
Continuous Reasoning: Scaling the impact of formal
methods
Peter W. O’Hearn

Facebook and University College London

Abstract
This paper describes work in continuous reasoning, where
formal reasoning about a (changing) codebase is done in a

fashion which mirrors the iterative, continuous model of

software development that is increasingly practiced in indus-

try. We suggest that advances in continuous reasoning will

allow formal reasoning to scale to more programs, and more

programmers. The paper describes the rationale for contin-

uous reasoning, outlines some success cases from within

industry, and proposes directions for work by the scientific

community.

CCS Concepts • Theory of computation → Program
reasoning; • Software and its engineering;

Keywords Reasoning, Continuous Integration

ACM Reference Format:
Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact

of formal methods. In LICS ’18: 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, July 9–12, 2018, Oxford, United King-
dom. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3209108.3209109

1 Introduction
An increasing trend in software engineering is the practice

of continuous development, where a number of programmers

work together sending, sometimes concurrent, updates to a

shared codebase [35, 36]. The code is not viewed as a fixed ar-

tifact implementing a finished product, but continues evolv-

ing. In some organizations a codebase in the millions of lines

can undergo rapid modification by thousands of program-

mers. Their work is often backed by a continuous integration
system (CI system) which ensures that the code continues to

be buildable, and that certain tests pass, as the code evolves.

CI-backed development extends and automates aspects of

prior informal practice [50]. People naturally develop pro-

grams in an iterative style, where coding and testing feed

back on design, and so on. The iterative model of software

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5583-4/18/07.

https://doi.org/10.1145/3209108.3209109

development can be contrasted with the waterfall model –
where one proceeds successively from requirements to de-

sign, implementation, testing and deployment. Of course,

the way that humans construct proofs has iterative aspects

as well; e.g., trying to develop a proof of a mathematical the-

orem can cause one to update the statement of the theorem,

try to prove and use a different lemma, etc.

The purpose of this paper is to suggest that significant

benefits could accrue if formal reasoning about code can

be done in an automatic continuous fashion which mirrors

the iterative, continuous model of software development.

Then, formal reasoning could more easily scale to many pro-

grams and many programmers. Continuous reasoning views

a codebase as a changing artifact that evolves throughmodifi-

cations submitted by programmers. Continuous reasoning is

done quickly with the code changes, and feeds back informa-

tion to programmers in tune with their workflow rather than

outside of it. To be effective a reasoning technique ideally

should scale to a large codebase (sometimes in the millions

of lines of code), but run quickly on code modifications (on

the order of low tens of minutes). Then, it can participate as

a bot in the code review system that often accompanies CI.

This paper describes context for work on continuous rea-

soning, but does not set out to be a comprehensive survey.

We have seen continuous reasoning deployed industrially

in ways that have significantly boosted impact; we mention

several of the prominent cases in the next section, and then

attempt a synthesis. This paper draws on experience work-

ing with the Infer program analysis platform at Facebook,

and we describe that experience and generalize from it. The

purpose of the paper, however, is not to mainly recount what

we have done at Facebook; it is rather to connect a number

of related developments, as well as to tell you some of the

things we don’t know. We believe that there is much more

that can be done with continuous formal reasoning, that can

benefit the research community (in the form of challeng-

ing and relevant problems) as well as software development

practice (through wider impact of reasoning tools).

2 Continuous Reasoning
Rather than attempt a general definition of continuous rea-

soning, we start with examples. As this paper draws on our

experience at Facebook, it is natural to start there. Then we

mention relevant work from the scientific literature, as well

as experiences from other companies. Finally, we summarize

key aspects of continuous reasoning along with its rationale.

https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3209108.3209109
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/


LICS ’18, July 9–12, 2018, Oxford, United Kingdom Peter W. O’Hearn

Figure 1. Continuous Development

2.1 Facebook Infer
Deployment Infer is a static analysis tool applied to Java,

Objective C and C++ code at Facebook [7, 8]. It uses inter-

procedural analysis, yet scales to large code.

Facebook practices continuous software development where
a codebase is altered by thousands of programmers submit-

ting ‘diffs’, or code modifications. A programmer prepares a

diff and submits it to code review. Infer participates in this

workflow as a bot, writing comments for the programmer

and other human reviewers to consider. Figure 1 shows a

simplified picture of this process. The developers share ac-

cess to a single codebase and they land, or commit, a diff to

the codebase after passing code review. Infer is run at diff

time, before land, while longer-running perf and other tests

are run post land.

When a diff is submitted an instance of Infer is run in

Facebook’s internal CI system (Sandcastle). Infer does not

need to process the entire code base in order to analyze a

diff, and so is fast. Typically, Infer will take 10-15mins to

run on a diff, and this includes time to check out the source

repository, to build the diff, and to run on base and (possibly)

parent commits. Infer then writes comments to the code

review system
1
. The fast reporting is essential to keep in

tune with developers’ workflows. In contrast, when Infer is

run in whole-program mode it can take more than an hour

(depending on the app being analyzed). This would be too

slow for diff-time reporting.

Foundation: Automatic Compositonality The technical

feature which enables Infer’s diff-time deployment is com-

positionality. The idea of compositionality comes from lan-

guage semantics: a semantics is compositional if the meaning

of a complex phrase is defined in terms of the meanings of

its parts and a means of combining them. The model theory

of formal logic is typically compositional, and this idea was

emphasized in computer science prominently in Scott and

Strachey’s denotational semantics. It can be characterized

with equations of the form

[[C[M1, ..,Mn]]] = f ([[M1]], ..., [[Mn]])

and is thus similar to the concept of homomorphism, except

that syntactic facilities such as binding and higher types

1
Facebook uses Phabricator: https://en.wikipedia.org/wiki/Phabricator

1 struct node* q(struct node *y) {

2 // Inferred Pre: list(y)

3 struct node *x, *z;

4 x=malloc(sizeof(struct node )); x->tail =0;

5 z=malloc(sizeof(struct node )); z->tail =0;

6 // Abduced: list(y), Framed: z|->0

7 foo(x,y); // Obtained Post: list(x)*z|->0

8 // Abduced:emp , Framed: emp

9 foo(x,z); // Obtained Post: list(x)

10 return(x);

11 // Inferred Post: list(ret)

12

13 void foo(struct node *x,struct node *y){// SUMMARY ONLY

14 // Given Pre: list(x) * list(y)

15 // Given Post: list(x)

Figure 2. Compositional Reasoning Example

going beyond universal algebra are involved. In contrast,

operational semantics is typically non-compositional.

We can transport the idea of compositionality to program

analysis and verification by substituting ‘analysis’ or ‘verifi-

cation’ for ‘meaning’. E.g.,

Compositional Analysis: an automatic program

analysis is compositional if the analysis result

of a composite program is defined in terms of

the analysis results of its parts and a means of

combining them.

A crucial point is that ‘the analysis result of a part’ is defined

(and is a meaningful concept) without having the context it

appears in: compositional analyses, by their nature, are not

reliant on a whole program.

A compositional reasoning example from the Abductor

tool [10], the academic precursor of Facebook Infer, is given

in Figure 2. Suppose we are given a pre/post pair for the

procedure foo() which says that foo takes two linked lists

occupying separate memory and returns a list (foo() might

be, say, list merge or append) . Abductor then discovers the

precondition at line 2 and the postcondition at line 13. It

does this using reasoning techniques about separation logic

[58, 63] that involve abduction and frame inference [10]
2
.

Apart frommechanism, the important point is that a pre/post

spec is inferred, without knowing any call sites of q().
Infer uses compositionality to provide analysis algorithms

that fit well with diff-time CI deployment. When a proce-

dure changes it can be analyzed on its own, without re-

analyzing the whole program. Infer started as a specialized

analysis based on separation logic targeting memory issues,

but evolved into an analysis framework supporting a variety

of sub-analyses, including ones for data races [5], for security

(taint) properties, and for other specialized properties. These

sub-analyses are implemented as instances of a framework

Infer.AI for building compositional abstract interpreters, all of
which support the continuous reasoning model.

2
The reasoning in the example assumes, for simplicity of exposition, that

malloc() will always return a valid pointer.



Continuous Reasoning LICS ’18, July 9–12, 2018, Oxford, United Kingdom

The ROFL Episode. The significance of the diff-time rea-

soning of Infer is best understood by contrast with a failure.

The first deployment was batch rather than continuous. In

this mode Infer would be run once per night, and it would

generate a list of issues. We manually looked at the issue list,

and assigned them to the developers we thought best able to

resolve the potential errors.

The response was stunning: we were greeted by near si-

lence. We assigned 20-30 issues to developers, and almost

none of them were acted on. We had worked hard to try to

get the false positive rate down, and yet the fix rate – the

proportion of reported issues that developers resolved – was

near zero. Batch deployment can be effective in some situ-

ations, but the lesson was telling. Mark Harman has even

since coined a term to describe the hole we fell into [40]:

The ROFL (Report Only Failure List) Assumption:
All an analysis needs to do is report only a fail-

ure list, with low false positives, in order to be

effective.

Let’s refer to this failed deployment for the remainder of the

paper as the ‘ROFL episode’.

Related observations on the challenges of batch mode

deployment have been made at Coverity (see slide 5 of [18]),

at Google (who exclaim ‘Bug dashboards are not the answer.’
[64]), and elsewhere.

The Human Factors Lesson. Soon after the ROFL episode

we switched Infer on at diff time. The response of engineers

was just as stunning: the fix rate rocketed to over 70%. The

same program analysis, with same false positive rate, had

much greater impact when deployed at diff time.

One problem that diff-time deployment addresses is the

mental effort of context switch. If a developer is working on
one problem, and they are confronted with a report on a

separate problem, then they must swap out the mental con-

text of the first problem and swap in the second. ROFL is

simply silent on this fundamental problem. But by partici-

pating as a bot in code review, the context switch problem is

largely solved by diff-time deployment: programmers come

to the review tool to discuss their code with human review-

ers, with mental context already swapped in. This illustrates

as well how important timeliness is: if a bot were to run for

an hour or more on a diff, instead of 10-15 minutes, it would

sometimes be too late to participate well in code review.

A second problem that diff-time deployment addresses is

relevance. When an issue is discovered in the codebase, it can

be non-trivial to assign it to the right person. In the extreme,

the issue might have been caused by somebody who has

left the company. Furthermore, even if you think you have

found someone familiar with the codebase, the issue might

not be relevant to any of their past or current work. But, if

we comment on a diff that introduces an issue then there is

a pretty good (but not perfect) chance that it is relevant.

Impact. Over the past four years, tens of thousands of issues
flagged by Infer have been fixed by Facebook developers

before reaching production.

Our earlier labelling of the ‘ROFL episode’ was admittedly

tongue-in-cheek. The continuous deployment of Infer was

always planned, and was not done in reaction to the episode

(though perhaps it was accelerated). We have since had some

successes with batch mode deployment; these will reported

on in future. But, the vast majority of Infer’s impact to this

point is attributable to continuous reasoning at diff time,

and the point is that this deployment eases a number of

difficulties, but not that that it is the only way to do so.

2.2 Scientific Context
Numerous ideas have been advanced in the research com-

munity which are relevant to continuous reasoning.

A fundamental principle of Hoare logic is its incremen-

tality: one reasons about calls to a procedure using its spec,

and not its code, and therefore a change to the code of a

procedure would not always necessitate re-proving an entire

program [42]. This principle drove the initial foundation of

Infer: the pre/post specs are computed automatically, and

then incrementality flows as in Hoare logic. In fact, a com-

plete program is not needed to verify a procedure wrt its

pre/post specs in Hoare logic style; Hoare logic is composi-

tional in this sense as well as incremental.

Pioneering work of King showed how a program could be

annotated with assertions at key points and then verification

conditions would be generated which could be discharged

by a theorem prover [47]. Many tools have been developed

over the years extending the ideas of King, and relying on

Hoare logic’s incrementality. Representative recent tools,

which have seen impressive successes in verifying challeng-

ing programs, include Dafny [52] and VST-Floyd [11]. Dafny

uses an automatic prover to discharge the verification condi-

tions derived from a procedure body and it’s pre/post spec

(plus, perhaps, loop invariants): it is an example of what is

sometimes referred to as amostly automatic verifier: ‘mostly’

because the human does the work of supplying pre/post

specs and other annotations, and then the automatic prover

takes over. VST-Floyd uses a similar overall approach, except

that an interactive theorem prover (in this case, the Coq

proof assistant) is used to discharge the verification condi-

tions. One might say that in Dafny and VST-Floyd share a

manual approach to compositionality, differing in their level

of automation for reasoning after specs have been placed,

while Infer is automatic both in its compositonality and in

its reasoning. Typically, one can prove stronger properties

as automation decreases.

In the early 2000s, Hoare proposed a grand challenge for

computing research – the verifying compiler [43] – which

evolved into the verified software initiative [45]. Hoare re-

alized that getting feedback to the programmer at compile

time could make a difference in effectiveness of signal, and



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Peter W. O’Hearn

conceived of mostly automatic verifiers being used by pro-

grammers. The Infer experience above is in a similar spirit,

except that signal happens at diff rather than compile time,

and that the human is not required to supply annotations to

drive the tool. With diff-time deployment for code review

enough time has elapsed for the tool to do significant work,

but not so much time that signal comes too late.

Turning to automatic program analysis, while the idea of

a compositional analysis is well known (e.g. [24]), it seems

fair to say that the majority of research papers in the sub-

ject focus on a whole-program setup. Typically, an analyzer

targets small intricate programs or a collection of more gen-

eral test programs, but in either case its evaluation is given

by manually examining a list of alarms (or the information

that a proof succeeded); this evokes the ROFL assumption

mentioned earlier. While this kind of work, which has often

fixated on precision for fixed (often small) programs, has

led to many important ideas, perhaps some rebalancing is

in order: more research effort might be directed towards the

problems of large, changing codebases.

Finally, ideas of analyzing the difference between two

pieces of code, and of reporting results as soon as possible,

have also been the subject of scientific papers; e.g., [32, 49].

2.3 Industry Context
Deployments similar to Infer’s implementation of continuous

reasoning have occurred in several other contexts. We begin

with one that is nearly the opposite on several dimensions.

Amazon s2n is an implementation of the Transport Level

Security protocol which is in widespread use in Amazon’s

data centers. Amazon have, in a collaboration with Galois,

proven strong security properties of key components of s2n

[19]. For example, they establish that the s2n implementa-

tion of HMAC implements a pseudorandom function. Some

salient features of their effort are as follows.

• The specifications themselves are the subject of signif-

icant design and proof work, connecting several levels

of specs by reasoning in the Coq proof assistant and

the Cryptol tool from Galois, some done in [19] and

some building on separate work [4].

• The code is small: just over 550 lines of C.

• The connection between the lowest level of Cryptol

specification and s2n’s C code is verified automatically

using the SAW tool from Galois [33]. The proof is re-

played in CI on every submitted code change.

• Pre/post specs are supplied manually, in common with

the mostly automatic verifiers, but loop invariants are

not needed because the loops are bounded. The incre-

mentality of Hoare logic means that the effects of code

changes on a proof effort can be localized.

• The specification is expected to change much less fre-

quently than the code; e.g., the top-level spec of HMAC

has changed only once since 2002.

Figure 3. Facebook versus Amazon

• Over a period of just over a year from November 2016

the proof was re-played in CI 956 times, and had to be

(manually) altered only 3 times.

Theirs is one of many proofs of small security-critical pro-

grams that have been carried out; the distinguishing feature

is how the proof is re-played in CI. The motivation they give

is that ‘verification must continue to work with low effort as
developers change the code’ [19]. That the proof had to only

be altered 3 times is perhaps the most important take-home

from the work. A fundamental challenge for full-blown verifi-

cation is the question of ongoing drag (see [40] for definition

and broader discussion), and in the worst case one could

imagine needing a verification expert sitting beside each pro-

grammer to drive the re-proof: i.e., human CI. Although the

data from the s2n work is too limited to draw broad conclu-

sions for general code, it seems clear that in some scenarios

continuous verification will require considerably less than

one verification expert per programmer.

The ways in which the Facebook and Amazon efforts differ

are striking (Figure 3). Infer emphasizes covering large code

in the millions of lines, it targets simple to state properties

(e.g, run-time errors; ‘small theorems about big code’), and it

uses fully automatic compositional reasoning. The Amazon

s2n work is for small code in the hundreds of lines, it targets

a highly nontrivial and lengthy specification (‘big theorems

about small code’), and it uses manual specification of inter-

faces to achieve incrementality. Both efforts, as it happens,

involve unchanging (or rarely changing) specifications.

Microsoft Numerous reasoning tools have been deployed

over the years at Microsoft. Two of the more prominent are

Prefix and Prefast [51]. Prefix is a global inter-procedural

analysis that scales to large code bases, but was too slow to

deploy at the analogue of diff time or code review time: it

was used in overnight runs. Prefast was a reaction to the



Continuous Reasoning LICS ’18, July 9–12, 2018, Oxford, United Kingdom

challenges of Prefix. Prefast analysis is limited to a single

function. Therefore, the analysis is fast and can be run at the

same places as build; this could be the analogue of diff time in

CI, or on local machines. Prefast needs inputs and outputs to

be annotated manually by the programmer (e.g., with range

or nullness information) to deliver effective signal.

Google A recent paper explains how Google has experi-

mented with numerous static analyses [64]. Earlier, in the

context of ROFL, we mentioned how they concluded that

batch deployment producing bug lists is not effective. They

also say that ‘Code review is a sweet spot at Google for dis-
playing analysis warnings before code is committed.’ So far,

inter-procedural analysis or sophisticated, logic-based analy-

sis techniques have not been a priority at Google according to

[64]; the analyses are intra-procedural and relatively simple.

But, it is remarkable how strongly similar the conclusions

reached by Facebook and Google are on ROFL (batch) and

code review (continuous) deployments.

Altran Altran (formerly, Praxis) is a pioneer of industrial

program verification, having been in the proof-producing

business for over 20 years [14]. They developed the Spark

programming language, based on Ada, which uses a mostly

automatic verifier. Spark restricts programs to features for

which traditional Hoare logic works well (eg.: no pointers,

no concurrency), and is used in a part of industry (safety-

critical computing) that one might think of as far removed

from the ‘highmomentum’ development practices of internet

companies such as Facebook and Google.

Remarkably, a recent paper explains how verification for

safety-critical systems with Spark is compatible with Agile

engineering practices [15]. The specification of a product is

not assumed to be rarely changing. They recount one expe-

rience with software that provides information about flight

trajectories and potential conflicts to air traffic controllers in

the UK: ‘Overnight, the integration server rebuilds an entire
proof of the software, populating a persistent cache, accessible
to all developers the next morning. Working on an isolated
change, the developers can reproduce the proof of the entire
system in about 15 minutes on their desktop machines, or in a
matter of seconds for a change to a single module’.

We stress that the very notion of what we are calling con-

tinuous reasoning is not novel. The general idea is straight-

forward, and probably no attribution is necessary. More im-

portantly, there are valuable scientific principles which have

been advanced that support the general idea, and (as we

will argue) there is much more research to be done. And,

ultimately, more powerful than novelty is corroboration:

continuous reasoning is actually being practiced industrially

in several companies, who are reporting similar benefits.

2.4 Synthesis
In this paper by (diff time) continuous reasoning we mean:

Figure 4. Bug Time Spectrum

Reasoning is run on code changes, done automatically

in CI, with reporting that is timely enough to partici-

pate as a bot in code review.

What ‘timely’ means can vary from organization to organi-

zation. At Facebook we have a rule of thumb that feedback

should be reported on average in 20mins for code review.

Benefits of continuous reasoning are as follows.

1. By being run automatically in a CI system when a

programmer submits code, the programmer does not

need to consciously or actively run a tool, helping it

to scale to many programmers.

2. By focussing on fragments of code in code changes

rather than whole programs, incremental techniques

can help deliver timely feedback even for a codebase

in the many millions of lines of code being modified

by thousands of programmers.

3. By participating in code review, the tool presents feed-

back to developers in tune with their workflow, avoid-

ing the mental effort of context switch.

4. By identifying issues ‘caused’ by a code modification,

developers are much more likely than random to re-

ceive reports relevant to what they are working on.

In this paper we are focussing on diff-time continuous

reasoning, but more generally there is obviously a spectrum

running from build time to diff time to post land and later

(e.g., Figure 4). Different engineering and scientific problems

arise at each point in the spectrum, and at Facebook we are

investigating all of them. But, following on from the ROFL

episode from earlier the most common question that comes

up is: how can we move a technique to diff time from later?

3 Scientific Challenges
We want to distinguish two questions that can arise when

thinking about deploying reasoning techniques.

Question E. Suppose we were to take a current snap-
shop which effectively freezes development of new

techniques for reasoning about programs. For each

technique (e.g., BMC, CEGAR, concolic, fuzz, numeric

domains ..), where can it be effectively deployed on

the bug time spectrum?

Question S.What advances can be made in reasoning

techniques, which create a new snapshot of knowl-
edge that might (perhaps dramatically) alter answers

to Question E in the future.



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Peter W. O’Hearn

Question E is primarily an engineering one. Inputs to answer-

ing the question include: effectiveness of signal (including

but not limited to precision); resource issues such as power

and CPU time; and startup plus ongoing effort for people

(both tool developers and tool users). Long-established tech-

niques (e.g., typechecking) are as relevant to Question E as

more recent, less developed, ones; sometimes even moreso.

Answering Question E is difficult because it inherently in-

volves uncertainty: fully comprehensive data on all these

inputs across the spectrum is hard to come by. As a con-

sequence, experimentation, creativity, and judgement are

needed in approaching it.

Question S, in comparison, is primarily a scientific ques-

tion. It is the one we will concentrate on in this section.

But, it helps to keep the engineering question in mind when

formulating and studying problems related to Question S.

3.1 What should be the alarms
Given a fixed whole program and a kind of error that a global

program analyzer is attempting to find or prevent, the issue

of what should be an alarm is often straightforward: e.g.,

potential errors together with evidence (say, traces starting

from a main() function) that they can occur. This idea, while

clear enough, depends upon the

Closed World Assumption (CWA), that analyzers

apply only to complete programs.

This is to be contrasted with the

Open World Assumption (OWA), that analyzers

can apply to incomplete program fragments.

Adopting the OWA as the basis for research opens up many

applications that are difficult to approach under CWA.

But, for an OWA reasoning tool the question of what the

alarms should be is not as obvious as under CWA. Supposewe

1 void f(int *ptr){

2 *ptr = 42;

3 }

have a function like f() to

the right which immediately

dereferences a pointer. When

analyzing this function on its own, without knowing any

callers, an analyzer would be ill-advised to report a null deref-

erence at line 3; else, in analyzing any non-trivial codebase

the programmer would be flooded with spurious warnings.

Infer suppresses the potential null alarm by inferring a pre-

condition, which says that ptr holds an allocated pointer.

On the other hand, analyzers for large-scale software de-

ployments will often report issues without having a path

back all the way back to a main() function. For example,

Infer reported
3
an issue in OpenSSL as follows:

apps/ca.c:2780: error: NULL_DEREFERENCE

pointer `revtm ` last assigned on line 2778

could be null and is dereferenced at line 2780, column 6

2778. revtm = X509_gmtime_adj(NULL , 0);

2779.

2780. i = revtm ->length + 1;

3
https://rt.openssl.org/Ticket/Display.html?id=3403&user=guest&pass=guest

Infer finds a trace with 36 steps before a potential return

of NULL is encountered in the call to X509_gmtime_adj()4.
However, Infer does not know that the specific call at line

2778will return NULL in some actual run of a program. Rather,

it fails to synthesize a precondition ruling out NULL and uses
this failure, together with some reporting heuristics which

involve the source of NULL, to decide to raise an alarm. In

fact, Infer makes this report on fragments of OpenSSL that

are not even placed in a running context (there is no main()).
(Note that this discussion is not about null pointers per se;
issues of reporting without a trace to main(), and also of

filtering alarms to reduce false positives, arise with array

bounds errors, data races, and many other runtime errors,

when we do not make the monolithic system assumption.)

What are we to make of this from a scientific point of

view? One possible reaction is to say that Infer, Prefix, the

offering from Coverity, and other analyzers running on large-

scale code are simply heuristic: they do reasoning, but fall

back on ad hoc heuristics when deciding what to raise as an

alarm, or even what paths to explore.

Another reaction is to say we should only surface ‘purely

local alarms’, ones that we know will arise in any evaluation

of a function; a kind of mini-CWA. This would simply miss

too many bugs, and would therefore give up impact, though

how many missed varies from category to category. For

example, we have observed very many local memory and

resource leak errors reported by Infer; memory or a resource

is allocated and then it is freed along a main execution path

within a function, but the programmer forgets to free on

an exceptional path. On the other hand, extremely few null

dereference errors or information flow alarms raised by Infer

have been purely local in this sense.

A final reaction, the one that we prefer, is to think that

there is possibly something to understand here. Industrial

deployments have gone beyond the usual assumptions of the

scientific field, something that is expected and natural when

science and industrial engineering bump into one another.

This presents an opportunity to the scientist to re-examine

assumptions and, consequently, provide a better basis for

the engineering of reasoning tools in the future.

One idea that occurs is that any alarm-surfacing strategy

be paired with a code transformation that closes the program

with surrounding code that ‘explains’ the error reports. A

tool would not literally complete the code, but this would

be part of the conceptual explanation of the alarms. Note

that one is not looking for, say, a most general in some sense

surrounding program, but one that helps understand, judge

and guide analyzer choices.

Whether this speculation or any other ideas bear fruit in

explaining alarms remains to be seen. In any case, we want to

stress to the reader that the task of deciding what the alarms

should be is a very important one faced when designing an

4www0.cs.ucl.ac.uk/staff/p.ohearn/InterproceduralBlog/openssl_trace.txt.



Continuous Reasoning LICS ’18, July 9–12, 2018, Oxford, United Kingdom

New issues only New+Old issues
Changed Files Lean Bulky
All Files Cautious Clean

Table 1. Reporting Modes

analyzer to be used by people rather than for the purpose of

experiments, especially for analysis of large-scale codebases.

In our experience the science of reasoning about programs

does not yet provide much guidance in this important task.

3.2 What and when to report
As mentioned in Section 2.1, the ROFL assumption would

have it that all a reasoning tool needs to do is report a list

of alarms. But we also saw there than when the alarm is

reported has a large effect on whether the signal is effective.

Table 1 lists some of the reporting possibilities.

• Lean reporting of only new errors only on changed

files is Infer’s default at diff time. It is a low friction

deployment: it avoids reporting pre-existing issues to

an author of a diff, which typically will not be relevant

to the diff. It supports the first axiom of industrial static

analysis: Don’t spam the developer.
• Bulky reporting can, when run on a large legacy code-

base, result in numerous pre-existing issues being re-

ported. Sometimes these can be overwhelming, and

irrelevant to the diff author, so care is needed in this

reporting mode. (With Infer, we are experimenting

with it for certain bug types and certain projects.)

• Cautious fits well with periodic global analyzer runs

on an entire codebase, as opposed to at diff time. It has

been used by Coverity [18], and versions of it are used

for both static and dynamic analysis at Facebook.

• Clean is used for deployments that seek to keep a code-

base entirely free of certain issues. The Amazon s2n

effort uses this deployment, Infer has used it with the

source code of the Buck build system, and it is com-

monly used with type systems.

Of the dimensions in Table 1, focussing on changed files is

somewhat arbitrary; it is what we do with Facebook Infer

currently, but one could equally choose the granularity of

changed lines, procedures, or even build targets. The new-

versus-old dimension has some subtleties, in that identifying

a ‘new’ issue can be challenging in the face of refactoring or

code moves. Also, there is more than one way to identify ‘old’

issues (e.g., by running on base as well as parent commits,

or by keeping a database of known issues), and they are not

equivalent. Identifying new issues could itself be the subject

of theoretical definitions and experimental analysis.

In this discussion we are taking ‘report’ to mean an active

indication to a programmer of an issue. This could, say, be

a comment on a diff (in Lean reporting) or an email to an

individual in a post-land deployment (Cautious). A report is

like a push notification. Producing a passive bug list which

programmers can optionally browse is also useful, but is

intended not to disturb programmers.

We are not proposing any deep scientific questions on

reporting modes. Rather, having these distinctions in mind

is useful for framing other questions.

3.3 Automatic Program Analysis
In this section we discuss challenges for automatic program

analysis of large codebases at diff time. Our focus is mainly

on compositional and incremental techniques.

Compositionality and Incrementality, Intuitive Basis
Compositional program analysis helps scale a reasoning tech-

nique to large codebases and it naturally supports diff-time

continuous reasoning. The intuition for scalability is that

each procedure (or unit of modularity, such as a class) only

needs (ignoring recursion) to be visited once by a compo-

sitional analysis, and furthermore that many of the proce-

dures in a codebase can often be analyzed independently,

thus opening up opportunities for parallelism. Therefore, if

we knew a bound on the time to analyze each procedure

(or if we imposed one) then the analysis time would be an

additive linear combination.

Dealing exhaustively with code pointers or with recursion,

which causes a procedure to be visited multiple times if a

fixed-point is to be sought, can complicate this basic intu-

ition. But they do not completely undermine it. Recursion

cycles can be arbitrary broken pragmatically if they are too

large, while still obtaining useful results, and alarm-surfacing

decisions can mitigate the precision effects of unknown code

pointers. In applications it is useful to start from an analysis

that scales to large code because of the additivity intuition

above, with appropriate mitigations in place, rather than

start from one that does not scale. Then one can achieve

non-zero impact early, followed by iterative improvement in

reaction to developer feedback and other data.

Compositional techniques naturally lend themselves to

incremental algorithms, where changing a small part of code

requires only re-analyzing that code (or that code plus not too

much more). The reporting model, as in Table 1, has a signif-

icant effect, though. If alarms are reported only on changed

files, then only those files plus procedures transitively called

from them need to be re-analyzed; and if summaries for the

transitive dependents are in cache, their analysis can (mod-

ulo mutual recursion) be avoided too. However, if all alarms

are to be reported, then it might be necessary to analyze

many files other than those that have changed.

Technical Challenge Although compositional static anal-

yses exist [24], the area is extremely under-developed. Valu-

able reasoning techniques such as interpolation, abstraction

refinement, and various numerical abstract domains have



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Peter W. O’Hearn

been mostly studied in the context of whole-program analy-

sis. This leads to to the following challenge.

Automatic Compositionality Challenge. For each
program reasoning technique – e.g., BMC [21],

CEGAR [20], interpolation [55], symbolic and

concolic testing [6], fuzz [56], SBSE testing [54],

numeric abstract domains [26] – formulate an

automatic compositional variant.

• Demonstrate experimentally and explain the-

oretically its scalability to large codebases (mil-

lions of LOC).

• Demonstrate experimentally and explain theo-

retically per-diff scalability, where running time

is proportional to the size of a code change and

not an entire codebase; or document assump-

tions sufficient for such incremental scalability.

• Demonstrate effective signal.

Let us discuss the demonstrations the challenge asks for.

Concerning scaling to large code, consider (for example)

that: (i) The celebrated ASTREE analyzer [26], which in-

cludes sophisticated numeric domains as well as techniques

to balance precision and speed, verified the absence of run-

time errors in 400k lines of C code in a run of over 11 hours
5
;

(ii) The SLAM tool, which represented a leading example of

CEGAR in action, sometimes timed out (ran for more than

2000 seconds) on device drivers in the low 10k’s LOC [3];

(iii) the CBMC tool [21], a leading bounded model checker,

has been reported as running for over a day on 100k LOC

programs [17]. In fact, according to Daniel Kroening (per-

sonal communication): ‘CBMC isn’t designed to scale (simply
since SAT isn’t designed to scale).’
On the other hand, if we think of the jump from Space

Invader [68] to Abductor [10] – from 10k LOC (and timing

out due to memory exhaustion on slightly larger programs)

to 2.4M LOC in 2 hours – then we might hope for these and

other techniques to scale to a much higher degree. As an

indication of potential, were there a tool for precise numer-

ical program analysis, in the spirit of ASTRÉE but able to

deliver fast results on codemods to a 10MLOC codebase, then

it could prove useful. Admittedly, this is not necessarily an

easy goal.

Concerning incrementality, several of the techniques men-

tioned in the challenge have been married with summary-

based inter-procedural program analysis [61]. This gives a

potential route to explore the diff scalability requirement. In

fact, there have been many non-compositional, summary-

based program analyses, which start from a main() function
and use summaries only to enhance scalability, not to com-

pute specs in a context-independent way: compositionality is

not necessary to incrementality. Compositionality allows to

5
We will quote any running times in this paper with the understanding that

they refer to the ‘hardware of the time’; in none of the cases is the detail of

that hardware very pertinent to the point being made

analyze incomplete code (such as checking a class for poten-

tial thread safety errors, future-proofing it before it is placed

into a concurrent context), but this is an additional capabil-

ity over the incrementality that is needed to support diff-

time analysis. Deploying whole-program, non-compositonal,

summary-based analyses at diff time is an obvious idea to

try, but not one that we are aware has been explored.

There are also some relevant works on compositional (and

not just incremental) analysis. For instance, [65] describes

a way of inferring preconditions which fits together with

CEGAR and predicate abstraction, while [25] does so for a

numerical abstract domain. In short, there are good starting

points for investigating the global and per-diff scalability

requirements in the challenge.

Concerning effective signal, this is the least clear part of
the challenge. The mentioned techniques have been mostly

developed in a whole-program setup, and so answers to the

question of what alarms to raise have been (unconsciously,

perhaps) driven by the Closed World Assumption. We leave

this part of the challenge underspecified, hoping that re-

searchers will use such concepts as false positive rate, fix

rate, alarm volume, or even fresh ideas to address it. See [40]

for further discussion on effective signal.

Care in comparison: OWA versus CWA. It is tempting

when comparing techniques to, unintentionally, focus on

dimensions that are the home turf of one but not the other.

We therefore offer remarks on the relation between closed

and open world techniques, which reflect conversations we

have had with scientific researchers and industrial engineers

in analysis over the past several years.

First, it is important to remember that developing com-

positional versions of any of the techniques (interpolation,

CEGAR, etc) mentioned in the challenge could necessitate

new answers to the question ‘what are the alarms’. The resul-

tant alarms would then need to be evaluated for the fidelity

of the signal that they provide. So, if we were to try to com-

pare compositional (open world) and whole-program (closed

world) versions of a technique, even ones that used the same

abstract domain, it might not be an apples-to-apples compar-

ison if the decisions on what should be alarms are different.

This remark about not being apples-to-apples applies to

proof as well as to alarm surfacing. An example is again in

the comparison of Space Invader [68] and Abductor [10],

tools that use the same abstract domain but differ in their

approach to summaries. Space Invader was able to prove

pointer safety of a 10k LOCWindows device driver (the IEEE

1394 Firewire driver). The proof used a ‘verification harness’,

a fake main() function that called the dispatch routines of

the driver repeatedly after non-deterministically allocating

representative data structures accessed by the driver. Abduc-

tor, applied to the same driver without the harness, was able

to find specifications for all 121 functions in its code. But,

one of the preconditions discovered was overly specific, and



Continuous Reasoning LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Abductor could not complete the verification when the har-

ness was added to the code. So, Space Invader was superior

to Abductor when it came to complete proof of absence of

pointer errors in small (10k LOC) programs, and it resulted in

more that 40 memory safety bugs being fixed in a Microsoft

driver. On the other hand, Abductor could scale to millions

of LOC and it supported per-diff incrementality. These latter

features were eventually used in Infer at Facebook, and led

to much greater impact.

An important lesson is that it is incorrect to view compo-

sitional algorithms as merely optimized versions of slower

global algorithms in a CWA scenario: the compositional algo-

rithm may embrace the Open World Assumption, and might

therefore answer different questions. A second lesson is that,

if the compositional algorithm is less precise (under CWA)

than the global one, we should not therefore conclude that

the compositional algorithm is not up to standard. If you

have two algorithms, one with a great deal more impact than

the other, you shouldn’t blame the more impactful algorithm

for not matching the less impactful one; if either algorithm

needs to have its raison d’être explained, it’s the less impact-

ful one. (This discussion calls to mind Vardi’s principle: ‘the
brainiac often loses to the speed demon’.)

Dynamic and Bounding For over-approximating static

techniques it would be useful to look at bounding variants

(say, limiting the number of times recursion cycles are tra-

versed) while measuring quantities such as alarms/minute, to

quantify the benefit of reaching a fixed-point. This is not to

suggest that the fixed-point should be avoided; rather, some

alarms might be delivered early, at diff time, while others (or

the announcement ‘proof’) could wait for a post-land run.

The techniques mentioned in the Compositionality Chal-

lenge include ones from dynamic as well as static program

analysis. For bounded and under-approximate methods, the

potential to be unlocked by diff-time reporting is possibly

even greater, because techniques such as fuzz, concolic, and

bounded model checking are often considered in the time-

consumig category, which can take hours of running time to

achieve much code coverage on large codebases. It is possi-

ble to run an analysis for a shorter time by exploring fewer

paths, so genuinely answering this challenge should involve

metrics such as code coverage or alarms/min which indicate

that speedups are not obtained only by delivering less.

One promising direction for work here involves mixing

static and dynamic analysis. Indeed, there have been works

that transport the concept of procedure summary from static

analysis to testing and bounded model checking [17, 38, 39]
6
:

these have been used to approach the global rather than the

6
Note that these works are using the term ‘compositional’ for what we

would call a whole-program, non-compositional, summary-based analysis.

They use summaries to avoid repeating computations, but require a (whole)

program to run and thus do not give meaning to ‘the analysis result of a part’

independently of the whole, as the traditional notion of compositionality

from language semantics would require. This is only a terminological point,

incremental-on-code-mode scalability question, but there is a

very real prospect of increasing their impact if the techniques

can be used for effective incremental diff-time reporting. For

example, if a tool were to run for hours or overnight to obtain

procedure summaries for a large codebase, but it was possible

to get quick results on diffs by re-using cached summaries for

unchanged code parts, then the impact of all these techniques

could be raised. Further work in this direction could turn

out to be very worthwhile.

There have even been automatic dynamic analyzes that

attempt to analyze code fragments. One of the leading works

in the area runs on a procedure in isolation from its call sites

and uses a technique called ‘lazy initialization’ to build a

description of a needed data structure [60]. In this respect

it is similar to the precondition inference of Infer; see [9].

It also runs into the problem of Section 3.1, on what the

alarms should be. They report good results on memory leak

errors on one project (BIND), but have many false positives

(over 70% and even 90%) for other bug types and other code.

Generally speaking, the technical and conceptual challenges

of dynamic analysis for incomplete code fragments are great,

but progress in the area could be useful.

On Higher Order and Unknown Code Consider the code

1 void h(int **goo ()){

2 int *ptr;

3 ptr = *goo();

4 *ptr = 42;

5 }

for the function h() to the

right. How can we reason

about this using static analysis,

in particular to know whether

to report a null dereference for either of the dereferences? A

typical approach is to say that first one runs a global alias

analysis which collects all of the potential targets of the call

*goo(), before reasoning about them. But this relies on CWA.

Code pointers are a fundamental problem under OWA.

A compromise is used by Infer. When Infer sees a deref-

erence that it does not know to be safe, it abduces an as-

sumption of non-nullness and attempts to re-express the

assumption using data from the function’s pre-state. At line

3 we abduce that goo should not be null to avoid a null

dereference, and this becomes part of the function’s inferred

precondition. At line 4 we abduce that ptr should not be

null, and we can recognize that this in effect means that the

call to *goo at line 3 should not return null. In effect, we ab-

duce an angelic assumption about the behaviour of *goo(),
suppressing a potential null dereference alarm at line 4.

This issue is similar for any kind of unknown code, and

not just parameters that are code pointers.

Angelic reasoning [27], as about *goo() above, helps

avoid spamming developers with reports about unknown

code. While useful, it is not always the right solution. Where

Infer makes angelic assumptions when reasoning about null

pointers, it makes demonic assumptions in other cases such

and we make it only to avoid confusion: the results in these papers are very

valuable independently of terminological matters.



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Peter W. O’Hearn

as when reasoning about thread safety of Java classes. Blan-

ket angelic or demonic assumptions about unknown code can

be useful for making engineering compromises, but neither

provides a general solution to the problem of compositional

reasoning about code pointers under OWA.

An interesting idea is, instead of inferring an assertion

expressing a blanket assumption, to try to abduce more ex-

pressive specifications (such as pre/post specs) about how

unknown code should behave [1, 37]. In addition to hav-

ing more expressive potential, this direction might lead to

greater parallelism and incrementality in an analysis.

Note that the issues here are are problematic even for

tools where the programmer is asked to manually insert

specifications, as pointed out in this remark by Chlipapa:

‘Verifications based on automated theorem prov-
ing have omitted reasoning about first-class code
pointers, which is critical for tasks like certifying
implementations of threads and processes.’ [16]

The response of researchers in interactive verification has

been to use higher order logic, in a verification analogue of

the use of higher types in the account of data abstraction [62].

This suggests another research problem: develop abstract

domains that utilize higher order logic, and demonstrate how

they can be used to reason fully automatically about first

class code pointers under OWA.

3.4 Mostly Automatic and Interactive Verifiers
Impressive advances have been made in mechanized verifi-

cation in recent years. We have seen example verifications

of OS microkernels [48, 67], a file system [13], crypto algo-

rithms [4] and distributed systems [41]. Some of this work

develops the program and the proof side by side, while other

work proves existing code. It is now feasible, in (say) several

person years or even months, to prove functional correctness

properties of programs in the range of 10k LOC.

This is a remarkable situation to have gotten to. But ...

now what? Will it be possible for full verification to scale to

many more programs and programmers? Or will and should

verification be an activity reserved for a tiny proportion of

the great many programs in the world? While we don’t have

answers to these questions, it is well to additionally ask:

what are the main impediments to scale?

The expertise bottleneck A fundamental bottleneck is the

level of expertise needed to drive a tool. Some leading propo-

nents of the mostly automatic approach have put it starkly:

‘The quality of feedback produced by most veri-
fication tools makes it virtually impossible to use
them without an extensive background in formal
methods [53].’

And if this is an issue for mostly automatic verification, it is

likely moreso for interactive.

One reaction to this problem is to restrict attention to spec-

ifications of (much) less than full correctness, for example

by supporting simple annotations that are more like types.

This approach has been extraordinarily successful and will

likely continue to be. Having accepted this point, let’s move

on to consider reactions to the problem that maintain the

focus on full functional verification.

Another reaction is that we should grow the collection

of people who are experts in formal methods. This reaction

has its merits, and education should certainly be a priority. It

would be wishful thinking to hope that all programmers will

become formal methods experts any time soon, but growing

the community can still be positive.

The third reaction is that we should strive to make the

tools more usable. Partly, this is a tool engineering problem

(quality of feedback), but there are scientific aspects as well.

Advances in program logic (e.g., [46, 59, 63]) have led to

simpler ways to specify programs, and advances in theorem

proving (e.g., [28, 29]) can lead to greater automation.

The specs bottleneck Much research in verification pro-

ceeds from the assumption: the formal specifications are

given. But, specifications are non-trivial to come by. Cre-

ating a formal specification is time consuming, and people

need to be convinced that the value obtained is worth the

effort put in. Even if we had perfect, push button verifiers,

mostly automatic tools would still be non-trivial to deploy

to large programming populations.

It is hard to know whether the expertise or specs bottle-

neck is the greater problem for scaling (likely, they are not

independent). But in discussions we have often observed

questions about the need for specs being expressed well

prior to discussion of the detailed tools. This can be taken as

providing motivation for technical research.

The ‘where do we get specs’ question suggests further

research in guessing specs from dynamic information [2, 34,

66], as aiding the human’s specification-making activity. Re-

latedly, further integration of verifiers with static program

analyses, which can sometimes infer the intermediate specifi-

cations (including pre/post specs) needed to make a proof go

through, could limit the number of annotations that the pro-

gramer needs to place, or even suggest such specifications

to the programmers [12]. Finally, there is a frustrating du-

plication of effort in writing tests and writing specifications;

unification of these activities could be valuable.

Engineering principles for proof Proofs as engineering

artifacts raise similar problems to those which motivated

abstraction and modularity in software design. For example,

if proofs have sufficient modularity, then it stands to reason

that a small changes to code is less likely to necessitate global

changes to a proof than if proofs are monolithic.

Suppose that a verified program changes. If re-proof fail-

ure uncovers an error, with actionable information, then the

verifier provides benefit. If a human expert needs to update



Continuous Reasoning LICS ’18, July 9–12, 2018, Oxford, United Kingdom

the proof when the code continues to satisfy the top-level

specification, then this is like a false positive. The less human

interaction is needed to update a proof, the easier it is for

verification to be used by more programmers.

It is important to note, though, that there is no need to

wish that verification technology becomes so easy to use that

deployment doesn’t need to be supported by subject-matter

experts. Often, when a technology is deployed, ongoing sup-

port is required. This is true for programming languages,

build systems, and automatic program analyzers. We want

to minimize the number of experts needed, which is not to

say eliminate them. So, even if experts need to be on hand

occasionally to help with a proof, if we can drive down the

ratio of formal methods specialists to programmers, then we

can more easily support a greater number of programmers.

These directions suggest fundamental work aimed at sim-

plicity, increased automation, abstraction and modularity of

specs and proofs. One small suggestion is that research pa-

pers might usefully address the question of effort to update a

proof when code changes, in addition to the effort to produce

one in the first place. We are not proposing revolutionary

advance here, but rather continued steady improvement.

3.5 Abstract Theory for an Open World
Concepts from programming theory – including semantics

(compositionality), Hoare logic (incrementality of procedure

call rules) separation logic (frames and footprints), and ab-

stract interpretation (approximation) – have played a role

in influencing program analyzers for continuous reasoning

about large codebases. But, our experience is that the engi-

neering of such tools is running into problems that theory

does not much help with.

• How to design a notion of summary to support effec-

tive analysis under the openworld assumption (OWA)?

• How to resolve the tension between needing to infer a

concise summary and code fragments where logically

no best spec exists ?

• What should the alarms be, and how can the choice

be justified?

• What general assumptions are needed for global and

per-diff scalability?

These considerations suggest opportunities for science.

Develop a general program analysis framework, in the

spirit of abstract interpretation [23], which embraces

OWA. It should

(i) include a general notion of summary, which does

not specify their form (e.g., input/output pairs) in

advance, but that accounts for creation and instanti-

ation of summaries;

(ii) formulate its notion of summary in general terms

which allow the choice of a ‘unit of modularity’ such

as a function, a class, or a process;

(iii) include an account of the frame problem (locality)

for summaries, and independence between analysis

of program parts;

(iv) include a notion of alarm (not just over and under

approximations), and ways to justify (understand)

the alarms;

(v) include theorems related to scalability which explain

the practice of existing observably-scalable OWA

analyses and suggest future ones.

Concerning (i), frameworks for global inter-procedural anal-

ysis have been developed, but typically the summaries take

a special form (such as based on tabulation of input/output

pairs, [61]). Part of the art of designing a compositional anal-

ysis is choosing the notion of summary, and often the good

choice is not simply a tabulation of pairs [69]. Possibly, a

theory should view summaries as abstract (in the sense of

abstract algebra), their structure not specified in advance.

Summary instantiation is an area where bugs can easily

arise in design of inter-procedural analysis. This parallels

the experience with procedures in Hoare logic, where it was

reported that bugs in proof rules occurred with regularity

[22]. Also, precision questions could be studied, related to the

concept of adaptation completeness in Hoare logic [57]. Gen-

erally speaking, theory surrounding summaries, parameters,

and summary instantiation would be helpful.

Concerning (ii), summaries are not for procedures only.

Concerning (iii), in order for reasoning to scale, it is often

desirable to ensure that summaries be concise [69], and that

the abstract states describe localized pieces of memory. These

desiderata are related to the frame problem from artificial

intelligence, and to the local reasoning idea from separation

logic [58]. Related ideas have been used in a semi-formal

way in many specialized program analyses (e.g. [30], and the

RacerD and Quandary instantiations of Infer.AI).

A paper of Cousot and Cousot [24] from 2002 presents a

framework for compositional analysis. It does not address

how to obtain summaries, or how to instantiate them, but

it gives a very clean formulation of what it means for an

abstract interpretation to be compositional. The paper identi-

fies crucial issues to dowith the independence of the separate

analysis of the components, which is connected to the effi-

ciency of the ‘means to combine them’ part of compositional-

ity. The intervening years have seen many advances related

to independence, as well as to the means of combination.

For example, separation logic provides primitives for ex-

pressing independence, and bi-abduction [10] implements

a means of combining which takes (partial) independence

into account. For another example, the Views theory [31]

provides a framework for compositional reasoning about

concurrency, which one might hope could be transported

to a theory of summaries and their independence and in-

stantiation. And for yet another, in recent work Hoare and

colleagues have been investigating an algebraic theory of



LICS ’18, July 9–12, 2018, Oxford, United Kingdom Peter W. O’Hearn

concurrency which identifies modularity principles for con-

current processes related to separation logic, but based on

separation of processes rather than states [44]. The theory is

very abstract, in that it does not say what kinds of entities the

processes are; they are just elements of an algebra (subject to

axioms). Perhaps there is an abstract algebra of summaries

and their independence to be discovered.

It may be that the time is ripe to revisit or extend the ideas

of [24], in light of the theoretical and practical developments

that have occurred since 2002.

Finally, concerning (iv) and (v), these problems could well

be more challenging than the others, but our earlier dis-

cussions should make clear their relevance to the task of

designing an OWA program analysis which can operate at

diff time for large code.

Of course, not all of (i)-(v) need to be addressed in one go.

4 Conclusion
I moved to industry just under five years ago with the acquisi-

tion by Facebook of the formal reasoning startup Monoidics,

after spending over 20 years in academic positions mostly

doing theoretical computer science. I’ve learnt many lessons

in those five years, but two stand out.

One is the importance of scale: Scale in terms of code sizes

and other resources, but even moreso in terms of people.

In Facebook Engineering we are always on the lookout for

techniques where deploying them to 10x people takes appre-

ciably less that 10x in CPU time, watts and other resources

... but especially in terms of the ongoing effort needed by

engineers (people) to maintain the technique. For example, if

a static analysis team of size 10 supports 1000 product engi-

neers, we wouldn’t want to need 100 static analysis experts

if the product engineering population were to grow to 10000.

The other lesson is the importance of integration with pro-

grammer workflow. A guiding principle: we want reasoning

tools to serve people, not the other way around.

Of course, I had heard repeatedly about scale andworkflow

integration, but I did not really appreciate their significance

back when I was a theorist. It all came together clearly for me

in continuous reasoning. The continuous deployment of Infer

showed striking benefits, in terms of developers responding

to analyzer warnings, compared to the batch deployment.

And the continuous deployment naturally supports scaling

in terms of people. Scaling in terms of power or code sizes

or other computing resources is still a hard problem, but one

that is made a little easier by compositionality.

Reasoning about programs has come a long way since

Hoare’s grand challenge 15 years ago [43, 45], I daresay sur-

prisingly far to those of us that were involved in discussions

surrounding it. But there is still a long way to go for for-

mal reasoning to have deep impact for many programmers.

Certainly there are plenty of problems to work on, only

one of which is continuous reasoning, but it is the problem

that I have personally observed which, were progress to be

made, seems like it could help further scale the impact of

formal methods. I have described outstanding challenges in

this paper, some more and others less precise, to give an

idea of work that could be done, but my real hope is that

if researchers engage with these issues they will be able to

formulate better questions as well as answers over time.

Acknowledgments
Thanks to Josh Berdine and Sam Blackshear for advice on

the material in this paper, and all my colleagues at Facebook

for teaching me about applying formal reasoning in industry.

References
[1] A. Albarghouthi, I. Dillig, and A. Gurfinkel. Maximal specification

synthesis. In POPL, 2016.
[2] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In POPL,

pages 4–16. ACM, 2002.

[3] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,

B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis

of device drivers. In Eurosys, pages 73–85, 2006.
[4] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel. Verified correctness

and security of OpenSSL HMAC. In USENIX Security Symposium, 2015.

[5] S. Blackshear and P. O’Hearn. Open-sourcing RacerD: Fast static race

detection at scale. code.facebook.com blog post.

[6] C. Cadar and K. Sen. Symbolic execution for software testing: three

decades later. Commun. ACM, 56(2):82–90, 2013.

[7] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,

P.W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez.

Moving fast with software verification. In NASA Formal Methods
Symposium, pages 3–11, 2015.

[8] C. Calcagno, D. Distefano, and P. O’Hearn. Open-sourcing Facebook

Infer: Identify bugs before you ship. code.facebook.com blog post, 11

June 2015.

[9] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Footprint analysis:

A shape analysis that discovers preconditions. In SAS, 2007.
[10] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional

shape analysis by means of bi-abduction. J. ACM, 58(6):26, 2011.

[11] Q. Cao, L. Beringer, A. Gruetter, J. Dodds, andA.W. Appel. A separation

logic tool to verify correctness of C programs. Journal of Automated
Reasoning., 2018.

[12] S. A. Carr, F. Logozzo, and M. Payer. Automatic contract insertion

with ccbot. IEEE Trans. Software Eng., 43(8):701–714, 2017.
[13] T. Chajed, H. Chen, A. Chlipala, M. F. Kaashoek, N. Zeldovich, and

D. Ziegler. Certifying a file system using crash Hoare logic: correctness

in the presence of crashes. Commun. ACM, 60(4):75–84, 2017.

[14] R. Chapman and F. Schanda. Are we there yet? 20 years of industrial

theorem proving with SPARK. In ITP, pages 17–26, 2014.
[15] R. Chapman, N. White, and J. Woodcock. What can agile methods

bring to high-integrity software development? CACM, 60(10), 2017.

[16] A. Chlipala. Mostly-automated verification of low-level programs in

computational separation logic. In PLDI, pages 234–245, 2011.
[17] C. Y. Cho, V. D’Silva, and D. Song. BLITZ: compositional bounded

model checking for real-world programs. In ASE, pages 136–146, 2013.
[18] A. Chou. Static analysis in industry. POPL’14 invited talk.

http://popl.mpi-sws.org/2014/andy.pdf.

[19] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffmanand C. Mac-

Carthaigh, S. Magill, E. Mertens, E. Mullen, S. Tasiran, A. Tomb, and

E. Westbrook. Continuous formal verification of amazon s2n. In CAV,
2018.



Continuous Reasoning LICS ’18, July 9–12, 2018, Oxford, United Kingdom

[20] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

guided abstraction refinement. In CAV, pages 154–169, 2000.
[21] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C

programs. In TACAS, pages 168–176, 2004.
[22] S. A. Cook. Soundness and completeness of an axiom system for

program verification. SIAM J. Comput., 7(1):70–90, 1978.
[23] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation

of fixpoints. 4th POPL, pp238-252, 1977.

[24] P. Cousot and R. Cousot. Modular static program analysis. In CC,
pages 159–178, 2002.

[25] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic infer-

ence of necessary preconditions. In VMCAI, pages 128–148, 2013.
[26] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. The ASTRÉE analyzer. 14th ESOP, pp21-30, 2005.

[27] A. Das, S. K. Lahiri, A. Lal, and Y. Li. Angelic verification: Precise

verification modulo unknowns. In CAV (1), volume 9206 of Lecture
Notes in Computer Science, pages 324–342. Springer, 2015.

[28] L. de Moura and N.Bjørner. Z3: an efficient SMT solver. In TACAS,
pages 337–340. Springer, 2008.

[29] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for

program checking. J. ACM, 52(3):365–473, 2005.

[30] I. Dillig, T. Dillig, A. Aiken, and M. Sagiv. Precise and compact modular

procedure summaries for heap manipulating programs. In PLDI, 2011.
[31] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, andH. Yang.

Views: compositional reasoning for concurrent programs. In POPL,
pages 287–300, 2013.

[32] L. N. Q. Do, K. Ali, B. Livshits, E. Bodden, J. Smith, and E. R. Murphy-

Hill. Just-in-time static analysis. In ISSTA, pages 307–317, 2017.
[33] R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. McNamee, and

A. Tomb. Constructing semantic models of programs with the software

analysis workbench. In VSTTE, pages 56–72, 2016.
[34] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao. The daikon system for dynamic detection of

likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.
[35] D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and

deployment at Facebook. Internet Computing, IEEE, 17(4):8–17, 2013.
[36] B. Fitzgerald and K.-J. Stol. Continuous software engineering: A

roadmap and agenda. Journal of Systems and Software, 2017.
[37] R. Giacobazzi. Abductive analysis of modular logic programs. In

Proceedings of the 1994 International Logic Programming Symposium,

pages 377–392. The MIT Press, 1994.

[38] P. Godefroid. Compositional dynamic test generation. In POPL, 2007.
[39] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz

testing. In NDSS, 2008.
[40] M. Harman and P. O’Hearn. From start-ups to scale-ups: Open prob-

lems and challenges in static and dynamic program analysis for testing

and verification (keynote paper). In International Working Conference
on Source Code Analysis and Manipulation, 2018.

[41] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.

Roberts, S. T. V. Setty, and B. Zill. Ironfleet: proving safety and liveness

of practical distributed systems. Commun. ACM, 60(7):83–92, 2017.

[42] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In

E. Engler, editor, Symposium on the Semantics of Algebraic Languages,
pages 102–116. Springer, 1971. Lecture Notes in Math. 188.

[43] C.A.R. Hoare. The verifying compiler: A grand challenge for comput-

ing research. J. ACM, 50(1):63–69, 2003.

[44] T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene

algebra and its foundations. J. Log. Algebr. Program., 80(6), 2011.
[45] C. B. Jones, P. W. O’Hearn, and J. Woodcock. Verified software: A

grand challenge. IEEE Computer, 39(4):93–95, 2006.
[46] I. T. Kassios. The dynamic frames theory. Formal Asp. Comput.,

23(3):267–288, 2011.

[47] J. C. King. A program verifier. In IFIP Congress (1), 1971.

[48] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,

and S. Winwood. sel4: formal verification of an operating-system

kernel. Commun. ACM, 53(6):107–115, 2010.

[49] S. K. Lahiri, K. Vaswani, and C. A. R. Hoare. Differential static analysis:

opportunities, applications, and challenges. In Workshop on Future of
Software Engineering Research, pages 201–204, 2010.

[50] C. Larman and V. R. Basili. Iterative and incremental development: A

brief history. IEEE Computer, 36(6):47–56, 2003.
[51] J. R. Larus, T. Ball, M. Das, R. DeLine, M. Fähndrich, J. D. Pincus, S. K.

Rajamani, and R. Venkatapathy. Righting software. IEEE Software,
21(3):92–100, 2004.

[52] K. R. M. Leino. Accessible software verification with dafny. IEEE
Software, 34(6):94–97, 2017.

[53] K. R. M. Leino and M. Moskal. Usable auto-active verification. In

Usable Verification Workshop. http://fm.csl.sri.com/UV10/, 2010.

[54] K. Mao, M. Harman, and Y. Jia. Sapienz: multi-objective automated

testing for android applications. In ISSTA, pages 94–105. ACM, 2016.

[55] K. L. McMillan. Applications of Craig interpolants in model checking.

In TACAS, pages 1–12, 2005.
[56] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the relia-

bility of UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

[57] D. A. Naumann. Deriving sharp rules of adaptation for Hoare logics,

1999. Stevens Institute of Technology, CS Rept 9906.

[58] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs

that alter data structures. In 15th CSL, pp1–19, 2001.
[59] Amir Pnueli. The temporal semantics of concurrent programs. Theor.

Comput. Sci., 13:45–60, 1981.
[60] D. A. Ramos and D. R. Engler. Under-constrained symbolic execution:

Correctness checking for real code. In USENIX Security Symposium,

pages 49–64, 2015.

[61] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In POPL, pages 49–61, 1995.
[62] J. C. Reynolds. Types, abstraction and parametric polymorphism. In

IFIP Congress, pages 513–523, 1983.
[63] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In 17th LICS, pp 55-74, 2002.

[64] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan.

Lessons from building static analysis tools at Google. CACM, 2018.

[65] M. N. Seghir and D. Kroening. Counterexample-guided precondition

inference. In ESOP, volume 7792, pages 451–471, 2013.

[66] F. W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017.

[67] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li. A practical

verification framework for preemptive OS kernels. CAV, 2016.

[68] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and

P. W. O’Hearn. Scalable shape analysis for systems code. In CAV, 2008.
[69] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise

procedure summaries. In POPL, pages 221–234. ACM, 2008.


	Abstract
	1 Introduction
	2 Continuous Reasoning
	2.1 Facebook Infer
	2.2 Scientific Context
	2.3 Industry Context
	2.4 Synthesis

	3 Scientific Challenges
	3.1 What should be the alarms
	3.2 What and when to report
	3.3 Automatic Program Analysis
	3.4 Mostly Automatic and Interactive Verifiers
	3.5 Abstract Theory for an Open World

	4 Conclusion
	Acknowledgments
	References



