
maximum SSLE-R value corresponding to 0°, 45°, 90°, and 135°
LP is as large as 0.2474 [Fig. 1(b)]. This combination is the
optimal among all the configurations explored in this Letter.
It is also found that the three-state (0°, 60°, and 120°) and
four-state PSG/PSA (0°, 45°, 90°, and 135°) results are the same.

We took experimental errors into account by adding
synthetic Gaussian noise to Eqs. (4) and (5) with a controlled
amplitude (0.5% was adopted with reference to [11]), as
shown below:

Pi_noise � Pi � 0.5%kPikrandn, (15)

randn represents Gaussian distributed random numbers with
zero mean and standard deviation 1, and the double bar refers
to the matrix Fronius norm. Calibration errors for PSG/PSA
are defined as

εG � kGcal − Gk∕NG , εA � kAcal − Ak∕NA: (16)

NG and NA denote the number of elements in G and A. The
subscript cal denotes the instrument matrices after the ECM.
The calibration errors for each combination of CSs were ob-
tained by simulating the calibration process 100 times. A
four-state PSG/PSA was used in this simulation.

The general trend is that the calibration error decreases with
the rise of the SSLE-R value as expected. The mean calibration
errors for Confs. 1 and 2 are about 0.097 and 0.870, respec-
tively, several orders of magnitude higher than the others and
should not be used for calibration. The errors for Confs. 3–9
are shown in the boxplots in Fig. 2. The errors involving four
CSs (Confs. 6–9) are generally smaller than for three CSs
(Confs. 3–5). The minimal calibration error among all
Confs. is achieved by adopting 0°, 45°, 90°, and 135° LPs
as CSs under Conf. 6. Among all the configurations involving
three CSs, the combination specified under Conf. 5 demon-
strated the smallest calibration error. Conf. 5 may occasionally
have more advantages over Conf. 6, since it needs fewer mea-
surements and less computation, because the optimization in
Eq. (14) involves two variables, while Conf. 6 involves three.

Experiment with an LP and a tissue slide. A 3 × 3Mueller
polarimeter with the four-state PSG/PSA in transmission geom-
etry was set up to validate the method. The light source was a

Table 1. Optimal Orientations (in Degree) of Calibration Samples

Configuration

Number of CS First Sample Second Sample Third Sample Fourth Sample Maximum
SSLE-RInvolved Type θ1�°� Type θ2�°� Type θ3�°� Type θ4�°�

1 2 LP (ER 100:1) 0 LP(ER 100:1) 62 N.A. N.A. 5.9e − 05
2 2 LP (ER 100:1) 0 QWP 28 N.A. N.A. 5.0e − 05
3 3 LP 0 LP 45 LP 135 N.A. 0.0875
4 3 LP 0 LP 90 QWP 117 N.A. 0.0588
5 3 LP 0 QWP 19 QWP 162 N.A. 0.1198
6 4 LP 0 LP 45 LP 90 LP 135 0.2474
7 4 LP 0 LP 90 LP 135 QWP 135 0.1573
8 4 LP 0 LP 145 QWP 8 QWP 140 0.1268
9 4 LP 0 QWP 22 QWP 55 QWP 77 0.1677

Fig. 1. SSLE-R values correspond to all the possible orientations of
the CSs in (a) Conf. 5 and (b) Conf. 6. The color represents the SSLE-
R value. Note that the first sample is a 0° LP. The axes in (a) represent
the orientation of the second sample (QWP) and third sample (QWP)
under Conf. 5. The three axes in (b) are the orientation of the second
(LP), third (LP), and fourth samples (LP).

Fig. 2. Errors of (a) PSG and (b) PSA instrumental matrices ob-
tained by simulating the calibration process 100 times with a noise
amplitude (0.5%) for Confs. 3–9. The errors for Confs. 1 and 2
are several orders of magnitude higher and are not shown.
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collimated LED (MCWHLP1, 2350 mW white light,
Thorlabs) with a bandpass filter (546DF10, central wavelength
546 nm and bandwidth 10 nm, Omega Optical). The PSG of
this setup was an LP (TECHSPEC, Edmunds Optics) driven by
a motorized rotation mount (PRM1/MZ8, Thorlabs). The PSA
consisted of four LPs contained in automated filter wheels
(FW103H/M, Thorlabs). The orientations of the four LPs
in the PSA were aligned with the PSG by using the method
in Ref. [5], referred to as the NICM. The switching times of
the PSG/PSA were 4000 and 55 ms, respectively and the cooled
CCD camera (Retiga Exi, QImaging) exposure time was 4 ms
with 500 ms waiting time to ensure the PSG/PSA had switched.
One image was taken for each PSG/PSA state. The total acquis-
ition time was 26 s for a 3 × 3 Mueller polarimetric image.

A high-contrast glass LP (Edmund Optics, nominal ER
10000:1 at 500–600 nm) was initially used as a test sample.
The combination of CSs under Conf. 6 was used to calibrate
based on the ECM. The results were then applied to data of the
high-contrast LP sample rotated from 0° to 350° in 10° steps.
Each subplot in Fig. 3(a) was obtained by using the calibrated
3 × 3 Mueller matrices of the rotating LP subtracted from the
actual ones. It is obvious that the residual errors of the rotating
LP sample with the polarimeter calibrated using the ECM are
smaller than those using the NICM. The residual average
elemental error was defined by

εECM �kMECM −Mk∕9, εNICM �kMNICM −Mk∕9: (17)
As demonstrated in Fig. 3(b), the residual errors of the rotating
LP sample with the polarimeter calibrated using the ECM are
about one-third of those using the NICM.

We then adapted a polarization microscopy objective lens
(×10, UPLFLN-P Olympus) to the calibrated 3 × 3 Mueller
polarimeter [Fig. 4(a)]. Porcine esophagogastric junction was
obtained for imaging. The tissue appeared slightly yellowish
and hardened associated with frequent acid reflux (non-malig-
nant) and was prepared into 6 μm thick slides. The epithelium
area was imaged and 3 × 3 Mueller images with the ECM and
NICM are displayed in Figs. 4(b) and 4(c). The M32 image
with the NICM implemented demonstrated a small deviation
from 0. In comparison, the one with the ECM is close to 0. The
tissue anisotropy image was reconstructed from Figs. 4(b) and
4(c) based on the “A” parameter in a Mueller matrix transfor-
mation method [3]. The epithelium demonstrates anisotropy
[Fig. 4(d)], which might be caused by slight fibrosis. It is noted
that the reconstructed anisotropy image with the ECM and the

NICM had different values, as shown in the histogram of the
subtraction between the anisotropy image with the ECM and
NICM in Fig. 4(e). The ECM could contribute to the
acquisition of more accurate polarimetric data and quantitative
information about tissue anisotropy, which has been used to
characterize tissue microstructure\ [14].

In summary, a calibration method for 3 × 3 Mueller polar-
imeters has been developed. One of the optimal combinations
of calibration measurements is to use LPs at 0°, 45°, 90°, and
135°. There is no need to model the PSG, PSA, or the light
source, or to precisely know the properties and orientations
of the CSs. Therefore, the method is easy, quick, and conven-
ient to implement.
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Fig. 3. (a) Residual errors of the rotating LP sample with the polar-
imeter calibrated using the ECM in blue and those with NICM in red.
Each subplot corresponds to an element of 3 × 3 Mueller matrices.
The horizontal and vertical axes refer to the angle of the LP sample
and error. (b) Boxplot of residual errors.

Fig. 4. (a) Setup of the 3 × 3 Mueller polarimetric microscope; (b),
(c) the 3 × 3 Mueller images (1392 × 1040 pixels) with the ECM and
NICM, respectively; the scale bar represents 0.15 mm; (d) recon-
structed tissue anisotropy image; the scale bar represents 0.15 mm;
(e) histogram of the subtraction between the anisotropy image with
the polarimeter calibrated with the ECM and NICM.
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