Using micro-CT and X-PCI to visualize coronary morphology and ventriculo-coronary arterial connections in the setting of Pulmonary Atresia with Intact Ventricular Septum

Tae Joum Tan1, Patricia García-CAñadilla1,2, Bart Bijnen3, Hector Dejean4, Anne Bonnin4, Vi-Hue Tran4, Owen J Arthurs5, Ian C Simcock5 Catalina Tobon-Geers6, Arjan J Geers5, Joan Vila Comamala6,7, Marco Stampanoni1, Christoph Rau1 and Andrew C Cook

1UCL Institute of Cardiovascular Science, PhysSense, DTIC, Universitat Pompeu Fabra, Barcelona, Spain; 2ICREA, Barcelona, Spain; 3Paul Scherrer Institute, Villigen, Switzerland; 4Great Ormond Street Hospital, London, United Kingdom; 5Diamond Light Source, Oxford, United Kingdom, 6Institute for Biomedical Engineering, ETHZ Zurich, Switzerland

Introduction

Background

Pulmonary atresia with intact ventricular septum (PA-IVS) is a rare, morphologically heterogeneous cyanotic form of congenital heart disease (CHD). Venticulo-coronary arterial connections (VCACs) are commonly found in patients with this condition, which can further worsen their prognosis. The morphogenesis of this CHD as well as associated coronary anomalies remains unclear.

![Image](https://www.ucl.ac.uk/)

Figure 1: Exterior and interior aspect of an abnormal PA-IVS heart with VCACs

State-of-the-art Imaging

Novel imaging modalities such as Synchrotron X-Ray Phase Contrast Imaging (X-PCI) and micro-Computed Tomography (micro-CT) have emerged, providing a means for 3D visualisation of morphological characteristics in small hearts at near histological resolution, without the need for dissection. As such, we are better equipped to retrospectively study VCACs and coronary arteries in archived fetal and post-natal cardiac specimens with PA-IVS.

Materials & Methods

Study profile

- 44 fetal and post-natal hearts with PA-IVS gross examined
- 34 post-natal hearts
- 3 fetal hearts with PA-IVS (16, 21 and 24 weeks gestational age)
- Scanned by micro-CT and X-PCI
- Coronary segmentation using Fiji, 3DStack, Seg3D and MATLAB

Micro-CT & X-PCI – Data acquisition

Data analysis – Coronary segmentation

- Coronary arteries manually labelled in 3DStack® once in every 5 images
- Automatic 3D interpolation and smoothing in MATLAB® and Seg3D®
- Semi-automated quantification of coronary arteries (skeletonisation & quantification of branches) in VMTRK®

![Image](https://www.ucl.ac.uk/)

Figure 2: Visualization of coronary arteries in 16-week normal (a-c) and abnormal PA-IVS (d-f) fetal hearts, viewed in anatomical position. (Yellow – Left anterior descending coronary artery; Red – Right coronary artery; Blue – VCAC)

Results & Discussion

- 8,097 micro-CT and 14,164 X-PCI image slices were analyzed during segmentation of coronary arteries in 6 fetal hearts
- X-PCI proved better for tracing coronaries in abnormal hearts – higher resolution
- Additional coronary detail traced in normal fetal hearts on micro-CT
- Learning curve for X-PCI
- Abnormal coronary patterning may be more frequent than is recognized by gross inspection or other diagnostic techniques

![Image](https://www.ucl.ac.uk/)

Figure 3: Visualization of coronary arteries in a 19-week gestation normal fetal heart (a-c) and a 21-week abnormal PA-IVS fetal heart (d-f), viewed in anatomical position. (Colour scheme as for Fig 2)

![Image](https://www.ucl.ac.uk/)

Figure 5: Skeletonisation of abnormal left coronary artery from X-PCI images in an abnormal human PA-IVS fetal heart (16 weeks gestational age)

Conclusion

- Micro-CT/X-PCI provided more detail of coronary arteries and VCACs compared to standard gross examination
- This will allow further study of vascular development in PA-IVS → Leading to new developmental hypotheses for both PA-IVS and perhaps VCACs

![Image](https://www.ucl.ac.uk/)