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ABSTRACT

Advanced video classification systems decode video frames
to derive the necessary texture and motion representations for
ingestion and analysis by spatio-temporal deep convolutional
neural networks (CNNs). However, when considering visual
Internet-of-Things applications, surveillance systems and se-
mantic crawlers of large video repositories, the compressed
video content and the CNN-based semantic analysis parts do
not tend to be co-located. This necessitates the transport of
compressed video over networks and incurs significant over-
head in bandwidth and energy consumption, thereby signif-
icantly undermining the deployment potential of such sys-
tems. In this paper, we investigate the trade-off between the
encoding bitrate and the achievable accuracy of CNN-based
video classification that ingests AVC/H.264 encoded videos.
Instead of entire compressed video bitstreams, we only re-
tain motion vector and selected texture information at signifi-
cantly reduced bitrates. Based on two CNN architectures and
two action recognition datasets, we achieve 38%–59% sav-
ing in bitrate with marginal impact in classification accuracy.
A simple rate-based selection between the two CNNs shows
that even further bitrate savings are possible with graceful
degradation in accuracy. This may allow for rate/accuracy-
optimized CNN-based video classification over networks.

Index Terms— Video classification, convolutional neural
networks, video streaming

1. INTRODUCTION

Action or event recognition and video classification for visual
Internet of Things (IoT) systems [1], video surveillance [2],
and fast analysis of large-scale video libraries [3] have been
advancing rapidly due to the advent of deep convolutional
neural networks (CNNs). Given that such CNNs are very
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computationally and memory intensive, they are not com-
monly deployed at the video sensing/parsing nodes of the
system (a.k.a., “edge” nodes). Instead, video is either trans-
ported to certain high-performance aggregator nodes in the
network [1] that carry out the CNN-based processing, or com-
pact features are precomputed in order to allow for less com-
plex on-board processing at the edge [3], at the expense of
some accuracy loss for the classification or recognition task.

Motion vector based optical flow approximations have
been proposed for action recognition by Kantorov and Laptev
[4], albeit without the use of CNNs. In more recent work,
proposals have been put forward for fast video classification
based on CNNs that ingest compressed-domain motion vec-
tors and selective RGB texture information [5, 6]. Despite
their significant speed and accuracy improvements, none of
these approaches considered the trade-off between rate and
classification accuracy obtained from a CNN. Conversely,
while rate-accuracy trade-offs have been analysed for conven-
tional image and video feature extraction systems [7,8], these
studies do not cover deep CNNs and semantic video clas-
sification, where the different nature of the spatio-temporal
classifiers can lead to different rate-accuracy trade-offs.

In this paper, we show that crawling and classification of
remote video data lakes can be achieved with significantly-
reduced bandwidth requirements by exploring the rate-
accuracy trade-off in CNN-based video classification. Specif-
ically, we show how to reduce the compressed bitstream el-
ements needed for two-stream CNN classification with min-
imal modifications in the required syntax (with emphasis on
the H.264/AVC standard). Such selectively cropping of the
required texture and motion vector elements of a compressed
video bitstream is referred to as a cropped bitstream. We
show that the video classification accuracy can be tuned ac-
cording to the bitrate required to stream the cropped bitstream
to the utilized CNN. An interesting observation from our re-
sults is that, unlike rate-distortion, rate-accuracy can be not
monotonic for CNN-based classification. Finally, we outline
some interesting avenues for future research investigation.



2. CROPPED VIDEO BITSTREAMS

We base our cropped bitstream engine on the JM implemen-
tation of the ITU-T & ISO/IEC H.264/AVC standard1 [9,10].
The aim is to reduce the bitrate of the compressed bitstream
while preserving the information contained within key texture
components and motion vectors that are of paramount impor-
tance for semantic video classification. In H.264/AVC, pic-
tures are split into 16 × 16 pixel macroblocks (MB) to repre-
sent luminance samples, with two corresponding 8×8 chroma
blocks (for 4:2:0 chroma subsampling). Macroblocks are the
core of the coding layer and form the basis for the adaptive
inter and intra predictions. Each of the inter-predicted mac-
roblocks is encoded using blocks from the set {16× 16, 1̇6×
8, 8̇ × 16, 8̇ × 8} [10, 11]. Blocks are predicted via transla-
tional motion vectors (MVs) that represent the displacement
from matching blocks in previous or subsequent reference
frames. Increasing the number of small-size blocks increases
the granularity of the MV grid at the expense of lower cod-
ing efficiency. These MVs represent the temporal activity and
have been shown to be highly correlated with optical flow es-
timates [5]. If the area covered by the MB is static, the MB is
“skipped’ and is not encoded. The resulting prediction resid-
ual from temporal prediction of non-skipped MBs is encoded
using transform coding. The transform coefficients are then
quantized based on the quantization parameter (QP). The QP
value per frame can be chosen from 52 values in [0, 51] [10],
with lower values indicating high-fidelity encoding.

In our work, only selected subsets of the quantized trans-
form coefficients will be entropy encoded and then included
in the cropped bitstream. This set of coefficients is the in-
formation transmitted to the CNN to classify the spatial
activity of the sensor. The first frame of every video se-
quence is encoded as an Instantaneous Decoding Refresh
(IDR) and all subsequent frames in the video are encoded as
uni-directionally predicted (P) or intra-predicted (I) frames.

2.1. Selective Texture and MV Information

In order to reduce the bitrate of the bitstream, we can employ
selective retention of texture information by retaining the
texture information of active regions [5]. To implement se-
lective writing in the AVC reference software (JM 19.0), we
modified the writeCoeff4x4 CAVLC normal() and
write chroma intra pred mode() in macroblock
.c at the encoder and the read coeff 4x4 CAVLC()
in read comp cavlc.c and read ipred modes() in
mb read.c at the decoder to allow for a skip symbol for
all non-active areas [9]. To simplify our tests, we retain the
texture of the IDR frame and skip all texture of P-frames with
a single skip symbol. Moreover, to derive a temporal activity

1 due to the current popularity of H.264/AVC content, we shall be focus-
ing on this standard in this paper. Future work will validate our approach
with the more recent HEVC standard.

Fig. 1: Utilized CNNs: (a) 3D temporal CNN architecture;
(b) 2D temporal CNN architecture. (N : cropped input size
F : reception field size S: convolution stride D: filter depth)

map from the P-frame MVs, we apply the following steps: (i)
MVs are extracted from the compressed bitstream using the
read motion info from NAL p slice() function in
macroblock.c of JM 19.0 and mapped to an 8 × 8 grid,
wherein each point in the grid is set to be 8 pixels away from
its neighboring points; (ii) MVs are interpolated wherever a
macroblock does not contain a motion vector but two or more
of its neighbors do. All other syntax elements (including
modes and motion information) are left as specified in the
H.264/AVC standard.

3. PROPOSED FRAMEWORK FOR
COMPRESSED-DOMAIN CLASSIFICATION

3.1. CNN Architectures

In Fig. 1 we illustrate the two CNNs used for the temporal
stream to produce our results. We use two architectures in
order to demonstrate that our rate-accuracy CNN-based clas-
sification is applicable with different deepnet architectures.

The first CNN architecture we consider is the 3D CNN
proposed by Chadha et al. [5]. As illustrated in Fig. 1.a,
all convolutional and pooling layers are spatiotemporal in ex-
tent, which subsequently enables the model to capture the mo-
tion information between consecutive motion vector frames.
Crucially, the spatiotemporal features are expected to improve
classification performance between similar actions. We gen-
erate a 4D motion vector input by splitting the dx and dy
vector components into separate channels, thus resulting in
a W × H × 2 × F volume. We compensate for the low reso-
lution of the extracted motion vector frames by setting a long
temporal extent F of 160, which typically comprises the en-
tire video duration.

The second architecture we consider is a 2D CNN, as il-
lustrated in Fig. 1.b. The model design is based off Clari-
faiNet [12] and only comprises 2D spatial filters; we notably
reduce the size of the first filter from 7 × 7 to 3 × 3 and de-
crease the stride of the first two convolutional layers to 1× 1.
A similar architecture was also employed in recent work on
fast video classification [6]. The input is generated by stack-
ing the motion vector dx and dy components into a single
W × H × 2F volume, where the temporal depth F is set as



60. In general, 2D CNNs are able to achieve a lower com-
plexity than 3D CNNs, whilst forgoing modelling any tempo-
ral dependencies. Nonetheless, the lower complexity means
we can afford to use a higher input spatial resolution. We use
bilinear interpolation to double the size of the spatial input,
which enables the 2D filters to learn more distinguishing spa-
tial features.

Finally, concerning spatial processing of RGB texture,
we use the well-established VGG-16 [13] CNN architecture
to classify RGB frames and capture motion-invariant spatial
features of video content. Our spatial CNN is pre-trained
on ImageNet [14] and fine-tuned on UCF-101. The spatial
stream ingests the decoded frames per video and the pre-
dictions made by the spatial CNN are ultimately fused with
the predictions from the temporal stream to produce the final
two-stream classifier decisions.

3.2. Training and Testing

We train both temporal stream architectures using stochastic
gradient descent with momentum set to 0.9. The initialization
of He et al. [15] is used and weights are initialized from a
normal distribution. Mini-batches of size 64 are generated by
randomly selecting 64 training videos per batch. The learning
rate is initially set to 10−2 and is decreased by a factor of
0.1 every 30k iterations. The training is completed after 90k
iterations.

We follow the heavy data augmentation practices utilized
in recent work [5], in order to minimize overfitting for both
the 2D and 3D CNN. These include a multi-scale random
cropping of the input and spatial resizing to a fixed size N ,
followed by zero centering the motion vector field by sub-
tracting the mean motion vector from the volume. For the 3D
CNN, the fixed crop size is set to 24, whereas for the 2D CNN
this is doubled to 48. In addition, we use a dropout ratio to 0.5
for the first two fully connected layers in both models. Dur-
ing testing, for the temporal stream we generate 10 random
volumes of temporal size F from which to test on. Per vol-
ume, we use the standard 10-crop testing, cropping the four
corners and the center of the image to spatial size N ×N and
considering both horizontally flipped and unflipped versions.
As such, we average the scores over 10 crops and 10 volumes
to produce a single score for the video. For the spatial stream,
we use the single IDR frame of each video and extract mul-
tiple crops by flipping and resizing to the input size of the
VGG-16.

3.3. Dual Temporal CNN Classifier

Since F3D > F2D, our 3D-CNN requires more frames than
the 2D-CNN in order to derive a classification result. In ad-
dition, we expect that denser MV frames will benefit from
the larger spatial dimensions of the 2D-CNN. Since the den-
sity of inputs to the temporal stream is proportional to the

MV bitrate, Rmotion, we use our 3D CNN for all videos with
Rmotion < λ and the 2D CNN for the remaining set of videos,
with λ a rate-accuracy optimization parameter whose value
can be tuned to fit operational conditions as we show in
Section 4.3. We remark that, while in this paper the value
of Rmotion is derived experimentally during the encoding of
each video, for offline rate-accuracy optimization studies
it can also be derived via rate-distortion models, e.g., via
well-established rate-distortion models for H.264/AVC [16].

4. EXPERIMENTAL RESULTS

4.1. Used Datasets

We train and test our 2D and 3D CNN architectures on four
distinct motion vector datasets generated by varying the QP
of H.264 to encode UCF-101 [17] while skipping texture in-
formation as described in Section 2. For all videos: the first
frame is encoded as an IDR (with I period set to 100 frames),
the frame rate is set to 25, and we set the motion vector search
range to 16 pixels. Since specifying a particular quantization
parameter has a direct effect on the MVs produced by H.264,
this gives several distinct source distributions for the classifier
to be trained and tested on. Table 1 reports results comparing
the original bitrate, Rorig, with the bitrate of the cropped bit-
streams, Rcropped, with Rmotion kbps comprising the MV infor-
mation. The experiments with UCF-101 show that streaming
cropped bitstreams allows for 28% to 92.5% reduction in bi-
trate (Rcropped vs. Rorig for QP=51 down to QP=0), with 23%
to 48% of the cropped bitstream comprising MV information.
Importantly, for QP values of [30, 40], our framework allows
for 38%–59% saving in bitrate with the impact in the cor-
responding classification accuracy shown to be marginal, as
discussed in the following section.

4.2. Rate-Accuracy Results

As the quality of predictions made by deep CNNs are strongly
tied to properties of the source distribution (e.g. cross-class
variance, noise), we expect that varying the rate should af-
fect on the accuracy of our classifier. The related results are
presented in Fig. 2. It is interesting to note that the uti-
lized CNNs exhibit their best accuracies around QP values
of [30, 40] and the rate-accuracy curves are not monotonic,
i.e., accuracy decreases for very low or very high QP values.
We expect sparser motion vectors to make certain classes with
high motion similarity particulary harder to classify and eas-
ier to confuse with each other (e.g., inputs produced by setting
QP = 51). On the other hand, we have observed that decreas-
ing QP below 30 also has a detrimental effect to accuracy,
since the derived MVs become significantly more noisy due
to the inadequacy of the simple translational block model of
H.264/AVC to smoothly approximate the true motion field in
the video scenes [5, 18]. To illustrate this further, Fig. 2 in-
cludes results when restricting the H.264/AVC temporal pre-



Table 1: Average bitrate (kbps) of texture and motion infor-
mation for the UCF-101 data set for the original bitstream,
Rorig, and the cropped bitstream, Rcropped.

% of Rmotion to
QP Rorig Rcropped Rmotion Rorig Rcropped

0 4273.0 321.3 155.4 3.6 48.3
30 274.9 112.3 46.9 17.0 41.7
40 80.0 49.9 18.5 23.2 37.1
51 27.7 20.0 4.6 16.7 23.1

diction to 16 × 16 blocks. As expected, these cases show
higher accuracy loss and variation for very low and very high
QP values since the translational block motion model fails to
provide an accurate representation for these extreme cases.
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Fig. 2: Rate-accuracy after cropped bitstreams are passed to
the 2D and 3D temporal CNNs. Each point for every curve
corresponds to a different QP setting during encoding, with
“16× 16” indicating the restriction to 16× 16 blocks (no MB
subblocks) and “All” indicating the use of all MB partitions.

In Table 2. we report the results for our two-stream classi-
fier (fusion of predictions of temporal and spatial CNNs) with
the two best quantization settings from Fig. 2 and all block
sizes. Our results show that our approach remains competitive
to the state-of-the-art for UCF-101, while retaining the signif-
icant bitrate gains reported in Table 1. In addition, while our
approach is outperformed by TSCNN and LTC on HMDB,
these methods are orders of magnitude more complex than
operating with compressed-domain information [5, 6], since
they require the use of optical flow or complex SVM fusion
networks and need to decode the entire video bitstream.

4.3. Rate-Accuracy Classifier Selection and Future Work

Fig. 3 shows the potential for rate-accuracy based CNN se-
lection based on the design of Section 3.3. By varying the
threshold λ from inf to 30, we see that an additional 9 kbps
reduction (further 18% reduction of Rcropped) can be made

Framework Accuracy (%)
UCF HMDB

Proposed, QP = 40 88.1 48.2
Proposed, QP = 51 84.0 47.0

EMV + RGB-CNN [6] 86.4 –
MVCNN [5] 89.8 56.0

TSCNN (SVM fusion) [19] 88.0 59.4
LTC [20] 91.7 64.8

C3D (3 nets)+IDT [21] 90.4 –

Table 2: Comparison with state-of-the-art CNNs.
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Fig. 3: Rate-accuracy using the setup of Section 3.3. The
dashed line shows the accuracy when varying λ for QP=40
and selecting between the 2D and 3D CNN, while the solid
line shows the rate-accuracy of the 3D CNN with varying QP.

at less than 2% reduction in classification accuracy. Impor-
tantly, even further bitrate reductions are made possible with
graceful degradation in classification accuracy (lower values
of λ). This shows the potential for further exploration of rate-
accuracy optimization for CNN-based video classification.

5. CONCLUSION

We present the first exploration of rate-accuracy trade-offs in
advanced video classification with CNNs. The obtained re-
sults show that 38%–59% saving in bitrate can be achieved
when cropping compressed video bitstreams to the necessary
elements for 2D or 3D CNN classification. In addition, we
have observed that non-monotonic rate-accuracy curves are
obtained when using such CNNs and H.264/AVC motion vec-
tors. Finally, a rate-based selection between the 2D and 3D
CNNs is shown to yield even further rate gains with mini-
mal impact in classification accuracy. Further work may find
further features that can be included in rate-accuracy opti-
mization for advanced video classifiers within visual IoT or
semantic video crawling applications.
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