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Objectives
To develop a risk classifier using urine-derived extracellular
vesicle (EV)-RNA capable of providing diagnostic
information on disease status prior to biopsy, and prognostic
information for men on active surveillance (AS).

Patients and Methods
Post-digital rectal examination urine-derived EV-RNA
expression profiles (n = 535, multiple centres) were interrogated
with a curated NanoString panel. A LASSO-based continuation
ratio model was built to generate four prostate urine risk (PUR)
signatures for predicting the probability of normal tissue (PUR-
1), D’Amico low-risk (PUR-2), intermediate-risk (PUR-3), and
high-risk (PUR-4) prostate cancer. This model was applied to a
test cohort (n = 177) for diagnostic evaluation, and to an AS
sub-cohort (n = 87) for prognostic evaluation.

Results
Each PUR signature was significantly associated with its
corresponding clinical category (P < 0.001). PUR-4 status
predicted the presence of clinically significant intermediate-

or high-risk disease (area under the curve = 0.77, 95%
confidence interval [CI] 0.70–0.84). Application of PUR
provided a net benefit over current clinical practice. In an AS
sub-cohort (n = 87), groups defined by PUR status and
proportion of PUR-4 had a significant association with time
to progression (interquartile range hazard ratio [HR] 2.86,
95% CI 1.83–4.47; P < 0.001). PUR-4, when used
continuously, dichotomized patient groups with differential
progression rates of 10% and 60% 5 years after urine
collection (HR 8.23, 95% CI 3.26–20.81; P < 0.001).

Conclusion
Urine-derived EV-RNA can provide diagnostic information
on aggressive prostate cancer prior to biopsy, and prognostic
information for men on AS. PUR represents a new and
versatile biomarker that could result in substantial alterations
to current treatment of patients with prostate cancer.
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Introduction
The progression of prostate cancer is highly heterogeneous
[1], and risk assessment at the time of diagnosis is a critical

step in the management of the disease. Based on the
information obtained prior to treatment, key decisions are
made about the likelihood of disease progression and the
best course of treatment for localized disease. D’Amico
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stratification [2], which classifies patients as having low,
intermediate or high risk of PSA failure post-radical therapy,
is based on Gleason score (GS) [3], PSA and clinical stage,
and has been used as a framework for guidelines issued in
the UK, Europe and the USA [4–6]. Patients with low- and
some favourable intermediate-risk prostate cancer are
generally offered active surveillance [4,7] (AS), while those
with unfavourable intermediate-, and high-risk disease are
considered for radical therapy [7]. Other classification
systems, such as the CAPRA score [8], use additional clinical
information, assigning simple numeric values based on age,
pre-treatment PSA, GS, percentage of biopsy cores positive
for cancer and clinical stage for an overall 0–10 CAPRA
score. The CAPRA score has shown favourable prediction of
PSA-free survival, development of metastasis and prostate
cancer-specific survival [9].

Prostate cancer is often multifocal [10], with disease state
often underestimated by TRUS biopsy alone [11] and
overestimated by multiparametric MRI (mpMRI), most often
in the case of Prostate Imaging Reporting and Data System
(PI-RADS) 3 lesions [12]. Sampling issues associated with
needle biopsy of the prostate have prompted the
development of non-invasive urine tests for aggressive
disease, which examine prostate-derived material, harvested
within urine [13–15]. Recent successes in this field are
illustrated by three studies carried out on whole urine for
predicting the presence of GS ≥7 on initial biopsy: Tomlins
et al. [13] and McKiernan et al. [14] used PCA3 and
TMPRSS2-ERG transcript expression levels, whilst Van Neste
et al. [16] used HOXC6 and DLX1 in combination with
traditional clinical markers. The objectives of the present
study were to develop a urine classifier that can predict
D’Amico and CAPRA risk group, and to additionally test its
utility as a predictor of disease progression, triggering the
requirement for therapeutic intervention, within an AS
cohort with 5 years of clinical follow-up. As a starting point,
we used 167 gene probes, many previously associated with
prostate cancer progression, leading to the development of a
36-gene classifier, known as the Prostate Urine Risk (PUR)
signatures.

Methods
Patient Samples and Clinical Criteria

The Movember cohort comprised first-catch post-DRE urine
samples collected at diagnosis between 2009 and 2015 from
urology clinics at the Norfolk and Norwich University Hospital
(NNUH [Norwich, UK]), Royal Marsden Hospital (RMH
[London, UK]), St James’s Hospital (Dublin, Republic of
Ireland) and from primary care and urology clinics of Emory
Healthcare (Atlanta, GA, USA). Within the Movember cohort,
87 patients were enrolled on an AS programme at the RMH
[7]. AS eligibility criteria for this programme included

histologically proven prostate cancer, age 50–80 years, clinical
stage T1/T2, PSA <15 ng/mL, GS ≤ 3 + 3 (GS ≤3 + 4 if age >65
years), and <50% percent positive biopsy cores. Progression
was defined as the detection of disease by clinical criteria that
typically trigger the requirement for therapeutic intervention.
Clinical criteria of progression were either: PSA velocity >1 ng/
mL per year or adverse histology on repeat biopsy, defined as
primary GS ≥4 or ≥50% biopsy cores positive for cancer.
mpMRI criteria for progression were either: detection of
>1 cm3 prostate tumour, an increase in volume >100% for
lesions between 0.5 and 1 cm3, or T3/4 disease [7].

D’Amico classification used GS and PSA criteria as per
D’Amico et al. [2]. CAPRA classification used the criteria as
described by Cooperberg et al. [8]. Sample collections and
processing were ethically approved in their country of origin:
NNUH samples by the East of England Research Ethics
Committee, Dublin samples by St James’s Hospital, RMH
samples by the local ethics committee, and Emory Healthcare
samples by the institutional review board of Emory University.
TRUS-guided biopsy was used to provide biopsy information.
Where multiple biopsies were taken the results from the closest
biopsy to initial urine sample collection were used. Men were
defined as having no evidence of cancer (NEC) with a PSA level
normal for their age or lower [17] and, as such, were not
subjected to biopsy. Metastatic disease was defined by a PSA
>100 ng/mL and was excluded from analyses.

Sample Processing

For the full Movember protocol, see Data S1. Briefly, urine
was centrifuged (1200g 10 min, 6 °C) within 30 min of
collection to pellet cellular material. Supernatant extracellular
vesicles (EVs) were then harvested by microfiltration as
described by Miranda et al. [18] and RNA extracted (RNeasy
micro kit, #74004; Qiagen, Hilden, Germany). RNA was
amplified as cDNA with an Ovation PicoSL WTA system V2
(Nugen #3312-48). Then, 5–20 ng of total RNA was amplified
where possible, down to 1 ng input in 10 samples. The mean
(range) cDNA yields were 3.83 (1–6) lg.

Expression Analyses

NanoString expression analysis (167 probes, 164 genes; Data
S2) of 100 ng cDNA was performed at the Human Dendritic
Cell Laboratory, Newcastle University, UK. A total of 137
probes were selected based on previously proposed controls
plus prostate cancer diagnostic and prognostic biomarkers
within tissue and control probes (Data S2). Thirty additional
probes were selected as overexpressed in prostate cancer
samples when next-generation sequence data generated from
20 urine-derived EV-RNA samples were analysed
(unpublished). Target gene sequences were provided to
NanoString, who designed the probes according to their
protocols [19]. Data were adjusted relative to internal positive
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control probes as stated in NanoString’s protocols. The
ComBat algorithm was used to adjust for inter-batch and
inter-cohort bias [20]. Data were adjusted by means of a
correction factor for input amount by normalization to two
invariant and highly expressed housekeeping gene-probes,
GAPDH and RPLP2. The correction factor (CF) for a given
sample i, was calculated as the total mean of GAPDH and
RPLP2 expression, divided by the sample-specific mean of
GAPDH and RPLP2:

CFi ¼
P

j �xGAPDHj;RPLP2j

n� �xGAPDHi;RPLP2i

All data were expressed relative to KLK2 as follows: samples
with low KLK2 (counts <100) were removed, and data log2
transformed. Data were further normalized by adjusting the
median of each probe across all samples to 1, with the
interquartile range (IQR) adjusted to that of KLK2. More
formally, for each sample i and gene-probe j, the KLK2
normalized value, ŷi;j was calculated as:

ŷij ¼
yi;j �medianj

IQRj

� �
� IQRKLK2

� �
þMedianKLK2

yi;KLK2

No correlation was seen with respect to patient’s drugs,
cohort site, urine pH, colour or sample volume (P > 0.05,
chi-squared and Spearman’s rank tests; data not shown).

Model Production and Statistical Analysis

All statistical analyses and model construction were
undertaken in R version 3.4.1 [21], and unless otherwise
stated used base R and default parameters.

The PUR signatures were constructed from the training
dataset as follows: for each probe, a univariate cumulative
link model was fitted using the R package clm, with risk
group as the outcome and NanoString expression as inputs.
Each probe that had a significant association with risk group
(P < 0.05) was used as input to the final multivariate model.
A constrained continuation ratio model with an L1
penalization was fitted to the training dataset using the
glmnetcr library [22], an adaption of the LASSO method
[23]. Default parameters were applied using the LASSO
penalty and values from all probes selected by the univariate
analysis used as input. The final multivariable model was
selected according to the minimum Akaike information
criterion and incorporated all probes not removed by the
LASSO penalty. Ordinal logistic regression was undertaken
using the ordinal library [24].

Bootstrap resampling of receiver-operating curve analyses
used the pROC library [25] for calculation, statistical tests and
production of figures, with 2000 resamples used. Random
predictors were generated by randomly sampling from a
uniform distribution between 0 and 1.

Survival analyses were undertaken where follow-up of
patients on AS allowed, and used progression as an endpoint,
as described above. Cox proportional hazards models used
risk signatures as a continuous variable. Kaplan–Meier
estimators were calculated based on the median optimal
threshold to minimize the log-rank test P value from 10 000
resamples of the cohort, with replacement to ensure
robustness. The costs of missing significant cancer are far
higher than an unnecessary biopsy or investigation. With this
considered, where multiple samples were analysed from the
same patient on AS, the sample with the highest PUR-4
signature was used in survival analyses and Kaplan–Meier
estimators. No multiple samples from patients on AS
appeared simultaneously in either training or test datasets,
minimizing the potential for overfitting and bias of the
model.

Decision-curve analysis (DCA) [26] examined the potential
net benefit of using PUR signatures in the clinic.
Standardized net benefit was calculated with the rmda library
[27] and presented throughout our DCAs, as it is more
interpretable when compared with net benefit [28]. In order
to ensure DCA was representative of a more general
population, the prevalence of Gleason score within the
Movember cohort was adjusted via bootstrap resampling to
match that observed in a population of 219 439 men that
were in the control arm of the Cluster Randomized Trial of
PSA Testing for Prostate Cancer (CAP) [29]. For the biopsied
men within this CAP cohort, 23.6% had GS 6, 8.7% GS 7 and
7.1% GS ≥8, with 60.6% of biopsies being prostate cancer-
negative. This was used to perform stratified random
sampling with replacement of the Movember cohort to
produce a ‘new’ dataset of 300 samples. Standardized net
benefit was calculated on the resampled dataset, and the
process repeated for a total of 1000 resamples. The mean
standardized net benefit for PUR-4 and the ‘treat-all’ options
over all iterations were used to produce the presented figures
to account for variance in sampling.

Results
Clinical Cohort

The Movember cohort comprised 535 post-DRE urine
samples collected from four centres (NNUH, n = 312; RMH,
n = 87; Atlanta, n = 85; Dublin, n = 17). Multiple,
longitudinal samples within the Movember cohort were
provided by 20 of the 87 men enrolled on an AS programme
at the RMH. The median (IQR) time between collection of
multiple samples was 185 (122–252) days and was treated
independently from one another. Samples originated from
men categorized as having either NEC (n = 92) or localized
prostate cancer at time of urine collection, as detected by
TRUS biopsy (n = 443), that were further subdivided into
three risk categories using D’Amico criteria: low, n = 134;
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intermediate, n = 208; and high, n = 101. Patients with
metastatic cancer at collection were excluded from analyses.
Further characteristics of the Movember cohort are available
in Table 1.

Selection of Extracellular Vesicle Fractions and RNA
Yields

Prostate markers KLK2 and KLK3, were up to 28-fold higher
in the EV fraction when compared to sediment (TaqMan RT-
PCR, paired samples Welch t-test P < 0.001, data not shown).
Based on these analyses and previously published results by
Pellegrini et al. [30]. EVs were selected for further study.

Median urine-derived EV-RNA yields for the NNUH cohort
were similar for patients in the NEC (204 ng), low- (180 ng)
and intermediate-risk (221 ng) groups, and lower in the high-
risk group (108 ng; Fig. S1). Yields from three patients post-
radical prostatectomy were 0.8–2 ng, suggesting that most
urine-derived EV-RNA originates from the prostate.

Development of the Prostate Urine Risk Signatures

Samples in the D’Amico low-, intermediate- and high-risk
categories, together with NEC samples, were divided into the

Movember Training dataset (two-thirds of samples; n = 358)
and the Movember Test dataset (one-third of samples; n =
177) by random assignment, stratified by risk category
(Table 1).

The optimal model, as defined by the LASSO criteria in a
constrained continuation ratio model (see Methods for full
details) incorporated information from 36 probes (Table 2,
for model coefficients see Table S1) and was applied to both
training and test datasets (Fig. 1A,B). For each sample, the
four-signature PUR model defined the probability of
containing NEC (PUR-1), low-risk (PUR-2), intermediate-risk
(PUR-3) and high-risk (PUR-4) material within samples
(Fig. 1A,B). The sum of all four PUR signatures in any
individual sample was 1 (PUR-1 + PUR-2 + PUR-3 + PUR-4
= 1). The strongest PUR signature for a sample was termed
the primary (1°) signature, while the second highest was
called the secondary (2°) signature (Fig. 1C,D).

Pre-biopsy Prediction of D'Amico Risk, CAPRA Score
and Gleason Score

Primary PUR signatures (PUR-1–4) were found to be
significantly associated with clinical category (NEC, low-risk,
intermediate-risk, and high-risk, respectively) in both the
training and test datasets (P < 0.001, Wald test for ordinal
logistic regression in both the training and test datasets;
Fig. 2A,B). A similar association was observed with CAPRA
score (P < 0.001, Wald test for ordinal logistic regression in
both the training and test datasets; Fig. S2).

Based on recommended guidelines [4–6], the distinction
between D’Amico low- and intermediate-risk disease is
considered critical because radical therapy is commonly
recommended for patients with high- and intermediate-risk
cancer. We therefore initially tested the ability of the PUR
model to predict the presence of high- or intermediate-risk
disease from low-risk or NEC on initial biopsy. Each of the
four PUR signatures alone were able to predict the presence
of significant disease (risk category ≥ intermediate, area under
the curve [AUC] ≥ 0.68 for each PUR signature, test dataset;
Fig. S3), and were significantly better than a random
predictor (P < 0.001, bootstrap test, 2000 resamples);
however, PUR-1 and PUR-4 were best at discerning
significant disease and were equally effective; the AUCs for
both PUR-4 and for PUR-1 in the training and test cohorts
were 0.81 (95% CI 0.77–0.85) and 0.77 (95% CI 0.70–0.84;
Fig. 2C,D), respectively.

When GS alone was considered we found that PUR-4
predicted GS ≥3 + 4 with AUCs of 0.78 (95% CI 0.73–0.82;
training) and 0.76 (95% CI 0.69–0.83; test) and GS ≥4 + 3
with AUCs of 0.76 (95% CI 0.70–0.81; training) and 0.72
(95% CI 0.63–0.81; test; Fig. 3). The ability to predict GS ≥3
+ 4 was particularly relevant because this was previously

Table 1 Characteristics of the training and test cohorts

Characteristic Training Test

Total, n (%) 358 (67.0) 177 (33.0)
Collection centre
NNUH 203 109
RMH 83 38
Dublin 9 8
Atlanta 63 22
PSA, ng/mL, mean (median; IQR) 10.6 (6.9, 6.4) 10.9 (6.9, 7)
Age, years, mean (median; IQR) 65.8 (67, 11) 67.2 (67, 11)
Family history of prostate
cancer, %; no, yes, NA

3.0, 6.1, 90.8 0.6, 6.2, 93.3

First biopsy, n (%) 298 (82.78) 145 (81.46)
Prostate volume, mL; mean
(median; IQR)

59.2 (49.8, 30.4) 61.1 (49.2, 32.8)

PSA density, ng/mL; mL, mean
(median; IQR)

0.29 (0.19, 0.16) 0.29 (0.18, 0.17)

Suspicious DRE, n 107 52
Diagnosis, n 358 177
NEC, n (%) 62 (17.3) 30 (17.0)
D'Amico low-risk, n (%) 89 (24.9) 45 (25.4)
D'Amico intermediate-risk, n (%) 139 (38.8) 69 (39.0)
D'Amico high-risk, n (%) 61 (17.0) 27 (15.3)
Metastatic (bone scan), n (%)* 7 (2.0) 6 (3.3)

CAPRA, n 288 145
Low-risk (0–2), n (%) 97 (33.7) 49 (33.7)
Intermediate-risk (3–5), n (%) 108 (37.5) 53 (36.6)
High-risk (≥6), n (%) 83 (28.8) 43 (29.7)

GS, n (%) 292 144
6 119 (40.8) 64 (44.4)
7 131 (44.9) 56 (38.9)
≥ 8 42 (14.4) 24 (16.7)

GS, Gleason score; IQR, interquartile range; NEC, no evidence of cancer; NNUH,
Norfolk and Norwich University Hospital; RMH, Royal Marsden Hospital.
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chosen as an endpoint for aggressive disease in other urine
biomarker studies, where AUCs of 0.77, 0.78 and 0.74 were
reported by McKiernan et al. [14], Tomlins et al. [13] and
Van Neste et al. [16], respectively.

Decision-curve analysis [26] examined the potential net
benefit of using PUR signatures in a non-PSA-screened
population. Biopsy of men based on their PUR-4 score
provided a net benefit over biopsy of men based on current
clinical practice across all thresholds (Fig. 4). When DCA was
also undertaken within the context of a PSA-screened
population, PUR continued to provide a net benefit (Fig. S4).

Active Surveillance Cohort

Within the Movember cohort, 87 men were enrolled in AS
at the RMH. The median (range) follow-up time from
initial urine sample collection was 5.7 (5.1–7.0) years
(Table S2). The median (range) time from initial urine
sample collection to progression or final follow-up was
503 days (0.1–7.4 years). The PUR profiles from these men
were used to investigate the prognostic utility of PUR
beyond categorizing D’Amico risk. The PUR profiles were
significantly different among the 23 men who progressed
within 5 years of urine sample collection, and the 49 men
who did not progress (P < 0.001, Wilcoxon rank sum test;
Fig. 5A). Twenty-two men progressed by the criteria
detailed above, with an additional nine men progressing
based solely on mpMRI criteria. Further AS cohort
characteristics are available in Table S2.

Calculation of Kaplan–Meier estimators with samples divided
on the basis of 1°, 2° and 3° PUR-1 and PUR-4 signatures

showed significant differences in clinical outcome (P < 0.001,
log-rank test; Fig. 5B) and was robust (log-rank test P < 0.05
in 93.6% of 100 000 cohort resamples with replacement; see
Methods for full details). Proportion of PUR-4, a continuous
variable, had a significant association with clinical outcome (P
< 0.001; IQR HR 5.87, 95% CI 1.68–20.46; Cox Proportional
hazards model). A robust optimal threshold of PUR-4 was
determined to dichotomize patients on AS (PUR-4 = 0.174).
The two groups had a large difference in time to progression:
60% progression within 5 years of urine sample collection in
the poor prognosis group compared to 10% in the good
prognosis group (P < 0.001, log-rank test, HR 8.23; 95% CI
3.26–20.81; Fig. 5C). This result is robust (P < 0.05 in 99.8%
of 100 000 cohort resamples with replacement; see Methods
for full details).

When mpMRI criteria for progression were also included,
both primary PUR status and dichotomized PUR threshold
remained a significant predictors of progression (P < 0.001
log-rank test; Fig. S5). When the AS cohort was split by
D’Amico risk category at initial urine collection, PUR-4
remained a significant predictor of progression in men with
low-risk disease, but not in men with intermediate-risk
disease (P < 0.001 log-rank test; Fig. S6).

Multiple urine specimens had been collected for 20 of the
patients entered into the AS trial, allowing us to assess the
stability of urine profiles over time (Fig. S7). In patients who
had not progressed, samples were found to be stable compared
to a null model generated by randomly selected samples from
the whole Movember cohort (P = 0.011; bootstrap analysis with
100 000 iterations). Samples from patients deemed to have
progressed failed this stability test (P = 0.059).

Discussion
The variation in clinical outcome for prostate cancer, even
within risk-stratified groups such as D’Amico, is well
established. Many attempts have been made to address this
problem, including the subcategorization of intermediate-risk
disease into favourable and unfavourable groups [31] and the
development of the CAPRA classification system [8]. Other
approaches include the development of an unsupervised
classification framework [32] and of biomarkers of aggressive
disease, as illustrated by Cuzick et al. [33], Knezevic et al. [34]
and Robert et al. [35]. In each of the examples given above,
analyses are performed on cancerous tissue, usually taken at the
time of diagnosis via needle biopsy.

Urine biomarkers offer the prospect of a more holistic
assessment of cancer status prior to invasive tissue biopsy and
may also be used to supplement standard clinical
stratification. Previous urine biomarker models have been
designed specifically for single purposes, such as the detection
of prostate cancer on re-biopsy (PCA3 test), or to detect GS
≥3 + 4 [13,14,16,36]. In the present study, we constructed the

Table 2 NanoString gene probes incorporated by LASSO regularization in
the final optimal model used to produce the prostate urine risk signatures

Gene targets of NanoString probes in PUR model

AMACR MEX3A

AMH MEMO1
ANKRD34B MME
APOC1 MMP11
AR (exons 4–8) MMP26
DPP4 NKAIN1
ERG (exons 4–5) PALM3
GABARAPL2 PCA3
GAPDH PPFIA2
GDF15 SIM2 (short)
HOXC6 SMIM1
HPN SSPO
IGFBP3 SULT1A1
IMPDH2 TDRD1
ITGBL1 TMPRSS2/ERG fusion
KLK4 TRPM4
MARCH5 TWIST1
MED4 UPK2

PUR, prostate urine risk.
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four PUR signatures to provide a non-invasive and
simultaneous assessment of non-cancerous tissue and
D’Amico low-, intermediate- and high-risk prostate cancer in
individual prostates. The use of individual signatures for the
three D’Amico risk types is unique and could significantly aid
the deconvolution of complex cancerous states into more
readily identifiable forms for monitoring the development of
high-risk disease in, for example, men on AS.

For the detection of significant prostate cancer, PUR
compares favourably to other published biomarkers which
have used simpler transcript expression systems involving low
numbers of probes [13,14,16,36]. In the present study, we
show that the PUR classifier, based on the RNA expression
levels of 36 gene probes, can be used as a versatile predictor
of cancer aggression. Notably PCA3, TMPRSS2-ERG and
HOXC6 were all included within the optimal PUR model
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Fig. 2 (A and B) Boxplots of prostate urine risk (PUR) signatures in samples categorized as no evidence of cancer (NEC [n = 62, training; n = 30, test])

and D'Amico risk categories; (L – low-: n = 89, training, n = 45, test; I – intermediate-: n = 131, training, n = 69, test; and H – high-risk, n = 61, training, n =

27, test) in (A) the training and B) the test cohort. Horizontal lines indicate where the PUR thresholds lie for: 1° PUR-1 (green), 2° PUR-1 (purple), 1° PUR-4

(red), 2° PUR-4 (orange). (C and D) Receiver-operating characteristic (ROC) curves of PUR-4 and PUR-1 predicting the presence of significant (D'Amico

intermediate- or high-risk) prostate cancer prior to initial biopsy in (C) the training and (D) the test cohort. Coloured circles indicate the specificity and

sensitivity, respectively, of thresholds along the ROC curve that correspond to the indicated PUR-4 thresholds, equivalent to: red – 1° PUR-4, orange – 2°

PUR-4, purple – equivalent to 2° PUR-1, green – equivalent to 1° PUR-1.
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defined by the LASSO criteria, while DLX1 was not. We first
showed that the ability of PUR-4 status to predict TRUS-
detected GS ≥3 + 4 was similar (AUC 0.76; 95% CI 0.69–
0.83, test dataset) to these published models using PCA3/
TMPRSS2-ERG (AUC 0.74–0.78) [13,14] and HOXC6/DLX1
(AUC 0.77) [16].

Current clinical practice assesses patient’s disease using PSA,
needle biopsy of the prostate and mpMRI; however, up to

75% of men with a raised PSA level (≥3 ng/mL) are negative
for prostate cancer on biopsy [6,37], whilst in absence of a
raised PSA level, 15% of men are found to have prostate
cancer, with a further 15% of these cancers being high-grade
[38]. This illustrates the considerable need for additional
biomarkers that can make pre-biopsy assessment of prostate
cancer more accurate. In this respect, we show that both
PUR-4 and PUR-1 are each equally good at predicting the
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Fig. 3 Area under the curve (AUC) for prostate urine risk (PUR)-4 predicting the presence/absence of Gleason score (GS) ≥7 on initial biopsy in the

training and test cohorts (A and B, respectively) and GS ≥4 + 3 in the training and test cohorts (C and D, respectively). Coloured circles indicate the
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presence of intermediate- or high-risk prostate cancer as
defined by D’Amico criteria or by CAPRA status, while in
DCA analysis we found that PUR provided a net benefit in
both a PSA-screened and non-PSA-screened population of
men. With the increased adoption of mpMRI, it would be
useful in future studies to correlate PUR and other urine-
based markers with MRI findings and radical prostatectomy
outcomes.

Variation in clinical outcomes is also well recognized for
patients entered onto AS [39]. We found that the PUR
framework worked well when applied to patients on AS
monitored by PSA and biopsy, and also in patients monitored
by mpMRI. A potential limitation of the present study is that
we were not able to test the PUR stratification in an
independent and more conservatively managed AS cohort;
however, based on our observations, ~13% of the RMH AS
cohort could have been safely removed from AS monitoring
for a minimum of 5 years. An interesting feature is that, in
some patients, the PUR signature predicted disease
progression up to 5 years before it was detected by standard
clinical methods. This prognostic information could
potentially also aid the reduction of patient-elected radical
intervention in men on AS, which in some cohorts can be as
high as 75% within 3 years of enrolment [39]. Indeed, we

would view the use of PUR within the context of AS as its
major potential clinical application. Repeated longitudinal
measurements of PUR status could help correctly assess and
track a patient’s risk over time in a non-invasive manner. A
future priority is to further validate the utility of PUR within
AS using other previously described longitudinal cohorts.

In conclusion, we have shown that PUR represents a new and
versatile urine biomarker system capable of detecting
aggressive prostate cancer and predicting the need for
therapeutic intervention in men enrolled on AS. The dramatic
differences in RNA expression profiles across the spectrum
from high-risk cancer to patients with NEC, confirmed in a
test cohort, can leave no doubt that the presence of cancer is
substantially influencing the RNA transcripts found in urine
EVs. We also provide evidence that the majority of post-DRE
urine-derived EVs are derived from the prostate and that
urine signatures are longitudinally stable.
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Fig. S2. Boxplots of prostate-urine-risk signatures relative to
no evidence of cancer and CAPRA scores 1–10 in the
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Intermediate or greater (teal), Gleason ≥7 (orange) or
Gleason ≥4 + 3 (red).
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progression, including mpMRI criteria over time in days with
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≥0.174 and the number of patients within each group at the
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