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Abstract

Networkmeta-analysis technique extends the standardmeta-analysismethods, allow-
ing pairwise comparison of all treatments in a network in the absence of head-to-head
comparisons. Traditional network meta-analysis models consider a single endpoint
for each trial. However, in many cases trials in the network have different durations
and/or report data at multiple time points. Moreover these time points are often not
the same for all trials. In this work we review the most relevant methods that incorpo-
rate multiple time points and allow indirect comparisons of treatment effects across
different longitudinal studies. In particular we focus on theMixed Treatment Compar-
ison (MTC) developed by Dakin et al (1), the Bayesian evidence synthesis techniques
— integrated two-component prediction (BEST-ITP) developed by Ding et al (2) and
on the more recent method based on fractional polynomials by Jansen et al (3). We
highlight the main features of each model and illustrate them in simulations and in a
real data application. Our study shows that methods based on fractional polynomials
offer a flexible modeling strategy in most applications.
KEYWORDS:
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1 INTRODUCTION

Network meta-analysis (NMA) is a well established technique used to synthetise a complex mass of evidence about a potentially
large number of interventions (4), (5), (6). NMA is applied in several research areas, but arguably it plays a pivotal role in
health technology assessment (HTA) (7). This is the process by which bodies such as the National Institute for Health and
Care Excellence (NICE) in the UK, the Pharmaceutical Benefits Advisory Committee in Australia or CADTH in Canada assess
whether a new intervention provides value for money, or in other words, whether it is “cost-effective”. While often clinical
studies are primarily designed to assess the clinical effectiveness of a new intervention, possibly against placebo or standard
of care, a full economic evaluation requires a comprehensive assessment against all possible relevant comparators. Thus, HTA
is often based on a combination of individual- and aggregated-level data informing the model on a possibly large number of
comparisons.
One feature that is often relevant in HTA is that individuals are observed at multiple time points throughout the follow up.

From the statistical point of view, this implies that the repeated measurements will tend to be correlated and failure to account
for this will lead to biased estimate of the underlying treatment effects. Modelling for NMA of repeated measures has been
widely considered in the statistical and health economic literature, in recent times. These methods have been applied in both
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frequentist and Bayesian frameworks. Bucher et al (8) have presented an indirect method in meta-analysis that preserves the
randomization of the originally assigned patient groups. However, this method allows to compare two treatments only if a
common comparator exists. Lumley et al (9) have proposed a more flexible technique but this model can not handle multiple
arm studies. An alternative method to avoid this problem is Olkin’s linear regression method (10). Wandel et al (11) introduced
a Bayesian repeated measures network meta-analysis model that allowed the synthesis of multiple time points. Finally, Lu et
al (12) have proposed Bayesian hierarchical models for mixed treatment comparison using data sets with more than one follow-
up time, and where different trials may report at different times. In particular, they focus on the number of individuals that recover
over a specified time interval. By dividing the overall period of observation in intervals, they model the number of patients (still)
at risk who are recovered over a specified time interval. In this way, they reconstruct the available data on each trial arm into a
series of independent observations (over different time periods): each observation then consists of a separate reporting period,
and the observations on each period follow a binomial distribution. The main parameter of interest becomes then the probability
of recovering over a pre-specified time interval. Moreover, once a patient is recovered he cannot re-experience the event.
Here we consider the three most recent methods suggested in the literature for NMA in the case of repeated measurements,

whose main inferential focus treatment effect over time, allowing for flexible temporal patterns. These are theMixed Treatment
Comparison (MTC), developed by Dakin et al (1); the Bayesian evidence synthesis techniques — integrated two-component
prediction (BEST-ITP) developed by Ding et al (2); and the more recent method based on fractional polynomials by Jansen et
al (3). Our objective is to provide a comparative review of these methods using a simulation study as well as real-world data,
with a view of identifying specific characteristics that would make either more appropriate.
We note here that all the models are originally specified under a Bayesian approach; this is mainly due to two reasons. Firstly,

NMA is a process that inherently combines different (and possibly not completely homogeneous) sources of evidence. While
it is possible to use frequentist methods for inference, a Bayesian approach is recognised as particularly effective as combining
“modules”, e.g. through the specification of joint prior distributions for some parameters of interest. Secondly, HTA is ultimately
focussed on decision-making, rather than just statistical inference. Again, a Bayesian approach is particularly helpful in this
case, for example in terms of allowing a straightforward quantification of the impact of model and parameter uncertainty on the
optimal decision, given current data (a process often termed "Probabilistic Sensitivity Analysis”, which is usually mandatory in
many jurisdictions (13)). For greater detail, see Berger 2013 (14) and Baio and Dawid 2012 (? ).
Our paper is structured as follows. In §2 we briefly review the general set up and distributional assumptions for the three

models; then in §3 we present a simulation study aimed at testing the performance of the methods under a range of scenarios
in terms of the underlying treatment effect. In section §4 and §5 we illustrate the models using two real-world datasets, one
collecting information on patients affected by with chronic obstructive pulmonary disease (COPD) and the other investigating
treatments for osteoarthritis(OA) of the knee . Finally, in §6 we summarise our conclusions and recommendations.

2 MODELS

In this sectionwe briefly review the threemainmodels available in the literature to perform networkmeta-analysis of longitudinal
studies. In this context themain objective is the evaluation over time of some suitably defined response, e.g. continuous outcomes,
binary or count data. Let ysjt denote the response in study s, at time t in the jth treatment arm. We assume:

ysjt ∼ f
(

yij|�sjt, �
2
sjt

)

(1)
where f is a probability density (usually parametric), s = 1,… , S, j = 1,… , J and t = 0,… , T . The main parameter of clinical
interest is �sjt, which measures the treatment effect in study s of intervention j at time point t, on a suitable scale (e.g. logit in
the case of binary variables or log when f is a Poisson distribution).
In this paper we focus on continuous and binary responses.When the measurements ysjt are continuous Equation (1) becomes:

ysjt ∼ Normal
(

�sjt, �
2
sjt

)

,

while in case of a binary outcome the likelihood function becomes:
ysjt ∼ Binomial (nsjt, psjt

)

,
logit(psjt) = �sjt.
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The fundamental difference among the three NMA methods is in the way in which the predicted (mean) outcome (�sjt) and
the variance (�2sjt), at time point t in arm j of trial s, are specified.

2.1 Mixed treatment comparison model
In the MTCmodel the mean outcome is specified in terms of a study- and time- specific baseline and an additive term describing
the relative effect of each treatment. For simplicity, we set as the reference arm the treatment j = 1. The original specification
(1) presents 6 alternative versions of this general structure, where both the baseline and the relative effect may vary over time.
Here, we consider a general formulation

�sjt = �st + �sj ,

where, �st is the study- and time-specific effect pooled across treatment arms, while �sj is the study-specific arm deviation from
the reference arm, with �s1 ∶= 0. In this framework the parameters �st are assumed to be independent across time points in each
study and the relative treatment effects �sj to be constant over time.
In particular, �st is assumed to be normally distributed for each time-point and each study. Conversely, the parameters �sj are

modelled as structured “random effects”, as follows
�sj ∼ Normal (dj − d1, �2�

)

Following Dakin et al (1), the parameters dj are independently assigned vague Normal prior distribution centered on 0 and with
large variance, whereas the between-studies standard deviation �2� is given a uniform prior on a wide interval.
Finally, the variances for the observed data are modelled as

�2sjt =

( sdsjt
√

nsjt

)2

for all s, j, t,

where sdsjt is an estimate of the standard deviation (possibly available in the literature) and nsjt is the observed sample size for
each treatment arm and time point in each study.

2.2 Bayesian evidence synthesis techniques - integrated two-component prediction model
Ding et al (2) present two different models: one is based on fixed effects, while the other includes random effects. The general
model with fixed effects specifies the mean and the variance of the observed outcome as

�sjt = (�s + �j)
(

1 − epj t

1 − epjT

)

(2)

�2sjt =

[ sdsjt
√

nsjt

(

1 − epj t

1 − epjT

)

]2

,

where the parameter �j indicates the j-th treatment mean effect at the end follow up period (time T ). Here, the time period
T is the same for all studies. It is straightforward to allow different time periods for different studies, by changing T to Ts.
Moreover, the parameter pj determines the shape of the j-th treatment effect over time. This parameter is assigned a uniform
prior distribution defined on a negative interval. This implies that:

0 ≤
(

1 − epj t

1 − epjT

)

≤ 1.

More specifically, if pj is large the rate of the change attributable to treatment j grows fast at the beginning and reaches a plateau
quickly, whereas when pj is close to 0, the trend is almost linear.
In the fixed effect specification, �j is assigned a vague Normal prior again centered on 0 and with large variance. The random

effects version can be easily obtained by assuming a study-specific treatment effect �sj in Equation 3, e.g.
�sj ∼ Normal (dj − d1, �2�

)

,

where the parameters dj are assigned vague Normal priors and the between-studies standard deviation is given a wide uniform
prior. Notice that in our simulations in §3 and examples in §4 we use the random effect model for a fairer comparison.
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2.3 Fractional polynomials
Jansen et al (3) propose an approach to network meta-analysis based on fractional polynomials (FPs), a family of flexible basis
functions used to describe the relationships among variables, e.g. in a regression setting. This model assumes nonlinear dynamics
of treatment effects over time.
A FP structure of orderM for the mean outcome of the j-th treatment in study s is defined as

�sjt =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�0sj +
M
∑

m=1
�msjt

pm if p1 ≠⋯ ≠ pM

�0sj + �1sjtp +
M
∑

m=2
�msjt

p [ln(t)]m−1 , ifM > 1, p1 =⋯ = pM = p
(3)

with t0 ∶= ln(t). Jansen et al (3) suggest selecting the power pm from the set {−2, −1, −0.5, 0, 0.5, 1, 2, 3}, for m = 1,… ,M .
The vector �sj = (�0sj ,… , �Msj)⊺ is modelled as

⎛

⎜

⎜

⎝

�0sj
⋮

�Msj

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

�0s
⋮
�Ms

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

�0sj
⋮

�Msj

⎞

⎟

⎟

⎠

,

where the vector �s = (�0s,… , �Ms)⊺ denotes the study specific mean, while the vector �j = (�0sj ,… , �Msj)⊺ represents the
study- and time-specific effects of treatment j relative to the reference treatment, arbitrarily coded as j = 1. The parameters �msj
are modelled assuming a multivariate Normal distribution with the pooled estimates expressed in terms of the overall reference
treatment j = 1:

⎛

⎜

⎜

⎝

�0sj
⋮

�Msj

⎞

⎟

⎟

⎠

∼ Normal
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

d0j − d01
⋮

dMj − dM1

⎞

⎟

⎟

⎠

,Σ
⎞

⎟

⎟

⎠

, (4)

where the vector dj = (d0j ,… , dMj)⊺ are assigned vague Normal priors, for j > 1, and d1 = 0 and with
⎛

⎜

⎜

⎝

�0s1
⋮

�Ms1

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0
⋮
0

⎞

⎟

⎟

⎠

and Σ =
⎛

⎜

⎜

⎝

�20 ⋯ �0�M�0M
⋮ ⋱ ⋮

�0�M�0M ⋯ �2M

⎞

⎟

⎟

⎠

.

The covariance matrix Σ captures between-study heterogeneity of the treatment effect parameters �msj , where �2m = Var [�msj
]

and �lk quantifies the correlation across the treatment effect parameters, with m, l, k ∈ {0,… ,M}.
Under a fixed-effects model, the formulation in (4) is replaced by

⎛

⎜

⎜

⎝

�0sj
⋮

�Msj

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

d0j − d01
⋮

dMj − dM1

⎞

⎟

⎟

⎠

and as a result it is not necessary to estimate the between-study covariance matrix.
Finally, the variance of the main outcome

�2sjt =

[( sdsjt
√

nsjt

)/

(

1 − �2
)

]2

is modelled as a function of the corresponding standard error adjusted by a factor (1 − �2), where � indicates the correlation
coefficient between subsequent time points. Often, � is assumed to be known, but in a fully Bayesian setting it can be treated as
unknown and object of inference, by specifying an appropriate prior distribution.

3 SIMULATION STUDY

In order to evaluate the performance of the three models described above, we conduct several simulations studies. We investigate
different scenarios to highlight the main differences among the modelling strategies. Our goal is to reproduce different time-
pattern for the main effect and investigate the ability of each model to recover such structure. We consider treatment effects that
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over time: a) are linear; b) decrease logarithmically; c) are constant and d) non-monotonic treatment effect, corresponding to
a situation in which a treatment could be first beneficial and then detrimental. Moreover, to provide fair comparisons we also
generate data based on the models by Dakin et al (1) and Ding et al (2). Finally, we extend a continuous outcome for longitudinal
studies to a binary outcomes.
For each scenario, we randomly generate 50 datasets according to the following specifications. We then fit the NMA models on
each datasets and average the results over the 50 simulated datasets. When generating the data we follow a similar simulation
strategy as in Ding et al (2).
We simulate data from 3 hypothetical studies with 2 treatment arms. Figure 1 shows graphically the network of studies used

for Scenario 1–7; circles indicate treatments, while edges connecting them indicate the availability of direct evidence as provided
by a study. In particular, in Figure 1 study 1 compares treatment A and B; study 2 has treatments A and C and study 3 matches
B and C. For this simple example, the network is "closed”, meaning that there is at least one study providing direct evidence for
all possible pairwise comparisons. In Supplementary Material (Section 2) we also perform a simulation study using non-closed
network, which shows that the conclusions of the comparison are not affected by the nature of the network.

FIGURE 1 Network of studies used for Scenario 1–7 of the simulation study. The different treatments are represented by circles.
Two treatments are linked with a black lines if a direct comparison between them is available.

Table 1 describes the details of the simulations in terms of the time points at which follow up occurs as well as the number
of individuals in each of the studies arms.

TABLE 1 Simulation parameters. For each study different treatments, times of observation and number of subjects per arm
are specified.

Study Treatment Time of Observation Number of Subjects per arm (ns)
Study 1 A and B 4, 8, 12, and 24 weeks 100
Study 2 A and C 4, 12, and 24 weeks 120
Study 3 B and C 4, 8, and 12 weeks 130

For the first five scenarios, to generate data from a meta-analysis of study, we first simulate individual level observations as
Zisjt ∼ Normal(�sjt, �2s ), for i = 1,… , ns, where ns is the number of observation in study s. In addition, we set �sjt = �s + jt
with �s ∼ Normal(0, 10), �21 = 1, �22 = 2 and �23 = 4 and we show jt, the true relationships between time and the change
from baseline, in Figure 2 . In the simulations, we assume that the variance of the outcome is constant over time and across
treatments as our main interest is to investigate the performance of each model in capturing the time structure of the main
outcome. Obviously this assumption may not be tenable in many real data applications as shown in section § 4 and § 5 and in
Supplementary Material (Section 3).
The main outcome of each study is reported as sample means Ysjt =

∑ns
i=1 Zijst

ns
, or Ysjt ∼ Normal (�sjt, �2s

), with �2s = �2s ∕ns.In other words, this setting amounts to including a set of independent study-effects �s, while the component jt in �jst represents
the effect of the treatment over time.
Through the different specifications of the curve jt we create the various scenarios described at the beginning of this section,

according to the following scheme.
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FIGURE 2 Treatment effect, jt, over time. The columns refer to different treatments (A, B, C), while the rows represents the
different simulation scenarios.

Scenario 1. The treatment effects are linear over the time with different slopes:
• Treatment A: At = − t

4
;

• Treatment B: Bt = − t
2
;
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• Treatment C: Ct = − t
3
.

Scenario 2. We consider treatment effects with logarithmic decay over time:
• Treatment A: At = − log(t + 1);
• Treatment B: Bt = −3 log(t + 1);
• Treatment C: Ct = −2 log(t + 1);

Scenario 3. We assume a monotonic piecewise linear curves:

• Treatment A: At =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 3t
4

if 0 ≤ t ≤ 4
− t
2
− 1 if 4 < t ≤ 8

− t
4
− 3 if 8 < t ≤ 12

−6 if 12 < t ≤ 24

;

• Treatment B: Bt =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 3t
2

if 0 ≤ t ≤ 4
− 10t
23
− 17

4
if 4 < t ≤ 8

− 5t
16
− 21

4
if 8 < t ≤ 12

− t
12
− 8 if 12 < t ≤ 24

;

• Treatment C: Ct =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−t if 0 ≤ t ≤ 4
− 3t
4
− 1 if 4 < t ≤ 8

− t
4
− 5 if 8 < t ≤ 12

− t
12
− 7 if 12 < t ≤ 24

.

Scenario 4. We introduce also a treatment effect that is constant over the time (treatment B):

• Treatment A: At =
{

0 if 0 ≤ t ≤ 8
− t
2
+ 4 if 8 < t ≤ 24

;
• Treatment B: Bt = 0;
• Treatment C: Ct = (−t2−25t)

100
.

Scenario 5. We assume non-monotonic piecewise linear curves:

• Treatment A: At =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 3t
4

if 0 ≤ t ≤ 4
− 5t
2
+ 2 if 4 < t ≤ 8

− t
2
− 4 if 8 < t ≤ 12

t
2
− 16 if 12 < t ≤ 24

;

• Treatment B: Bt =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 3t
2

if 0 ≤ t ≤ 4
−t − 2 if 4 < t ≤ 8
t − 18 if 8 < t ≤ 12
t
4
− 9 if 12 < t ≤ 24

;

• Treatment C: Ct =
⎧

⎪

⎨

⎪

⎩

− 8t
4

if 0 ≤ t ≤ 4
t
4
− 9 if 4 < t ≤ 12

t
6
− 8 if 12 < t ≤ 24

.

For Scenario 6, we simulate data from the MTC model with the following parameters:
�st ∼ Normal (−s, 1) ,
�sj ∼ Normal (0.5, 1) ,
sd = 1.2.
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Finally, in the last scenario Scenario 7, we simulate data from the BEST-ITP model with the following parameters:
�s ∼ Normal (−3, 1) ,
� = (0,−0.5,−1),
sd = 1.2,
pj = (−0.1,−0.15,−0.15).

Posterior inference for these examples, as well as for the real data applications in § 4 and § 5 and in Supplementary Material
(Section3), can be performed through a standard Gibbs sampler algorithm, which we implement in JAGS (15). The first 5,000 iter-
ations are discarded as ‘burn-in’ and the final sample size on which inference is based is 10,000 samples. We check convergence
of the chain through the Gelman-Rubin potential scale reduction factor (16). The Gelman-Rubin diagnostic is evaluated by run-
ning multiple chains from different initial values and then comparing the estimated between-chains and within-chain variances
for each model parameter. Large differences between these variances indicate that convergence has not been reached yet.

3.1 Models specification
For all the methods, we generally specify vague prior distributions for the parameters of interest. In the case of the MTC we
follow the original proposal presented in Dakin et al (1) and assume

�st ∼ Normal (0, 104) , dsj ∼ Normal (0, 104) and �� ∼ Uniform(0, 20).
Following Ding et al (2), for the BEST-ITP we assume

�s ∼ Normal (0, 104) and pj ∼ Uniform(−10, 0).
Moreover, we follow the suggestion of the previous method (MTC model) to specify the random effect distribution as

dj ∼ Normal (0, 104) and �� ∼ Uniform(0, 20).
Finally, regarding the FP approach, in the simulation study we investigate the performance of a first- and a second-order

fractional polynomial model (M = 1, 2, respectively). In fact, in medical applications, FP1 and FP2 transformations are often,
with higher order transformations being used rarely. FP1 and FP2 functions allow representation of a wide range of non-linear
relationships. A first-order fractional polynomial is obtained by describing the effect as a function of transformed time t in a
linear model: FP of degree 1 functions are always monotonic, while FP degree 2 functions may be monotonic or unimodal. For
greater detail, see Royston and Sauerbrei 2008 (17).
WhenM = 1, Equation 3 reduces to

�sjt = �0sj + �1sjtp, (5)
while forM = 2 it becomes

�sjt =

{

�0sj + �1sjtp1 + �2sjtp2 if p1 ≠ p2
�0sj + �1sjtp + �2sjtp [ln(t)] , if p1 = p2 = p.

(6)

For consistency with the other models, we consider only specifications that include a random effect. In particular, when
M = 1, there is only one between-study heterogeneity parameter, �20 , related to the relative treatment effects for �0sj . In our
simulations, we consider another separate analysis where the between-study heterogeneity is assumed to affect treatment effects
only in terms of �1sj . Moreover, ifM = 2, we consider also the relative treatment effects for �2sj .
All the models are completed by specifying suitable prior distributions for the vectors �s and dj = (d0j ,… , dMj)⊺. In

particular, we define 0 as the zero vector of length (M + 1) and model

�s ∼ Normal (0,T�
) and dj

{

= 0 for j = 1
∼ Normal (0,Td

) for j > 1 .

The diagonal elements of the prior covariance matrices are set equal to 104, while the other elements are equal to zero. Thus,
T� = Td = 104I, with I denoting the identity matrix of appropriate dimension. Finally, we assume that the correlation � follows
a Uniform distribution in the interval (0, 0.95).
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3.2 Selection ofM and pm in the FP model
Implementing the FP model requires selecting a value for M and fixing the power terms p or (p1, p2) in Equations (5) or (6),
respectively. Following Jansen et al (3), we use the Deviance Information Criterion (DIC), originally proposed by Spiegelhalter et
al (18) as an estimate of expected predictive error to guide the selection of the FP order and power terms, upon a set of possible
choices. The DIC is defined as the sum of D̄, the posterior mean of the model deviance and pD, a posterior estimate of the
effective number of parameters, acting as a penalty for more complex models in order to limit the effect of overfitting. Models
with smaller DIC should be preferred. For each of the 50 replicates of each scenarios, we compare the values of DIC of the
different first-order fractional polynomial models (that is 7 different models, one for each value of p in our pre-specified range)
and of the different second-order fractional polynomial models (28 models in total, given by all possible combinations of p1 and
p2). For each scenario, we selectM and corresponding power terms based on the DIC value. Table 2 reports the power that
achieves minimum DIC more often corresponding to the selected polynomial orderM and the mean DIC evaluated over those
models for the Scenario 3 and Scenario 5.

TABLE 2 Mean of DIC, mode of the power terms and posterior estimate of the effective number of parameters (pD) obtained
over 50 simulations for each scenario.

Scenario 3 Scenario 5
Random effects on �0sj �1sj �0sj �1sj �2sj

Power that achieves minimum p = −1 p = −1 p1 = −2, p1 = −2, p1 = −2,
DIC more often p2 = 0 p2 = 0 p2 = 0

Mean of DIC 49.946 39.710 47.676 44.668 49.976
pD 21.8 21.9 27.0 28.8 26.0

For scenario 3 the “best” models are associated withM = 1 and thus we only report the estimated values for the power term
p; for scenario 5, the model fitting the data best among those we have tested is associated withM = 2 and thus we report the
estimates for both p1 and p2. In each scenario, we also report the results upon varying the parameter on which we place the
random effect structures. From the inspection of Table 2 , it is possible to see that the DIC is consistently smaller for the models
including a random effects on �1sj .

3.3 Results
To compare the results obtained with the three different NMA methods we display estimated profiles of each treatment from
each study obtained for the third and the fifth scenario (the other figures are available in Supplementary Material, Section 1).
Figures 3 and 4 show the estimated profiles obtained for the MTC, BEST-ITP and the appropriate FP models for Scenarios 3
and 5, respectively. Red lines indicates the true values used to simulate the data, whereas magenta, green and blue lines indicate
the estimates obtained using the MTC model, BEST-ITP model and fractional polynomials model, respectively.
Upon visual inspection, for Scenarios 3 and 5 it appears as though more accurate estimates are obtained with the BEST-ITP

and FP models. Moreover, it is evident that the credible intervals obtained from the MTC model are wider than those obtained
from the FP and BEST-ITP counterparts. As displayed in Web Figure 1–5 of Supplementary Material, this result is confirmed
also by the other Scenarios, with the only exception of Scenario 6. This is to be expected since for scenario 6 we have generated
data using the model by Dakin et al. Finally, the the width of the credible intervals corresponding to BEST-ITP model increases
over time, as it is also evident in Web Figure 1–4 of Supplementary Material. On the other hand, in Web Figure 5 the boundaries
of the credible intervals obtained from the BEST-ITP model remain close to the true values over time. This is not surprising
since for scenario 7 we have generated data from the model by Ding et al.
To better quantify our comparison, we use the mean squared error (MSE) as a measure of goodness of fit. If Ŷ (l)sjt denotes thepredicted value of the response for study s, treatment j time t and at MCMC iteration l and Ysjt is the “true”, simulated values,
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FIGURE 3 Scenario 3: posterior estimated profiles obtained. Red lines indicates the values used to simulate the data, whereas
magenta lines, green lines and blue lines correspond to estimates obtained using the MTC model, BEST-ITP model and first-
order fractional polynomials model respectively.

the MSE is defined as

MSE = 1
R

R
∑

r=1

[ T
∑

t=1

J
∑

j=1

S
∑

s=1

(

Ysjt − Ŷ
(r)
sjt

)2
]

= 1
R

R
∑

r=1
MSEr,

where R = 10000 is the number of saved MCMC iterations. Lower MSE is associated with better performance.

TABLE 3 Comparison of the 3 NMA models by MSE: Mean (Standard Deviation) of the MSE. The number reported are an
average over the 50 simulated datasets for each scenario.

MTC model BEST-ITP model FP model
Scenario 1 8.6004 (0.5524) 1.3959 (0.4903) 0.3505 (0.0388)
Scenario 2 4.8586 (0.5886) 1.1089 (0.3873) 0.3505 (0.0118)
Scenario 3 3.1465 (0.3951) 1.9744 (0.3398) 1.3069 (0.1823)
Scenario 4 27.6757 (3.9365) 81.6728 (8.5083) 1.5747 (0.1338)
Scenario 5 43.3330 (1.4238) 104.2221 (2.6848) 41.7533 (1.8354)
Scenario 6 0.0162 (0.3923) 6.1175 (0.6988) 0.9198 (0.2864)
Scenario 7 2.70591 (0.3365) 0.0125 (0.2658) 0.1701 (0.2898)

The MSE results for each model and for all the simulation scenarios are summarized in Table 3 . We report the mean and
the standard deviation of MSE across all 50 simulations. The mean squared error is lower for the FP models for all scenarios.
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FIGURE 4 Scenario 5: posterior estimated profiles obtained. Red lines indicates the values used to simulate the data, whereas
magenta lines, green lines and blue lines correspond to estimates obtained using the MTC model, BEST-ITP model and first-
order fractional polynomials model respectively.

Moreover, for the first three scenarios, the BEST-ITP model is preferable to the MTC model, while the BEST-ITP model is
not able to capture the time constant effect in the fourth scenario, leading to a worse MSE. In general the values of MSE for
the Scenario 5 are large, implying that all the model are less able to capture non-monotonic time effects. Finally, in scenario 6
the smallest MSE is reached by the MTC model, while in the last scenario the best model is the BEST-ITP model. This is not
unexpected since for scenario 6 we have generated the data from the model by Dakin et al and for scenario 7 we have generated
data from the model by Ding et al.

3.4 Binary outcomes
Often in longitudinal studies the outcome of interest is discrete. As such it is important to investigate the performance of the
above methods when a binary outcomes is available.
Binary data, corresponding to scenario 3, are simulated by simply taking a logit transformation of the Scenario 3 of �sjt.
We fit the three network meta-analysis model, MTCmodel, BEST-ITP model and 1st and 2nd order fractional polynomial model
(fixed and random effects models) model. The best fit (according to the DIC criterion) for the fractional polynomial model is
obtained choosing a first order polynomial and treating �0 as a fixed effect and �1 as a random effect, with p1 = −2. In Figure 5
we summarise the posterior distribution of psjt obtained from MTC model, BEST-ITP model and fractional polynomials. Red
lines indicates the true values used to simulate the data, whereas magenta, green and blue lines indicate the estimates obtained
using the MTC model, BEST-ITP model and fractional polynomials model, respectively.
From the Figure 5 it is clear that the more accurate estimates are obtained with the MTC and FP models. Moreover, it is

evident that the precision of the estimates given by BEST-ITP model increases over time. The values of the MSE confirm the
results obtained in the continuous case, as the largest MSE is obtained with the BEST-ITP model (0.0897), while the smallest
with the model of Jansen et al (3) (0.0060).
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FIGURE 5 Scenario 3: binary outcome. Posterior distribution of psjt. Red lines indicates the values used to simulate the data,
whereas magenta lines, green lines and blue lines correspond to estimates obtained using the MTC model, BEST-ITP model
and first-order fractional polynomials model respectively.

4 COPD DATA

We consider here the dataset described in Karabis et al (19). The data are related to patients affected by chronic obstructive
pulmonary disease (COPD). Subjects can receive a combination of three possible treatments: aclidinium 400 �g BID (AB400),
tiotropium 18 �g QD (TIO18) or Placebo. The data are collected from a total of S = 13 studies: 3 studies compare aclidinium
400 �g with placebo, 8 compare tiotropium 18 �g with placebo and one compares aclidinium 400 �g and tiotropium 18 �g
with placebo. Figure 6 presents the network diagram, showing a total of 12 connections between the comparators. There is
one closed loop, providing direct evidence. As all studies were placebo-controlled, placebo is used as the reference treatment.
A brief overview of the study design and patient characteristics is presented in Table 4 . For the studies identified that met the
selection criteria, the change from baseline (CFB) and the standard error (SE) are reported. We have no information about the
loss to follow-up, so we have assumed that the sample sizes nsjt remains the same as at the start of the study. To account properly
for loss to follow-up we would need to introduce a new layer in the hierarchy which is beyond the scope of this review. If a
study did not report the number of patients (indicated in the right-most column of Table 4 as “NR”), then the sample size has
been generated from an uniform distribution ranging from the minimum and the maximum number of patients across all studies.
Moreover, where information about the standard errors is not reported, Dakin et al (1) suggest to impute the missing standard
deviations specifying the following prior distribution

sdsjt ∼ Gamma(�se, �se), �sd ∼ Uniform(0, 10) and �sd ∼ Uniform(0, 10).
We fit the MTC, BEST-ITP model and second order FP models (using both fixed and random effects models) to the COPD

dataset and compare the results in the following.

4.1 Results
Firstly, we need to select the powers p1 and p2 for the FP model. Given that the outcome of interest is reported as change from
baseline, the constant term �0sj is always zero and can be ignored. The best fit according to the DIC criterion is obtained treating
�1 as fixed effect and �2 as a random effect, with resulting estimated posterior means of p1 = −0.5 and p2 = 0.
We present estimated profiles obtained with the three methods in Figure 7 . The solid lines indicate the results as mean

differences in treatment effects over time for AB400 vs placebo, TIO18 vs placebo and AB400 vs TIO18 (red, blue and grey
lines, respectively).
It appears clear from the inspection of the graphs in Figure 7 that aclidinium has similar effect to tiotropium but it is better

than placebo the first 24 weeks. In fact, the grey lines, that represent the results as mean differences in treatment effects over time
AB400 vs TIO18, are close to the value 0, whereas, the red lines and the blue lines, that indicate the results as mean differences
in treatment effects over time for AB400 vs placebo and for TIO18 vs placebo have positive values. This results agree with
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TABLE 4 COPD data: mean Change from baseline (CFB) in liters and corresponding SE at different time points.

Study Time point CFB aclidinium CFB tiotropium CFB placebo Number
(weeks) (SE) (SE) (SE) of patients

LAS 39 0.14 0.07 (0.016) 0.02 (0.017) -0.07 (0.022) NR
6.00 0.03 (0.018) -0.01 (0.018) -0.11 (0.024)

ATTAIN 1.00 0.09 (0.012) - -0.03 (0.012) 269; 273
4.00 0.08 (0.013) - -0.03 (0.013)
8.00 0.09 (0.014) - -0.03 (0.014)
12.00 0.06 (0.015) - -0.05 (0.015)
18.00 0.08 (0.015) - -0.06 (0.015)
24.00 0.06 (0.016) - -0.07 (0.016)

ACCORD I 1.00 0.10 (0.012) - -0.01 (0.012) 190; 187
4.00 0.11 (0.014) - -0.01 (0.014)
8.00 0.10 (0.013) - -0.01 (0.014)
12.00 0.10 (0.015) - -0.02 (0.015)

ACCORD II 1.00 0.07 (0.013) - -0.03 (0.012) 178; 182
4.00 0.06 (0.014) - -0.01 (0.014)
8.00 0.08 (0.016) - 0.00 (0.016)
12.00 0.06 (0.016) - -0.01 (0.015)

Tashkin 2008* 4.33 - 0.10 (0.013) 0.01 (0.013) 2987; 3006
26.00 - 0.10 (0.013) 0.01 (0.010)
52.00 - 0.09 (0.013) -0.01 (0.013)

Verkindre 2006* 6.00 - 0.15 (0.060) 0.01 (0.055) 46; 54
12.00 - 0.10 (0.060) -0.01 (0.055)

Brusasco 2003* 2.14 - 0.10 (NR) -0.03 (NR) 402; 400
24.14 - 0.09 (NR) -0.05 (NR)

Casaburi 2000 1.14 - 0.11 (0.010) -0.01 (0.010) 279; 191
7.14 - 0.11 (0.010) -0.01 (0.010)
13.14 - 0.11 (0.010) -0.04 (0.010)

Donohue 2002* 2.14 - 0.12 (NR) -0.02 (NR) 209; 201
24.14 - 0.11 (NR) -0.04 (NR)

Moita 2008* 6.00 - 0.05 (NR) -0.02 (NR) 147; 164
12.00 - 0.07 (NR) -0.01 (NR)

Covelli 2005 8.00 - 0.17 (0.023) 0.003 (0.025) 100: 96
12.00 - 0.19 (0.025) 0.001 (0.027)

Donohue 2010* 2.00 - 0.14 (0.011) 0.01 (0.009) 420; 425
12.00 - 0.15 (0.011) -0.01 (0.010)
26.00 - 0.13 (0.011) -0.03 (0.011)

Casaburi 2002* 1.14 - 0.12 (0.010) -0.01 (0.017) 550;371
13.14 - 0.12 (0.010) -0.02 (0.017)
25.14 - 0.11 (0.010) -0.04 (0.017)
49.14 - 0.11 (0.010) -0.03 (0.017)

the results provided by Karabis et al (19). Moreover, the posterior estimates obtained with fractional polynomials show a time
pattern, by providing greater difference with increased time, while the results obtained with BEST-ITP model and MTC model
are constant over time.



14 MARTA TALLARITA ET AL

FIGURE 6 Network of studies. The different treatments are represented by circles. Two treatments are linked with a black lines
if a direct comparison between them is available.

FIGURE 7 Results as mean differences in treatment effects over time for AB400vs placebo (red lines), TIO18 vs placebo (blue
lines), AB400 vs TIO18 (grey lines) generated by MTCmodel (a), BEST-ITP model (b) and Fractional polynomials (c). Dashed
lines denote 95% credible intervals (CI), while the solid lines represent the posterior mean.
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5 OSTEOARTHRITIS DATA

We also consider a second dataset described in Jansen et al (3). In this dataset there are 16 studies that investigate treatments for
osteoarthritis (OA) of the knee based on different hyaluronan (HA)-based viscosupplements. OA is the most common chronic
condition of the joints and it is a painful degenerative disease. In OA, the cartilage breaks down, causing pain, swelling and
problemsmoving the joint. Due the effect of HA in synovial fluids, viscosupplementation with HA-based products is used to treat
OA. Different treatment are considered: three, four, or five injections of HA with a molecular weight (MV) of 0.5 - 0.73 million
Da (Hyalgan) (3 Hy-0.5-0.73; 4 Hy-0.5-0.73; 5 Hy-0.5-0.73); three injections of HA MW of 0.62-11.7 million Da (Supartz)
(3 Hy-0.62-11.7); three injections of HA MW of 2.4-3.6 million Da (Euflexxa) (3 Hy-2.4-3.6); and three injections of Hylan
GF-20 MW 6 million Da (Synvisc) (3 HyGF20). Table 5 and Figure 8 reports an overview of the study design and patient
characteristics for the selected studies. Also for this dataset, we use the sample sizes at the initial step across the time points,
because the sample sizes at other time points are not available.
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FIGURE 8 Network of studies. The different treatments are represented by circles. Two treatments are linked with a black lines
if a direct comparison between them is available.

5.1 Results
Also in this example, we apply the MTC model, BEST-ITP model and 1st and 2nd order fractional polynomial model (fixed
and random effects models)(FP) models to perform a network meta-analysis of OA studies. In our analysis placebo is treated as
reference treatment. The best fit for fractional polynomial model according to DIC is obtained using a second order polynomial
and treating �1 as a fixed effect and �2 as a random effect, with p1=0.5 and p2=1.

In Figure 9 posterior estimated profiles obtained from the threemodels are shown.We report the posterior mean of the treatment
effect relative to placebo over time for 5 HY-0.5-0.73 (magenta lines), 4 HY-0.5-0.73 (black lines), 3 HY-0.5-0.73 (red lines), 3
HYGF20 (green lines), 3 HY-0.62-11.7 (blue lines) and 3 HY-2.4-3.6 (light blue lines).
All treatments are better than placebo, consistently over the first 24 weeks. In particular, the best result are obtained with 3

HYGF20. Moreover, the estimated treatment effects obtained from the fractional polynomials model change in time; for example
for the first few weeks receiving 5 injections of HY-0.5-0.73 is better than 4 injections of the same drug, while later on we find
that the opposite is true. This type of change is not detected by the MTC model and the BEST-ITP model.

6 CONCLUSIONS

In this paper, we review the MTC, BEST-ITP and fractional polynomials models for Network Meta-analysis, highlighting the
main features of the different methods. The model presented by Dakin et al (1) assumes that relative treatment effects may
vary over time. Ding et al (2) suggested a parametric model for the relationship between outcome and time for each treatment.
Finally, Jansen et al (3) suggested a more flexible approach where the relationship between outcome and time is a fractional
polynomial. The three NMA models make different assumptions on the behaviour of the treatment effect over time. The MTC
model assumes that the treatment effect is constant over time as

�sjt = �st + �sj
�sj ∼ Normal (dj − d1, �2�

)

The Best-ITP model assumes that the treatment effect over time is given by
(dj − d1)

(

1 − epj t

1 − epjT

)
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FIGURE 9 Posterior mean of the different treatment effects relative to placebo over time for 5 HY-0.5-0.73 (magenta lines),
4 HY-0.5-0.73 (black lines), 3 HY-0.5-0.73 (red lines), 3 HYGF20 (green lines), 3 HY-0.62-11.7 (blue lines) and 3 HY-2.4-3.6
(light blue lines) generated by MTC model (a), BEST-ITP model (b) and Fractional polynomials (c). Dashed lines denote 95%
credible intervals (CI), while solid lines represent the posterior mean.

which admits a constant effect when pj is close to zero. Finally, when employing fractional polynomials, we are making the
assumption that the treatment effect can be described by a parametric function of time. This allows borrowing information across
time and for a variety of temporal patterns.
We evaluated the performance of the models in a a simulation study and on real data applications. Based on the results of

our simulations, Daikin’s model appears to be the most conservative in terms of estimation of the underlying effect-size, while
fractional polynomial seems to offer the most flexible strategy, able to accommodate for different time patterns. The BEST-ITP
model can not capture the constant course, i.e. an effect size that does not change over time. In general, it is more difficult to
capture the non-monotonic temporal patterns, with the Fractional Polynomial model leading to slightly better estimates.
In terms of computational time, there are no substantial differences in running times between the three different models,

although fractional polynomials require extensive sensitivity analysis to select the optimal order and the power terms of the
polynomials.
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