
1 

 

Early Toarcian black shales: a response to an oceanic anoxic event or 1 

anoxia in marginal basins? 2 

 3 

J.M. McArthur 4 

Department of Earth Sciences, UCL, Gower Street, London WC1E 6BT, UK. 5 

 6 

*Corresponding author. E-mail j.mcarthur@ucl.ac.uk 7 

 8 

Abstract 9 

The Early Toarcian, organic-rich, black shales of the Cleveland Basin, Yorkshire UK, are the type 10 

sediments for the supposed early Toarcian oceanic anoxic event.. The sediments have values of Cd/Mo 11 

that are < 0.1 and values of Co(mg/kg) x Mn(%) that are > 0.4. These values are typical of sediment 12 

deposited in modern basins that are hydrographically restricted and show that the Cleveland Basin was  13 

hydrographically restricted when depositing organic-rich sediments. These palaeo-proxies confirm 14 

earlier interpretations, based on Mo/TOC values, that argued for hydrographic restriction. The term 15 

Toarcian oceanic anoxic event can now be discarded. 16 

 17 
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1. Introduction 20 

The Late Pliensbachian and Early Toarcian appear to have been times of considerable environmental 21 

change. The changes included a marginally increased rate of faunal extinctions (Raup and Sepkoski 22 

1984; Little and Benton 1995, Cecca and Macchioni 2004; Wignall and Bond 2008), large-scale 23 

volcanism (Pálfy and Smith 2000; Guex et al. 2016; Percival et al. 2018), isotopic variations for 24 

several elements incorporated into sediments from seawater, including carbon, (Küspert 1982, 25 

Hesselbo et al. 2000; McArthur 2007), oxygen in belemnite calcite (McArthur et al. 2000; Bailey et al. 26 

2003; van de Schootbrugge et al. 2005), osmium (Cohen et al. 2004) and molybdenum (Pearce et al. 27 

2008; Dickson et al. 2017), one of the biggest transgressions of the Jurassic (Hallam 1988, 1997), and 28 

the deposition of organic-rich shales in marginal basins around the world (Jenkyns 1988 et seq. 29 

including Jenkyns 2010 and Baroni et al. 2018). 30 

 The reason why deposition occurred of early Toarcian organic-rich shales (often termed ‘black 31 

shales’ even when containing < 5% TOC) has received much attention, although it remains unclear 32 
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whether this has been because of their visual prominence in outcrop, or because they really did 33 

constitute an unusually high proportion of early Toarcian sediments, or because of  the accident of 34 

geography that placed some into Enlightenment Europe where accessible sections promoted early 35 

scientific study. The formation of these sediments has been widely attributed to deposition from an 36 

ocean that was globally anoxic (e.g. Pearce et al. 2008; Thibault et al. 2018), where globally is usually 37 

taken to mean that all the world’s oceans were anoxic (Wignall et al. 2010). Others (Hallam 1967, 38 

Küspert 1982; Wignall and Hallam 1991; Saelen et al. 1996, 1998, 2000; Frimmel et al. 2004) have 39 

argued that these black shales were deposited in  hydrographically restricted basins (enclosed, semi-40 

enclosed, or silled), possibly in response to transgression (Wignall 1991) across basin-and-swell 41 

topography. More recently, McArthur et al. (2008) used the Mo/TOC-model of Algeo and Lyons 42 

(2006) to show that Early Toarcian black shales of the Cleveland Basin (perhaps the type locality) did 43 

indeed appear to accumulate in a basin that was restricted hydrographically. 44 

 Along with recent studies documenting organic-rich shales in the early Toarcian basinal settings in 45 

far-flung localities (e.g. Al-Suwaidi et al. 2009, 2016; Caruthers et al. 2011) has come documentation 46 

of early Toarcian sediments that are not organic-rich, especially in western Tethys (Wignall et al. 2005; 47 

Hesselbo et al. 2007; Bodin et al. 2010; Baroni et al. 2018), thus also calling into question the concept 48 

of a globally-anoxic ocean. 49 

  Since 2008, new palaeo-proxies have become available to assess depositional environments. The 50 

model of Sweere et al. (2016), concordant with the observations of Little et al. (2015), uses Cd/Mo 51 

values, and concentrations of Co and Mn, to differentiate between upwelling and restricted depositional 52 

environments. Here, these new palaeo-proxies are applied to the early Toarcian organic-rich shales of 53 

the Cleveland Basin to test anew whether they formed under a regime of hydrographic restriction or 54 

whether some other model, such as whole-ocean anoxia, or upwelling, is more appropriate. 55 

 56 

2. The models 57 

2.1 Mo v TOC 58 

The Mo/TOC model of Algeo and Lyons (2006) uses the Mo/TOC value of organic-rich sediment to 59 

quantify the degree of hydrographic restriction of a depositional environment. The model rests on the 60 

observation that Mo/TOC mass ratios are low (around 6) in modern sediments deposited under severe 61 

hydrographic restriction, such as the Black Sea, where renewal times of the water mass are of the order 62 

of 1000 to 2000 years (Algeo and Lyons 2006). Low Mo/TOC occurs because Mo is stripped from 63 

seawater into sediments, thereby exhausting the Mo supply until the next, infrequent, renewal event. As 64 

restriction decreases, the renewal frequency increases and the Mo supply increases until, where euxinia 65 
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is seasonal and renewal annual, the abundant supply of Mo leads to high values of Mo/TOC in the 66 

sediments. 67 

 The Mo/TOC model has one drawback; it cannot distinguish between the most extreme variants of 68 

its end-members; extreme hydrographic restriction, and the most extreme enhanced upwelling. Both 69 

lead to deposition of sediments with low Mo/TOC. For example, Mo/TOC is around 4.5 for sediments 70 

from the Black Sea, the archetypal restricted basin, and is around 6 for sediments from offshore 71 

Namibia (Algeo and Lyons 2006), a region of extremely enhanced upwelling, where low values occur 72 

because the rate of TOC deposition overwhelms the supply of Mo from upwelling. 73 

 74 

2.2. Cd v Mo 75 

The Cd/Mo proxy of Sweere et al. (2016; see also Little et al. 2015) is based on the fact that Cd 76 

bioaccumulates in phytoplankton whereas Mo does not, so phytoplankton have a Cd/Mo mass ratio > 1. 77 

As a consequence, high export of organic matter and Cd, but not Mo, to sediments in upwelling regions 78 

creates high sedimentary Cd/Mo. In restricted environments, anoxia/euxinia promotes export of Cd and 79 

Mo to the sediments but lower productivity limits plankton-derived export of Cd, leading to Cd/Mo 80 

ratios that tend towards the value of 0.006 for seawater. The Cd/Mo model can therefore distinguish 81 

between sediments deposited under hydrographically-restricted regimes and those deposited under 82 

upwelling regimes, and the fields are separated empirically using a Cd/Mo value of 0.1.  83 

 84 

2.3. Co (mg/kg)  Mn (%); Co(EF)  Mn(EF) 85 

This empirical proxy of Sweere et al. (2016) uses concentrations of Co (mg/kg) and Mn (%) to assess 86 

the degree of restriction of a depositional environment. The proxy name is abbreviated here to Co*Mn 87 

when element concentrations are used, and Co(EF)*Mn(EF), where enrichment factor (EF) is used (for 88 

a definition, see Section 3.3). These authors noted that restricted environments have Co*Mn > 0.4 89 

whilst unrestricted environments have Co*Mn < 0.4. When use is made of Co(EF) and Mn(EF), 90 

restricted environments have values > 1 and unrestricted (upwelling) environments having values < 1. 91 

The authors acknowledge that the values 0.4 and 1.0 may need revision in the light of further study. 92 

Here, a value of 0.4 is used for both Co*Mn and Co(EF)*Mn(EF), as explained in Section 5.5. 93 

 Use of Co and Mn assumes that there are two controls on their supply to sediments. Firstly, both 94 

elements have a downward-decreasing vertical profile in the oceans, proving that they are scavenged 95 

from the water column into underlying sediments – an hydrogenous supply. In upwelling regions the 96 

hydrogenous supply to sediments is low because it is limited by depletion of both elements in upwelled 97 
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water. Restricted basins usually have an unrestricted, shallow, surface layer that advects laterally, 98 

thereby providing potentially more hydrogenous supply. Secondly, in both restricted and upwelling 99 

settings, Co and Mn may be remobilized from sediments into the water column where they may be 100 

cycled (Brumsack 1989, Neumann et al. 1997; Sweere et al. 2016). In restricted settings, these 101 

remobilized elements cannot escape and eventually are returned to the sediment via redox cycling for 102 

permanent immobilization; typically, Co in pyrite and Mn in rhodochrosite. (Berrang and Grill 1974; 103 

Davison et al. 1982; Burdige and Nealson 1986; Sohlenius et al. 1996; Neumann et al. 1997; Dellwig 104 

et al. 2010). In open-ocean (unrestricted) settings, such as regions of coastal upwelling, remobilized 105 

elements can leak from the system by lateral advection, leading to lower metal enrichments than occurs 106 

in the restricted setting, or even to no enrichment over detrital supply. 107 

 It is taken here to be trapping efficiency that distinguishes restricted from unrestricted (upwelling) 108 

settings, whilst it is acknowledged that the term ‘unrestricted’ usually means ‘upwelling’ as enhanced 109 

upwelling is  needed to generate TOC-rich sediments in unrestricted environments. The crucial point is 110 

whether the depositional environment is ‘leaky’ or is ‘tight’. For example, samples from the Gulf of 111 

California, a seasonal-upwelling environment, are suggested by Brumsack (1989) to be low in Mn 112 

because of loss from the sediments of Mn remobilized by suboxic diagenesis. They further suggest that 113 

Co strongly associates with Mn and so Co may also have been lost. If so, Co and Mn may escape any 114 

sediment when the oxic-suboxic interface is at or above the sediment-water interface. 115 

   116 

 117 

3. Study area 118 

Sedimentary rocks of Early Toarcian age in the Cleveland Basin are exposed well in coastal sections of 119 

North Yorkshire, England (Fig. 1). Detailed lithological logs of the sediments, and ammonite 120 

zonations, are given by Howarth (1955, 1962, 1973) and its lithostratigraphy by Powell (1984). 121 

Ammonite zonations are discussed in Page (2004, 2008) and by Page in Simms et al. (2004) where he 122 

indicates that the correct name, by nomenclatural priority, for the Falciferum Zone in North Yorkshire 123 

should be the Serpentinum Chronozone. For continuity with older literature, Falciferum Zone is used 124 

here. 125 

 The sediments are mostly fine-grained mudstones with occasional siltstone intercalations and 126 

common carbonate concretions, often in layers that can be traced laterally for many km and act as 127 

stratigraphic marker beds. In the Toarcian sediments, numerous lines of concretions occur in the 128 

interval from Bed 1 to Bed 32. Beds 33, 35, 37, 42, are particularly prominent rows of carbonate 129 
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concretions. Bed 39 is a laminated, coccolith-rich, argillaceous limestone some 25 cm in thickness. Bed 130 

40, termed ‘The Millstones’ by Howarth (1962), is comprised of concretions 2 – 3 m in diameter and a 131 

decimetre or two thick that grow upwards from the top of Bed 39. Bed 44 is a line of scatter carbonate 132 

nodules, some pyritic. Beds 3, 46 and 50 are sideritic mudstones between 8 and 13 cm. in thickness 133 

(Howarth 1973). Bed 48 is a double row of carbonate concretions with some siderite. Three pyrite-rich 134 

shales (TS > 5%) occur in the Tenuicostatum Zone, the lowest being the Sulphur Band of Chowns 135 

(1968) and numbered as Bed 26 of the Cleveland Ironstone Formation (Howarth 1973). It is 15 cm in 136 

thickness, and its base marks the traditional base of the Tenuicostatum Zone and the base of the 137 

Toarcian (Howarth 1973). This positioning, however, does not recognize the fact that first Toarcian 138 

ammonite is not recorded until Bed 3 of the overlying Grey Shales Member, around 1.7 m higher 139 

(Page, 2003, p.110). Two higher sulphur-rich ‘bands’, or beds (Beds 2 and 19a of the Grey Shales of 140 

Howarth, 1973) are each approximately 20 cm thick and have bases at 1.2 m and 5.0 m above the base 141 

of the Toarcian. 142 

 In early literature, Beds 33 to 40 inclusive were termed the ‘Jet Rock’ because they contain an 143 

abundance of highly-altered wood (Jet), which takes a high polish and supports a cottage industry in 144 

local jewelry-making. In the interval between the upper part of bed 31 and the base of bed 41 (Zone 2, 145 

Fig. 2), the water column in the Cleveland Basin was usually euxinic (Schouten et al. 2000; Wignall et 146 

al. 2005). Brief oxygenation events have been documented in the Cleveland Basin by Caswell and Coe 147 

(2013) and have been documented in this interval also in the temporally equivalent black-shales of the 148 

German Basin (Röhl et al. 2001, Schmid-Röhl et al. 2002; Frimmel et al. 2004; Schwark and Frimmel 149 

2004). 150 

  151 

  152 

4. Samples and methods 153 

4.1.  Samples 154 

Samples from the Cleveland Basin are those of McArthur et al. (2008). The samples were collected 155 

from exposures at Hawsker Bottoms, Staithes, Port Mulgrave, Saltwick Bay, and Kettleness, on the 156 

coast of Yorkshire within a few kilometers of Whitby (Fig. 1; Howarth 1962, 1973). Surficial 157 

weathering, which gives the sediment the look of paper shale, was removed to a depth of 5 cm prior to 158 

sampling the massive sediment beneath. Stratigraphic levels, measured from the base of the Toarcian, 159 

are referred to Hawsker Bottom (Howarth 1955) for Pliensbachian samples, to Port Mulgrave for levels 160 
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from 0 to 20 m in the Toarcian (Beds 1 to the lower part of Bed 41 of Howarth 1973) and to Saltwick 161 

Bay for higher levels (Howarth 1962).  162 

 163 

4.2. Chemical analysis 164 

Samples were prepared for analysis by leaching 200 mg samples for two weeks in 2 mls of 165 

concentrated HNO3 without heating, followed by appropriate dilution. Analysis for Mn was done using 166 

a Varian 720 ICP-AES. Analysis for Cd, Co, and Mo, was done on a Varian 820 ICP-MS with 30 167 

ml/min He in the reaction cell. For Cd, masses 111, 112, 113, 114, were measured with Te as internal 168 

standard. Isobaric interferences from MoO were insignificant. For Co and Mo, internal standards were 169 

Ge and Rh respectively, with spiked and unspiked samples being run in pairs to allow for Ge and Rh 170 

present naturally. Isobaric interference on Co from Ca needed small correction only for a handful of 171 

high-calcite samples. The abundance of CaCO3 was calculated from acid-soluble Ca measured on 172 

sediments leached overnight in 1% HNO3. Data for TS and TOC are from McArthur et al. (2008). The 173 

results of the analyses are given in Table 1 and are compared to data in Sweere et al. (2016) for many 174 

world locations and the data of Orani et al. (2018) for the Namibian Shelf. 175 

 176 

4.3. Enrichment factors 177 

The model of Sweere et al. (2016) is applicable only to organic-rich sediments, which are defined here 178 

as those containing > 2.5 % TOC. Following Sweere et al. (2016), enrichment factors (EFs) are 179 

calculated as [El/Al(sample)] / [El/Al(reference)] where the reference is the ‘average shale’ of Wedepohl 180 

(1971, 1991; Al 8.8%, Co 19 mg/kg, Mn 850 mg/kg, Mo 2.6 mg/kg). We investigated the effects on 181 

data interpretation of using Co(EF) and Mn(EF) rather than concentrations of Co and Mn, and also the 182 

effect of using EFs calculated using local normalizers rather than ‘average shale’, as proposed by 183 

Böning et al. (2004, 2012) and Little et al. (2015). Local normalizers for the data in Sweere et al. 184 

(2016) are based on the minimum El/Al ratios in each data-set. For the new data presented here, the 185 

minimum was derived for each sample via a polynomial regression of the locally-lowest Co/Al and 186 

Mn/Al values within a local window of stratigraphic level.  187 

 188 

 189 

5. Results 190 

5.1. Element profiles 191 
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The stratigraphic profile of concentrations of TOC, TS, Cd, Co, Mn, and Mo are shown on a calcite-192 

free basis in Fig. 2. To aid discussion, the sediment column is divided stratigraphically into Zones 1 to 193 

4 in ascending stratigraphic order. The  zones are based on published documentation of the redox state 194 

of the water column during sediment deposition and its reflection in sediment composition, notably, but 195 

not exclusively, concentrations of TS, TOC, and Mo in the sediments. The boundaries are transitional 196 

over several tens of cm, and so defined to a stratigraphic precision no better than ± 20 cm. 197 

 The lowermost Zone 1 (− 20 m to + 11.8 m) comprises the sediments from the base of the section 198 

to the upper part of Bed 31, in the upper Tenuicostatum Zone. In this zone, concentrations of TOC 199 

exceed 2.5% only in the three Sulphur Bands (Fig. 2). The water column was oxic excepting for the 200 

brief intervals of anoxia or euxinia recorded by the Sulphur Bands. Concentrations of TS are < 3.5%, 201 

except in the Sulphur Bands where it is 5 to 8%. Concentrations of Mo are 2 ± 1 mg/kg, excepting in 202 

the Sulphur Band proper (0–0.15 m) where concentrations reach 20 mg/kg. In the other Sulphur Bands, 203 

the Mo concentration are barely above local background (3.8 mg/kg at 1.19 m and 3.9 mg/kg at 5.11 204 

m). 205 

 Zone 2 (11.8 to 21.7 m; euxinic interval) starts in the upper part of Bed 31 in the Tenuicostatum 206 

Zone and includes the lower 40 cm of Bed 41. It is the ‘interval of maximum restriction’ of McArthur 207 

et al. (2008). In this interval, the water column was generally euxinic, as shown by the presence of  208 

carotenoids in the sediments (Schouten et al. 2000) and the small size of pyrite framboids in the 209 

sediments (Wignall et al. 2005). In this zone, TOC concentrations exceed 2.5% and reach 18% in the 210 

mid-exaratum Subzone (Beds 33 to 35 inclusive) but decline sharply into Bed 36 whilst remaining 211 

> 2.5%. Concentrations of TS are mostly between 4 and 6%, but spike to 9% in Bed 34, about 1 m 212 

below the maximum TOC recorded in Bed 35. Concentrations of Mo are around 5 mg/kg. 213 

 In Zone 3 (from 40 cm up in Bed 41 to the top of Bed 43; 21.7 m to 35.1 m), concentrations of 214 

TOC decrease upwards from 4.6% to 2.6% whilst those of TS are between 2.9% and 4.9 % and 215 

concentrations of Mo are high and variable, ranging from 12 to 42 mg/kg. In this zone, the redox 216 

condition of the water column is not definitively known. It was interpreted by McArthur et al. (2008) to 217 

have been mostly euxinic but with a deep redoxcline that varied in level with time and sometimes 218 

approached the sediment-water interface. 219 

 In Zone 4 (Bed 44 to 50 inclusive; 35.1 to 50.7 m), TOC concentrations are mostly between 2.5 220 

and 3.5% but decline to < 2% at the very top of the section. Concentrations of TOC are > 5% in 221 

correlative equivalents (Bifrons Zone; Bed 49 and upwards) in some easterly parts of the basin (e.g. 222 

northern Germany; Jochum 1993; McArthur et al. 2008). The concentration of TS is between 1 and 223 
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3%, and concentrations of Mo are typically 3 mg/kg, although higher spikes of Mo occur in Bed 49. 224 

During the deposition of sediments in this zone, the water-column was probably oxic, given the lowish 225 

TOC concentrations in the sediments and the recovery of faunal diversity in this interval (Harries and 226 

Little 1999). 227 

 With respect to Cd, Mn, and Co, concentrations of Cd are typically 0.3 to 0.4 mg/kg where 228 

concentrations of TS are high (Zone 2), and they are similar in Zone 3 where TS is lower. In Zones 1 229 

and 4 they are typically < 0.1 mg/kg. Spikes of Cd concentration of up to 0.8 mg/kg occur (some are 230 

arrowed in Fig. 2) and are reproducible on repeat analysis of different subsamples of the same bulk 231 

sample. The Sulphur Bands show slight enrichment in Cd.  232 

 Concentrations of Mn are mostly 150 to 300 mg/kg but rise to higher in the Sulphur Bands and in 233 

Zone 2. Enrichment of Mn is particularly high in Beds 44, 46, 48, and 50. The profile of Co shows a 234 

trend of decreasing concentrations upsection on which are superimposed local increases where TS is 235 

high, although the increase is minimal in the uppermost of the three Sulphur Bands.  236 

 High concentrations of pyrite locally dilute the concentrations of Mn and Mo and high 237 

concentrations of calcite locally dilute the concentrations of Co, Cd, and Mn (Table 1). In Zone 1, 238 

dilution by pyrite is most pronounced in the Sulphur Bands. In Zone 2, dilution by pyrite is most 239 

pronounced in the lower exaratum Sz. and by carbonate in Beds 39 and 40, which are  50% calcite.  240 

   241 

5.2 Profiles and values of proxies 242 

Stratigraphic profiles of Mo/TOC, Cd/Mo, and Co*Mn are shown in Fig. 3. Values of Mo/TOC are < 243 

1.5 in Zone 2, where TOC is most abundant, and mostly around 6 to 8 in Zone 3, and in the base and 244 

top of Bed 49. The high Mo/TOC in the Pliensbachian sediments arises from their low TOC content  of 245 

< 2% TOC and mostly < 1% (Table 1).  Values of Cd/Mo increase up-section in the Toarcian to the top 246 

of Zone 2 but remain < 0.1 except in two samples from Zone 2 where they are 0.11 and 0.14 (Table 1) 247 

and one sample from the upper part of the second Sulphur Band (Cd/Mo = 0.21). Values of Co*Mn are 248 

> 0.4 in Zones 1 to 3, and in Beds 44, 46, 48, 50 in Zone 4, but are < 0.4 in the rest of Zone 4.  249 

   250 

5.4. Element associations 251 

Element associations are shown in Fig. 4. Concentrations of Cd, Co, Mn, and Mo, were derived by 252 

analysis of  sediment leached in concentrated nitric acid and so represent the hydrogenous fraction of 253 

the sediment. Concentrations of Co in organic-rich sediments are typically 20 to 50 mg/kg and correlate 254 

positively and strongly with TS, positively and less strongly with TOC, and poorly but inversely with 255 
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CaCO3. Axial intercepts are < 3 mg/kg Co on the Co v TS plot and essentially zero on the Co v TOC 256 

plot. Manganese correlates weakly and inversely with TS and TOC, and weakly and positively with 257 

CaCO3. Cadmium correlates weakly and positively with TOC, TS, and weakly and inversely with 258 

CaCO3.  259 

  260 

6. Discussion  261 

6.1. The models 262 

For organic-rich sediments, the pathways of Cd, Mn, and Co into sediments have been extensively 263 

studied and are summarized by Little et al. (2015) and Sweere et al. (2016). The trace-element models 264 

of Sweere et al. (2016) are the more explicit in their use of trace-metal concentrations to determine 265 

depositional environment. It is the capacity to estimate the degree of restriction that makes these 266 

models useful in an examination of the sediments of the Cleveland Basin: they are not used here to 267 

determine redox conditions, as other redox proxies (bioturbation, % TOC, % pyrite, presence/absence 268 

of carotenoids) have accomplished this task for the Cleveland Basin.  269 

 270 

6.2 Validation  271 

The model of Sweere et al. (2016) assumes that Cd, Co, Mn, and Mo, in sediments originate either 272 

from detrital or hydrogenous supply. Application of the Cd/Mo and Co*Mn palaeo-proxies thus 273 

requires this dual source to apply to the Cleveland Basin. The element associations shown in Fig. 4 274 

show that the Cd, Co, and Mn in the Cleveland Basin are largely hydrogenous in origin.  275 

 Cobalt is hosted by pyrite and, to a lesser degree, organic matter. According to Wignall et al. 276 

(2005), pyrite in the organic-rich shales (Zone 2) was precipitated from euxinic seawater, a finding 277 

anticipated by the observation of Gad et al. (1969) that most of the Fe in the sedimentary pyrite in OM-278 

rich sediments of the Cleveland Basin derived from seawater. 279 

 Cadmium appears to be associated with sulphide and TOC (Figs. 2, 4), showing that in Zones 2 280 

and 3, where Cd, TS, and TOC are highest, the Cd is overwhelmingly hydrogenous, as expected from 281 

the geochemical considerations in Sweere et al. (2016).   282 

 Concentrations of Mn correlate positively, if weakly, with CaCO3, increasing from an axial 283 

intercept of  0.01 % Mn. Concentrations of Mn in the organic-rich sediments of Zone 2 range from 0.03 284 

to 0.09, so most of the Mn in these sediments is hydrogenous in origin. This is no surprise, as numerous 285 

studies show that Mn supply to sediments in restricted basins occurs by oxidation to MnO2, either at the 286 



10 

 

redoxcline or during oxygenating events involving mixings, followed by export to the sediments and 287 

probably conversion in the sediments to MnCO3 (e.g. Neumann et al. 1997; Sohlenius et al. 1996).  288 

 289 

6.3. Application 290 

The Cd/Mo Proxy: on a plot of Cd v Mo (Fig. 5), two samples plot on the border of the  restricted field 291 

of Sweere et al. (2016) whilst the rest plot squarely within it. The values show that the samples formed 292 

under a regime of hydrographic restriction. This palaeo-proxy thus confirms this same conclusion 293 

based on Mo/TOC ratios (McArthur et al. 2008). Sapropels from the eastern Mediterranean, also have 294 

Cd/Mo < 0.1 (Fig. 4 of Sweere et al. 2016). The sapropels formed beneath a low-salinity surface layer 295 

during times of increased run-off from north Africa (Rohling et al. 2015). Restriction of circulation in 296 

the Cleveland Basin by a low-salinity cap has been postulated repeatedly (Hallam 1967, Wignall 1991, 297 

Saelen et al. 1996, 1998, 2000; McArthur et al. 2008; Dera and Donnadieu 2012); the Cd/Mo values 298 

are concordant with that view.  299 

 300 

The Co(mg/kg) x Mn(%) Proxy: for the organic-rich sediments of the Cleveland Basin, values of 301 

Co*Mn exceed 0.4 in all sediments except the main beds of Zone 4 (Beds 45, 47, 49), confirming the 302 

interpretations drawn from the Mo/TOC and Cd/Mo proxies that the organic-rich sediments in Zones 2 303 

and 3 of the Cleveland Basin formed in and environment that was hydrographically restricted. Values 304 

of Co*Mn separate sediments in each zone better than do values of Cd/Mo (Fig. 6). The Mo 305 

enrichment in Zone 3 was attributed by McArthur et al. (2008) to a lessening in this interval of the 306 

severe hydrographic restriction present during deposition of sediments in Zone 2. The relative positions 307 

of samples from Zones 2 and 3 on Fig. 6 confirm this interpretation, with Zone 3 sediments having 308 

lower Co*Mn than samples from Zone 2.  309 

 The combined Cd/Mo and Co*Mn proxies (Fig. 6), show that the sediments of the Cleveland Basin 310 

accumulated in an hydrographically-restricted environment, as suggested by Hallam (1967), Saelen et 311 

al. (1996, 1998, 2000) and many others, and confirmed by McArthur et al. (2008) using Mo/TOC 312 

analysis. The Cd/Mo proxy is particularly compelling, given its strong observational base (Brumsack 313 

1989, Little et al. 2015; Sweere et al. 2016). Nevertheless, caution is needed in applying these palaeo-314 

proxies to ancient environments.  315 

 316 

Mo alone. A control on the Mo concentration in sediments of the Cleveland Basin may be the locus of 317 

the redoxcline in relation to the sediment-water interface. McArthur et al. (2008) postulated that the 318 
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concentration of Mo in the sediments of Zone 3, the Mo-rich interval, was governed by the depth of the 319 

redoxcline, which in turn governed the size of the euxinic reservoir available to supply Mo to 320 

sediments. Scott and Lyons (2012) suggested that, for unrestricted environments,  when the redoxcline 321 

is at the sediment-water interface and euxinia is confined to pore waters, Mo concentrations will rarely 322 

exceed 20 mg/kg. The Mo concentration in Zone 3 is 19 ± 5 mg/kg (1 s.d. excluding two outliers at 34 323 

and 49 mg/kg); that is, most concentrations are at the upper limit identified by Scott and Lyons (2012) 324 

for confinement of euxinia to pore water, with only a few levels exceeding the limit.  The TOC 325 

concentrations in Zone 3 are 3.4 % ± 0.4 %, again excluding the two high-Mo outliers with TOC 4.6% 326 

and 3.6% (Table 1).  327 

  In Zone 2, the euxinic interval, Mo concentrations are around 5 mg/kg and Mo/TOC around 1. 328 

These values are well below those found in the overlying Zone 3. The difference in Mo concentrations 329 

between Zones 2 and 3 is likely attributable to degree of hydrographic restriction (McArthur et al. 330 

2008). In Zone 2, restriction was almost total, so the sediments sequestered little Mo because little Mo 331 

was available in the stagnant water column. In contrast, the lesser restriction (more frequent water 332 

renewal) in Zone 3 provided more Mo to supply sediments. The considerations of Scott and Lyons 333 

(2012) suggest that that frequency of renewal was sufficient to make the water column largely oxic or 334 

anoxic for most of the time, thereby confining euxinia to the pore waters and so limiting Mo supply to 335 

diffusion into sediments, except for brief euxinic intervals. 336 

  337 

6.4.  Caveats 338 

Diagenetic effects: the thin sideritic/calcitic mudstones/concretions of Beds 44, 46, 48 and 50 are 339 

particularly rich in Mn (Table 1; Fig. 2) and so plot well into the restricted field. The beds mark 340 

hiatuses or slow-downs in sedimentation together with oxygenation of overlying seawater, a 341 

combination that allows Mn, mobilized from the sediments by reduction and upward diffusion, to be 342 

precipitated at the sediment-water interface or in the sediment a few cm below it. The extreme Mn 343 

enrichment, together with the thinness of the beds (a few decimetres), plus other evidence of slow 344 

sedimentation at these levels, all mark them as uncharacteristic of Zone 4 generally. The decreased 345 

sedimentation associated with these beds is attested to by a high abundance of belemnites associated 346 

with each: it was noted by Hallam (1967) that belemnite abundance in these sediments was a proxy for 347 

a reduced sedimentation rate, a matter confirmed by personal observation. These beds thus show 348 

diagenetic enrichment of Mn. The fact that they plot in the restricted field of Fig. 6 shows a weakness 349 

of this palaeo-proxy. 350 



12 

 

 Hydrogenous v detrital: the value of 0.4 for Co*Mn used to separate restricted and unrestricted 351 

fields was derived empirically by Sweere et al. (2016) from examination of Co*Mn in a range of 352 

modern environments (their Fig. 3). The derivation of the value was illustrated by those authors by 353 

reference to a plot of Co*Mn v Al, which is reproduced in Fig. 7 with the addition of data from the 354 

Cleveland Basin. Whilst the derivation of the proxy was aided by Al data, it can be applied, as it is 355 

here, without the need for concentrations of Al. Nevertheless, it is interesting to show how the 356 

Cleveland Basin data fits on such a plot. 357 

 The disposition of samples on Fig. 7 will depend upon the relative contributions of detrital and 358 

hydrogenous Co and Mn, and the ratio Co/Mn in both. Where detrital supply dominates (Cariaco Basin, 359 

Peru, Namibia, Gulf of California) Co*Mn correlates positively with Al. Where hydrogenous supply 360 

dominates, the relation should become inverse as aluminosilicates act more as diluents than 361 

contributors to the Co+Mn budget. Curiously, this does not seem to be the case for any modern 362 

environment (Fig. 7). It appears to be the case for the Cleveland Basin (Fig. 7) but the effect is more 363 

apparent than real, deriving from different Co*Mn and Al in each of zones 1 to 4, as there is no relation 364 

between Co*Mn and Al in any of them. Notwithstanding the above, a divider that is approximately 365 

horizontal and has a value of 0.4 can be obtained from a binary mixing model that has end-members as 366 

follows: detrital Co 13mg/kg, detrital Mn 0.012%; hydrogenous Co 4 mg/kg, hydrogenous Mn 0.013%.  367 

 The Case of the Cariaco Basin. This restricted basin renews its water around every 100 years 368 

(Deuser 1973). Its Co*Mn values are nevertheless similar to those for the Gulf of California, an 369 

environment of seasonal upwelling. The values for both localities plot in the same part of the 370 

unrestricted (upwelling) field on Fig. 7. For the Cariaco Basin, this appears to be at odds with the fields 371 

delineated by Sweere et al. (2016; the discrepancy remains when Co(EF)*Mn(EF) is plotted, see Fig. 372 

8). A reconciliation is possible: the supply into the Cariaco Basin of trace elements from hydrogenous 373 

and biogenic sources is largely controlled by seasonally-variable upwelling (Piper and Dean 2002), so 374 

upwelling is a common characteristic of these two areas. 375 

 A small subset of the Cariaco data (5.37 to 6.02 m depth, core PL07-39PC of Piper and Dean, 376 

2002) have values that spread into the restricted field of the Co*Mn (and CoEF*MnEF) proxies. Values 377 

of Mn/Al and Co/Al in this depth interval form well-defined peaks rising to twice background values. 378 

The Mn enrichment is attributed by Piper and Dean (2002) to oxic trapping of diagenetically-379 

remobilized Mn from underlying sediments (cf. the interbeds 44, 46, 48, 50 of Zone 4 in the Cleveland 380 

Basin). Another explanation is possible. The enriched sediments were laid down during the glacial to 381 

interglacial transition (14.8 ka to 11.5 ka) when salinity in the North Atlantic and Gulf of Mexico was 382 
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lowered by Meltwater Pulse 1A (Fairbanks 1989). The presence of a low-salinity layer would have 383 

restricted the basin and lead to less leakage of trace elements by remobilization from the sediments. If 384 

so, sediments laid down in the Cariaco Basin during Meltwater Pulse 1B (2.90 to 3.60 m depth) should 385 

also show an enrichment of Mn/Al and Co/Al, and indeed they do, although the degree of enrichment is 386 

lower than during Meltwater Pulse 1A.  387 

 These Mn-enriched intervals in the Cariaco Basin plot with samples from the Baltic Sea, where 388 

euxinic basins (Arkona, Bornholm, Gotland, deeps) have a low salinity surface layer, and with the 389 

Black Sea, which also has a low-salinity surface layer. If indeed the Mn and Co enrichments can be 390 

attributed to a low-salinity surface layer over the Cariaco Basin as a result of meltwater freshening of 391 

the surface mixed layer, the Co*Mn proxy may be informing us of the nature of the mechanism by 392 

which a basin becomes restricted –  isolation by a pycnocline, rather than by a thermocline. 393 

 Other anomalies include the fact that samples from the Black Sea, where deep-water renewal times 394 

are 1000-2000 years, plot with samples from the Bornholm Basin, where renewal times are ten or more 395 

times less; nevertheless, both are restricted basins. Samples from the Arabian Sea (unrestricted, 396 

upwelling) overlap slightly with samples from the Arkona Deep of the Baltic Sea but do not overlap 397 

with samples from the Bornholm Deep or with samples from the Gotland Deep of the Baltic Sea (data 398 

of Neumann et al. 1997) which, for clarity of presentation, are not shown on Fig. 7  owing to their 399 

extreme enrichment in Mn (concentrations of 2 to 5%). In the Baltic, the enrichment in Mn and Co*Mn 400 

increases as distance from the open ocean increases (Fig. 7 and data of Neumann et al. 1997) and is, 401 

presumably, either a measure of the frequency and degree of seawater penetration or a measure of the 402 

effectiveness of the surface low-salinity layer in isolating the deeps (Neumann et al. 1997; Sohlenius et 403 

al. 1996, 2001; Scholz et al. 2018, refs therein).  404 

  405 

6.5. The Co(EF) x Mn(EF) proxy 406 

6.5.1. Field dividers 407 

As an alternative to the use of Co*Mn, Sweere et al. (2016) propose the use of Co(EF)*Mn(EF) with a 408 

fixed value of 1.0 as a field divider between restricted and unrestricted environments (Fig. 8). The 409 

value of 1.0 applies only when no hydrogenous component exists and detrital Co and Mn have Co/Al 410 

and Mn/Al ratios equal to those in average shale. The use of a local-shale normalizer may be more 411 

appropriate (see next section).  412 

 The field-divider of 1.0 is inconsistent with their value of 0.4 for the Co*Mn field-divider (Fig. 7). 413 

The inconsistency arises from the fact that CoEF*MnEF includes the term Al2. Rearranging, 414 
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Co(EF)*Mn(EF) = (Co*Mn*k)/Al2 where k = a constant with a value of 47.95, the Al2/(Co*Mn) value 415 

of average shale. So, a plot of Al v Co(EF)*Mn(EF) is essentially a plot of Al v 1/Al2 and must be non-416 

linear with a negative gradient. Recognizing this, the Co*Mn value of 0.4 used by Sweere et al. (2016) 417 

as a discriminator for Co*Mn (Fig. 7) has been plotted on Fig. 8a, where it is shown as a black dotted 418 

curve. A better discriminator than Co(EF)*Mn(EF) might be (Co*Mn)EF; that is (Co*Mn/Al)Sample / 419 

(Co*Mn/Al)Av. shale. When plotted against Al, however, a non-linear field-divider would still be needed. 420 

 When the value of Co*Mn = 0.4 is used as a field-divider on Fig. 8a, the disposition of samples 421 

with respect to it is identical to the disposition of samples on Fig. 7 with respect to same field-divider 422 

of 0.4 for Co*Mn. No advantage accrues from the use of Co(EF)*Mn(EF) over the use of Co*Mn, and 423 

the former has the disadvantage that the field-divider must be non-linear, and have a negative slope, as 424 

it would be essentially a graph of Al v 1/Al. 425 

6.5.1.Local-Shale normalizers 426 

he discrimination of environments in previous sections is not improved by use of EFs calculated using 427 

local normalizers, rather than ‘average shale’ (Fig. 8b; Böning et al. 2012; Little et al. 2015; 428 

Neumeister et al. 2016b). Use of local normalizers increases the separation of the Black Sea, the Baltic 429 

Sea, and the Cleveland Basin, from other data but does not improve the discrimination between that 430 

other data. It also results in the Arkona Basin plotting directly on the Arabian Sea data. 431 

Notwithstanding the above, the samples from the Cleveland Basin plot in the restricted field. 432 

 433 

 434 

7. Conclusion 435 

The results presented here for both the Cd/Mo proxy and the Co*Mn proxy show hydrographic 436 

restriction was a defining feature of black-shale deposition in the early Toarcian of the Cleveland 437 

Basin. This result confirms the same finding by McArthur et al. (2008) for these sediments through the 438 

use of the Mo/TOC proxy of Algeo and Lyons (2006) and contradict the interpretation of Mo/TOC in 439 

the Cleveland Basin by Pearce et al. (2008) in terms of whole-ocean anoxia. The extremely low Mo 440 

concentrations (around 3 - 8 mg/kg) in Zone 2 pose a problem for models invoking whole-ocean 441 

anoxia, especially so given the higher Mo and Mo/TOC in the overlying Zone 3, since it is Zone 2, the 442 

exaratum Sz., that is often viewed as a time of enhanced global weathering. Were that so, the supply of 443 

Mo to the oceans would be greater in Zone 2 than in the overlying Zone 3, where Mo concentrations 444 

are higher. 445 
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 The idea of hydrographic restriction in the Early Toarcian Cleveland basin has been invoked 446 

repeatedly to explain the deposition of its organic-rich sediments (citations in this work), and for other 447 

parts of the early Toarcian of NW Europe: the Paris Basin (Lézin et al. 2013), the German Basin 448 

(Frimmel et al. 2004), and the Austrian Tyrol (Neumeister et al. 2016a,b). More recently, Dickson et 449 

al. (2017) interpreted differences from place-to-place across NW Europe of  δ98Mo profiles through the 450 

early Toarcian black shales as evidence of “fluctuations in the exchange rate of open ocean seawater 451 

with Cleveland Basin water”, echoing the view of McArthur et al. (2008) that fluctuations in, inter alia, 452 

98Mo in the Cleveland Basin “must relate to changes in the rate of deepwater renewal.”. Furthermore, 453 

modelling by Baroni et al. (2018) of sea-water circulation in the Tethyan Seaway during Toarcian 454 

times supports the scenario of regional restriction affecting marginal basins of the northeastern Tethys, 455 

possibly as a result of freshwater invasion via the Viking corridor (Dera and Donnadieu 2012), whilst 456 

southern and western regions of Tethys remained unrestricted. Finally, both Suan et al. (2018) and 457 

Fantasia et al. (2019) reveal substantial variations in the character of sediments in the early Toarcian 458 

that they interpret in terms of strong local influences on the deposition of organic matter in Tethyan 459 

sediments rather than whole-ocean anoxia.  460 

 Using Mo/TOC, Cd. Mo, and Co*Mn, the way is now open for a robust evaluation of the 461 

depositional environment of other organic-rich sediments using the combined approach offered by 462 

these palaeo-proxies, as it is becoming increasingly clear that the multiple environmental disturbances 463 

of early Toarcian times did not include whole-ocean anoxia. 464 

 465 
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organic-rich shales across NW Europe during Early Toarcian time. Maps modified from Suan et al. 
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Fig. 2. Element profiles through the uppermost Pliensbachian and the lower Toarcian sediments of the Cleveland 

Basin of Yorkshire. Concentrations recalculated to a calcite-free basis. Lithostratigraphy, ammonite zonation, and bed 

numbers are from Howarth (1955) for the Pliensbachian and  Howarth (1962) for the Toarcian.  Data for TOC and TS 

from McArthur et al. (2008). Data for CaCO3, Cd, Co, Mn, and Mo, from this work. 
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Fig. 3. Profiles of palaeo-proxies Mo/TOC, Cd/Mo, and Co x Mn, through the uppermost Pliensbachian and 

lower Toarcian sediments of the Cleveland Basin, Yorkshire, UK.  Profile of 13C from Cohen et al. (2004). 
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Fig. 4.  Plot of element associations between TS, TOC, and 

CaCO3 and the proxies  Cd, Co, and Mn. For Mo 

relations, see McArthur et al. (2008). 
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Fig. 5. Plot of Mo v Cd for shales from the Cleveland Basin, superimposed on the 

environmental fields of Sweere et al. (2016). Modified from their Fig. 4.  
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Fig. 6. Plot of Cd/Mo v Co(mg/kg)*Mn(%) for shales from the Cleveland Basin, superimposed on the 

environmental fields and data of Sweere et al. (2016); modified from Fig. 7b of those authors. 



32 

 

Fig. 7. 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 
 1055 
 1056 
 1057 
 1058 
 1059 
 1060 
 1061 
 1062 
 1063 
 1064 
 1065 
 1066 
 1067 
 1068 
 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 
 1079 
 1080 
 1081 
 1082 
 1083 
 1084 
 1085 

1086 

 
 
 

Fig. 7. The data for the Cleveland Basin superimposed on the  Co(mg/kg)  Mn(%) model 

and data of Sweere et al. (2016), who use a Co*Mn value of 0.4 to discriminate between 

restricted and unrestricted (upwelling) settings. Namibian data from Orani et al. (2018). 
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Fig. 8a) The  Co(EF)*Mn(EF) model of Sweere et al. (2016) used to interprete 

depositional environments, based on a Co(EF)*Mn(EF) value of 1.0 (blue dotted 

line; range 0.5 to 2 shown as grey rectangle) to separate restricted from 

unrestricted environments. A more appropriate field-divider is Co*Mn  = 0.4  

(black dotted curve), the divider used for Co*Mn (Fig. 7, see text for an 

explanation). The divider of 0.4, rather than 1.0,  better separates the Arkona 

Basin (Baltic, restricted) from the Arabian Sea (unrestricted/upwelling). Data 

from Sweere et al. (2016), Orani et al. (2018, Namibia). Average shale used as 

normalizer (Wedepohl 1971, 1991). 

 

b), as in a) but with EFs calculated using local shales based on minimum local 

El/Al values. The Arkona Basin (restricted, Baltic) overlaps with the Gulf of 

California (slightly restricted(?), upwelling). 

 



34 

 

Table 1.  Elemental composition of Toarcian shales from the Cleveland Basin of Yorkshire, UK. 1136 

   1137 

           

 
Bed Samp. Level TOC Al Cd Co Mn Mo 

 

 
No No m.a.d % % mg/kg mg/kg % mg/kg 

 

           

 
70 Y06-70 67.66 1.2 11.4 0.01 13.5 0.011 0.5 

 

 
61 Y06-61 63.17 2.1 11.4 0.01 12.2 0.017 0.2 

 

 
57 Y06-57 61.79 2.0 11.8 0.01 12.9 0.015 0.6 

 

 
53 (No 3) Y06-53/3 59.21 2.1 11.7 0.01 15.0 0.014 0.6 

 

 
53 (No 2) Y06-53/2 57.47 2.7 11.8 0.01 13.6 0.011 3.2 

 

 
53 (No 1) Y06-53/1 56.20 2.0 11.9 0.01 17.0 0.013 0.8 

 

 
51 (No 3) Y06-51/3 55.34 2.3 12.0 0.01 11.2 0.011 0.8 

 

 
51 (No 2) Y06-51/2 53.64 2.4 11.8 0.01 17.6 0.014 1.1 

 

 
51 Li Y06/SB/51 (110/488) 51.87 2.1 13.8 0.02 15.7 0.011 1.2 

 

 
51 (No 1) Y06-51/1 51.67 2.2 12.0 0.02 17.9 0.012 1.4 

 

 
51 Li Y06/SB/51 (75/488) 51.52 1.8 12.5 0.02 15.0 0.013 2.0 

 

 
51 Li Y06/SB/51 (60/488) 51.37 1.9 12.3 0.02 17.3 0.012 1.8 

 

 
50 Y06-50 50.72 1.4 3.2 0.06 6.8 0.317 6.3 

 

 
50 Li Y06/SB/50 (0/13) 50.64 4.1 4.6 0.09 6.6 0.233 5.9 

 

 
49 (No 4) Y06-49/4 50.50 2.8 12.0 0.10 20.6 0.015 5.5 

 

 
49 Li Y06/SB/49 (592/620) 50.36 2.5 12.0 0.07 15.5 0.014 3.9 

 

 
49 Li Y06/SB/49 (519/620) 49.63 2.4 13.0 0.07 17.4 0.016 4.2 

 

 
49 (No 3) Y06-49/3 49.29 2.4 12.0 0.13 17.3 0.014 2.8 

 

 
49 Li Y06/SB/49 (475/620) 49.19 2.5 12.9 0.19 16.6 0.016 3.7 

 

 
49 Li Y06/SB/49 (420/620) 48.64 3.2 11.5 0.05 14.6 0.028 14.9 

 

 
49 (No 2) Y06-49/2 47.02 2.6 11.9 0.09 17.2 0.016 2.7 

 

 
49 (No 1) Y06-49/1 45.44 2.6 11.9 0.11 13.6 0.014 2.1 

 

 
49 Li Y06/SB/49 (22/620) 44.66 3.9 12.6 0.10 17.6 0.019 17.8 

 

 
49 Li Y06/SB/49 (9/620) 44.53 1.0 2.3 0.02 3.6 0.173 7.7 

 

 
47 Li Y06/SB/47 (529/559) 43.90 2.6 12.5 0.09 14.8 0.016 4.7 

 

 
47 Li Y06/SB/47 (492/559) 43.53 2.7 11.9 0.29 15.4 0.016 4.1 

 

 
47 Li Y06/SB/47 (485/559) 43.46 2.6 12.1 0.05 16.2 0.015 3.9 

 

 
47 (No 7) Y06-47/7 43.39 2.7 11.7 0.11 17.9 0.015 3.9 

 

 
47 Li Y06/SB/47 (451/559) 43.12 2.3 12.2 0.03 14.6 0.016 2.2 

 

 
47 Li Y06/SB/47 (440/559) 43.01 2.3 13.0 0.12 14.2 0.014 2.0 

 

 
47 Li Y06/SB/47 (416/559) 42.77 2.1 11.6 0.03 14.1 0.014 2.2 

 

 
47 (No 6) Y06-47/6 42.49 2.4 11.6 0.03 23.2 0.015 2.5 

 

 
47 Li Y06/SB/47 (379/559) 42.40 2.4 13.5 0.04 16.4 0.015 3.1 

 

 
47 Li Y06/SB/47 (307/559) 41.67 2.2 11.6 0.04 14.6 0.015 2.2 

 

 
47 (No 5) Y06-47/5 41.39 2.4 11.7 0.28 20.4 0.017 2.8 

 

 
47 (No 4) Y06-47/4 40.39 2.3 11.7 0.03 19.3 0.016 1.9 

 

 
47 (No 3) Y06-47/3 39.67 2.3 11.8 0.03 19.4 0.014 2.1 

 

 
46 Y06-46 38.53 1.5 4.5 0.07 10 0.280 6.2 

 

 
45 (No 1) Y06-45/1 37.57 2.2 11.7 0.08 15 0.014 2.6 

 

 
45 (No 2) Y06-45/2 36.12 2.6 11.5 0.07 13 0.017 5.1 

 

 
45 Li Y06/SB/45 (0/335) 35.12 4.4 8.2 0.08 15 0.113 10.0 

 

 
44 Y06-44 35.04 3.4 10.9 0.08 21 0.019 14.6 

 

 
44 Li Y06/SB/44 (3/15) 35.00 3.6 10.6 0.07 22 0.026 13.3 

 

 
43 Li Y06/SB/43 (718/767) 34.48 3.2 11.5 0.09 22 0.017 9.5 

 

 
43 LiY06/SB/43 (698/767) 34.28 2.8 11.7 0.13 24 0.020 12.0 

 

 
43 LiY06/SB/43 (691/767) A 34.21 3.0 11.0 0.30 21 0.018 15.5 
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43 LiY06/SB/43 (671/767) 34.01 3.2 10.5 0.33 26 0.021 22.4 

 

 
43 (No 4) Y06-43/4 33.97 3.3 10.8 0.38 21 0.021 13.3 

 

 
43 LiY06/SB/43 (641/767) 33.71 3.2 11.0 0.21 27 0.022 26.6 

 

 
43 LiY06/SB/43 (580/767) A 33.10 3.5 10.1 0.18 21 0.023 17.1 

 

 
43 LiY06/SB/43 (515/767) 32.45 3.1 10.9 0.55 26 0.021 23.6 

 

 
43 (No 3) Y06-43/3 32.37 3.4 10.1 0.23 23 0.019 12.9 

 

 
43 (No 6) Y06-43/6 31.97 3.6 10.9 0.35 26 0.013 49.3 

 

 
43 LiY06/SB/43 (392/767) 31.22 2.7 11.9 0.32 22 0.021 19.4 

 

 
43 (No 5) Y06-43/5 30.30 3.4 10.9 0.31 23 0.029 28.0 

 

 
43 LiY06/SB/43 (307/767) 30.27 3.1 10.5 0.32 22 0.022 19.1 

 

 
43 (No 2) Y06-43/2 29.30 3.5 10.3 0.26 25 0.019 28.2 

 

 
43 LiY06/SB/43 (200/767) 29.20 2.7 11.4 0.24 24 0.020 16.8 

 

 
43 (No 1) Y06-43/1 27.40 3.4 10.7 0.18 24 0.022 20.9 

 

 
43 LiY06/SB/43 (2/767) 27.32 3.6 11.4 0.17 22 0.024 19.4 

 

 
SB 41 (No 2) Y06-41/2 26.37 2.6 11.1 0.68 18 0.019 13.2 

 

 
PM-10J 41  (438/587) 25.68 3.0 10.8 0.11 22 0.020 17.0 

 

 
SB 41 (1) Y06-41/1 25.57 3.2 10.7 0.12 25 0.021 21.3 

 

 
HB 41 (272/587) Y07 HB GS 24.02 3.7 10.9 0.32 25 0.022 20.7 

 

 
HB 41 (250/587) Y07 HB GS 23.80 3.0 11.1 0.31 25 0.022 20.8 

 

 
HB 41 (195/587) Y07 HB GS 23.25 3.5 11.0 0.31 28 0.025 28.5 

 

 
41 (165/587) Y07 PM 22.95 3.8 10.5 0.29 27 0.021 23.7 

 

 
41 (160/587) Y07 PM 22.90 4.6 9.7 0.38 25 0.024 34.3 

 

 
41 (100/587) Y07 PM 22.30 3.7 9.8 0.29 26 0.025 22.7 

 

 
41 (43/587) Y07 PM 21.73 4.6 8.6 0.21 32 0.037 9.3 

 

 
41 (2/587) Y07 PM 21.33 3.3 6.6 0.23 26 0.057 11.7 

 

 
40 (20/30) Y07 PM 21.20 1.4 1.2 0.07 8 0.128 3.2 

 

 
39 (12/23) Y07 PM 20.88 1.9 2.4 0.08 12 0.099 4.5 

 

 
38 (126/152) Y07 PM 20.50 5.8 7.6 0.19 33 0.056 7.8 

 

 
38 (53/152) Y07 PM 19.77 5.0 9.1 0.25 28 0.028 4.0 

 

 
38 (0/152) Y07 PM 19.24 5.3 9.5 0.28 34 0.027 4.0 

 

 
35 (45/91) Y07 PM 17.41 18.2 7.5 0.88 38 0.044 6.4 

 

 
HB34 (212/259) Y07 HB GS 16.49 10.1 7.9 0.29 42 0.038 5.1 

 

 
34 (199/259) Y07 PM 16.36 9.8 7.3 0.38 31 0.042 6.1 

 

 
34 (158/259) Y07 PM 15.95 7.8 9.1 0.33 32 0.039 4.9 

 

 
K34 (38/259) Y07 Kettleness GS 14.75 5.7 9.9 0.18 31 0.030 2.9 

 

 
K34 (2/259) Y07 Kettleness GS 14.39 5.2 10.3 0.33 30 0.037 2.9 

 

 
PM33 (0/15) Y07 PM 14.22 5.7 9.8 0.29 30 0.046 4.7 

 

 
PM32 (148/183) Y07 PM GS 13.88 3.7 9.6 0.31 27 0.051 3.8 

 

 
K32 (128/183) Y07 Kettleness GS 13.67 6.3 10.2 0.12 26 0.031 3.2 

 

 
K32 (83/183) Y07 Kettleness GS 13.22 5.0 10.2 0.30 28 0.042 3.6 

 

 
K32 (13/183) Y07 Kettleness GS 12.52 4.6 10.1 0.15 27 0.036 2.8 

 

 
K31 (152/213) Y07 Kettleness GS 11.78 4.7 10.1 0.12 24 0.033 3.3 

 

  
HB NSB-44b 10.76 1.7 10.6 0.02 22 0.027 0.7 

 

 
K29 (77/107) Y07 Kettleness GS 9.86 2.0 11.1 0.02 21 0.021 0.6 

 

 
PM29 (50/107) Y07 PM GS 9.60 2.1 11.0 0.02 25 0.021 0.3 

 

 
K29 (25/107) Y07 Kettleness GS 9.34 1.7 11.3 0.03 26 0.022 0.4 

 

  
HB NSB-42a 9.26 1.9 11.2 0.03 21 0.021 0.3 

 

 
PM27 (29/61) Y07 PM GS 8.55 1.6 11.0 0.02 25 0.025 0.4 

 

 
PM25 (45/61) Y07 PM GS 8.05 1.9 10.7 0.02 20 0.029 0.5 

 

 
HB NSB HB NSB-40b 7.66 1.7 10.6 0.02 23 0.031 0.4 

 

 
PM20 (7/15) Y07 PM GS 6.22 1.7 10.8 0.01 21 0.028 0.3 

 

  
HB NSB-39 5.11 2.1 8.7 0.15 28 0.078 3.4 
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PM18 (17/38) Y07 PM GS 4.67 1.2 11.2 0.01 25 0.024 0.6 

 

  
HB NSB-28 3.31 1.3 11.2 0.01 25 0.026 0.2 

 

 
PM8 (15/41) Y07 PM GS 2.95 1.4 11.1 0.02 27 0.023 0.3 

 

 
PM4 (11/36) Y07 PM GS 1.89 1.1 10.5 0.02 40 0.032 0.6 

 

 
HB2 (8/53) Y07 HB GS 1.25 1.9 11.0 0.21 25 0.044 0.9 

 

 
No. 2/53 HB NSB-19 1.19 3.0 8.5 0.08 39 0.099 4.0 

 

 
PM1 (36/51) Y07 PM GS 1.02 0.7 10.3 0.04 24 0.055 1.1 

 

  
HB NSB-18 0.86 1.5 11.0 0.01 23 0.019 0.2 

 

 
HB43 (66/76) Y07 HB ML 0.48 1.4 11.6 0.01 25 0.021 0.6 

 

 
HB43 (38/76) Y07 HB ML 0.20 1.3 10.2 0.02 36 0.038 3.5 

 

  
HB NSB-15 0.15 2.6 8.1 0.19 48 0.097 12.6 

 

 
PM26 (10/15) Y07 PM GS 0.10 3.7 8.2 0.20 35 0.078 25.0 

 

  
HB NSB-14 -0.09 0.9 10.6 0.01 24 0.025 0.6 

 

 
PM57 (78/113) Y07 PM ML -0.36 0.9 10.9 0.02 33 0.019 4.3 

 

  
HB NSB-8a -2.19 0.6 11.3 0.01 22 0.021 0.4 

 

 
HB38 (170/208 Y07 HB ML -3.13 0.7 10.9 0.01 25 0.019 0.2 

 

  
HB NSB-6 -3.39 0.5 10.6 0.01 20 0.020 0.4 

 

 
HB38 (32/208) Y07 HB ML -4.51 0.7 10.9 0.01 28 0.020 0.3 

 

 
HB34 (55/137) Y07 HB ML -6.13 0.7 11.0 0.01 23 0.022 1.4 

 

 
HB32 (51/96) Y07 HB ML -7.39 0.6 10.9 0.01 30 0.026 0.8 

 

 
HB28 (90/165) Y07 HB ML -9.65 1.0 11.6 0.02 28 0.017 0.9 

 

 
PM38 (134/170) Y07 PM ML -12.22 0.8 9.4 0.02 34 0.033 1.7 

 

 
St38 (66/170) Y07 Staithes ML -12.90 1.5 10.1 0.02 31 0.025 1.5 

 

 
PM38 (13/170) Y07 PM ML -13.43 0.9 9.7 0.02 26 0.032 2.3 

 

 
St36 (50/112) Y07 Staithes ML -14.23 1.7 10.2 0.02 34 0.021 2.1 

 

 
St34 (61/340) Y07 Staithes ML -17.78 1.2 10.4 0.02 21 0.025 0.5 

 

 
St30 (31/51) Y07 Staithes ML -20.72 1.9 11.0 0.08 20 0.023 0.4 

 

 
St27 (386/579) Y07 Staithes ML -23.09 0.5 9.4 0.03 31 0.024 1.3 

 

 
St27 (2/579) Y07 Staithes ML -26.93 0.9 11.1 0.02 23 0.018 0.6 

 

 
St25 (56/249) Y07 Staithes ML -28.95 0.7 10.5 0.02 23 0.020 1.3 

 

 
St17 (385/564) Y07 Staithes ML -35.19 0.3 9.7 0.01 19 0.018 1.6 

 

           

 
Measured 

    
  

 
  

 
BCR 701 Lake Sediment (extractables) 

   
11.19 15.8 

 
4.03 

 

 
MAG-1, Marine Sediment 

   
0.25 26.3 

 
1.57 

 

 
SGR-1, Green River Shale 

   
1.08 12.2 

 
35.6 

 

 
SCo-1, Cody Shale 

    
0.20 13.1 

 
1.50 

 

           

 
Accepted Value (Gladney E.S. & Roelandts I., 1988, except BRC 701) 

     

 
BCR 701 Lake Sediment (extractables) 

   
11.3 – 

 
– 

 

 
MAG-1, Marine Sediment 

   
0.20 20.4 

 
1.60 

 

 
SGR-1, Green River Shale 

   
0.93 11.8 

 
35.1 

 

 
SCo-1, Cody Shale 

    
0.14 10.5 

 
1.37 

 

           

 
Gladney E.S. & Roelandts I., 1988 

        

 
1987 Compilation of elemental concentration 

        

 
data for USGS BHVO-1, MAG-1, QLO-1, 

        

 
RGM-1, SCO-1, SDC-1, SGR-1 AND STM-1 
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