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ABSTRACT
We constrain cosmological parameters by analysing the angular power spectra of the Baryon
Oscillation Spectroscopic Survey DR12 galaxies, a spectroscopic follow-up of around 1.3
million SDSS galaxies over 9376 deg2 with an effective volume of ∼6.5 (Gpc h−1)3 in
the redshift range 0.15 ≤ z < 0.80. We split this sample into 13 tomographic bins (�z =
0.05); angular power spectra were calculated using a Pseudo-C� estimator, and covariance
matrices were estimated using lognormal simulated maps. Cosmological constraints obtained
from these data were combined with constraints from Planck cosmic microwave background
experiment as well as the JLA supernovae compilation. Considering a wCDM cosmological
model measured on scales up to kmax = 0.07h Mpc−1, we constrain a constant dark energy
equation-of-state with an ∼4 per cent error at the 1σ level: w0 = −0.993+0.046

−0.043, together
with �m = 0.330 ± 0.012, �b = 0.0505 ± 0.002, S8 ≡ σ8

√
�m/0.3 = 0.863 ± 0.016, and

h = 0.661 ± 0.012. For the same combination of data sets, but now considering a �CDM
(lambda cold dark matter) model with massive neutrinos and the same scale cut, we find
�m = 0.328 ± 0.009, �b = 0.05017+0.0009

−0.0008, S8 = 0.862 ± 0.017, and h = 0.663+0.006
−0.007, and

a 95 per cent credible interval (CI) upper limit of
∑

mν < 0.14 eV for a normal hierarchy.
These results are competitive if not better than standard analyses with the same data set, and
demonstrate that this should be a method of choice for future surveys, opening the door for
their full exploitation in cross-correlation probes.

Key words: neutrinos – dark energy – large-scale structure of Universe – cosmology: obser-
vations.

1 IN T RO D U C T I O N

Since the discovery that the expansion of the Universe is accel-
erating, made by two independent Type Ia Supernovae analyses
in the late 1990s (Riess et al. 1998; Perlmutter et al. 1999), the
main questions in cosmology have concerned the nature of dark

� E-mail: arthur.loureiro.14@ucl.ac.uk (AL); b.moraes@ucl.ac.uk (BM);
fba@star.ucl.ac.uk (FBA)

energy and dark matter. Uncertainties in some of the properties
of these components have been reduced to the few per cent level,
and recent results from an array of different probes support a
standard cosmological model with no spatial curvature and a cos-
mological constant driving acceleration (DES Collaboration 2017;
Hildebrandt et al. 2017; Planck Collaboration 2018). Despite some
suggested external and internal tensions in cosmological data sets
(Efstathiou & Lemos 2018; Planck Collaboration 2018; Riess et al.
2018), this so-called flat �CDM (lambda cold dark matter) model
is supported by observations from galaxy photometric surveys such
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as KiDS (Hildebrandt et al. 2017) and DES (DES Collaboration
2017), cosmic microwave background (CMB) fluctuations (Planck
Collaboration 2018), type Ia supernovae (Scolnic et al. 2018),
and galaxy cluster counts (de Haan et al. 2016), among others.
At present, there is no overwhelming statistical evidence from
cosmological data requiring any model extensions.

Cosmology has proven a fertile area for progress in measuring
known matter components of our Universe. Measuring neutrino
masses and the neutrino hierarchy is one of the great modern chal-
lenges in physics (Kajita 2016; McDonald 2016). The best current
constraints from particle physics experiments place a lower limit
of 0.06 eV to the sum of neutrino masses in the normal hierarchy
(e.g. Esteban et al. 2017). Due to their effect of smoothing matter
perturbations on the primordial Universe, the neutrino masses can
potentially be measured using probes of the large-scale structure
of the Universe (Lesgourgues et al. 2013). Upper bounds on the
sum of their masses are currently reaching a level where strong
constraints on their hierarchy are possible (Planck Collaboration
2018), and a measurement of their masses is tantalisingly close.
Innovative strategies for the analysis of cosmological data could
help to overcome the remaining hurdles.

Recent years have seen increased interest in measuring cross-
correlations of distinct cosmological probes. Simultaneously mod-
elling and fitting auto- and cross-correlations of observable cosmo-
logical fields can improve the dark energy figure-of-merit of surveys
(Wang 2008), provide better control of systematic errors, and
potentially unveil new physics (e.g. Kirk et al. 2015). Examples of
this approach include combinations of CMB primary and secondary
anisotropies with galaxy clustering and cosmic shear signals that
help to constrain galaxy bias and intrinsic alignments (Hand et al.
2015; Giannantonio et al. 2016), ‘3x2pt’ correlations between
galaxy clustering and lensing signals that provide the strongest low-
redshift constraints on cosmological models (DES Collaboration
2017; Hildebrandt et al. 2017), and also between galaxy clustering
and CMB (Nicola, Refregier & Amara 2016a, 2017; Doux et al.
2017).

A consistent treatment of all probes requires a common theoreti-
cal framework for the analysis of the data and covariance matrices
across the different correlations. A natural candidate for this is the
angular power spectrum. It has been in widespread use by the CMB
community for decades (Fixsen et al. 1996; Szapudi et al. 2001;
Wandelt, Hivon & Górski 2001; Hivon et al. 2002; Górski et al.
2005), providing several advantages over other statistical estimators.
Spherical harmonic decompositions are particularly suited to the
analysis of data on the sphere, as they are easily connected to
the underlying linear cosmological perturbations in a statistically
isotropic and homogeneous Universe, and possess a simple covari-
ance structure for most practical cases despite mode mixing from
partial sky observations. Construction of the estimator from galaxy
survey data does not require any de-projection using cosmological
information, and covariance estimation from lognormal simulations
can be estimated in a cosmology-independent way. This allows for
a consistent end-to-end analysis. Last, but not least, self-calibration
of photometric redshift distributions using cross-correlations with
spectroscopic surveys is more readily implemented, and more robust
to potential systematic errors (McQuinn & White 2013; McLeod,
Balan & Abdalla 2017) when compared to other methods such
as P(k), ξ (r), and w(θ ) (Ross et al. 2017; Salazar-Albornoz et al.
2017). We argue that this should be the case because methods that
live in angular space such as angular power spectra and w(θ ) can
be naturally binned finely and hence more information about the
redshift evolution can be extracted without further modelling and

further assumptions. We further argue that non-linearities are better
separated in our angular power spectra method than they would be
if using the data in configuration space.

Spectroscopic surveys give precise information about the radial
distances to galaxies, since the redshifts can be precisely measured
from the spectra. In light of the precision in redshift for such
galaxy surveys, the usual cosmological approach is the use the
3D power spectrum, P(k), or the 3D correlation function in real
space, ξ (r) (Percival et al. 2001; Beutler et al. 2017a; Ross et al.
2017; Wang et al. 2017). Although these approaches have some
advantages related to exploring the full radial information from
spectroscopic surveys, a fiducial cosmology always needs to be
assumed in order to translate from redshift space to real space. This
choice of fiducial cosmology may potentially bias cosmological
measurements, justifying once more the choice of a tomographic
angular power spectra analysis.

However, there are difficulties involved in using angular power
spectrum estimators on a spectroscopic galaxy survey. First, it is
not simple to ensure that all of this radial information is contained
in the angular power spectra of projected redshift bins – even
if a fine redshift binning strategy is employed. A second and
more relevant issue is that spectroscopic surveys have a much
lower galaxy density due to necessarily long integration times and
targeting of specific galaxies with fibre spectrographs. This leads
to a low signal-to-noise ratio of galaxies to Poisson noise once the
data are projected in several tomographic redshift bins. A judicious
choice of redshift bin width and Fourier scales can ensure that all
relevant linear cosmological information is retrieved (Asorey et al.
2012; Gaztañaga et al. 2012; Eriksen & Gaztañaga 2015; Kirk et al.
2015), but no consistent application of 2D angular power spectra
tomography with multiple narrow bins has been attempted on real
spectroscopic survey data.1

In this work, we apply the angular power spectrum formalism
to the Baryon Oscillation Spectroscopic Survey (BOSS) 12th and
final public data release. The BOSS is one of the components of
the third phase of the Sloan Digital Sky Survey (SDSS-III). Its
main aim is to measure the preferred scale of baryonic acoustic
oscillations in the primordial baryon-photon plasma, as imprinted
in the late-time galaxy distribution. The DR12 data release contains
the largest spectroscopic catalogue to date (Alam et al. 2015). It
is based on observations of around 2.5 million objects of which
around 1.5 million were classified as galaxies, which are further
selected to form a large-scale structure galaxy sample ready for
cosmological analysis (Reid et al. 2016). We choose to work with
this data set because of its constraining power, its public availability,
and because of the possibility of comparing our results to those
previously obtained by the BOSS collaboration with this same data
set (see Alam et al. 2016 and the BOSS publications website2 for a
list of cosmological publications from the collaboration).

Using the BOSS large-scale structure sample, we show that it is
possible not only to measure the full shape of the angular power
spectra in very thin tomographic redshift bins, but also to obtain
reliable cosmological constraints for �CDM, wCDM, and �CDM
with

∑
mν cosmologies using such a survey alone. The method

presented here uses the full shape of the angular power spectra –
not just the BAO scale. This is achieved by separating the galaxy
samples into tomographic redshift bins with �z = 0.05, and using

1Salazar-Albornoz et al. (2017) perform a similar analysis in real space with
the BOSS DR12 galaxies.
2http://www.sdss3.org/science/boss publications.php
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both the auto power spectra and the cross-power spectra of adjacent
bins to extract information from the radial correlation of galaxies.
Further combination with external CMB (Planck Collaboration XIII
2016c, as the Planck 2018 likelihood was not available by the time
we submitted this work) and SNIa (Betoule et al. 2014) data sets
achieves competitive constraints on the models mentioned above.

This paper is organized as follows. Section 2 describes the
BOSS LSS sample selection criteria, the mask creation, and the
construction of the galaxy overdensity maps. Section 3 describes the
Pseudo-C� estimator used for the angular power spectrum analysis.
Section 4 describes the theoretical modelling of the angular power
spectrum and the use of lognormal mocks for covariance matrix
estimation. Section 5 describes our analysis of potential systematic
errors using the cross-power spectra between the data and different
sources of systematic effects. Section 6 explains the Bayesian
modelling for cosmological parameter estimation, describes a series
of consistency checks performed on the data, the covariance matrix,
and the pipelines, and finally presents cosmological parameter
constraints for flat �CDM, wCDM, and �CDM + ∑

mν models
using the BOSS C�s alone and in combination with external
CMB results from the Planck collaboration XI 2016b) and type
Ia supernovae results from JLA (Betoule et al. 2014). This is a
publication by theZXCorr Collaboration. All data products,
data vectors, covariances, and cosmological chains will be made
available in the ZXCorr website: http://zxcorr.org.

2 BO S S D R 1 2 DATA

The BOSS Data Release 12 (BOSS DR12) is the result of one of
the experiments in the third phase of the Sloan Digital Sky Survey
(SDSS-III); it is the largest spectroscopic redshift galaxy survey to
date. See Alam et al. (2015) for a full description of BOSS DR12
(and in particular for descriptions of the target selection criteria and
of the object weighting scheme for offsetting various systematic
effects).

The BOSS DR12 is subdivided into two main samples: LOWZ
and CMASS. The BOSS collaboration created these samples by
applying colour-magnitude and colour–colour cuts to the SDSS
photometric catalogue in order to generate lists of targets for
spectroscopic observation. The LOWZ sub-sample is designed as
a simple extension of the original SDSS Luminous Red Galaxy
(LRG) sample (Eisenstein et al. 2001) at low redshifts, while the
CMASS sample is defined to select a stellar mass-limited sample of
galaxies of all colours – hence its name, for ‘constant stellar mass’
– complemented by a colour cut whose goal is to select higher-
redshift objects. The targets were then observed spectroscopically
and objects that revealed themselves not to be galaxies (e.g. stars
or quasars) were discarded. For a comprehensive discussion of the
photometric cuts, selection criteria, and the terminology used, see
Dawson et al. (2013).

2.1 Galaxy catalogues

To facilitate comparison of our results with the official BOSS
collaboration results (Alam et al. 2016), the construction of the
catalogues used in this work followed a procedure similar to that
outlined in Reid et al. (2016). The data set was downloaded from
the BOSS DR12 website.3 We have further restricted these samples
by applying redshift cuts of 0.15 ≤ z < 0.45 for LOWZ and 0.45

3http://data.sdss3.org/sas/dr12/boss/

Figure 1. The redshift distribution of the BOSS samples. The darker
histograms correspond to the total samples for LOWZ (0.15 ≤ z < 0.45)
and CMASS (0.45 ≤ z < 0.80). The overlap between samples was excluded
using the redshift information, leaving a total number of 1 157 755 galaxies.

≤ z < 0.80 for CMASS. These cuts ensure that our LOWZ and
CMASS samples do not overlap in redshift, which simplifies our
tomographic analysis. We use z = 0.45 (and not a lower z) as the
dividing point between the two samples because the LOWZ sample
has around 12 per cent more galaxies in 0.4 < z < 0.45 than does
CMASS. See Fig. 1 for the resulting redshift distributions. Note
also that our upper limit of z < 0.8 for CMASS is greater than the z

< 0.75 limit used in Reid et al. (2016). As a result of these factors,
our redshift ranges differ from those quoted in Reid et al. (2016)
and Alam et al. (2016). The subsections that follow outline the main
characteristics of the samples.

2.1.1 LOWZ sample

The LOWZ sample contains LRGs with redshifts up to around 0.45
as a extension of the SDSS-I/II LRG Cut I sample (Eisenstein et al.
2001). The targets are selected at low redshifts by a cut around
the predicted colour locus (equation 1), and a selection of bright
red objects is done at each redshift by a variable colour-magnitude
cut in the r band (equation 2). This is the main cut in the LOWZ
sample as it produces a constant number density on the redshift
range of this sample. According to Reid et al. (2016), the number
of galaxies in the sample is extremely sensitive to this cut (see also
Ross et al. 2013). Star-galaxy separation is done, for LRGs, with
a cut on the r-band magnitudes as shown in equation (3). Finally,
to guarantee a high spectroscopic redshift success rate, a cut is
performed on the r band to impose a brightness limit, as shown in
equation (4).

In summary, the photometric target selection criteria for the
LOWZ sample are

|c⊥| < 0.2 (1)

rcmod < 13.5 + c‖/0.3 (2)
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rpsf − rcmod > 0.3 (3)

16 < rcmod < 19.6 (4)

In the first months of observation, the BOSS collaboration used
a different star-galaxy separation criterion compared to that used
later (see Appendix A from Reid et al. 2016). As a result, some
sky regions from the LOWZ sample (specifically LOWZE2 and
LOWZE3) have a redshift distribution that differs from that in
other regions. Our method relies on having a consistent redshift
distribution across the sky, and therefore we excluded these regions
from our LOWZ sample (see Fig. 2a).

2.1.2 CMASS sample

The CMASS sample was designed to be closer to a mass limited
sample, extending the Cut-II LRGs from SDSS-I/II (Eisenstein et al.
2001) to bluer and fainter objects using a sliding colour-magnitude
cut as shown in equation (5). The cut in the quantity d⊥ (equation 6)
results in an increase in the number density of objects for the redshift
range of 0.45 < z < 0.80 (see Fig. 1). Model and magnitude limit
cuts (equations 7 and 8) ensure high redshift success rates while
preventing low redshift objects from being erroneously targeted.
Outliers and problematic blended objects are excluded using cuts in
i- and r-band magnitudes (equations 9 and 10). Finally, star-galaxy
separation was done by performing a varying cut in ipsf − imod and
zpsf − zmod based on Cannon et al. (2006) (equations 11 and 12).

In summary, the CMASS sample photometric target selection
criteria for most of the survey are

imod < min(19.86 + 1.6(d⊥ − 0.8), 19.9) (5)

d⊥ > 0.55 (6)

17.5 < icmod < 19.9 (7)

ifib2 < 21.5 (8)

rmod − imod < 2 (9)

rdev,i < 20.0 pix (10)

ipsf − imod > 0.2(21 − imod) (11)

zpsf − zmod > 0.46(19.8 − zmod) (12)

Although around 25 000 galaxies were targeted with slightly
different selection criteria (see section 3.3.1 from Reid et al. 2016
for further details), this does not affect significantly the sample’s
redshift distribution (in the way that it did for LOWZE2 and
LOWZE3 samples), and therefore we retain these galaxies.

2.1.3 Total galaxy weights

Various observational effects, such as fibre collisions, will introduce
bias into clustering statistics calculated from raw DR12 data. To
offset this, the BOSS collaboration provides a weighting scheme
for each object; clustering statistics calculated using object counts
weighted by this scheme are then expected to be unbiased by such
effects. The scheme is described in Reid et al. (2016), which in turn
was based on Anderson et al. (2014). We use the same weighting
scheme.

For each targeted galaxy, the BOSS collaboration provides three
components to the weighting scheme, corresponding to different
observational effects (Anderson et al. 2014; Reid et al. 2016; Ross
et al. 2017):

(i) wsystot, a combination of stellar density with airmass, sky flux,
reddening, and other seeing conditions;

(ii) wcp, which is due to close-pair objects, i.e. pairs of objects
that cannot have both their spectra measured due to fibre collisions;

(iii) wnoz, which takes into account nearest neighbours following
a redshift failure by up-weighting such galaxies.

We follow equation (49) in Reid et al. (2016) to combine these
into a single weight for each galaxy (Ross et al. 2017):

wtot = wsystot(wcp + wnoz − 1) . (13)

The default values of wcp and wnoz are unity. By construction the
term inside the parentheses in equation (13) conserves the total
number of targeted galaxies. A more detailed study of the impact
of observational systematics is presented in Section 5.

2.2 Masks and map making

We now describe the construction of the maps and masks that are our
final data products. In this construction we rely on the HEALPix4

software for pixelizing the celestial sphere (Górski et al. 2005). The
procedures described here were used for both CMASS and LOWZ.

2.2.1 Masks and angular selection function

The BOSS collaboration provides5 an acceptance mask and several
veto masks; these are in MANGLE format (Swanson et al. 2008).

The acceptance mask is continuous (i.e. takes values between 0
and 1), the value for a given region reflecting the completeness of
observations there i.e. the extent to which spectra were obtained for
all targets. The precise value is

CBOSS = Nobs + Ncp

Nobs + Ncp + Nmissed
(14)

where:

(i) Nobs is the number of spectroscopically observed objects
including galaxies, stars, and unclassified objects;

(ii) Ncp is the number of close-pair objects; and
(iii) Nmissed is the number of targeted objects with no spectra.

The veto masks are binary maps (i.e. regions are marked as either
good or bad); these maps mask out regions affected by observational
factors such as centerpost collisions, collision priorities, bright

4http://healpix.sourceforge.net
5http://data.sdss3.org/sas/dr12/boss/lss/
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(a) (b)

Figure 2. (a) LOWZ final pixel completeness angular mask with Nside = 512. We excluded the LOWZE2 and LOWZE3 regions (the holes in the NGC) due to
the non-standard N(z) in these regions (the result of an initially different observing strategy that affected these regions). After performing a pixel completeness
cut of 0.8, the total used area of the mask is around 8529.58 deg2 (fsky = 0.2067). (b) CMASS final pixel completeness angular mask with Nside = 512. After
performing a pixel completeness cut of 0.8, the total used area of the mask is around 9444.63 deg2 (fsky = 0.2286).

stars, bright objects, seeing cuts, extinction cuts, and others (see
section 5.1 in Reid et al. 2016).

We transform the BOSS acceptance and veto masks into a high-
resolution HEALPix pixelization with Nside = 16384. Using this
pixelization scheme, we combine the BOSS masks to yield a high-
resolution binary mask. This is done by accepting pixels in which the
acceptance mask value CBOSS exceeds 0.7 and which are not marked
as bad in any of the veto masks; other pixels are rejected. This choice
of completeness cut is based on the BOSS LSS catalogue algorithm
from Reid et al. (2016). This high-resolution binary mask is then
degraded to a lower resolution (Nside = 512) continuous mask with
values Cpix (the pixel completeness factor), defined for a given pixel
to be the fraction of high-resolution sub-pixels that are marked
as good in the high-resolution binary mask. This is our final mask
product and can be seen in Figs 2(a) for LOWZ and (b) for CMASS.
The masks used for the pseudo angular power spectrum estimator
(PCL) measurements in Section 3 contains a hard cut in Cpix ≥ 0.8:
values <0.8 are set to 0 and values ≥0.8 are set to 1.

2.2.2 HEALPix galaxy overdensity maps

From the galaxy catalogues, we generate the final data products to
be used in our analysis: the galaxy overdensity HEALPix maps.
First, we bin both data catalogues into tomographic redshift bins
of �z = 0.05. This gives six tomographic bins for LOWZ (0.15
≤ z < 0.45) and seven for CMASS (0.45 ≤ z < 0.80). Details
about each redshift bin can be found in Table 1. According to
Asorey et al. (2012), �z = 0.05 is the thickest possible redshift
bin size a spectroscopic redshift survey with z < 1 can have in
order to keep sufficient radial information without suppressing the
radial BAO information due to averaging originating from mode
projection. Smaller bin sizes could improve the quality of radial
information; however, the trade-off between bin size and shot-noise
per bin for the case considered in this work is such that the shot-noise
would then be too high for the considered scales. The use of the
cross-power spectra between adjacent bins allows for redshift-space
distortion (RSD) information to be properly probed as explained in
Section 4.1.2.

Next, we create a weighted number counts map that contains the
number of objects in each HEALPix pixel, np, weighted by the
total galaxy weight (wtot) given by equation (13). To create the final
galaxy overdensity maps, we up-weight the maps by the inverse of
the pixel completeness factor from the masks, Cpix. Here, objects in

Table 1. Details of each tomographic redshift bin: redshift limits, the
number of objects, and shot noise. Note that shot noise is calculated after
applying the galaxy weights (Section 2.1.3, equation 13).

Sample bin zmin zmax Num galaxies Shot noise
(gal/strd)−1

LOWZ–0 0.15 0.20 43 265 6.143 × 10−5

LOWZ–1 0.20 0.25 51 271 5.156 × 10−5

LOWZ–2 0.25 0.30 59 713 4.416 × 10−5

LOWZ–3 0.30 0.35 85 394 3.064 × 10−5

LOWZ–4 0.35 0.40 83 537 3.136 × 10−5

LOWZ–5 0.40 0.45 57 165 4.605 × 10−5

CMASS–6 0.45 0.50 177 383 1.577 × 10−5

CMASS–7 0.50 0.55 217 636 1.275 × 10−5

CMASS–8 0.55 0.60 179 571 1.545 × 10−5

CMASS–9 0.60 0.65 114 398 2.435 × 10−5

CMASS–10 0.65 0.70 57 537 4.850 × 10−5

CMASS–11 0.70 0.75 23 631 1.182 × 10−4

CMASS–12 0.75 0.80 7253 3.839 × 10−4

pixels with Cpix < 0.8 are now considered outside the footprint, i.e.
the pixel value is set to zero. Thus, the expression for the overdensity
maps is

δ
g

i,p =
⎧⎨
⎩
(

1
Cpix,p

n
g
i,p

n̄i

)
− 1 if Cpix,p > 0.8

0 otherwise,
(15)

where n̄i is the mean number of weighted galaxies per observed
pixel, in each tomographic redshift bin. Note that the weights to
which we are referring here are the ones mentioned in equation 13;
the n̄i are not weighted by the pixel completeness weight. After
these procedures are applied to all 13 tomographic redshift bins,
we are ready to measure the power spectra of these maps using the
Pseudo-C� estimator described in the next sections.

3 ANGULAR POWER SPECTRA ESTI MATO RS
AND MEASUREMENTS

The first proposed method for estimating the angular power spec-
trum C� (Peebles 1973) consists of projecting the density field on to
the celestial sphere, decomposing this projected field into spherical
harmonics, and then analysing statistically the coefficients of this
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decomposition. We refer to this method of estimating the power
spectrum as a pseudo power spectrum estimator (PCL).

In Appendix A, we describe the PCL estimator for overdensity in
detail, following recent approaches as presented in e.g. Scharf et al.
(1992), Fisher, Scharf & Lahav (1994), Wright et al. (1994), Huterer,
Knox & Nichol (2001), Hivon et al. (2002), Blake, Ferreira & Borrill
(2004), Blake et al. (2007), Thomas, Abdalla & Lahav (2010),
Thomas, Abdalla & Lahav (2011a), Thomas, Abdalla & Lahav
(2011b), Ho et al. (2012) and Balaguera-Antolinez et al. (2018).
In this section, we will briefly summarize how the estimator works
and its main properties.

3.1 Pseudo-C� estimator

Our observations contain both signal and (Poisson) noise; spatial
variations in the latter contribute to the measured auto power
spectrum and this effect must be removed when estimating the
power spectrum of the underlying signal.

As the signal and noise are uncorrelated, the angular power
spectra of the signal (S�), data (D�), and noise (N�) are related
by

S� = D� − N�. (16)

Here D� is measured from performing a decomposition in spherical
harmonics of the pixelized galaxy overdensity field (equations A9
and A7). For most tomographic bins, we can (using the variance of
a Poisson distribution) approximate the angular power spectrum of
the noise as

N� ≈ ��tot

n
g
tot

= 1

n̄
, (17)

where n̄ is the mean number of galaxies per steradians.
Amending equation (A6) to account for pixelization and shot

noise yields an estimator Ŝ
ij

� for the partial sky signal power
spectrum between two redshift bins i and j:

Ŝ
ij

� = 1

w2
�

[(
1

(2� + 1)

�∑
m=−�

D
ij

�m

)
− N�δij

]
, (18)

where w� is the pixel window function given by equation (A11).
Note that the estimator in equation (18) is symmetric in i and j.
Note also that there is no shot noise contribution for the cross-
power spectra (i �= j). The PCL estimator described here uses
galaxy overdensity maps instead of the galaxy counts maps used in
Blake et al. (2007), Thomas et al. (2011b), and others; Appendix B
describes the correspondence between the two approaches. This
estimator is unbiased (Peebles 1973) but does not have minimum
variance: maximum likelihood estimators such as QML (e.g. Ef-
stathiou 2004) have smaller variance. However, these maximum
likelihood estimators are computationally expensive to use; this is
why, we use PCL.

3.2 Bandwidth binning and measurements

We bin the � values into bins �� of width 8 (so e.g. the first bin is 2
≤ � ≤ 9). For each bin we calculate a weighted average of the Ŝ

ij

�

(weighted by the number of spherical harmonic coefficients):

Ŝ
ij

�� =
∑

�∈��(2� + 1)Ŝij

�∑
�∈��(2� + 1)

. (19)

This binning acts on the measurement in a way that decorrelates
mixed modes (which arise from the convolution of the true mea-
surement and the survey’s angular window function).

We measure the PCL estimator up to �max = 510; Fig. 3 shows
the results for the auto- and cross-power spectra for LOWZ and
CMASS. We do not consider in this work any cross-correlations
between the two samples. The figure also shows error bars given by
the diagonal of the covariance (estimated in Section 4.3), as well as
the splines used to generate the lognormal mocks (Section 4.3). The
figure shows that the last two CMASS bins are dominated by shot
noise (due to their small density of galaxies). Uncertainty in the
characterization of this noise will be included into the theoretical
forward modelling presented in Section 4 and marginalized over
during the cosmological parameter estimation (Section 6).

4 MO D E L L I N G O F TH E O RY A N D
ESTI MATI ON O F C OVARI ANCE MATRI CES

4.1 Theoretical angular power spectra

Our goal is to use observations to constrain cosmological parame-
ters; as part of this we describe the theory that connects the statistics
of the underlying matter field with the measured angular power
spectra. Our treatment is similar to that found in the literature
(Scharf et al. 1992; Huterer et al. 2001; Padmanabhan et al. 2007;
Thomas et al. 2011b; Asorey et al. 2012).

Let δg(x, z) denote the galaxy density function. Let δg(k, z) be its
Fourier transform; we can write this in terms of the growth function
D(z), the bias b(z) (assumed here to be scale-independent), and the
Fourier components δ(k, 0) of the underlying matter distribution at
the current time:

δg(k, z) = D(z)δg(k) = D(z)b(z)δ(k, 0). (20)

The correlation structure of the Fourier transform is

〈δg(k, z)δ∗
g(k′, z)〉 = (2π )3δ(D)(k − k′)Pg(k, z) (21)

where Pg(k, z) = b(z)2P(k, z) is the power spectrum of the galaxy
density field and P(k, z) is the power spectrum of the underlying
matter density field.

Integrating the galaxy density along the line of sight, n̂, yields

δg(n̂) =
∫ ∞

0
δg(χ (z)n̂, z)n(z)dz (22)

where n(z) is the normalized redshift-dependent selection function
and χ (z) is the comoving distance. The spherical harmonic compo-
nents a�m of this projected galaxy distribution are

a�m =
∫

Y�m(n̂)δg(n̂)d� (23)

=
∫

Y�m(n̂)
∫

δg(χ (z)n̂, z)n(z)dzd� (24)

= 4π

(2π )3

∫
b(z)n(z)D(z)

∫
δ(k, 0)i�j�(kχ (z))Y�,m(k̂)d3kdz

(25)

where j�(kχ (z)) are the spherical Bessel functions (Thomas et al.
2010, 2011b). The final step uses the plane wave expansion and
the spherical harmonic addition theorem. We may collect the z

dependencies into a window function:

Wg,�(k) =
∫

b(z)n(z)D(z)j�(kχ (z))dz. (26)
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332 A. Loureiro et al.

Figure 3. Measured signal auto- and cross-power spectra for the LOWZ (blue) and CMASS (red) samples (equation 19). The black dashed lines show the
estimated Poissonian shot noise (equation 17). The solid grey line shows the deconvolved spline used in Section 4.3 to generate the lognormal mocks for
covariance matrix estimation from which the error bars in this figure were estimated. Even though the measured Ŝ�� had the shot noise removed, note that the
last two CMASS bins have a significant part of their signals below the level of Poissonian shot noise.

Using the window function in equation (25) yields a simple
expression for the angular power spectrum:

C
ij

� ≡
〈
ai

�ma
j∗
�m

〉
(27)

= 2

π

∫
Wi

g,�(k)Wj

g,�(k)k2P (k, 0)dk. (28)

Here we have introduced superscripts i and j to denote dif-
ferent redshift shells and the equation above therefore defines
both auto-C� (for i = j) and cross-C� (for i �= j). The same

formalism can be used to obtain the C� between two different
tracers, between photometric and spectroscopic redshift shells,
etc.

This work uses the Unified Cosmological Library for Cells, also
referred to as the UCLCL code (Cuceu et al., in preparation). This
code obtains the primordial power spectra and transfer functions
from the CLASS Boltzmann code (Blas, Lesgourgues & Tram
2011), and then applies equation (28) to obtain the angular power
spectrum. UCLCL deals with the redshift distribution in more
flexible ways than do CLASS and CAMB (Lewis, Challinor &
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Lasenby 2000): it allows for the input n(z) distribution to be a
spline and also allows it to be convolved with a Gaussian error
function to take into account redshift systematic effects (equation 29
in Section 4.1.1). A comparison between these codes is presented
in Appendix C.

4.1.1 Spectroscopic redshift distribution and shot-noise modelling

The spectroscopic selection provides a full (un-normalized) n(z)
function for both the LOWZ and CMASS samples (see Fig. 1).
Binning is achieved by hard cuts on each of these samples in
intervals of �z = 0.05, with no overlap or gaps between bins.
Despite the impressive precision of spectroscopy, to suggest that
these bins have no overlap (i.e. that there is no error in the
spectroscopic measurement) is unrealistic; there is overlap, and
it has a significant impact on the cross-correlations between bins.
Spectroscopic errors are modelled within the distribution functions
by a convolution with a narrow Gaussian function representing the
uncertainty on a given measurement. Such a convolution is given
by

ni(z) =
∫

ni
∗(z − z′) exp

(
− z′2

2σ 2
s

)
dz′, (29)

where ni
∗(z) is the raw redshift distribution, σ s (the standard devia-

tion of the Gaussian) is a proxy for the spectroscopic measurement
error, and ni(z) is the final redshift distribution to be used in
calculations. In practice, the convolution is achieved by means of a
fast Fourier transform algorithm, multiplication of the functions in
Fourier space, and reverse transform.

This convolution is also used to account for the Fingers-of-God
(FoG) effect (Kang et al. 2002; Percival et al. 2011), which could
dominate the measurements on σ s(z). This effect, which is similar
to that of RSD, arises from the peculiar motions of galaxies within
virialized structures. These motions elongate structures in redshift
space, smearing out the redshift distribution by the addition of
Doppler shift to cosmological redshift (Kaiser 1987). The convolu-
tion width σ s models the combined impact of spectroscopic redshift
errors and of the FoG effect; σ s is then varied and marginalized over
during the cosmological analysis. Due to the sensitivity of the cross-
angular power spectra to these effects, a separate σ s is used for each
redshift bin (for more details, see Section 6.1).

4.1.2 Redshift space distortions

The full large-scale structure window function needs to take into
account Redshift Space Distortions (RSD) (Padmanabhan et al.
2007; Thomas et al. 2011b). This effect tends to increase the power
for large scales, �� < 60, due to the mix of redshift and peculiar
velocities of galaxies. This creates the illusion that local peculiar
motion of galaxies moving towards us appear closer (i.e. appear to
be at lower redshifts), while galaxies with peculiar motion moving
away from us appear to be ever further away (i.e. they appear to be
at higher redshifts). This effect can be easily taken into account by
adding the RSD window function (Scharf et al. 1992; Fisher et al.
1994; Padmanabhan et al. 2007; Kirk et al. 2015; McLeod et al.
2017) to equation (28):

W
Tot,i
� (k) = Wi

g,�(k) + Wi
RSD,�(k) . (30)

Figure 4. A series of effects that impact the angular power spectrum (0.45
< z ≤ 0.50) in a variety of ways. The two solid lines are the linear and
non-linear power spectra (Section 4.1.3); they diverge as a function of scale,
�. Dashed lines include the redshift space distortions effect (Section 4.1.2),
which increases the power for larger scales (see sub-panel). Dot-dashed
lines show the effect of the mixing matrix convolution (Section 4.1.4),
which tends to suppress power on all scales. Finally, the black dotted line
is a combination of all effects: RSDs, non-linearities, and mixing matrix
convolution. Theoretical power spectra were calculated using the UCLCL
pipeline (Cuceu et al., in preparation), using a flat cosmology: b = 1, h =
0.6725, �b = 0.0492, �cdm = 0.265, w0 = −1.0, τ r = 0.079, log As =
3.093 × 10−10, ns = 0.965.

Here the RSD window function is given by

Wi
DRS,�(k) = βi

k

∫
dχ

dni

dχ
j ′
�(kχ (x))

= βi

∫
ni(χ (z))

[
(2�2 + 2� − 1)

(2� + 3)(2� − 1)
j�(kχ (z))

+ �(� − 1)

(2� − 1)(2� + 1)
j�−2(kχ (z))

− (� + 1)(� + 2)

(2� + 1)(2� + 3)
j�+2(kχ (z))

]
dχ (31)

where we defined the redshift distortion parameter, βi(z) =
(d ln D(z)/d ln a)/bi(z) ≈ �γ

m(z)/bi(z), to be dependent on the bias
of the given redshift shell or tracer. The RSD window function does
not account for the FoG effect, which affects small scales due to the
virial motion of galaxies inside clusters (Kang et al. 2002); instead,
as discussed in Section 4.1.1, the FoG effect is subsumed into the
spread of the spectroscopic redshift distribution.

Fig. 4 shows the impact on the angular power spectrum of dif-
ferent effects considered in this section: redshift space distortions,
non-linearities (Section 4.1.3), and partial sky convolution with the
mixing matrix (Section 4.1.4). Note that for some of these effects,
the scale at which they have impact varies with redshift.
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4.1.3 Non-linear angular power spectra: Halofit

In the UCLCL pipeline, the C� estimation may be extended some
way into the non-linear regime by introducing the scale-dependent
non-linear overdensity δNL(k, χ ), and therefore the corresponding
non-linear growth function

DNL(k, χ ) = δNL(k, χ )

δNL(k, 0)
. (32)

The calculation of this non-linear density is extracted from the
CLASS code (see Blas et al. 2011; Di Dio et al. 2013), which
expresses a ratio

RNL(k, χ ) = δNL(k, χ )

δL(k, χ )
=
(

PNL(k, χ )

PL(k, χ )

) 1
2

(33)

of the non-linear perturbations to the linear (δL(k, χ )); the second
equality follows from P = 〈δδ∗〉. This ratio is calculated using
the modified HALOFIT of Takahashi et al. (2012) (also employed
by CAMB SOURCES; Challinor & Lewis 2011), with additional
corrections from Bird, Viel & Haehnelt (2012) for neutrino effects.

The window function in equation (30) contains both the selection
function and the growth function, which tracks the ratio of the power
spectrum at different redshifts. The non-linear power spectrum is
related to the linear, present-day power spectrum by

PNL(k, χ ) = R2
NL(k, χ )PL(k, χ )

= R2
NL(k, χ )D2

L(χ )PL(k, 0). (34)

This means that the window functions in equation (30) should
have an additional factor of RNL(k, χ ) inside the integral over χ .
In the case of these very narrow spectroscopic redshift bins, we
take

RNL(k, z) = RNL(k, z̄) (35)

where z̄ is the mean of the redshift bin i.e. we assume that the non-
linear ratios vary negligibly over the width of a single bin (but may
vary between different bins). This simplifies the calculation of the
window function considerably, and is a good approximation when
the width of the bin is small. In this case the window functions for
the redshift bins are related in a straightforward way to their linear
counterparts:

Wi
NL,�(k) = RNL(k, z̄i)Wi

g,�(k). (36)

The rest of the calculation may proceed as usual.

4.1.4 Partial sky: mixing matrix convolution

When dealing the PCL estimator measurements, partial sky effects
mean that we must calculate the convolution of the theory and the
survey’s angular selection function. It is computationally expensive
and unstable to deconvolve this effect from the measurements. This
leads to forward modelling, where the experimental systematics are
modelled and introduced into the theoretical predictions (Scharf
et al. 1992; Fisher et al. 1994; Thomas et al. 2011b). This effect is
taken into account through a convolution with the mixing matrix,
R��′ (Hauser & Peebles 1973; Hivon et al. 2002; Brown, Castro &
Taylor 2005; Blake et al. 2007):

S� =
∑

�′
R��′C�′ . (37)

Figure 5. Slices through the mixing matrices for LOWZ (resp. CMASS)
using �

′ = 200 (250) and �
′ = 300(350). Amplitudes were normalized

by R��. As expected, the maximum amplitude peaks in the fixed �
′

and
approaches zero in a given ��. The shape of both matrices remains the
same as a function of �. This shape indicates the correlation introduced due
to �-mixing by the convolution between the mask and the true signal, present
in the PCL measurements (Fig. 3).

The mixing matrix itself depends only on the survey’s geometry
through the mask’s angular power spectrum

W� =
�∑

m=−�

|I�m|2
(2� + 1)

(38)

where (see Appendix B)

I�m =
Npix∑

p

Y ∗
�m(θp, φp)��p; (39)

the mixing matrix is then

R��′ = 2�′ + 1

4π

∑
�′′

(2�′′ + 1)W�′′

(
� �′ �′′

0 0 0

)2

. (40)

The 2 × 3 matrix above is the Wigner 3j function; these coefficients
were calculated using the WIGXJPF library (Johansson & Forssén
2015). The mixing matrices are shown in detailed slices in Fig. 5,
which gives an intuition about the size of �� bands used to bin the
measured Ŝ�s as it shows the range of multipoles that are mixed
due to the survey’s mask. These small correlations between the
multipoles can be ‘washed away’ by binning our measurements. In
addition, as can be seen in Fig. 4, the mixing matrix convolution
tends to suppress power in all scales.

Finally, after being convolved with the mixing matrix (equa-
tion 37), the theoretical S� is binned in the same way as the data in
equation (19):

S
ij

�� = 1∑�′+��

�′ (2� + 1)

�′+��∑
�′

(2� + 1)Sij

� . (41)

4.2 Data theoretical covariance

We follow here the formalism developed in Dahlen & Simons (2008)
for the covariance of spectral estimation on a sphere. For clarity we
first re-derive some of the results from Section 3 from a different
perspective, that of projectors in pixel space.

Consider a data vector d that is a sum of signal and noise (d(r) =
s(r) + n(r)) and that has a covariance, D, that is a combination of
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signal covariance S and a noise covariance N. In pixel space, the
data covariance can be expressed as

D = 〈ssT 〉 + 〈nnT 〉 =
∑

�

(S� + N�)P� (42)

where P� is the projector in pixel space, defined as

P� =
∑

m

Y�m(r)Y ∗
�m(r). (43)

The projector satisfies the following identity in the full sky case:

tr(P�P�′ ) = (��p)−2(2� + 1)δ��′ . (44)

Using this identity, the Pseudo-C� estimator from equation (18) can
be written in terms of the projector and data covariance from (42):

Ŝ� = ��2
p

(2� + 1)

[
dT P�d − tr(NP�)

]
. (45)

where ��p is the area of the pixels. Assuming a Gaussian signal
(Blake et al. 2007), the covariance matrix for the angular power
spectra estimator between different multipoles � and �

′
can be

expressed as

���′ = Cov(Ŝ�, Ŝ�′ ). (46)

The symmetry of theP� andDmatrices, together with the definition
Cov(X, X′) = 〈XX′〉 − 〈X〉〈X′〉, allows us to rewrite the covariance
as

���′ = 2(��p)4

(2� + 1)(2�′ + 1)
tr(DP�DP�′ ) (47)

This expression works for both full and partial sky cases. The
difference between the two cases appears on the projector identity
from equation (44). Using the definition of the pixel space projector
(equation 43), the I�m expression from equation (39), and the fact
that the spectra we consider are moderately coloured, which means
that the spectra do not vary drastically within the range considered
(Dahlen & Simons 2008), one can rewrite equation (46) for a partial
sky observation with area ��tot as

���′ = 1

2π

(
4π

��tot

)2

(S� + N�)(S�′ + N�′ )

×
∑
�′′

(2�′′ + 1)W�′′

(
� �′ �′′

0 0 0

)2

= 2

fsky(2�′ + 1)
(S� + N�)(S�′ + N�′ )R��′ (48)

where the last equality uses the definition of the mixing matrix
from equation (40) and fsky is the observed fraction of the sky.
This expression is similar to ones used in Blake et al. (2007),
Padmanabhan et al. (2007), and Thomas et al. (2011b), but has
been extended to account for the mixing of modes due to the mask.

However, this expression (derived by Dahlen & Simons 2008)
accounts neither for the pixel window function effect nor for cross-
correlations between tomographic redshift bins. To include these
effects, we generalize the data angular power spectra by changing
S� + N� to w2

�S
ij

� + N�δij = D
ij

� and we include the effect of cross-
correlation in the covariance by changing (S� + N�)(S�′ + N�′ ) to
1
2 [Dij

� D
ij

�′ + Dii
� D

jj

�′ ] in equation (48) (Rassat et al. 2007).
The final expression for the angular power spectra theoretical

covariance matrix is therefore

�
ij

��′ = 1

fsky(2�′ + 1)
[Dij

� D
ij

�′ + Dii
� D

jj

�′ ]R��′ (49)

Figure 6. A typical example of the validation of the covariance matrix
obtained from the FLASK lognormal simulations; here we show the result
for the first auto-power spectrum for CMASS. We show the analytical
expression for the angular power spectrum variance (equation 50) and the
variance from the simulations. The bottom panel shows the relative error for
this example. All 49 measured C�s from Fig. 3 were validated in this way
and no trends were apparent.

= R��′

fsky(2�′ + 1)

[
(w2

�S
ij

� + N�δij )(w2
�′S

ij

�′ + N�′δij )

+ (w2
�S

ii
� + N�δii)(w

2
�′S

jj

�′ + N�′δjj )
]

(50)

By performing these modifications, equation (50) recovers the
variance expression for cross-power spectra from Rassat et al.
(2007) when considering just the diagonal; and recovers the original
expression by Dahlen & Simons (2008) when considering just
the auto-power spectrum. Fig. 6 shows a comparison between the
variance (the diagonal) of equation (50) with the variance from
the estimated covariance matrix from Section 4.3. Note that the
covariance between different angular power spectra is considered
to be zero, i.e. �

ij,i′j ′
��′ = �

ij

��′δii′δjj ′ .

4.3 Covariance matrices using log-normal mocks

We seek to constrain cosmological parameters using observations;
one of the requirements of this process is accurate covariance
matrices. Covariances can be estimated using galaxy clustering
simulations that reflect not only the cosmology but also systematic
effects and observational artefacts. Previous works have used either
Gaussian realizations (Blake et al. 2007; Thomas et al. 2011b;
Nicola, Refregier & Amara 2016b) or the mocks provided by the
BOSS Collaboration (Manera et al. 2013; Kitaura et al. 2016).
However this work instead uses lognormal simulations. The deci-
sion not to use the official BOSS PATCHYmocks from Kitaura et al.
(2016) was made due to the different choice of redshift ranges for
our samples: the CMASS PATCHY mocks do not contain galaxies
beyond redshift z = 0.75, whereas the samples we selected extend
to z = 0.80 (as described in Section 2).

We generated our mocks using FLASK6 (Xavier, Abdalla &
Joachimi 2016), a publicly available code that produces lognormal
simulations of correlated fields on the sphere. We used the data

6http://www.astro.iag.usp.br/∼flask/
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Ŝ� measurements (Section 3) as inputs for the simulations; this
allows us to reproduce systematic effects, RSD, non-linear power
spectra, and other known and unknown effects that may be present
in the data (with no need to model the effects nor to assume any
fiducial cosmology). This is a main benefit of this approach to
covariance estimation: any effects present in the measured angular
power spectra will be reproduced in FLASK’s simulations via the
S�s measured from the data.

For each sample we produced 6000 lognormal mocks to estimate
the data covariance matrix. These mocks were also Poisson sampled
to reproduce noise properties and radial and angular selection
effects.

The data covariance matrix was produced as follows:

(1) Produce a spline, S̃(�), using the Ŝ�� measurements (Fig. 3)
and a Gaussian filter to smooth the measurements.

(2) Deconvolve the mixing matrix R��′ from the splines to obtain

C̃ij (�) =
∑

�′
R−1

��′ S̃
ij (�). (51)

(3) Linearly extrapolate the splines to �max = 8192 (necessary to
allow FLASK to create high-resolution HEALPix maps).

(4) For each tomographic redshift bin, produce FLASK partial
sky galaxy number count mocks with Nside = �max = 2048.7

(5) Degrade the mocks to Nside = 512 to match the Nside used
when analysing the data.

(6) Produce up-weighted galaxy overdensity maps using the pixel
completeness factor (as described in Section 2.2.2).

(7) Run the partial sky PCL estimator; include here the pixel
window function correction w2

� (as described in equations (18) and
(19)) that arises from the degrading of the maps at step 5.

(8) Measure the covariance of the ensemble of angular power
spectra obtained from the simulated data:

Cij

����′ ≡ 1

NS − 1

NS∑
s=1

(
S

ij,s

�� − 〈Sij

��〉
)(

S
ij,s

��′ − 〈Sij

��′ 〉
)T

. (52)

Here NS is the number of simulations. To validate the estimated
covariance matrix, we compared the diagonal of the covariance
matrix in equation (52) with the expression for the theoretical
variance for the measured angular power spectra in equation (50);
Fig. 6 shows a typical result.

5 SYSTEMATICS TESTS

Large-scale survey observations, spread over thousands of observa-
tion hours, are taken under a variety of conditions. Turbulence in the
atmosphere, sky background brightness, and telescope inclination
angle are amongst the factors that can influence image quality
and object detection. Other than those atmospheric effects, galactic
properties are also at play: extinction from dust within the Milky
Way and variations of stellar density, as well as the presence of
bright stars, are position-dependant and also have an impact on our
ability to detect galaxies. Jointly, those observational factors can
create small density fluctuations in the galaxy distribution that can

7The signal realization maps were sampled using a lognormal transforma-
tion. Due to the transformation’s non-linearity, we had to generate mocks
with a higher Nside & �max than the data as the lognormal realizations
introduce a damping after a certain � (see fig. 18 from Xavier et al. 2016).
The simulated data maps also used a Nside = 2048 version of the masks
presented in Section 2.2.1.

imprint a statistical signal easily confused with the cosmological
large-scale structure fluctuations that we are attempting to measure.
This effect has been detected and corrected for in several previous
analyses with a range of data sets (Blake et al. 2007; Ross et al.
2011; Thomas et al. 2011b; Ho et al. 2012; Leistedt et al. 2013;
Leistedt & Peiris 2014; Elsner, Leistedt & Peiris 2016, 2017; Doux
et al. 2017)

In this section, we present the analysis performed on the data
to ensure that the measured power spectra are not significantly
dominated by any known observational systematic effects. We
consider a systematic to have a significant effect on the observed
power spectra if the cross-power spectra between them deviate from
zero, with a deviation that is bigger than both the data variance and
the cross-power spectra variance. We describe the systematic effects
considered in our analyses, describe our methods for map creation
and cross-spectrum measurement, and give some representative
results.

5.1 Systematic maps

The Sloan Digital Sky Survey monitors and records observational
conditions for every tile of the survey. This information is available
as a combined set of two files, one that defines a pixelization of
the observed sky in MANGLE format and another that records the
observational information for each MANGLE polygon.8 The first
step is to reconstruct the MANGLE maps for each observational
systematic from these files. We use the MANGLE python wrapper9

to perform this transformation. Since there is potentially more than
one observation in a given region of the sky, there can be multiple
values for a given polygon. The SDSS files indicate which amongst
multiple options is to be taken as the primary value for the field.
We select the IDs from those primary fields, match them to their
observational properties in the fields list, and create a new MANGLE
mask for each of those properties, which are recorded in the weight
of the masks.

We create MANGLE masks of sky background flux, sky variance,
and average PSF FWHM in all five photometric bands. We also
create a mask of the score of each field, defined by the SDSS
collaboration to express ‘observational quality’ as an empirical
combination of observational values with processing status flags.
Additional observational properties can be found in the Field Table,
available from the SDSS SkyServer Schema Browser.10 The choice
of which systematics to take into account is somewhat arbitrary, as
there are correlations between observational properties that make
information redundant (Leistedt et al. 2013). We choose to add
stellar density and galactic extinction to the systematics listed above,
as those have been shown to correlate with galaxy density in several
previous analyses (e.g. Thomas et al. 2011b; Elvin-Poole et al.
2017). We construct a bright star catalogue from the SDSS object
catalogue with the following cuts:

18 < rpsf < 19.5,

type = 6,

rpsf − rmodel < 0.25, (53)

8The files, window unified.fits and window flist.fits, can
be found in http://www.sdss.org/dr12/algorithms/resolve/, together with a
detailed description of the construction of the survey geometry and of the
score quantity described further in the text.
9https://github.com/mollyswanson/manglepy
10http://skyserver.sdss.org/dr12/en/help/browser/browser.aspx
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where the extinction-corrected magnitude cut ensures robust star
selection (Padmanabhan et al. 2007), the type selection is the stan-
dard SDSS star–galaxy classifier,11 and the magnitude-difference
cut is an additional point-source selection performed by the GAMA
survey (e.g. Christodoulou et al. 2012). For galactic extinction, we
create a map directly in HEALPix format. For simplicity, we take
advantage of a PYTHON implementation of extinction E(B − V)
value retrieval and map creation.12 We use the original SFD scaling
(Schlegel, Finkbeiner & Davis 1998).

The MANGLE masks created from the SDSS FITS files are not
appropriately snapped, pixelized, and balkanized, which breaks the
local character of the MANGLE procedure (Swanson et al. 2008). As
a consequence, further operations suffer from impractically large
processing times. We therefore run all the steps of the MANGLE
pixelization anew, which corrects whatever imperfections remained
in the first pass. From these masks, we create full-sky HEALPix
maps at resolution Nside = 16384, which defines an angular scale
much smaller than the average resolution of the mask features.
For each observational systematic, we populate the sub-resolution
HEALPix pixels with values from the associated MANGLE mask.
The resulting HEALPix maps encapsulate all the information
contained in the original footprint description.

Once the HEALPix systematics maps are created, the next step is
to transform them into overdensity maps using the same procedure
outlined in Section 2.2.2 for the data (Leistedt et al. 2013). The idea
is to treat the systematic maps in the same way as the data in order to
apply the statistical estimators consistently. Therefore, we degrade
the high-resolution maps to the data resolution (Nside = 512) and
up-weight the maps according to the pixel completeness mask that
takes into account the holes in the footprint (see Section 2.2.1); we
then perform a cut in pixel completeness Cpix = 0.8 in the maps.
This up-weighting is due to the pixelization of the degraded mask,
as explained in Section 2.2.1. From these post-processed maps, we
create the systematics overdensity maps as

δSys
p =

⎧⎨
⎩
(

1
Cpix,p

n
Sys
p

n̄Sys

)
− 1, if Cpix,p ≥ 0.8

0, otherwise
(54)

where nSys
p is the pixel value for a given systematic and n̄Sys is

the mean value of the map in the observed fraction of the sky.
The systematics overdensity maps were created using both the
CMASS and LOWZ masks presented in Section 2.2.1. The resulting
systematics overdensity maps will be available at the ZXCorr
Collaboration website.

5.2 Cross-power spectra between data and systematic maps

For the systematics analysis using cross-power spectra, we will
follow a data analysis similar to that performed for the galaxy
overdensity maps in Section 3. Using equation (9), we decompose
the systematics overdensity maps, δSys, into spherical harmonics.

The estimator for the cross-power spectra between the data
overdensity maps, δg, and the systematics can be written as a
modified version of equation (18):

Ŝ
gs

� = 1

(2� + 1)w2
�

l∑
m=−l

1
2

∣∣dgds∗
�m + dg∗

�mds
�m

∣∣
J�m

(55)

11http://www.sdss.org/dr12/algorithms/classify/
12https://github.com/kbarbary/sfdmap

where the index g stands for a data map and s for a systematics map.
We then obtained the estimates for the variance of the systematics
cross-power spectra by measuring the Ŝ

gs

� (equation 55) between
the systematics maps and the data mocks described in Section 4.3.

We cross-correlated all 13 tomographic redshift bins with all 18
systematic maps, resulting in a total of 234 cross-power spectra.
Fig. 7 shows an example for LOWZ–3 and CMASS–9 bins and
cross-power spectra for all systematics. From all of these measure-
ments, the majority are consistent with the variance of the data
measured from the lognormal simulation (Section 4.3), which lead
us to be confident in using the full shape of our measured C�s.
Note, however, that a few of the large-scale measurements (low-
�) in CMASS sample have a small excess in cross-power spectra
with stellar overdensity. The first point on the cross-power spectra
between some of the systematic maps and most BOSS bins is clearly
more than one sigma away from the data’s variance. Due to this
excess in correlation with stellar overdensity and the level of cosmic
variance on the first �-band, we decided to exclude this first point
from our cosmological analysis (see Section 6 for details on the
� range used). As for the second �-band (� = 13.5) presenting an
excess of correlation between a few bins and stellar overdensity, we
found it to be sub-dominant, with no significant impact from this
measurement in our cosmological analysis; therefore, we decided
to keep it.

6 C O S M O L O G I C A L A NA LY S I S

In this section, we present the cosmological implications from the
measured angular power spectra of BOSS galaxies for flat �CDM,
wCDM, and �CDM with

∑
mν models. Using the theoretical

framework and having estimated covariance matrices as described
in Section 4, we performed a Bayesian analysis using the PLINY
(Rollins 2015 and Rollins et al., in preparation) nested sampler and
the Unified Cosmological Library for Parameter Inference code, or
UCLPI (Cuceu et al., in preparation). All analyses considered in
this section use the auto-power spectra and the cross-power spectra
from adjacent tomographic bins using the measurements presented
in Section 3. Cross-power spectra between distant bins are not a
part of our final BOSS-C� data vector.

6.1 Likelihoods, priors, and Bayes factor

The cosmological analysis performed in this work follows a
standard Bayesian analysis framework as commonly performed in
the literature (e.g. Blake et al. 2007; Thomas et al. 2011b; DES
Collaboration et al. 2017; Hildebrandt et al. 2017).

The posterior distribution of the cosmological parameters, �,
given the measured angular power spectra, Ŝ��, and a model M
can be written as a marginalization of the full posterior over the
nuisance parameters, ν:

Pr(�|Ŝ��,M) =
∫

Pr(�, ν|Ŝ��,M)dν (56)

The full posterior distribution can be written as

Pr(�, ν|Ŝ��,M) = L(Ŝ��|�, ν,M)π (�, ν)

Z(Ŝ��|M)
(57)

where L(Ŝ��|�, ν,M) is the likelihood, π (�, ν) is the prior on
the sampled parameters, and Z(Ŝ��|M) is the evidence, which
is calculated using PLINY, a nested sampler used in our analysis
(Feroz & Hobson 2008; Rollins 2015; Rollins et al., in preparation).
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Figure 7. An example of the systematics analysis described in Section 5.2. Here, we show the cross-power spectra between the 18 systematics overdensity
maps produced in 5.1, and LOWZ–3(CMASS–9) tomographic bins in blue dots (red squares). The error-bars were obtained by cross-correlating the δSys maps
with the FLASK mocks produced in Section 4.3; the shaded region shows the variance of the data, which was also obtained from the same mocks. This figure
indicates that the shape of the measured power spectra in Fig. 3 is not dominated by any of the systematics considered, as the variance of the cross-power
spectra between data and systematics is consistent with the variance of the data’s auto-power spectra. The results for the other bins are similar to the results
shown in this figure. Note also that the first � band in the stellar overdensity cross-C� is completely out of the acceptable range, which leads us to exclude this
data point on all bins for both samples.
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If we had access to the true covariance matrix �, the likelihood,
assumed here to be Gaussian, would be

LG(Ŝ��|�, ν) = 1√|2π�| exp

{
− 1

2

[
Ŝ�� − Sth

��(�, ν)
]T

×�−1
[
Ŝ�� − Sth

��(�, ν)
]}

(58)

where Sth
��(�, ν) is the theoretical angular power spectra after being

convolved with the mixing matrix (equation 37) and binned into the
same bandwidths as the data (equation 41).

However, this is not the case when estimating the covariance
matrix C from simulations (equation 52). Even though C can be
an unbiased estimator of the true covariance �, its inverse C−1 is
not necessarily an unbiased estimator of the inverse covariance �−1,
needed to estimate the likelihood in equation (58). Hartlap, Simon &
Schneider (2007) proposed to keep using the Gaussian likelihood,
and to apply a simple rescaling to the inverse of the estimated
covariance matrix in order to de-bias it (Anderson 2003).

�−1 → αC−1 (59)

where

α = Ns − p − 2

Ns − 1
(60)

and Ns is the number of simulations and p is the size of the data
vector.

More recently, Sellentin & Heavens (2016, hereafter SH16)
showed that when replacing the true covariance � with an estimated
C, one should marginalize over the true covariance conditioned
on the estimated one from simulations. The resulting likelihood
is no longer Gaussian; instead, the likelihood is now given by a
multivariate t-distribution (SH16):

LSH(Ŝ��|�, ν) = cp

|C|1/2

[
1 + (Ŝ�� − Sth

��)T C−1(Ŝ�� − Sth
��)

Ns + 1

] −Ns
2

(61)

where

cp = �
(

Ns
2

)
[
π (Ns − 1)

]p/2
�
(

Ns−p

2

) (62)

and � is the gamma function.
Even though the non-linear model described in Section 4.1.3

is sufficiently reliable, we performed cuts in �max for each of the
tomographic redshift bins in order to exclude non-linear scales.
In order to make this choice, we used a fiducial cosmology (the
same used in Section 6.2.2) to generate theory C�s and performed
a preliminary cut in �max where the per cent deviation between
the linear and non-linear models was smaller than 5 per cent.
We performed robustness checks on the 5 per cent deviation cut
choice by extending the cuts to �max, which had a deviation up to
20 per cent, and concluded that our cosmological results could be
trusted up to a 15 per cent deviation between linear and non-linear
theories for this fiducial test. In this paper we present results where
this percentage cut is 5 per cent and 10 per cent. For avoidance of
doubt, for the fiducial cosmology of choice, applying a 5 per cent
implies rejecting the majority of modes k � 0.07h Mpc −1, whereas
10 per cent implies rejecting modes where k � 0.1h Mpc −1. The
resulting cuts can be found in Table 2. As for the � cuts for cross-
power spectra, we chose the lowest �max between the two relevant
bins in order to keep a consistent and conservative cut for each bin.

Table 2. Maximum multipole considered in the cosmological analysis for
each tomographic redshift bin. All the samples start at �min = 13.5 and have
a bandwidth of �� = 8. When considering the cross-power spectra between

bins, the lower �max is used. The �
5 per cent
max column corresponds to a kmax

� 0.07h Mpc−1, and the �
10 per cent
max column corresponds to a kmax � 0.10h

Mpc−1.

Sample bin zmin zmax �
5 per cent
max �

10 per cent
max

LOWZ–0 0.15 0.20 53 69
LOWZ–1 0.20 0.25 77 93
LOWZ–2 0.25 0.30 93 109
LOWZ–3 0.30 0.35 109 133
LOWZ–4 0.35 0.40 125 157
LOWZ–5 0.40 0.45 141 173
CMASS–6 0.45 0.50 157 221
CMASS–7 0.50 0.55 165 237
CMASS–8 0.55 0.60 189 261
CMASS–9 0.60 0.65 197 277
CMASS–10 0.65 0.70 213 317
CMASS–11 0.70 0.75 245 333
CMASS–12 0.75 0.80 261 381

We used a total of 28 nuisance parameters (ν) in the BOSS C�

likelihood analysis in most of our results for a 5 per cent cut on
�max. These parameters are a scale independent bias, b(z), for each
redshift bin; a redshift error dispersion, σ s(z) (equation 29), for
each redshift bin that takes into account spectroscopic redshift error
and Finger-of-God effects due to shell-crossing (see Section 4.1.1
for details); and an extra shot noise term for bins 11 and 12 that
is forward modelled into the theoretical angular power spectrum
inside the likelihood as

Ŝth
�� → Ŝth

�� + N (63)

where N is a constant that takes into account extra shot noise due
to the very low number of galaxies in these two redshift bins. In the
case of a 10 per cent cut we used two further shot noise nuisance
parameters for bins 9 and 10 as we go further into the non-linear
regime where the shot noise in those bins dominates over the signal.

We chose flat priors in all Bayesian analysis. These were based
on priors used in Betoule et al. (2014), Alam et al. (2016), Planck
Collaboration XIII (2016c), and DES Collaboration et al. (2017)
and were set equally for all analyses. The prior ranges can be found
in Table 3 for all parameters considered in the cosmological analysis
in this section: the baryonic matter density (�b), the cold dark matter
density (�cdm), the amplitude of the primordial power spectrum (As),
the spectral index (ns), the Hubble constant (h), the equation of state
of dark energy (w0), the sum of neutrino mass species (

∑
mν), the

optical depth at reionization epoch (τ reio), the bias of BOSS galaxies
as a function of redshift (b(z)), the redshift dispersion parameter for
BOSS galaxies (σ s(z)), the extra shot-noise for BOSS galaxies (Ni),
the Planck absolute calibration parameter (yP lanck

cal ), and the absolute
magnitude of SNe Ia at peak light in blue band (M JLA

B ).
Finally, to perform consistency checks between BOSS DR12 and

the external data sets described in Section 6.3, we used the Bayes
factor. The Bayes factor for the consistency of two data sets (A and
B) is given by

RA,B = P ( �A, �B|M)

P ( �A|M)P ( �B|M)
(64)

or, for three data sets (A, B, and C):

RA,B,C = P ( �A, �B, �C|M)

P ( �A|M)P ( �B|M)P ( �C|M)
(65)
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Table 3. Ranges on the flat priors used in all Bayesian analysis. Parameters
are divided into two groups: cosmological and nuisance.

Parameter Prior Range

�b 1 × 10−3, 0.3
�cdm 0.0, 0.8
ln 1010As 2.0, 4.0
ns 0.87, 1.07
h 0.55, 0.91
w0 −3, −0.3
∑

mν 0.0, 1.0 eV
τP lanck

reio 0.0, 0.8
b(z) 1.1, 3.3
σ s(z) 1 × 10−6, 9 × 10−3

N9, N10 0.0, 1 × 10−4

N11 0.0, 8 × 10−5

N12 0.0, 4 × 10−4

yP lanck
cal 0.99, 1.01

MJLA
B −20.0, −18.5.

where M is the model, P ( �A, �B|M) is the evidence when the model
is fitted to both data sets simultaneously, and P ( �A|M)P ( �B|M) is
the product of the evidences when the model is fitted to each data set
individually. Since PLINY is a nested sampler, all our cosmological
estimations lead to values for the evidences of each model, data set,
and combination of data sets. We are aware that this method has
received some criticism as the value of RA, B depends crucially on
the prior volume chosen for the sampling. Although this is true,
choosing priors that are physically motivated should lead to values
of RA, B which can be reflective of the real consistency between data
sets A and B. However, a host of new methods have been proposed
in the literature that we have not fully investigated in this paper,
but that we intend to implement in further analysis with this data
set. These methods involve a range of overlap integrals between
the separate posteriors and can be better suited to determine the
consistency between two or more data sets. We refer the reader to
these methods in Charnock, Battye & Moss (2017a), Raveri & Hu
(2018), and Feeney et al. (2018)

In order to perform a robust analysis, we implemented the three
likelihoods mentioned above: Gaussian, Gaussian plus the Hartlap
correction, and the SH16 t-distribution likelihood. We observed that
the Gaussian + Hartlap correction, the SH16, and the Gaussian
likelihoods led to very similar cosmological contours. This is
most likely as we have sufficient mocks to reliably estimate our
covariance matrix. Fig. 8 shows a comparison between the three
likelihoods for a wCDM model, using the BOSS C�s only, for w0

and �m. In all of the following results in this section, we use the
SH16 likelihood.

6.2 Consistency checks

In this section, we perform a series of consistency checks in order
to assess the validity of our cosmological parameter estimation
pipelines and data samples.

6.2.1 Parameter-dependent theoretical covariance matrix

We implemented an alternative likelihood based on a theoretical
expression for the covariance matrix (Section 4.2, see equation 50)
where the signal angular power spectra, S�, also depends on the
sampled parameters. Most standard cosmological analysis in the
literature (Alam et al. 2016; DES Collaboration 2017; Hildebrandt

0.2
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BOSS C(l) Hartlap

BOSS C(l) Gaussian

Figure 8. Comparison between the three likelihood methods mentioned
in Section 6.1 using the BOSS C� data only for �m and w0 in a wCDM
model: Gaussian (red), Gaussian with Hartlap correction (black), and the
SH16 (blue) likelihoods. Note how, given the high number of lognormal
simulation used to estimate the inverse of the covariance, the Hartlap
correction likelihood, SH16, and Gaussian have equivalent contours even
though the sampled parameters and likelihood values are different. It is clear
from this analysis that our estimated covariance matrix from Section 4.3 is
robust and was estimated with a sufficient number of simulations.

et al. 2017) assume a covariance matrix that is independent of
cosmology and thta is estimated for a fiducial simulation. We do
not expect to obtain the same cosmological contours from this
method as those presented in the sections that follow; however, we
do not expect the contours from this method to disagree significantly
with the ones obtained with our estimated covariance matrix.
Fig. 9 shows the results for this test for a �CDM cosmological
model.

6.2.2 Controlled cosmology pipeline test

For this test, we generated theory auto- and cross-C�s to mimic
the BOSS data set using a Planck-like cosmology: h = 0.6725,
�b = 0.0492, �m = 0.314, w0 = −1.0, S8 = 0.830, ns =
0.96575. We simulated these fiducial power spectra using the
BOSS redshift distribution n(z) from Fig. 1. We chose the nuisance
parameters to match the best fit values obtained in Section 6.4 from
the combination of the entire cosmological data set available to
us. Using BOSS masks as input, we created FLASK mocks like
described in Section 4.3: generating the mocks at higher resolution,
degrading them, and creating galaxy overdensity maps. We applied
the PCL estimator on the 13 overdensity maps, calculating the auto-
and cross- power spectra as described for the data in Section 3.

Finally, we ran a cosmological parameter estimation for a �CDM
cosmology, varying also the 28 BOSS nuisance parameters and
using the theoretical covariance matrix as in the previous section.
The results are shown in Fig. 10, where the recovered parameters
are within the errors with no indications of biases in the entirety of
the pipeline.
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Figure 9. Comparison between �CDM cosmologies recovered using the
covariance matrix estimated in Section 4.3 (green contours, same as the
ones from Section 6.4), and the cosmology dependent theoretical covariance
matrix from equation (50) (blue contours). Note that the same parameters
were sampled in both cases as the theoretical covariance also depends on the
same nuisance parameters. These marginalized credible intervals (CI) 1σ

and 2σ plots indicate both the estimated covariance matrix and the UCLPI
pipeline robustness.
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Figure 10. Cosmological constraints recovered from a controlled cosmol-
ogy pipeline test. The dashed lines denote the Planck-like cosmology used
as input in the simulations analysed in the blue contours. All parameters
agree within the estimated errorbars.

6.2.3 Internal checks: single redshift bin consistency

To test the data’s internal consistency, we performed a full cos-
mological analysis in each individual redshift bin from our BOSS
samples. The test was performed using a �CDM model, varying
the same nuisance parameters as described in Section 6.1 for each
bin: redshift dispersion, bias, and extra shot noise for the last two
CMASS bins. If each individual bin is consistent with all others,
this indicates that one can obtain cosmological constraints from
the combination of the individual bins. This is shown in Fig. 11
for the posterior projections of �m and �b. In these figures, all
contours overlap and, even though some tomographic redshift bins
prefer a secondary peak, they are consistent across the redshift bins.
This secondary peak is due to a known cosmological parameter
degeneracy (Percival et al. 2001).

6.2.4 Distribution of residuals

For a data set with uncorrelated errors (diagonal covariance matrix),
the vector of normalized residuals is given by

R = �−1(D − T (θ )) (66)

where � is a diagonal matrix containing the square roots of the
variances, D is the data vector, and T (θ ) is the theory vector for
a given parameter vector θ . If T (θ) represents the true model, and
the true errors are known, the residuals are by definition given by
a Gaussian with μ = 0 and σ = 1 (Andrae, Schulze-Hartung &
Melchior 2010). On the other hand, if the errors are estimated
from the data, the residuals are given by Student’s t-distribution.
This distribution approaches a Gaussian with an increasing number
of data points. If this distribution shows a significant deviation
from a Gaussian, the model is ruled out. If it follows a Gaussian
distribution, either we found the true model, or the current data are
not enough to distinguish between the model we found and the true
model (Andrae et al. 2010).

When the covariance matrix is not diagonal (the errors are
correlated), equation (66) is no longer true and we have to deal with
the full covariance matrix. In order to get back to a diagonal matrix,
we write the covariance matrix in terms of its eigen-decomposition:

C = Q�Q−1 (67)

where Q is the matrix of eigenvectors and � is the diagonal matrix
containing the eigenvalues of C. The inverse is then given by C−1 =
Q�−1Q−1, which transforms the χ2 into:

χ2 = [
Ŝ�� − Sth

��(�, ν)
]T

Q�−1Q−1
[
Ŝ�� − Sth

��(�, ν)
]
. (68)

If we treat � as the new (diagonal) covariance matrix, it follows
that the normalized residuals are now given by

R = �−1Q−1
[
Ŝ�� − Sth

��(�, ν)
]

(69)

where � now contains the square roots of the eigenvalues. We use
equation (69) to calculate the residuals at our best-fitting point in a
flat �CDM cosmology and plot the results in a histogram (Fig. 12).
There are no significant deviations from a Gaussian with μ = 0
and σ = 1, which means that the model seems to be a very good
representation of the data.

6.3 External data

We compared and combined our results with results obtained from
the Planck satellite CMB experiment (Planck Collaboration I 2016a)
and Type Ia Supernovae from the Joint Light curve Analysis (JLA)
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Figure 11. Consistency checks for single tomographic redshift bins for all LOWZ and CMASS bins. Here, we show the �b × �m contours taken from a
�CDM cosmological inference, i.e. varying the same cosmological parameters as the ones from Section 6.4. Panel a Shows LOWZ-0, LOWZ-1, LOWZ-2, and
LOWZ-3 tomographic bins; panel b shows LOWZ-3, LOWZ-4, LOWZ-5, and CMASS-6 tomographic bins; panel c shows CMASS-6, CMASS-7, CMASS-8,
and CMASS-9 tomographic bins; and panel d shows CMASS-9, CMASS-10, CMASS-11, and CMASS-12 tomographic bins.

collaboration (Betoule et al. 2014). The relevant likelihood codes for
these probes were implemented and tested in the UCLPI pipeline.
We checked that the official cosmological results from the relevant
collaborations were recovered in order to use them.

The CMB data from Planck was added through the Planck
likelihood codes Commander and Plik (Planck Collaboration XI
2016b). For low multipoles, in the range l = 2−29, Commander
is used with temperature (TT) and polarization auto- and cross-
power spectra (BB, TB, EB). For high multipoles, in the range l =
30−2508, Plik is used with temperature (TT) and polarization
auto- and cross-power spectra (TE, EE). This configuration is
commonly referred to as Planck TT,TE,EE + lowP. Plik also
introduces 94 additional nuisance parameters. In order to reduce
this large parameter space, we use the lite version of the data offered
by the Planck Collaboration. This lite version allows us to compute

a nuisance marginalized CMB likelihood. The only CMB nuisance
parameter left is the Planck absolute calibration parameter (ycal).
We sample this parameter in all the runs that include Planck data.
The Planck likelihood codes were added to UCLPI and all the
Planck results presented have been obtained using this pipeline. We
show in the cosmological contours and in Table 4 that this pipeline
reproduces the cosmological results found by Planck Collaboration
XIII (2016c).

The SN data from JLA was added to the UCLPI pipeline through
the likelihood code provided by the JLA Collaboration (Betoule
et al. 2014). This likelihood code needs the luminosity distances to
the 740 Supernovae in the sample and four nuisance parameters (α,
β, MB, and �M) described in Betoule et al. (2014). The luminosity
distances are calculated by CLASS (Blas et al. 2011) using the
redshifts of the supernovae within a given cosmology (set by
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C� analysis of BOSS DR12 tomography 343

Figure 12. Comparison between the histogram of the distribution of
residuals (given by equation 69) calculated at the best-fitting point in a
flat �CDM cosmology (see Section 6.4) and a Gaussian with μ = 0 and
σ = 1. As this distribution does not show any significant deviation from the
Gaussian, the model is either the truth or the current data cannot make any
further distinction between the model and the truth.

the sampled cosmological parameters). We sample the absolute
magnitude at peak brightness (MB) as part of our analysis, and keep
the other three nuisance parameters fixed to their best-fitting values
found by Betoule et al. (2014) since these have a small impact

in the cosmological parameters when combined with the BOSS
data set.

We also implemented a BAO likelihood in order to compare
our results with the official BOSS Consensus BAO results from
Alam et al. (2016). This measurement uses three redshift bins
with zeff = 0.38, 0.51, and 0.61, where we used the full shape
post-reconstruction measurements from the correlation function
and 3D power spectra, which contain additional information from
measurements of fσ 8 (see table 7 from Alam et al. 2016). We
have not combined these results with our BOSS results, but we
plot them alongside our results alone in the next section to show
how our results compare with the BOSS alone results from Alam
et al. (2016).

6.4 Flat �CDM constraints

We obtain constraints for the standard cosmological model, a flat
�CDM cosmology. We fixed the curvature of the universe to zero,
e.g. �k = 0, and varied five cosmological parameters: the baryonic
density, �b; the dark matter density, �cdm; the amplitude of the
primordial power spectra, As; the spectral index, ns; and the Hubble
constant, h. As this model considers dark energy as the cosmological
constant �, we fixed the w0 parameter to a cosmological constant
(w0 = −1); therefore: �� = 1 − (�b + �cdm). Here, we also fixed
the sum of neutrino masses to the minimum found from neutrino
oscillation experiments,

∑
mν = 0.06 eV (Lesgourgues & Pastor

Table 4. Marginalized cosmological constraints and 68% credible intervals for the models considered in this work using a variety of data sets and combinations.

The contours for these results are shown in Figs 14 for �CDM, 18 for wCDM, 19 for the �CDM + ∑
mν with �

5 per cent
max cut, and 22 for �CDM + ∑

mν with

�
10 per cent
max cut.

Model Parameter BOSS BOSS BOSS + JLA Planck
+ JLA + Planck

�CDM �m 0.315+0.034
−0.033 0.317+0.022

−0.021 0.327 ± 0.008 0.315 ± 0.011

�b 0.0404+0.010
−0.009 0.0381+0.007

−0.008
0.0502 ± 0.0006 0.0492 ± 0.0009

S8 0.715+0.072
−0.064 0.745+0.059

−0.052 0.862+0.015
−0.016 0.850+0.023

−0.021

h 0.716+0.088
−0.069 0.699 ± 0.039 0.663 ± 0.005 0.672 ± 0.008

ns 0.929+0.064
−0.045 0.955+0.052

−0.048 0.960 ± 0.004 0.964 ± 0.006

wCDM �m 0.277+0.050
−0.042 0.308+0.021

−0.018 0.330 ± 0.012 0.213+0.062
−0.039

�b 0.0318+0.0117
−0.0098 0.0429 ± 0.007 0.0505 ± 0.002 0.0334+0.009

−0.006

S8 0.726+0.072
−0.061 0.743+0.079

−0.068 0.863 ± 0.016 0.811+0.037
−0.034

h 0.767+0.069
−0.091 0.745+0.049

−0.052 0.661 ± 0.012 0.816+0.073
−0.101

ns 0.939+0.057
−0.049 0.957+0.049

−0.050 0.960 ± 0.004 0.964 ± 0.006

w0 −1.36+0.36
−0.38 −1.030+0.073

−0.076 −0.993+0.046
−0.043 −1.45+0.32

−0.23

�CDM
+ ∑

mν

�m 0.326+0.038
−0.035 0.304+0.022

−0.021 0.328 ± 0.009 0.326+0.028
−0.021

[�5 per cent
max cut] �b 0.040+0.009

−0.010 0.0432 ± 0.008 0.05017+0.0009
−0.0008 0.0506+0.0039

−0.0026

S8 0.723+0.069
−0.063 0.700+0.065

−0.056 0.862 ± 0.017 0.836+0.031
−0.035

h 0.730+0.075
−0.078 0.814+0.054

−0.064 0.663+0.006
−0.007 0.662+0.018

−0.026

ns 0.933+0.066
−0.046 0.941+0.055

−0.049 0.960 ± 0.042 0.962+0.006
−0.007∑

mν (95% CI)[eV] <0.75 <0.71 <0.14 <0.76
�CDM
+ ∑

mν

�m 0.345+0.033
−0.030 0.324+0.034

−0.029 0.333+0.014
−0.012 0.326+0.050

−0.029

[�10 per cent
max cut] �b 0.045 ± 0.009 0.040 ± 0.013 0.0510+0.0016

−0.0014 0.0506+0.0069
−0.0033

S8 0.751+0.062
−0.057 0.768+0.097

−0.092 0.864+0.030
−0.029 0.839+0.058

−0.067
h 0.689+0.076

−0.066 0.661+0.067
−0.063 0.658+0.010

−0.011 0.662+0.024
−0.044

ns 0.930+0.062
−0.044 1.011+0.056

−0.086 0.958 ± 0.006 0.962 ± 0.013
∑

mν (95% CI)[eV] <0.72 <0.66 <0.16 <0.76
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344 A. Loureiro et al.

Figure 13. 2D �m × S8 marginalized credible intervals for a �CDM
cosmology. In this figure we show in detail the cosmological results from
Section 6.4 for BOSS C�s only (blue); BOSS C�s plus JLA (green); BOSS
C�s plus JLA and Planck (purple); together with results using the post-
reconstruction full shape (incl. fσ 8(z)) from Alam et al. (2016) consensus
results (pink, dot-dashed), and Planck alone (red). In order to compare our
results to a weak-lensing probe, we also show the results from Hildebrandt
et al. (2017) (grey, dashed). For details on the external data sets, see
Section 6.3.

2006, 2014). From these, we also obtained derived parameters:
the total matter density, �m ≡ �b + �cdm, and the fluctuation
of amplitude at 8 h−1Mpc, σ 8 or S8 = σ8

√
�m/0.3. Finally, as

described in the previous section, we also varied the BOSS, Planck,
and JLA nuisance parameters. For this analysis, we used the
�5 per cent

max cuts (see table 2).
We checked the consistency of the data sets by running the

same analysis for these probes alone and combined (Planck, JLA,
and Planck plus JLA) and calculating respective Bayes factors for
these runs. The Bayes factor, equation (65), for combinations of the
considered data sets indicates consistency between all three probes:

R�CDM
BOSS+JLA � 18 (70)

R�CDM
BOSS+PLANCK � 74 (71)

R�CDM
PLANCK+JLA � 11 (72)

R�CDM
BOSS+PLANCK+JLA � 4 × 104 ; (73)

these indicate that the data sets are compatible for the considered
model, given the chosen priors.

Finally, when considering the combination of BOSS C�s, Planck,
and JLA, we find results consistent with Alam et al. (2016),
Hildebrandt et al. (2017), and DES Collaboration (2017). Fig. 13
shows the �m × S8 2D plane for this analysis and comparisons
with Planck and the BOSS full-shape post-reconstruction from
Alam et al. (2016). Despite the Bayes factors showing no significant
reason to be concerned about the compatibility of these data sets,

we see an interesting trend in this figure in so far as a tension and
the BOSS data set in this paper preferring a smaller S8 than the
Planck analysis. We argue that this method would prove potentially
very useful in resolving any S8 tensions that exist currently between
CMB and weak-lensing data (MacCrann et al. 2015; Charnock,
Battye & Moss 2017b).

The results for the 1D marginalized cosmological constraints for
BOSS C� and combinations, together with the 68 per cent credible
intervals, can be found in Table 4. The 1σ and 2σ contour levels
can be found in Fig. 14, where the nuisance parameters have been
marginalized over. Fig. 15 shows the best-fitting theory C� using the
parameters estimated from this analysis with a χ2

red = 1.08, which
also indicates reliability and robustness of the analysis performed.

Even though we do not show the results in this work, we
performed a cosmological analysis using a �CDM with a fixed
zero neutrino mass,

∑
mν = 0 eV. We compared it with the model

used in this section, �CDM with
∑

mν fixed to 0.06 eV, using
the Bayes factor for model selection. Consider �D representing the
combination of data vectors; the Bayes factor is given by

RA,B = P ( �DBOSS+PLANCK+JLA|∑mν = 0.06 eV)

P ( �DBOSS+PLANCK+JLA|∑mν = 0 eV)
= 8 × 105 (74)

This indicates that, for a �CDM model, the data prefers massive
neutrinos over no neutrino mass at all.

6.5 Flat wCDM constraints

In this section, we allowed the equation of state of dark energy,
w0, to vary. This is a trivial extension of the standard model of
cosmology with just one extra parameter. If w0 = −1, the solution
indicates that the nature of dark energy is actually the cosmological
constant, �. The procedure for this analysis followed in a similar
fashion as the one outlined in Section 6.4, varying six parameters
instead of five: �b, �cdm, ns, ln 1010As, h, and the extra w0. Note
that, for this case, we are not varying wa, i.e. we do not consider a
redshift evolution in the equation of state of dark energy. Again, we
fixed the neutrino parameter to

∑
mν = 0.06 eV (Lesgourgues &

Pastor 2006, 2014). Here, we used the same �5 per cent
max cuts as in the

last section (see Table 2).
Figs 16 and 17 show in detail the contours for S8 × �m and w0 ×

�m, respectively, and comparisons with previous measurements in
the literature. From Fig. 17 and from the complete set of results
in 18, we show that an ∼4 per cent error (1σ CI) on the equation of
state of dark energy is obtained from this cosmological analysis:

w0 = −0.993+0.046
−0.043. (75)

This result is consistent with the �CDM scenario of standard cos-
mology, i.e. it is consistent with dark energy being a cosmological
constant, �. Note from Fig. 18 that we find a small value of h
(compared to Planck Collaboration XIII 2016c) when combining
BOSS C�s, Planck, and JLA:

hwCDM = 0.661 ± 0.012. (76)

This value is lower than the quoted Planck value alone; this puts
further tension in this measurements if compared to the Hubble
constant result from Cepheid Variables (Riess et al. 2016, 2018).

As the model in this section is different from the previous
section, we performed an evidence analysis using the Bayes factor,
equation (65), in order to be sure that our measurements can be
combined with the the external data described in Section 6.3.
The following measurements indicate that such combinations are
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C� analysis of BOSS DR12 tomography 345

Figure 14. Marginalized 1D and 2D cosmological constraints for the �CDM model varying five cosmological parameters with 1σ (darker) and 2σ (lighter)
contour levels. We show here a combination of sampled and relevant derived parameters: �m, �b, S8, h, and ns (marginalizing over τ reio for the Planck
combinations). The blue contours were estimated from the BOSS C�s data alone using the SH16 likelihood; the green contours are a combination the BOSS
likelihood and JLA data (see Section 6.3); the red contours are the Planck high-� TT, TE, EE, and low-� P likelihood results (see Section 6.3); finally, the
purple contours are a combination of the three probes: BOSS C�, JLA, and Planck (also high-� TT, TE, EE, and low-� P). Note that none of the results here
use Planck Lensing data.

consistent for a wCDM model:

RwCDM
BOSS+JLA � 2 × 102 (77)

RwCDM
BOSS+PLANCK � 4 × 103 (78)

RwCDM
PLANCK+JLA � 2 (79)

RwCDM
BOSS+PLANCK+JLA � 3 × 105 . (80)

Finally, we used the ratio of the evidences, the Bayes factor, to
perform a model selection between wCDM and �CDM using the
final data set combination. Assuming �D to be the combination of
data vectors for all the data sets, the Bayes factor between the two
models is

Rw,� = P ( �DBOSS+Planck+JLA|wCDM)

P ( �DBOSS+Planck+JLA|�CDM)
= 0.67 (81)

6.6 Flat �CDM +∑
mν constraints

For the last model considered in this work, we assume a flat
�CDM with variable neutrino masses, varying the sum of the
species’ masses,

∑
mν . In the previous sections, we fixed the

sum of neutrino masses to
∑

mν = 0.06 eV due to results from
neutrino oscillation experiments for the lower bound of the normal
neutrino mass ordering (Hannestad 2003; Lesgourgues & Pastor
2006; Hannestad & Schwetz 2016).

In this section, we considered one of the two different scenarios
regarding different neutrino hierarchies, the normal hierarchy. To
approximate the normal hierarchy, one can approximate the two
lower masses to be zero and vary

∑
mν for one remaining massive

species. We do not investigate details of how the prior on the
hierarchy or on the absolute mass changes this result and we leave
this to a future analysis. We fix Neff = 3.046 by changing the
values of massive neutrinos and ultra-relativist particles for the case
considered, i.e. Nν = 1 and Nur = 2.0328.

We perform an analysis using the same �-range as in the previous
sections, �5 per cent

max from Table 2. A summary of the marginalized 1D
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346 A. Loureiro et al.

Figure 15. Auto- and cross-angular power spectra for the 13 tomographic redshift bins considered for the BOSS DR12 samples: LOWZ (sample 1) and
CMASS (sample 2). The shaded blue regions show the scales considered in the cosmological parameter estimation in Section 6. The data points are the
pseudo-C� estimates, described in Section 3, for LOWZ and CMASS. The solid blue lines, generated with UCLCL, reflect the best-fitting auto- and cross-power
spectra for the �CDM model estimated in Section 6.4. Finally, the black dashed lines show both shot noise and sampled shot noise (for bins 11 and 12).
The overall reduced χ2 for this fit is χ2

red ≈ 1.08, where the number of data points is 441 and the total number of sampled parameters is 33 – 5 cosmological

parameters and 28 nuisance parameters. The title on each individual plot reflects the bins i & j for each C
ij
� , the χ2 per data point (χ2/Nd), and the number of

data points for that individual angular power spectrum, Nd. The �-ranges used in this figure correspond to �
5 per cent
max in Table 2. Most of the constraining power

comes from the auto-power spectra. The cross-power spectra serve to constrain parameters related to the RSD by helping to break the degeneracy between the
bias and As while also probing the redshift dispersion due to the peculiar motion of galaxies (FoG).

credible intervals from the cosmological estimation made with this
cut can be found in the third part of Table 4 showing the 1σ intervals
for the �CDM parameters plus the 95 per cent upper limit for

∑
mν .

The 1D and 2D marginalized credible intervals for this analysis can
be found in Fig. 19. When considering an approximation for the

normal hierarchy, for a combination of BOSS C�s, Planck CMB
data, and supernovae data from JLA, the 95 per cent upper limit for
sum of neutrino masses is

∑
mν <0.14 eV (BOSS + Planck + JLA – �5 per cent

max cut). (82)
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Figure 16. 2D �m × S8 marginalized credible intervals for a wCDM
Cosmology. This shows in detail the cosmological results from Section 6.5
for BOSS C�s only (blue); BOSS C�s plus JLA (green); BOSS C�s plus
JLA and Planck (purple); together with results using just the full shape
(pre-reconstruction) from Alam et al. (2016) consensus results (pink), and
Planck alone (red).

Figure 17. 2D w0 × �m marginalized credible intervals for a wCDM
Cosmology. This shows in detail the cosmological results from Section 6.5
for BOSS C�s only (blue); BOSS C�s plus JLA (green); BOSS C�s plus
JLA and Planck (purple); together with results using just the full shape
(pre-reconstruction) from Alam et al. (2016) consensus results (pink), JLA
(yellow), and Planck alone (red).

From Fig. 20 and even more so from Fig. 21, one can notice that
we are not so far from excluding zero total neutrino mass using
cosmological data alone. As the power of such data sets increase
we should be able, using the correct analysis and tools, to mea-
sure and detect neutrino masses independently from atmospheric
experiments.

We then proceed to check the consistency of data sets by using
the evidence of each cosmological parameter estimation for these
models to calculate the Bayes factor (equation 65):

R
�CDM+∑

mν 5 per cent
BOSS+JLA � 1 × 102 (83)

R
�CDM+∑

mν 5 per cent
BOSS+PLANCK � 4 × 102 (84)

R
�CDM+∑

mν
PLANCK+JLA � 40 (85)

R
�CDM+∑

mν 5 per cent
BOSS+PLANCK+JLA � 3 × 102 . (86)

These values, again, indicate the consistency of data sets for the
considered model.

For the final analysis in this work, we extended the scales
considered for the �10 per cent

max cuts (see Table 2 for details). This
allows us to access smaller scales that are still in the beginning of
the so-called the weak non-linear regime (Thomas et al. 2010; Bird
et al. 2012). Note that these scales are still larger than the scales that
most collaborations use for power spectra or correlation function
cosmological analysis (Ho et al. 2012; Alam et al. 2016; DES
Collaboration 2017; ldebrandt et al. 2017) – DES Collaboration
(2017), for example, uses scales up to 0.78 h Mpc −1. In other
words, one can be confident that the �10 per cent

max cuts are safe to be
used, not using scales outside the weak non-linear regime.

We then proceed to perform a similar cosmological analysis for a
�CDM model with one massive species of neutrino, approximating
the normal hierarchy. The 1D and 2D marginalized credible intervals
for these final analyses can be found in Fig. 22 and the marginalized
68 per cent credible intervals for the �CDM parameters and the
95 per cent credible interval upper limit for

∑
mν using this cut can

be found in Table 4. The Bayes factors for this choice are shown
below (note that we have two further nuisance parameters in the
�10 per cent

max cut and we checked that failure to add these reduces the
Bayes factor significantly).

R
�CDM+∑

mν 10 per cent
BOSS+JLA � 70 (87)

R
�CDM+∑

mν 10 per cent
BOSS+PLANCK � 6 × 102 (88)

R
�CDM+∑

mν 10 per cent
BOSS+PLANCK+JLA � 3 × 105 . (89)

This extended scale analysis demonstrates the robustness of the
results presented in this section as the 95 per cent CI upper bound
for

∑
mν remains robust to these cuts (see Figs 20 and 21):

∑
mν < 0.16 eV (BOSS + Planck + JLA – �10 per cent

max cut). (90)
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Figure 18. Cosmological constraints for the wCDM model varying now six cosmological parameters. This figure contains a combination of sampled and
relevant derived parameters from the chains: �m, �b, S8, h, ns, and w0. Note that the Planck chains also varied τ reio. The blue contours were estimated from
the BOSS C�s data alone using the SH16 likelihood; green contours are a combination the BOSS likelihood and JLA data; red contours are the Planck high-�
TT, TE, EE, and low-� P likelihood results; finally, the purple contours are a combination of the three probes: BOSS C�, JLA, and Planck (also high-� TT, TE,
EE, and low-� P). The apparent cuts in the Planck alone contours are due to the prior in h. Note, again, that none of the results here use Planck Lensing data.

7 C O N C L U S I O N S

In this work, we have taken a different approach13 obtaining galaxy
clustering information from the BOSS DR12 large-scale structure
catalogue (Reid et al. 2016). This approach consisted of using
a pseudo angular power spectra estimator (PCL) applied to 13
tomographic redshift bins ranging from 0.15 ≤ z < 0.8 with
a redshift-dependent bias, a redshift dispersion, and extra shot-
noise as nuisance parameters to be sampled with the cosmological
parameters using UCLPI (Cuceu et al., in preparation). In this
approach, we also used splines of the data as input for the simulation
used for covariance matrix estimation.

The tomographic approach in redshift space and the covariance
matrix estimation method used in this work allowed us to perform
a cosmology-free inference from the data. In other words, nowhere
in this analysis was a fiducial cosmology assumed. This is, by
itself, a great advantage over methods that use P(k) or ξ (r) as

13Compared to the approaches from the official BOSS Collaboration papers:
Ross et al. (2017); Beutler et al. (2017a,b); Satpathy et al. (2017); Sánchez
et al. (2017); Grieb et al. (2017); Salazar-Albornoz et al. (2017); Wang et al.
(2017); and Zhao et al. (2017).

these need to assume a fiducial cosmology in order to transform
from redshift space to radial distances. The impact of such strong
assumption in the cosmological inference is still unknown. We
performed systematic and consistency checks with the data and
the method itself with satisfactory results. From the 18 different
sources of systematics considered in Section 5, none demonstrated
worrying excess of power in the scales considered in Table 2.
Consistency checks demonstrated the robustness of our estimated
covariance matrix, since the recovered cosmology was the same
under different estimation methods (through simulation and theory);
the likelihood, given that it returns the same contours under three
different approaches; and of our whole method, since we recovered
the right cosmology from a controlled simulation.

Cosmological parameters were obtained for three different
models: �CDM, wCDM, and �CDM with

∑
mν . We high-

light the following main points regarding the results obtained in
Section 6:

(1) The constraints obtained for all three models considered,
using a tomographic analysis in harmonic space, are extremely
competitive in comparison to the ones obtained by the BOSS
Collaboration (Alam et al. 2016) and other recent large collabo-
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Figure 19. 1D and 2D marginalized credible intervals for a �CDM
Cosmology with

∑
mν when using scales up to kmax ≈ 0.07h Mpc−1

(�5 per cent
max cut). Here we show the �m, �b, S8, h, ns, and

∑
mν contours

for BOSS C�s alone (blue); BOSS C�s plus JLA (green); Planck high-�
TT, TE, EE, and low-� P (red); and BOSS C�s plus JLA and Planck high-�
TT, TE, EE, and low-� P (purple). As most of the scales that contain clean
information on the neutrino masses are cut off, the 95 per cent CI upper
bound found is

∑
mν < 0.14 eV.

Figure 20. 1D marginalized with 95 per cent credible intervals for
∑

mν

in three different cases: (red solid) Planck high-� TT, TE, EE, and low-� P
(yellow dashed) BOSS C�s with the �

10 per cent
max cut plus Planck and JLA, and

(purple dotted) BOSS C�s with the �
5 per cent
max cut plus Planck and JLA. The

95 per cent upper limit for each case is, respectively: (red) 0.76 eV, (yellow)
0.16 eV, and (purple) 0.14 eV.

Figure 21. 2D marginalized 1σ and 2σ credible intervals for the
∑

mν–�m

plane for three different cases: (blue solid) Planck high-� TT, TE, EE, and
low-� P, (red dashed) BOSS C�s with the �

10 per cent
max cut plus Planck and

JLA, and (orange dotted) BOSS C�s with the �
5 per cent
max cut plus Planck and

JLA.

ration results such as DES (DES Collaboration 2017) and KiDS
(Hildebrandt et al. 2017) with errors as small as those obtained by
these collaborations.

(2) Even though information along the line-of-sight is ‘washed
away’ due to projecting the data into tomographic bins, we obtain
one of the tightest constraints for the equation-of-state of dark
energy with an ∼4 per cent error when combining BOSS C�s, Planck
CMB, and JLA Supernovae. This has not been achieved before using
C� with a spectroscopic survey and the constraint is as tight as the
one obtained from the state-of-the-art Dark Energy Collaboration
analysis, using a combination of DES galaxy clustering & weak
lensing, Planck, JLA, and BAO (DES Collaboration 2017).

(3) For the models and data sets considered, we find very high
values for the Bayes factor, R, when combining BOSS C�s, Planck,
and JLA. We highlight: RBOSS+PLANCK+JLA � 4 × 104 for �CDM
and RBOSS-10 per cent+PLANCK+JLA � 3 × 105 for �CDM varying neutrino
masses.

(4) The Bayes factor can also be used for model selection.
Considering the combination of data sets, the Bayes factor between
�CDM and wCDM is

Rw,� = P ( �DBOSS+Planck+JLA|wCDM)

P ( �DBOSS+Planck+JLA|�CDM)
= 0.67,

where �D here represents the overall combination of data vectors.
This indicates that this combination prefers slightly �CDM to
wCDM, although no strong conclusion can be made.

(5) We find a small tension between BOSS C�s and Planck for
S8 in all models considered, with BOSS preferring smaller values.
For example, for �CDM:

S8 = 0.715+0.072
−0.064 (BOSS)

S8 = 0.850+0.023
−0.021 (Planck)
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Figure 22. Cosmological constraints for the �CDM + ∑
mν model, using the �

10 per cent
max cut, varying now six cosmological parameters, including the sum of

neutrino masses considering only one massive species. This figure contains a combination of sampled and relevant derived parameters from the chains: �m, �b,
S8, h, ns, and

∑
mν . Note that the Planck chains also varied τ reio. The blue contours were estimated from the BOSS C�s data alone using the SH16 likelihood;

the green contours are a combination of the BOSS likelihood and JLA data; the red contours are the Planck high-� TT, TE, EE, and low-� P likelihood results;
finally, the purple contours are a combination of the three probes: BOSS C�, JLA, and Planck (also high-� TT, TE, EE and low-� P). For this scale cut, the
combination of data sets yields an upper bound on

∑
mν < 0.16 eV.

although the combination of these data sets prefers higher values
such as Planck (see Table 4) and the Bayes factor suggest the
data sets are compatible. We conclude that such tension can be
investigated further with this method as LSS data increase in size
and depth.

(6) Even though we do not show these results, we performed a
cosmological analysis using a �CDM model but fixing

∑
mν =

0eV and compared with the �CDM results from Section 6.4, which
has a

∑
mν fixed to 0.06 eV. Using the Bayes factor for model

selection, it is clear that the data prefer massive neutrinos against
no neutrino mass at all:

R0.06eV,0 = P ( �DBOSS+Planck+JLA|�CDM +∑
mν = 0.06)

P ( �DBOSS+Planck+JLA|�CDM +∑
mν = 0)

= 8 × 105.

(7) The neutrino mass constraints we obtain here can be com-
pared to the tomographic analysis in real space done by Salazar-

Albornoz et al. (2017), which obtains an upper bound of
∑

mν

< 0.474 eV (95 per cent CI). The reason we obtain much tighter
constraints (

∑
mν < 0.14 eV (95 per cent CI)), even though we

are also performing a tomographic analysis, is due to a series of
decisions, including the approach we take to model the redshift
dispersion and galaxy ‘shell-crossing’ (see Section 4.1.1), bias, and
extra-shot noise. It is possible that the main difference between
the results is due to different approach in modelling the neutrino
mass hierarchy. Salazar-Albornoz et al. (2017) consider a model
where the three neutrino species have degenerate mass hierarchy,
i.e. the three masses are equal. This is already ruled out by particle
physics experiments that measure the mass splitting from neutrino
oscillation experiments (see Gonzalez-Garcia, Maltoni & Schwetz
2014 for an update on the neutrino mass splitting fits). The approach
we took in this work (see Section 6.6) naturally yields smaller upper
bounds in

∑
mν . In Loureiro et al. (2018), we studied the impact

of model choice in the sum of neutrino masses and their hierarchy,
showing that this upper bound was driven by our model choices.
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We have shown here that it is possible to recover very powerful
and competitive cosmological constraints from spectroscopy alone
with a 2 + 1D analysis – as good as the constraints from doing a
3D analysis. There are several reasons why a tomographic analysis
in harmonic space performs as well as the standard 3D analysis.
The precision of spectroscopic redshifts allows for very fine radial
binning, probing the evolution of structure in more detail. The ‘ef-
fective redshift’ approximation impacts 3D analyses, complicating
the proper treatment of ‘light-cone’ effects. By contrast, this is not
a problem with C�s as we are dealing with data in redshift space
using a fine binning. As we are using data in redshift space, no
transformation to comoving coordinates is necessary, and hence no
fiducial cosmology is required. We argue that it is much simpler in
Fourier space than in real space to correct certain types of systematic
errors and to perform scale cuts to deal with non-linearities; the
arguments here are similar to the ones used to compare P(k) and
ξ (r).

Finally, we point out that the most promising advantage of
performing this 2+1D tomographic analysis in harmonic space
is the practicality of combining spectroscopic and photometric
probes, which include also cosmic shear, as the latter also ‘lives’
in a 2 + 1D space. Using the method proposed by McLeod et al.
(2017), the spectroscopic sample has the potential of ‘fixing’ the
photometric redshift limitations when probing the photometric
clustering redshift distribution together with the cosmological
parameters.

With increasingly large future photometric and spectroscopic
surveys such as LSST (LSST Dark Energy Science Collaboration
2012), DESI (Levi et al. 2013), J-PAS (Benitez et al. 2014), and
Euclid (Laureijs et al. 2011), the future of precision cosmology
lies in our ability to combine data sets from across the entire
electromagnetic spectrum. The angular power spectrum approach
offers a unified framework for coherently combining different data
sets in order to obtain maximal information from each (Joachimi &
Bridle 2010; Kirk et al. 2015; McLeod et al. 2017). We believe that
the approach used in this paper, in which cosmological information
is extracted from the projected distribution of the galaxies in a
spectroscopic survey, is a useful step towards achieving this unified
framework. We further claim that this approach leads to a better
understanding of the evolution of structure in the Universe as
it provides more information on the redshift evolution of galaxy
bias.
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APPENDI X A : THE OV ERDENSI TY PSEUDO -C�

ESTI MATOR

Our aim is to measure the angular power spectrum of the galaxy
overdensity field, δg. Let ρ̄g be the average of ρg over the sky and
define the galaxy overdensity field to be

δg = ρg − ρ̄g

ρ̄g
= ρg

ρ̄g
− 1. (A1)

This field may be represented using spherical harmonic expan-
sion:

δg(θ, φ) =
�max∑
�=0

�∑
m=−�

d�mY�m(θ, φ), (A2)

where the spherical harmonic coefficients d�m are defined by

d�m =
∫

δg(θ, φ)Y ∗
�m(θ, φ)d�. (A3)

Here and in what follows we have fixed a coordinate system (θ ,
φ) for the celestial sphere; the spherical harmonic functions are
defined with respect to this coordinate system. Our estimator of the
angular power spectrum of the data is then

D̂� = 1

2� + 1

�∑
m=−�

d�md∗
�m. (A4)

The averaging over m is motivated by the assumed isotropy of
the probability distribution governing the location of galaxies.

To handle the partial-sky case, let �tot be the survey region and
define

J�m =
∫

�tot

|Y�m|2 d� . (A5)

This is a normalization factor due to the average of modes in the
partial sky coverage; note that J�m = 1 for a full-sky survey. There
will also be a term correcting for bias introduced by the partial
sky measurement. However, this term is proportional to the average
field value; in our case this average vanishes, so the bias correction
need not be made. See Appendix B for details.

We can repeat this analysis for galaxy density fields ρg, i and ρg, j

defined in tomographic bins i and j. Combining the partial sky effect
and tomographic binning results in an estimator D̂

ij

� for the cross-
(i �= j) or auto- (i = j) power spectrum of the data

D̂
ij

� = 1

2� + 1

�∑
m=−�

D
ij

�m (A6)

where

D
ij

�m = Re(di
�mdj∗

�m)

J�m

. (A7)

Here we take the real part Re() of a quantity whose expectation
value will have no imaginary part.

In reality we work with a pixelized celestial sphere and we
measure not ρg but rather a galaxy count ng

p per pixel p. From
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this we derive the per-pixel galaxy overdensity

δg
p = ng

p

��p

��tot

n
g
tot

− 1, (A8)

where n
g
tot is the total galaxy count, ��p the solid angle subtended

by pixel p, and ��tot the total solid angle of the survey region �tot.
On the pixelated sphere, the spherical harmonic coefficients are

estimated by

d�m =
∑

p

δg
pY ∗

�m(θp, φp)��p, (A9)

where (θp, φp) are the coordinates at the centre of pixel p, ��p is
the area of p, and the sum is over all pixels in the survey region.

Pixelization is a smoothing operator, and hence suppresses power
at small scales. We summarize here the standard treatment of this
effect; see Górski et al. (2005), Leistedt et al. (2013), and the
HEALPix documentation for details.14 Consider the contribution
of a given pixel p to d�m both for the (measured) pixelized field and
for the (desired) ideal continuous field; the ratio of these quantities
is

w
p

�m =
∫

p
Y�m(θ, φ)d�

Y�m(θp, φp)��p

. (A10)

This quantity depends sensitively on �: for small �, Y�m is slowly
varying and hence w

p

�m will be close to unity while for large � the
rapidly varying Y�m will have vanishing integral over p. However
the dependence on m and p will be small and can be averaged out
(in quadrature), yielding:

w2
� = 1

Npix(2� + 1)

∑
p,m

∣∣wp

�m

∣∣2 . (A11)

The ratio of the power spectra of the (measured) pixelized overden-
sity field to that of the (desired) continuous field will then be w2

� .
This study uses a HEALPix resolution of Nside = 512; this means
that at �max = 510 this ratio of powers (Cpix

� /C
unpix
� ) due to the pixel

window function is then 0.911.

APPENDIX B: C ORRESPONDENCE BETWEEN
OV E R D E N S I T Y A N D N U M B E R C O U N T S
PSEUDO-C� ESTIMATORS

In Section 3, we showed the Pseudo-C� estimator for galaxy
overdensity maps. To link this with what is most commonly done in
the literature, one can show that this galaxy overdensity measure is
closely related to the more familiar galaxy number counts estimator
as seen in Peebles (1973), Scharf et al. (1992), Fisher et al. (1994),
Blake et al. (2007), and Thomas et al. (2011b). For the purpose
of this section, we define the galaxy overdensity quantities with
an upper δ index and the number counts quantities with a n upper
index. Example: the galaxy overdensity angular power spectra is
represented by Cδ

� .
We start the derivation by multiplying the overdensity spherical

harmonics coefficients from equation (A9) by n̄
g

i = n
g
tot,i/��tot.

14For details on the pixel window function: https://healpix.jpl.nasa.gov/htm
l/intronode14.htm

Equation (A7) then becomes:

n̄
g

i n̄
g

j D
δ,ij

�m ≈
⎡
⎣Npix∑

p

δ
g

p,i��pn̄
g

i Y
∗
�m(θp, φp)

⎤
⎦

×
⎡
⎣Npix∑

p

δ
g

p,j��pn̄
g

j Y
∗
�m(θp, φp)

⎤
⎦ (B1)

where we bear in mind that different subsamples i and j can have
different total numbers of galaxies and different galaxies in each
pixel, but use the same pixels.

Using equation (A8), we can write

δg
p��pn̄g = ng

p − ��pn̄g. (B2)

Now, we can use the above expression to rewrite equation (B1)
as

n̄
g

i n̄
g

j D
δ,ij

�m ≈
⎡
⎣Npix∑

p

(
n

g

p,i − n̄
g

i ��p

)
Y ∗

�m(θp, φp)

⎤
⎦

×
⎡
⎣Npix∑

p

(
n

g

p,j − n̄
g

j ��p

)
Y ∗

�m(θp, φp)

⎤
⎦ . (B3)

Let us take one of the square brackets and analyse the sub-terms
individually:

Npix∑
p

Y�m(θp, φp)��p ≈
∫

Y ∗
�m(θ, φ)d� ≡ I�m . (B4)

We can therefore see that this term is approximately equivalent
to the shot noise correction term I�m from Blake et al. (2007) and
Thomas et al. (2011b). The second term can also be re-expressed as

Npix∑
p

Y�m(θp, φp)ng
p ≈

∑
g′

Y�m(θg′ , φg′ )

=
∑
g′

∫
δD(xg′ − x)Y�m(θ, φ)d� (B5)

where the index g
′

runs over galaxies in the sample that have not
been excluded by the mask and δD(x) is the Dirac delta function.
We can reverse the order of summation and integration, and express
the number count function as

σ1 =
∑
g′

δ(xg′ − x), (B6)

i.e. the galaxy distribution is a sum of delta functions at the
locations of the galaxies, and hence the integral over this function
is the total number of galaxies in that area. The function σ 1 is the
filtered galaxy distribution, which has been masked. It is related to
the full galaxy distribution σ 0 by

σ1(θ, φ) = σ0(θ, φ)W (θ, φ), (B7)

where W : S2 → B is a binary filter, and

σ0 =
∑

g

δ(xg − x) (B8)

runs over the full underlying set of galaxies.
We can therefore write

Npix∑
p

Y�m(θp, φp)ng
p ≈ ∫

σ0(θ, φ)W (θ, φ)Y�m(θ, φ)d� (B9)
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= a�m (B10)

where a�m are the spherical harmonic coefficients of the filtered
galaxy number count field. Finally, we end up with

n̄
g

i n̄
g

j D
δ,ij

�m ≈
[
ai
�m

−n̄
g
i
I�m

][
a

j
�m

−n̄
g
j
I�m

]

J�m
(B11)

= D
n,ij

�m ; (B12)

in other words, the overdensity and number count power spectra
differ only by a factor of the number density of galaxies in each
tomographic bin involved.

A P P E N D I X C : C O D E C O M PA R I S O N

We produce our results using CLASS (Blas et al. 2011) (background
evolution and perturbations) and the Unified Cosmological Library
for C�s code,UCLCL (projected statistics). Here, we show a compar-
ison for C�s calculated with both CLASS (integrated functionality
from the former CLASSGAL code (Di Dio et al. 2013)) and
CAMBSources (Challinor & Lewis 2011), matching cosmologies
as closely as possible. We also show the derivatives calculated with
respect to key cosmological parameters. In this comparison we
used Gaussian redshift bins, since this is the functionality provided
in CLASS and CAMBSources. Two redshift bins are chosen with
z̄ = {0.5, 0.6} and σ z = 0.05 to be of comparable size to the redshift
bins used in the body of the paper; auto and cross-correlations are
calculated. Codes are run with their default accuracy parameters.

C1 Auto- and cross-correlation precision

The auto-power spectrum for a bin with z̄ = 0.5 and σ z = 0.05
is shown in Fig. C1, calculated in each of the three codes for
a flat �CDM cosmology with �b = 0.05, �cdm = 0.25, h =
0.67, log (As × 10−10) = 3.2, ns = 0.95. Codes are in sub-
per cent level agreement up to � ≈ 200 (although the CLASS low
� RSDs disagree to a slightly larger extent), after which there is a
small discrepancy between CLASS and CAMBSources non-linear

Figure C1. Auto-correlation C� (z̄ = 0.5, σz = 0.05) comparison the three
codes UCLCL, CLASS, and CAMBSources. The upper panel shows
the three C(�)s over-plotted, whilst the lower panel shows the percent-
age difference between UCLCL/ CLASS compared to CAMBSources:
CCAMB −CUCLCL /CLASS

CCAMB
× 100.

Figure C2. Cross-correlation C� (z̄i = 0.5, z̄j = 0.6, σz = 0.05) compari-
son of the three codes UCLCL, CLASS, and CAMBSources. The upper
panel shows the three C�s over-plotted, whilst the lower panel shows
the percentage difference between UCLCL/CLASS compared to CAMB-
Sources: [CCAMB − C(UCLCL /CLASS )]/CCAMB × 100. Again UCLCL
follows CLASS closely, except in the RSDs and in a distinctive wobble
around l ≈ 50 where CLASS is transitioning away from the Limber
approximation scheme.

density perturbations. As one might expect, the differences between
UCLCL and CAMBSources trace the differences between CLASS
andCAMBSources as the former two share the same perturbations,
i.e. P(k).

The same trend is observed in the cross-correlations in Fig C2,
with a notable wobble in the CLASS cross-correlation presumably
when transitioning between approximation schemes (and thus
possibly remedied by adjusting accuracy parameters away from
the default).

C2 Sensitivity to cosmological parameters

In order to check that the accuracy of the codes is not strongly
cosmology dependent, the comparison are also made for variations
on h and w0 over sensible ranges of the parameters. It is crucial
that the sensitivity to the cosmological parameters not to be over-
whelmed by the (approximately per cent level) uncertainty in the C�

calculation itself. It is also important to check that the derivatives
w.r.t. the cosmological parameters are consistent between the codes,
as this will ensure C�s change consistently as one moves away from
the fiducial cosmology.

In Fig. C3 one can see that C�s for h = 0.64, 0.67, 0.70 are
clearly delineated and their differences significantly larger than the
differences between C�s from different codes. With w over the range
−1.1 to −0.9, shown in Fig. C5, one can see that at low � the C�s
are well distinguished from each other, but at high � w0 has little
effect, and thus is unlikely to be distinguished from the uncertainties
inherent in the non-linear regime. In Fig. C6 one can also see
that the variation at high � is significantly different for UCLCL
and CAMBSources, likely originating from the difference in the
perturbations between CLASS and CAMBSources. Nevertheless,
the shape of the derivatives w.r.t. to w0 up to � ≈ 200, and w.r.t.
h throughout the � range, look consistent with CAMBSources.
This shows that the C�s are changing in the correct way around this
fiducial cosmology, and will yield the correct shape of posterior
contours.
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Figure C3. The top panel shows the auto-correlations (z̄ = 0.5) for three
values of h calculated in UCLCL. The lower panel shows the percentage
difference of each of these C�s with the corresponding C�s from CAMB-
Sources (matching values of h).

Figure C4. Comparison of C� derivatives dC�
dh

between UCLCL and
CAMBSources.

Figure C5. The top panel shows the auto-correlations (z̄ = 0.5) for three
values of w calculated in UCLCL. The lower panel shows the percentage
difference of each of these C�s with the corresponding C�s from CAMB-
Sources (matching values of w).

Figure C6. Comparison of C� derivatives dC�
dw

between UCLCL and
CAMBSources. Here we see a more significant difference at high �, which
can also been seen in Fig. C5. This characteristic bump appears to come from
a difference in the CLASS and CAMBSources non-linear perturbations.
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