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Summary

Near-wall behaviour arising when a finite sized body moves in a channel flow is investigated for
high flow rates. This is over the interactive-flow length scale that admits considerable upstream
influence. The focus is first on quasi-steady two-dimensional flow past a thin body in the outer
reaches of one of the viscous wall layers. The jump conditions near the front of the body play an
important part in the whole solution which involves an unusual multi-structured flow due to the
presence of the body: flows above, below, ahead of and behind the body interact fully. Analytical
solutions are presented and the repercussions for shorter and longer bodies are then examined.
Second, implications are followed through for the movement of a free body in a dynamic fluid–
body interaction. Particular key findings are that instability persists for all body lengths, the growth
rate decreases like the 1/4 power of distance as the body approaches the wall, and lift production
on the body is dominated by high pressures from an unexpected flow region emerging on the front
of the body.

1. Introduction

This study is on dynamic fluid–body interactions in which a body is freely moved by the forces from
the surrounding fluid flow and so alters the fluid flow in turn, in a two-way coupling. The body lies
initially close to a solid surface or wall. The areas of application are wide-ranging but seem largely
untouched by applied mathematics. Many of the application areas involve high Reynolds numbers.
The present study is motivated by environmental, industrial and biomedical applications (1–21) in
principle, but a specific area of interest to us concerns ice shards entering an engine intake (1, 2, 13).
We note also the intrinsic interest in the fundamental situation of free body movement in surrounding
fluid.

More broadly for our readers motivations include sedimentation and fluidisation phenomena,
the falling of lumps of ice into an engine intake in an aerodynamic safety context, the travel of
wind-blown particles of ice along a wing surface again in the aerodynamic safety context and the
falling of rice grains down a chute in a food-sorting context. In addition, various deposition, surface
cleansing, plumbing, hoovering and oil-well modelling applications exist for interactions between
solid bodies and fluids. There are also biomedical applications in travel of solids within vessels of
major networks in the human body such as transport of blood clots, embolisation procedures in stroke
treatment (transportation of glue) and drug-delivery to tumours. Experimental and computational
works in the area include (3–9). More analytically based works investigating the mechanics involved
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at high flow rates are in (1, 2, 10–16) mostly on inviscid fluids, the exceptions being in (1, 2). There
is also application to branching flows affected by substantial oncoming vorticity and by pressure
conditions downstream of the branching (22, 23).

In dynamic fluid–body interactions, there is a multi-parameter space with which to contend.
Included in it are the typical Reynolds number and Mach number and, for a single body say, the
ratio of body density to fluid density, the Stokes number, the body shape, initial location, thickness
factors, orientation, mass, moment of inertia, position of centre of gravity as well as extra factors for
a three-dimensional body. The space can also increase in size considerably if more than one body is
involved.

Recent theoretical studies (1, 2) of dynamic interactions for weakly viscous incompressible fluids
and thin bodies have highlighted three particular points especially. These points are: the substantial
influence of a so-called Euler zone, very close to the leading edge of the body, in which the oncoming
fluid motion is adjusted significantly in anticipation of the overall flow past the body; the differences
in mechanisms between interactions for short bodies, where inviscid effects are paramount in the
pressure forces, and long bodies where feedback from viscous wall layers is considerable; and the
need for increased understanding of the steady flow past a fixed thin finite body as a pre-cursor to
investigating temporal evolution. Concerning the last point, the body movement then responds to the
pressure forces from the fluid flow, leaving the flow itself as quasi-steady. This typically involves
an assumption that the body is considerably denser than the fluid. Complex flow structure is present
for both the shorter and the longer types of body. Similar considerations apply again to the context
of branching flow, and to reconnecting flows, although here the focus is mostly on the setting of a
finite sized body in surrounding fluid flow. Further, the recent studies of fluid–body coupling show
that unusual temporal growth or instability arises for relatively short or long length scales outside
the conventional range of flow instability.

The present study for high Reynolds numbers also includes significant effects from viscosity
and hence vorticity. This is in two spatial dimensions. The study is for a thin finite body which
is nearly aligned axially within a channel flow, with the channel having straight parallel walls. An
example of the incident flow is plane Poiseuille flow. We consider a body that is short compared
with the development length of the channel flow and the body is situated in the relatively thin
viscous-inviscid layer near one wall, in contrast with (1, 2). The ratio of the body chord in the
axial direction to the channel width is however large, of the order of the Reynolds number Re
to the power 1/7 and we assume the majority of the flow response is over the same length
scale.

The reasons for considering the 1/7 case (24) are that it involves a full viscous-inviscid interplay,
between the inviscid core flow holding across most of the channel and the viscous layers near the
walls; it thereby accounts for the predominant upstream influence ahead of the body; and it is expected
to provide a crossover from the shorter-body cases (1) to the longer-body cases (2), giving a check on
each type. Such a crossover is known to occur in the effects of shorter and longer scale constrictions
in channel flow (25). In addition, the work (1) on comparatively short bodies raises serious questions
about the behaviour and assumptions made over longer length scales: the short-scale response which
is mainly inviscid was found to be intimately coupled with the viscous-inviscid response on the
longer 1/7 scale. Likewise the work (2) concerning comparatively long bodies raises substantial
issues over the influence from active shorter length scales near the leading edge (which comprise the
1/7 length scale and a shorter Euler zone), again suggesting the desirability of checking through a
matching process. Given that there are many parameters, we explore the dependence on body length
and position. The latter is close to the wall now, contrasting with (1, 2). Smith (2) examined effects
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independent of the lateral position, whereas we may expect positional dependence to emerge close
to the wall. Finally, here the 1/7 case also accounts for pure channel flow instability as in (26). It is
thus a central case in several senses.

The presence of a detached body within the otherwise well-established 1/7 flow structure causes
delicate new features to arise. The body is taken as if fixed at first and the surrounding flow is
assumed quasi-steady and two-dimensional, bearing in mind the points above, with unsteadiness
being accommodated subsequently. We aim to understand the structure of the flow in detail and the
implications for shorter and longer bodies where quite distinct mechanisms come into action. The
influence of the Euler zone is found to be crucial in a multi-structure in which the flows above and
below the body are linked through asymptotic matching with the flows upstream, near the leading
edge and in the wake. Gaining insight is thus a challenge.

We use non-dimensional Cartesian coordinates xN axially and yN laterally with corresponding
velocity components uN and vN , respectively and pressure variation pN , these quantities being
based on the channel width aD, typical oncoming velocity uD in the channel and the density and
the kinematic viscosity νD of the fluid where the subscript D denotes a dimensional quantity. The
Reynolds number Re = uDaD/νD is large. The upstream end of the thin nearly aligned body located
inside a viscous wall layer is the leading edge and the rear is the trailing edge. Section 2 describes
the rather intricate set-up of concern. This leads to a nonlinear viscous-inviscid flow problem in
which solution discontinuities or jumps across the comparatively small Euler zone near the leading
edge station play a full part together with mixed boundary conditions. These conditions are of
pressure–displacement interactive form upstream and downstream but of prescribed displacement
form between the leading and trailing edges. Section 3 discusses the situation when the body is in the
outer reaches of the wall layer, where much more analytical progress is possible. Due to the jumps,
two axial length scales appear along with a new interaction. Our aim is to understand basic effects of
position, length and thickness of the body. For that reason a linearised approach is used and detailed
solution properties are examined in sections 4 and 5 in turn. Section 6 investigates the role of body
length in the flow solutions, followed by section 7, which is on the implications for free unsteady
motion of the body. Conclusions are presented in section 8, while a range of practical examples is
discussed in Appendix A and certain numerical details are given in Appendix B. Major findings are
instability persisting for all body lengths in the fluid–body interaction and the lift being dominated
by high-pressure effects over the short axial length scale at the leading edge.

2. Nonlinear flow structure

The undisturbed flow in the straight channel far upstream and downstream is essentially uni-
directional in the axial direction with a velocity profile uN = U0(yN ) that is zero at the walls
yN = 0, 1 and positive in between. The interactive flow of interest here mainly has the long axial
scaling xN = Re1/7x with x of O(1) as described in subsection 2.1. However, this is supplemented by
a relatively small region due to the presence of the body (see Fig. 1), which is discussed in subsection
2.2, where jump discontinuities across that region are found to exert a controlling influence on the
entire motion. Subsection 2.3 then summarizes the flow problem.

2.1 The long-scale structure

The flow structure comprises three primary regions, a predominantly inviscid core and a thin viscous
(or viscous-inviscid) layer near each wall yN = 0, 1: this is from (24, 25) but supplemented by a
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(a) (b)

Fig. 1 Sketch of the flow structure with a thin body present inside the near-wall sublayer in a straight channel
flow. The zones for: (a) the O(Re1/7) length scale of the main upstream influence; and (b) for the shorter O(1)
and O(Re−2/7) length scales of leading edge adjustment or Euler flow behaviour are shown. The diagram is in
non-dimensional terms and not to scale.

relatively small region due to the presence of the body (see Fig. 1). The flow solution expands in the
form

(uN , vN , pN ) =
(

U0 (yN )+ Re−2/7A (x)U ′
0 (yN ) ,

−Re−3/7A′ (x)U0 (yN ) ,Re−4/7pcore (x, yN )
)

+ · · · (2.1a)

in the core where yN is of O(1), 0< yN < 1, whereas in the lower and upper wall layers yN = Re−2/7y,
yN = 1 − Re−2/7ŷ, respectively with y, ŷ of O(1) and the expansions applying are

(uN , vN , pN ) =
(

Re−2/7u,Re−5/7v,Re−4/7p(x)
)

+ · · · , (2.1b)

(uN , vN , pN ) =
(

Re−2/7û,−Re−5/7v̂,Re−4/7p̂(x)
)

+ · · · , (2.1c)

in turn. In (2.1a), we have anticipated that the core motion is simply displaced from the incident
motion by an amount −A(x) in scaled terms and that the wall pressures p, p̂ as well as A are unknown
functions of x. The core pressure pcore which is y-dependent from the nontrivial normal momentum
balance in the core is equal to p(x), p̂(x) at yN = 0, 1, respectively.

The thin body is assumed to be located exactly inside the lower wall layer as in Fig. 1, that is, its
length is of order Re1/7 and its representative height and thickness (in yN ) are of order Re−2/7. For
convenience we also take the scaled wall shear stresses U ′

0(0),−U ′
0(1) at yN = 0, 1 to have the same

value, denoted by λ which is positive. The nonlinear case of current concern is thus governed by the
following system. First, in the lower viscous layer from substitution of (2.1b) into the Navier–Stokes
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equations we have the boundary-layer equations with associated conditions as follows:

ux + vy = 0, uux + vuy = −p′(x) + uyy, (2.2a)

u = v = 0 at y = 0 and at y = F±(x), (2.2b)

u ∼ λ (y + A) as y → ∞, (2.2c)

Euler jump conditions across the leading edge x = 0±, (2.2d)

A Kutta condition of equal pressures at the trailing edge x = L, (2.2e)

Boundedness upstream and downstream as x → ±∞. (2.2f)

In (2.2a), the prime denotes the straight derivative with respect to x and the pressure is independent
of y by virtue of the normal momentum balance. The condition (2.2b) imposes zero slip on the
solid fixed surfaces present, namely the channel wall and the underbody and overbody given by
the positive functions F±(x) between 0, L, with F+(x) > F−(x) for 0 < x < L, F+(0) = F−(0)
for a definite leading edge and similarly F+(L) = F−(L) at the trailing edge. The corresponding
stream function ψ , defined by u = ∂ψ/∂y, v = −∂ψ/∂x subject to ψ = 0 at the wall y = 0, is
equal to an unknown constant on the body surface. Matching with the core flow is ensured by (2.2c),
while the requirement in (2.2d) is considered in detail in the next subsection and that in (2.2e) is the
standard trailing edge constraint for attached flow. The boundedness in (2.2f) broadly means that no
exponential growth is admitted far upstream or downstream. Second, in the upper viscous layer we
have the same equations and constraints applying for û, v̂, p̂ in terms of x, ŷ except that:

û ∼ λ
(
ŷ − A

)
as ŷ → ∞; (2.2g)

there is no body present and so the counterpart of (2.2b) simply requires zero û, v̂ at ŷ = 0; and there
is no Euler jump or Kutta condition in the upper layer. Third, the pressure–displacement law

p(x) − p̂(x) = −JA′′(x) (2.2h)

holds for the wall pressures except in the gap between the body and the lower channel wall. The
constant J is the integral of U0(yN )2 in yN from zero to unity; J = 1/30 in the case of plane Poiseuille
flow where U0(yN ) = yN (1 − yN ). The body occupies 0 < x < L and is detached from the wall,
where L of order unity is the scaled body length, while the scaled gap width or height F±(0) of the
leading edge is denoted H, where H is generally of order unity. The constant J and the skin friction
factor λ are positive and of O(1); they could be normalised to unity in the current problem but it is
clearer to retain their presence explicitly throughout from the viewpoint of seeing their effects on
the solution properties.

Upstream influence is present (24) in an eigenform in which, at large negative x values, u − λy is
proportional to exp(κx) with a known positive constant κ . The upstream influence implies we have
nontrivial features (p(x), u(x, y),A(x)) = (π0, u0(y),A0) at x = 0−, with the pressure constant π0 to
be found. Here, the velocity profile u0(y) is nontrivial but satisfying u0(0) = 0 and u0(y) ∼ λ(y + A0)
at large ŷ. The negative displacement contribution A0 depends on π0 in a known way (24).

2.2 The Euler flow region and the jump discontinuities across it

The Euler jump stems from properties of the small Euler region of extent O(Re−2/7) in both xN , yN
that surrounds the leading edge of the body. Here, the Euler equations govern the velocity components,
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which are O(Re−2/7) and the pressure which is O(Re−4/7) locally, and tangential flow constraints
hold on the solid surfaces present. Thus the relevant local expansion for y of O(1) but xN = Re−2/7xE
with xE of O(1) is

(uN , vN , pN ) =
(

Re−2/7uE,Re−2/7vE,Re−4/7pE

)
+ . . . . (2.3)

This gives the quasi-steady Euler equations for the unknown velocity components and pressure,

∂uE

∂xE
+ ∂vE

∂y
= 0, (2.4a)

uE
∂uE

∂xE
+ vE

∂uE

∂y
= −∂pE

∂xE
, (2.4b)

uE
∂vE

∂xE
+ vE

∂vE

∂y
= −∂pE

∂y
, (2.4c)

to leading order. Cross-differentiation of (2.4b, 2.4c) to eliminate pE then shows that the scaled
vorticity (∂vE/∂xE − ∂uE/∂y) is conserved along the unknown streamlines, while addition of the
xE-derivative of (2.4b) to the y-derivative of (2.4c) shows conservation of the Bernoulli pressure head
(pE + (u2

E + v2
E)/2) holds along the streamlines. Hence in terms of the scaled stream function ψE

defined by uE = ∂ψE/∂y, vE = −∂ψE/∂xE , with ψE set to zero at the lower channel wall without
loss of generality, (2.4a)–(2.4c) yields the conservation equation(

∂2

∂x2
E

+ ∂2

∂y2

)
ψE = fE (ψE), (2.5)

in particular, where fE denotes the negative vorticity in scaled variables.
Concerning the boundary conditions and matching for the Euler flow, substantive changes can

occur (10–16, 22) between the incoming flow upstream (scaled pressure p = π0, velocity u = u0(y),
displacement A0) and the outgoing flow downstream. The changes produce pressure p = πG, velocity
u = uG(y) at x = 0+ in the gap, that is, for 0 < y < H, and pressure p = πT , velocity u = uT (y),
displacement AT at x = 0+ on top of the body where y > H (see Fig. 1b). These changes have to
be consistent with the conservation of vorticity and pressure head along the streamlines of the Euler
flow field described above. Physical reasoning based on the local length and pressure scales also
leads to the additional requirement that

AT = A0 (2.6)

since the length scales local to the leading edge jump effects are short and so condensed-flow theory
(25, 27) applies there. In brief, if the displacement is discontinuous then the pressure response that is
produced is too large to be sustained by the local flow structure; hence (2.6) follows. The requirement
(2.6) acts to determine πT as a function of πG for given incoming conditions (π0, u0(y),A0).
Moreover, the jump condition in the gap yields

πG + 1

2
uG
(
0+)2 = π0, (2.7)

from the Bernoulli pressure head with the assumption that πG < π0. The initial profile uG(y) for
the gap at x = 0+ has nonzero slip in general: the slip is smoothed out at small positive x within an
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(a) (b)

Fig. 2 Numerical solution of Euler flow showing (a) profiles of the scaled stream function at various xE
stations, (b) the scaled slip velocity uwall produced at the wall, versus xE . Here, the incoming flow has velocity
profile u0 = y + 1 − exp(−y), pressure π0 = 1.2; the outgoing pressure in the gap is πG = 0.2; the body is
given by y = H = 0.8 for xE positive.

O(x1/2) sublayer at the wall. Similarly, there are O(x1/2) sublayers for small x on either face of the
body.

A sample solution for the Euler flow region is shown in Fig. 2 based on solving the conservation
form (2.5). Here, the negative vorticity fE is determined by the incident velocity profile u0(y) applying
at large negative xE values: thus fE = du0/dy in effect. Further details are presented in Appendix B.
Figure 2a shows the stream function profiles, while Fig. 2b presents the corresponding slip velocity
variation uwall = ∂ψE/∂y induced at the wall. The prescribed pressures pE upstream and downstream
are π0 = 1.2 and πG = 0.2 in turn, the slip velocity increases in the axial direction and the pressure
gradient is favourable throughout implying that the thin boundary layer at the wall remains attached.
The decay into the incident conditions upstream is algebraic, whereas that downstream entering the
gap is exponential.

Numerical solutions for the inferred features holding at x = 0+ are presented in Fig. 3. They were
obtained as follows. Given the incident velocity profile u0(y), the corresponding stream function
ψ = ψ0(y) is evaluated by integration of u0(y) in y subject toψ0(0) being zero. Hence the conservation
properties along streamlines through the Euler zone yield the relation that if the value of the height
Y at x = 0+ is associated with the streamline emanating from height y at x = 0− then uG(Y ) =
(u0(y)2 − 2πdiff )1/2 gives the velocity profile at that height, where πdiff = πG − π0 is the pressure
difference across the Euler zone. The above is for streamlines that enter the gap beneath the body.
So since dψ0/dY = uG(Y ) we have dY/dψ0 = (u0(y)2 − 2πdiff )−1/2, from which the result

dY/dy = u0(y)/
(

u0(y)2 − 2πdiff

) 1
2 (2.8a)
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(a) (b)

Fig. 3 (a) Solution for the velocity profiles induced at the beginning of the gap (uG) and beginning of the flow
on top of the body (uT ), given the incoming flow and pressure values of Fig. 2 with H = 0.8. (b) The pressure
response πT versus gap width H for fixed pressures π0 = 1.2, πG = 0.2 and displacement A0 = 1; dotted,
numerical results; solid, asymptote for H large.

follows. (We suppose πdiff is negative. See (28) on attached and separating flows in the gap.) The
result together with Y being zero at the lower wall, consistent with (2.4), enables Y to be calculated
successively for each streamline by integration in increasing y. When the calculated Y passes through
the value H where the leading edge closes off the gap then the same result (2.8a) applies but withπdiff
replaced by πdiff = πT −π0. The velocity profile becomes uT (Y ) which in general is not continuous
with uG(Y ) at Y = H owing to the pressure differences. At large y and hence large Y , the profile
uT takes on a displaced form because of the nature of the incident profile. The results in Figs 2 and
3 take a representative incident velocity profile u0(y), namely y + A0(1 − exp(−y)), pressure π0 of
1.2 and displacement A0 of 1, a particular value 0.2 for πG, and the results then cover a range of
heights H. Figure 3a presents the velocity profile for H of 0.8 and the πT value iterated in order to
satisfy the local displacement criterion (2.6), while Fig. 3b gives the solutions πT that satisfy the
criterion (2.6) as the height H is varied. The profile discontinuity on crossing the height y = H and
the effective displacement at increased y are clear. As H increases a linear trend in πT is suggested
by the computations.

Analytically two scales emerge in the y coordinate when H is large, one for y of O(1) where the
curved profile of u0(y) has leading-order influence and leaves uG growing as λ(y + AG) as y increases
and the other for y of O(H) where u0(y) has uniform shear and hence uG(y) is identically λ(y + AG) in
effect. For y below H the pressure πG is O(1) and the stream functionψ2(y) is (1/2)λ(y + AG)2 + c2
with c2 an O(1) constant. Above y = H similarly we have uT (y) as λ(y + AT ), ψ1(y) as (1/2)λ(y +
AT )2 + c1 with c1 a constant but the pressure πT is to be determined so as to make AT equal to A0
from (2.6). On the body at y = H, continuity of ψ then requires H(AG − A0) + (1/2)(A2

G − A2
0) =

(c1 − c2)/λ, whereas the Bernoulli balance requires (πT −πG)/λ2 = H(AG − A0) + O(1). So, since
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πG is of order unity, we obtain the relation

πT = λ2 (AG − A0)H + · · · , at large H. (2.8b)

In numerical terms AG is approximately 2 for the case where (A0, λ, π0, πG) = (1, 1, 1.2, 0.2),
leading to a slope of approximately 1 for dπT/dH from (2.8b). Figure 3b indicates that this asymptotic
slope agrees with the trend in the computational results, and indeed the latter are close to the
asymptotic form for H values above about unity.

The jump results described above are for the lower viscous layer. There is no such jumping in
the upper layer because no solid body surface is present there to support the corresponding pressure
changes. Hence p̂,A are continuous across x = 0±. So owing to the relation (2.2h) the change in
p near the lower wall yields the requirement πT − p̂(0) = −JA′′(0+) from which we can infer that
A,A′ are continuous but A′′ is discontinuous in general across the x = 0 station.

2.3 Summary of the fluid–body interaction problem

The pressures in the lower viscous layer above and below the body over the range 0 < x < L
are written p = ptop(x), pgap(x), with ptop(0+), pgap(0+) equal to πT , πG, respectively. The Kutta
condition then requires, with the starting values πT , πG affecting ptop(x), pgap(x), respectively
throughout 0 < x < L, the pressure balance

pgap = ptop at x = L. (2.9)

We assume p to be streamwise continuous across the trailing edge station. Further downstream,

p (+∞) = p̂ (+∞) = 0 (2.10)

gives the boundedness requirement in general. In summary our task is to solve the problem (2.2),
(2.6)–(2.10) that governs the interaction over the long length scale involved.

Counting the independent unknown constants, we have in effect two, namely the pressuresπ0, πG.
Counting the conditions remaining to be satisfied, we also have two, namely (2.9), (2.10). A forward
march in x from x = 0+ with a guessed pair of values π0, πG followed by using the two conditions
(2.9), (2.10) to determine updates of the pair, with iteration, seems a feasible calculation approach. As
part of this we can expect the scaled stream function ψ in the lower layer to be equal to an unknown
constant on the body surface. It is apparent however that the nonlinear problem (2.2), (2.6)–(2.10)
as it stands is a hard numerical one in general. A vital point here is that linearisation is not valid for
O(1) values of the parameters λ,L,H and for O(1) stations x even if the body is relatively thin. Yet,
we believe that analytical progress is essential to understanding, especially in the current intricate
situation. With that in mind, we move on to explore the roles of position, length and thickness of the
body.

3. Large H nonlinear cases: effects of body position

The body is now taken to be initially in the upper reaches of the viscous wall layer. Thus we
seek insight for cases where the typical scaled body height from the wall is large, so that the gap
is enlarged between the lower wall and the body. The flow structure for (2.2), (2.6)–(2.10) when
H � 1 is interesting, especially in view of the behaviour suggested by the trend found in Fig. 3b.
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The main x scale remains of O(1), but we can immediately anticipate another x scale also emerging
as H increases: this is the short length scale H−1/2 over which the large pressure of order H on the
left-hand side of (2.2h) is balanced by the curvature term due to displacement of order unity from
(2.6). The body inside the lower viscous layer is sited now at y = F±(x) = Hy∗

0 + O(1), where the
constant y∗

0 = 1 but is retained in the working to keep track of the height effect. We will concentrate
primarily then on this lower viscous layer and its structure, whereas the viscous layer at the upper
wall remains largely as in the previous section.

When H is large we expect five sublayers 1–5 to occur for the interval 0 < x < 1 as depicted in
Fig. 4 and studied in subsections 3.1–3.5 below. Sublayer 1 is a viscous sublayer near the channel wall,
sublayer 2 is an essentially inviscid sublayer between the wall and the underbody, while sublayer 5 is
the quasi-inviscid sublayer above the body and sublayer 3 represents the comparatively thin viscous
sublayers on the body itself. The extra sublayer 4 is that anticipated in the previous paragraph, lying
on top of the body over a short axial length scale. We can also expect the Euler jump conditions to
produce merely a displacement of the incident velocity profile u0(y) for most positive y values but
combined with an over-body pressure πT that is of order H,

πT = Hπ∗
T , (3.1)

say to leading order: see the computational results in Fig. 3. In contrast, the local incident and gap
pressures π0, πG, respectively are expected to remain O(1). The five sublayers are addressed in turn
below.

3.1 Sublayer 1

Sublayer 1 has flow quantities of order unity throughout, hence being subjected to the leading order-
unity effects (π0, u0(y),A0) from the upstream region and from the leading edge jump directly, such
that

(u, ψ, p) = (u1, ψ1, p1)+ · · · , y = O(1), (3.2)

with x ∼ 1. It follows that the boundary-layer equations (2.2a) continue to hold in full for the
subscripted quantities in terms of x, y. The relevant boundary conditions are

u1 = v1 = 0 at y = 0, (3.3a)

u1 ∼ λ (y + A2(x)) as y → ∞, (3.3b)

u1
(
x = 0+) = uG(y) for all y > 0, p1

(
x = 0+) = πG, (3.3c)

where vorticity uy is conserved along Euler streamlines (recalling subsection 2.2), (2.7) holds and
the unknown profile uG(y) and pressure πG are as in section 2. The unknown displacement A2(x)
is inferred from the large-H results in Fig. 3 and also anticipates the displacement effect found
below in sublayer 2 lying on top of the present sublayer. If we know πG we can determine uG(y) for
0 < y <∞ from the Euler jump. As y → ∞ the velocity profile uG(y) behaves as λ(y + A2(x = 0+)),
a displacement form.

3.2 Sublayer 2

Sublayer 2 is relatively thick and quasi-inviscid, occupying the gap between the underside of the
body and the top of sublayer 1. In sublayer 2, we have y = Hy∗ with y∗ of order unity. The dominant
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Fig. 4 Flow structure when the scaled height H of the body is relatively large, indicating regions 1–3, 5 on
the length scale x of order unity and the additional region 4 over the shorter length scale x of order H−1/2. The
structure concerns the effects of body position and thickness.
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displacement effect here follows from properties of the Euler zone solution as explained in section
2. Here y∗ is of order unity with 0 < y∗ < y∗

0 and

(u, ψ, p) =
(
λHy∗ + u2, λH2y∗2/2 + Hψ2, p2

)
+ · · · , (3.4)

where the governing equations (2.2a) yield the solutions

u2 = λA2(x), (3.5a)

ψ2 = λA2(x)y∗ (3.5b)

with

A2(0+) = AG. (3.5c)

Boundary and matching conditions require p2 = p1(x), while the match with the velocity response
in sublayer 1 as y∗ → 0+ is as displayed earlier in (3.3b), and tangential flow on approach to the
underbody as y∗ → y∗−

0 requires

A2(x) = −f −(x) − K−. (3.5d)

Here f − is the scaled underbody shape such that F±(x) = Hy∗
0 + f ±(x) and K− is a constant to be

found representing the unknown mass flux into the gap. We take the finite body shape as closed such
that f +(0) = f −(0) at the leading edge and similarly f +(L) = f −(L) at the trailing edge.

3.3 Sublayer 3

Sublayer 3 consists of attached Blasius layers, one on each side of the body. Their thickness is much
less than that of the body and their influence on the current interactions is negligible.

3.4 Sublayer 4

The apparently straightforward fluid–body interaction now yields more subtlety as the regions above
the body involve an extra length scale. In fact there is a precursor sublayer 4 at small x directly ahead
of sublayer 5. Within sublayer 4 we have x = H−1/2x∗ with x∗ of O(1) and the expansion

(u, ψ, p) =
(
λHy∗ + u4, λH2y∗2/2 + Hψ4,Hp4

)
+ · · · , (3.6)

holds for order-unity values of y∗ > y∗
0. We notice that the displacement is O(1) in this sublayer,

namely −A4 as described below, whereas the pressure has been raised (to combat the displacement
over the present enlarged gap in effect) to order H in keeping with the trend (3.1). The controlling
equations here are

u4 = ∂ψ4/∂y∗, (3.7a)

λy∗ (∂u4/∂x∗)− (
∂ψ4/∂x∗) λ = −dp4/dx∗, (3.7b)
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from substitution into (2.2a). The presence of the pressure gradient in the streamwise momentum
balance at leading order is noteworthy. The solution is therefore

u4 = λA4
(
x∗) , (3.8a)

ψ4 = λA4y∗ + p4/λ. (3.8b)

The boundary conditions here yield

A4
(
x∗) = [

π∗
T − p4

(
x∗)] / (λ2y∗

0

)
− f + (x∗)− K+, (3.8c)

A4
(
0+) = A0, (3.8d)

bearing in mind that we expect p4(0+) = π∗
T because of the jump conditions. The original

displacement function expands in the form A = A4 + · · · over the present length scale, giving
an O(1) displacement. The scaled overbody shape f + on the present short scale of x∗ in fact remains
as a constant for most reasonably shaped bodies, even though it may vary considerably over the longer
length scale, and the unknown constant K+ again corresponds with a mass flux to be determined.
The scaled pressure–curvature balance

p4
(
x∗) = −Jd2A4/dx∗2 (3.8e)

also applies in view of (2.2h) and the largeness of the pressure response here compared with that in
the upper wall layer. Combining (3.8c)–(3.8e) and recognising that f + is effectively constant over
the current short scale of x∗ we then obtain the ordinary differential equation

d2p4/dx∗2 = λ2y∗
0J−1p4 (3.9)

for the scaled pressure. The appropriate solution is simply

p4 = π∗
T exp

(−q∗x∗), (3.10a)

since x∗ is positive and a growing exponential is inadmissible. Here the positive constant q∗ =
(λ2y∗

0J−1)1/2 is given. The associated displacement is thus, from (3.8c),

A4
(
x∗) = π∗

T

[
1 − exp

(−q∗x∗)] / (λ2y∗
0

)
− f +(0) − K+. (3.10b)

Hence the starting condition at x = 0+ leads to the value

K+ = −A0 − f +(0), (3.10c)

where, to repeat, A0 is the incident displacement due to upstream influence. Also from (3.10b) we
have the result

A4(∞) = π∗
T/
(
λ2y∗

0

)
− f +(0) − K+, (3.10d)

at downstream infinity on the current scale. A plot of the scaled pressure and displacement solutions
within sublayer 4 is given in Fig. 5. We observe that the pressure falls or rises monotonically to zero
as x∗ tends to infinity downstream, given π∗

T positive or negative, respectively.
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Fig. 5 Scaled pressure and relative displacement versus axial distance in the local region 4 near the leading
edge on the upper body, plotted, respectively as p4/π

∗
T (denoted pres) and (A4 − A0)/π∗

T (denoted disp) against
q∗x∗. Here, λ, y∗

0 are taken as unity, π∗
T is the pressure-jump effect in (3.1) and A0 is the upstream displacement

effect in section 2.

3.5 Sublayer 5

Sublayer 5 follows on from sublayer 4 as x becomes O(1). The expansion now has the form

(u, ψ, p) =
(
λHy∗ + u5, λH2y∗2/2 + Hψ5, p5

)
+ · · · . (3.11)

Here y∗ is again of order unity, while crucially the pressure p is reduced to O(1) again and the
displacement (A = A5 + · · · ) is also of O(1). The solution response has a pure displacement,

u5 = λA5(x), (3.12a)

ψ5 = λA5(x)y∗ (3.12b)

with
A5
(
0+) = A4(∞), (3.12c)

to match to the behaviour in sublayer 4, and the pressure response p5(x) is unknown. The overbody
condition of tangential flow then yields

A5(x) = −f +(x) + f +(0) + A4(∞), (3.12d)

with allowance made for f +(x) being nonzero at x = 0+. The pressure–displacement law (2.2h)
now acts to determine the induced pressure difference between the overbody surface and the upper
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channel wall explicitly as
p5(x) − p̂(x) = Jf +′′(x), (3.12e)

since p5(x) − p̂(x) is in balance with −JA∗′′
T (x).

3.6 The reduced problem

The results (3.12d), (3.12e) hold throughout 0 < x < L. Also, the O(1) pressure in sublayer 5 is
comparable with that in sublayer 2 as well as being comparable with the pressure in the upper viscous
wall layer.

Combining the results of sublayers 2, 5 and equating the values of the stream function ψ on the
underbody and the overbody as mentioned earlier produces the following relation between the K±
values,

λy∗
0K− = −π∗

T/λ+ λy∗
0K+. (3.13)

The lower sublayers 1, 2 are insulated in effect from the extra region 4. We also have (3.10c), however.
Hence the displacement effect acting on the lowest sublayer 1 is given to within a constant as

A2(x) = −f −(x) + f +(0) +
[
A0 + π∗

T/
(
λ2y∗

0

)]
. (3.14)

The result (3.14) determines the displacement that helps to drive the flow in the lowermost viscous
layer 1 by means of the condition (3.3b) but subject to guessed values of A0, π

∗
T and the prescribed

y∗
0 value of unity for the leading edge height. The result (3.14) when applied at x = 0+ also confirms

that, in (3.1), the coefficient
π∗

T = λ2 [A2
(
0+)− A0

]
, (3.15)

since f +(0) = f −(0) and y∗
0 = 1. The earlier behaviour in (2.8b) ties in with this coefficient. Our

reduced problem is given by (2.2a)–(2.2h) in essence subject to a displacement set by A2(x) in (3.14)
holding in the gap between the body and the wall, with unknown constants representing the unknown
mass flux entering the gap. Crucially, we see that linearisation is now possible, allowing a way in to
analytical progress.

4. Linearised behaviour: effects of body thickness

With the physical influences of position, length and thickness in mind, linearised properties are sought
as a first step in understanding the behaviour of the complete fluid–body system. This continues on
from section 3 but for body shapes

f ±(x) = εf (1)±(x) (4.1)

with the typical relative thickness factor ε being small and the scaled shape functions f (1)±(x)
being of order unity. The major mechanical interactions take place in the region upstream of the
body (upstream influence), in the gap (direct body-shape effects) and in the region downstream
of the body (downstream influence). In the nonlinear regime, within the upstream region the full
equations (2.2a)–(2.2c), (2.2g), (2.2h) control the nonlinear free interaction for x < 0, without the
y = F±(x) condition but with boundedness far upstream; in the gap (2.2a)–(2.2e) hold without
the y = F±(x) condition but with an effective A(x) specified to within a constant as in (3.14); in
the downstream region (2.2a)–(2.2c), (2.2g), (2.2h) apply again without the y = F±(x) condition
but with boundedness far downstream; the problem remains a largely numerical one then. In the
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linearised regime by contrast considerable progress is possible analytically as follows. Subsection
4.1 addresses the details of the flow solutions in the different regions and subsection 4.2 then tackles
the linearised interaction.

4.1 Details of the flow solutions

Expanding in powers of ε in the upstream and downstream wall layers x < 0, x > L in turn as well
as in the O(1) wall layers occupying 0 < x < L we have

(u, v, p,A) = (λy, 0, 0, 0)+ ε
(

u(1), v(1), p(1),A(1)
)

+ · · · , (4.2a)

(
û, v̂, p̂

) = (
λŷ, 0, 0

)+ ε
(

û(1), v̂(1), p̂(1)
)

+ · · · , (4.2b)

and likewise in the (u1, v1, p1) layer of (3.3a)–(3.3c) with (2.4), (3.14). The superscript (1) denotes
perturbation quantities throughout. The governing equations (2.2a)–(2.2c) in the lower wall layer
ahead of and downstream of the body now become,

u(1)
x + v(1)

y = 0, λyu(1)
x + v(1)λ = −p(1)′(x) + u(1)

yy , (4.3a)

u(1) = v(1) = 0 at y = 0, (4.3b)

u(1) → λA(1) as y → ∞, (4.3c)

while in the upper wall layer ahead of and downstream of the body the same equations hold for û(1),
etc., apart from the condition (4.3c) which is replaced by

û(1) → −λA(1) as ŷ → ∞. (4.4a)

In the lower wall layer underneath the body we have, from (3.2) and (3.3), the same system (4.3)
applying for (u(1)

1 , v(1)
1 , p(1)

1 ) except that

u(1)
1 → λA(1)

2 as y → ∞, (4.4b)

which confirms the continuation with (4.3) along the lower wall. In the upper wall layer above the
body the system (4.3) again holds for û(1), etc., for the length scale x of O(1) but with

û(1) → −λA(1)
5 as ŷ → ∞. (4.4c)

Here the right-hand sides of (4.4b), (4.4c) are given in effect by (3.14), (3.12d), respectively with
superscript (1) where we note that the adjustment form (3.6) acts over a short length scale to smooth
out the flow solution in order to satisfy the condition (2.6). In addition, the pressure–curvature relation
retains the form (2.2h) ahead of and behind the body with superscript (1) inserted, whereas over the
body we have (3.12e), again with superscript (1) inserted. The main continuity or jump conditions
across the leading edge x = 0± in (2.2d) are now as follows:

p(1)
2 = π

(1)
0 at x = 0, (4.5a)

A(1)
5

(
0+)− A(1)

0 = A(1)
2

(
0+)− A(1)

0 = π
∗(1)
T /

(
λ2y∗

0

)
. (4.5b)
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The axial continuity of pressure in (4.5a) stems from (2.7) after linearisation since the velocity
contribution is then small. The axial discontinuity in displacements across the leading edge station
in (4.5b) is implied by the linearised versions of (3.12d), (3.14) given that the perturbed shape values
f (1)±(0) must be equal. The trailing edge condition of equal pressures in (2.2e), (2.9) becomes

p(1)
5 = p(1)

2 at x = L, (4.5c)

and the boundedness requirement as x → ±∞ in (2.2f) is essentially that of no exponential growth
upstream and downstream.

4.2 The linearised interactive problem

In view of the cross-channel relations (2.2h), (3.12e) with superscripts (1) present we treat the system
(4.3)–(4.5) by using difference variables defined as

[U,P,B] =
[
û(1) − u(1), p̂(1) − p(1),−λ

(
A+(1) + A−(1)

)]
, (4.6)

upstream and downstream of the body where A+(1),A−(1) are the negative displacements at the upper
and lower wall layers in turn and similarly for the body range where B is −λ(A(1)

5 + A(1)
2 ), while P is

p(1)
5 (x) − p(1)

2 (x) − Jf +(1)′′(x). Then subtracting the lower- from the upper-wall balances we obtain
for the difference variables

U = 	y, V = −	x, λYUx + Vλ = −Px + Uyy, (4.7a)

U = V = 0 at y = 0, (4.7b)

U → B(x) as y → ∞. (4.7c)

From the mixed requirements on the flow solution the conditions on P,B here are

P = −(J/2λ)Bxx for x < 0, x > L, with P,B unknown, (4.8a)

B(x) = 2λ
[(

f +(1)(x) + f −(1)(x)
)
/2 − f (0) − A(1)

0 − π
∗(1)
T /

(
λ2y∗

0

)]
for 0 < x < L, with P unknown. (4.8b)

The condition (4.8a) represents free-interaction effects (24–26). In (4.8b), the shapes f ±(1)(x) and
height y∗

0 are specified, typically y∗
0 = 1, and f ±(0) = f (0). If pressuresπ∗(1)

0 (and hence displacement

A(1)
0 ),π∗(1)

T are also known or guessed then (4.8b) represents a condensed-flow configuration in which
the effective displacement is given and the effective pressure is to be found. The latter determines
the pressure difference acting normally across the body by virtue of the definition of P prior to (4.7).

The solution of (4.7), (4.8) is obtained in the next section. We notice that the conditions across the
leading edge station now have the effective pressure P being continuous but the effective displacement
B, which is to satisfy the jump condition

B
(
0+)− B

(
0−) = −2π∗(1)

T /
(
λy∗

0

)
, (4.9)

is discontinuous in general.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article-abstract/72/3/359/5512982 by U

niversity C
ollege London user on 09 M

arch 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[11:35 26/7/2019 OP-QJMA190009.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 376 359–386

376 F. T. SMITH AND P. SERVINI

5. Solution properties: effects of body shape

The aim here is to determine the size of the upstream influence factor and the pressure and
displacement responses (and subsequently to determine the free motion of the body). Subsection 5.1
considers a fundamental case having a comparatively simple shape of body which represents a basic
model of an ice shard for example as discussed in our introduction. Subsection 5.2 then brings the
multi-structured solution together.

5.1 A central case

The current quasi-steady properties are quite dependent on body shape. So we take a basic case
primarily. This corresponds to a general body shape at increased angle of rotation and relative
height, however, while if instability ensues in the unsteady regime then that basic case is found to
dictate the instability (1, 2).

The central case of a thin straight body at incidence is addressed below, such that

f +(1)(x) = f −(1)(x) = h + (x − L/2) θ (5.1)

where the prescribed constant h is a height factor for the body position and the prescribed constant
θ describes the inclination. In this case, the effective displacement in (4.8b), with K denoting the
unknown constant f (0) + A(1)

0 + π
∗(1)
T /(λ2y∗

0) and f (0) = h − Lθ/2, becomes

B(x) = 2λ [h + (x − L/2) θ − K] for 0 < x < L. (5.2)

The unknown effective pressure P is p(1)
5 (x) − p(1)

2 (x) since the curvature f (1)+′′(x) is identically
zero in the current case. We may also normalise λ, J, θ to unity or indeed to any values without
loss of generality. The normalisation is by putting x = x1x̄,U = U1Ū (etc.) with the coefficients
for given λ, J, θ being x1 = J3/7

1 λ−5/7, y1 = J1/7
1 λ−4/7, P1 = J1/7

1 λ3/7B1, θ1 = J−3/7
1 λ−2/7B1,

(hK )1 = λ−1B1, U1 = B1, L1 = x1 where the unknown constant hK stands for h − K , and then
working in terms of the barred quantities. (In fact we keep (λ, J, θ ) as factors in the analysis as stated
earlier, while setting them as (1, 1/30, 1) in most of the eventual numerical working.)

The solution of (4.7), (4.8a) for the upstream range x < 0 is given by an exponential eigenfunction
such that (24, 25)

P(x) = − (J/2λ)Gκ2 exp (κx) , B(x) = G exp (κx), (5.3)

with the coefficient G to be determined. The eigenvalue κ = [−6Ai′(0)/J]3/7λ5/7 which for (λ, J)
of (1, 1/30) gives κ as 5.18766 approximately.

For the range 0 < x < L in which, to repeat, we can suppose P to be continuous across x = 0
and allow B to be discontinuous there due to (4.9), a transform approach (25) leads to the parabolic
result

P(x) = − (γ /λ)
[

Gx1/3
∫ ∞

0
exp (−κxv) (1 + v)−2/3 dv

+ 2λ
∫ x

0
[hK + (s − L/2) θ ] (x − s)−2/3 ds

]
, (5.4)

from (5.2). The constant γ = −3Ai′(0)λ5/3/�(1/3) = 0.289838λ5/3. The value of hK is to be
determined such that α(L−) = 0 to accommodate the Kutta condition at the trailing edge.
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For the downstream range, where x > L, free interaction returns to play and yields the coupling
of the relation (4.8a) with

P(x) = − (γ /λ)
[
α(x) +

∫ x

L
B(s) (x − s)−2/3 ds

]
, (5.5a)

where

α(x) = Gx1/3
∫ ∞

0
exp (−κxv) (1 + v)−2/3 dv + 2λ

∫ L

0
[hK + (s − L/2) θ ] (x − s)−2/3 ds.

(5.5b)
Hence the displacement function B(x) satisfies the ordinary differential equation

(J/2γ )Bxx = α(x) +
∫ x

L
B(s) (x − s)−2/3 ds, (5.6a)

for all x > L. The starting conditions at x = L+ are B,Bx to be continuous and Bxx = 0 for, in turn,
continuity of displacement, its slope and the pressure at the trailing edge. So

B
(
L+) = 2λ [hK + (L/2) θ ] , (5.6b)

Bx
(
L+) = 2λθ, (5.6c)

Bxx
(
L+) = 0. (5.6d)

The task now is to solve (5.6) to find the constant G such that P,B avoid exponential (exp(κx))
growth far downstream, leaving only algebraic decay there. The condition (5.6d) is actually satisfied
by α(L−) = 0 together with α(X) assumed

5.2 Assembling the flow solution

A Laplace transform is applied to calculate the final solution combined with a splitting of the function
α(x) in (5.5b) as α(X) = Gα1 + 2λ[hKα21 + α22] where, with Z = (x − L),

α1 = x1/3
∫ ∞

0
exp (−κxv) (1 + v)−2/3 dv (5.7a)

α21 = 3
(

x1/3 − Z1/3
)
, (5.7b)

α22 = 3θ
[
−(3/4)Z4/3 − (1/2)LZ1/3 + (3/4)x4/3 − (1/2)Lx1/3

]
. (5.7c)

The coefficients α1, α21, α22 are independent of G, hK . The right-hand side of (5.7a) is readily
computed. Then the above requirements α(L) = 0 and zero residue in Laplace-transform space in
order to prevent any exp(κx) growth at large positive x imply the results

Gα1(L) + 2λhKα21(L) + 2λα22(L) = 0, (5.8a)

GT1 + 2λhK T21 + 2λT22 = −2λe1 [κhK + (1 + κL/2) θ ] (5.8b)
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with

Tn =
∫ ∞

L
αn(x) exp [−κ(x − L)] dx. (5.8c)

Here, e1 = J/(2γ ) = 0.057034 and κ = [�(1/3)/e1]3/7 = 5.18766 (again) are known constants.
Hence two explicit linear equations q1G + 2q2λhK = 2λq3 and q4G + 2q5λhK = 2λq6 apply, giving
(for those readers interested in detail)

G = 2λ (q5q3 − q2q6) /D, hK = (q1q6 − q4q3) /D, with D = q5q1 − q2q4 (5.9a)

where

[
q1, q2, q3, q4, q5, q6

] = [α1(L), α21(L),−α22(L),T1,T21 + e1H,−T22 − e1 (1 + HL/2) θ ].
(5.9b)

The values G, hK above determine the solution throughout the flow field for any θ value. From these
solution values the pressure P and displacement B in particular can be obtained from (5.3) and so
on.

That completes the linearised solution then. The solution curves of G, hK against L are presented
in Fig. 6. We used both finite-difference calculations and analytically based calculations to determine
the solutions and the results from the two calculations agreed. The analytical ones as implemented
tended to yield the whole solution faster. Both the upstream-influence factor G and the height factor
hK are monotonic functions of the length L of the body.

Fig. 6 Investigating the effects of body length: dependence of the upstream-influence factor G and height
factor hK on the scaled body length L. Here, (λ, J) = (1, 1/30) and inclination θ = 1. The thinner curves with
small and large dashes indicate the asymptotes for small and large values of L, respectively.
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Extreme values of the body length factor L are of interest to help complete our understanding. At
small values of L the equations (5.8) show that

G ∼ G1L1/3θ (→ 0) and hK → hK0θ (∼ 1), for L � 1, (5.10)

where the constants are G1 = 6λ/[�(1/3)κ2/3], hK0 = −1/κ . The argument for large values of L
follows similar lines and is such that after some working we find from (5.8), (5.9) the asymptotes

hK ∼ −Lθ and G ∼ (9λκ/2)L2θ, for L � 1, (5.11)

to leading order. These asymptotes are seen to be in close agreement with the computational results
for increasing L values in Fig. 6 and indeed they even give a fair approximation for L of unity. The
more physical implications for both small and large L values are presented in the next section.

6. Effects of body length

We discuss the implications for shorter bodies and longer bodies in subsections 6.1 and 6.2 below. The
only previous studies are by references (1, 2), respectively which included significant assumptions
over the disparate length scales present as well as placing the typical thin body within the core of the
fluid motion. There is a need to examine the match of the present flow solutions with the previous
ones, given the new information from the present study and the importance of length effects as well
as position and thickness.

6.1 Shorter bodies

The flow structure associated with decreased lengths L in section 5 has, first, a zone where x is O(1)
upstream of the body (zone 1) in which (5.3) still holds; second, a short zone where x = LX̂ (zone
2) around the body for −∞ < X̂ < ∞ (the body occupies the interval 0 < X̂ < 1); and third, a zone
wherein x is of O(1) again downstream (zone 3). The body is virtually horizontal on the length scale
of O(L) in the sense that

B = 2λ
[
hK0θ + L

(
X̂ − 1/2

)
θ
]

∼ 2λhK0θ, to leading order, (6.1)

and the result (6.1) continues to apply throughout the wake over the O(L) length scale. The wake
remains virtually straight and only slightly inclined by the small but growing θ effect in (6.1). We
repeat that B is discontinuous at the leading edge. The trailing edge condition on pressure is satisfied
due to B simply carrying on almost straight there; B only deviates once the O(1) length in x is
encountered relatively far downstream where the X̂θ contribution increases to overtake hK0θ . The
above provides the only forcing on the O(1)-wake length scale. Thus there we have (5.6a) but with
α,L now replaced by zero in effect and, given (5.6d) is automatically satisfied, the starting conditions
become

B
(
0+) = 2λhK0θ, BX

(
0+) = 2λθ. (6.2)

Finiteness as x → ∞ then requires hK0 = −1/κ as per (5.8b), thereby confirming the form of hK0
in (5.10). Meanwhile, on the short O(L) body scale the result (5.4) yields p of O(L1/3), specifically

p
(

X̂
)

= − (γ /λ)L1/3

[
G1X̂1/3�(1/3)κ−1/3 + 2λhK0

∫ X̂

0

(
X̂ − ŝ

)−2/3
dŝ

]
. (6.3)
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Hence the constraint of zero p at the trailing edge requires

G1�(1/3)κ−1/3 + 2λhK0

∫ 1

0
(1 − ŝ)−2/3 dŝ = 0,

giving
G1�(1/3)κ−1/3 = −6λhK0. (6.4)

The left-hand side in (6.4) is from the pressure rise (or fall) because of the lengthy upstream influence
ahead of the body, involving pressure–displacement interplay, whereas the right-hand side comes
from the pressure fall (or rise) because of the fixed-displacement effect over the shortened length
scale of the body itself. The finding (6.4) confirms the form of G1 in (5.10). The pressure-difference
curve p consists of a slow exponential growth upstream followed by a fast drop to zero at X̂ = 1.
Zones 1, 3 have p,B both being of order L1/3 with x of O(1) by virtue of the free interaction upstream
and downstream, while zone 2 has p,B of order L1/3 (except in the lower near-wake p) with the
length scale x ∼ L being small there.

We may now reconsider the Reynolds number effect as well. The prime interpretation here,
concerning a body of length comparable with the channel width and sited inside the core of the
flow, to compare with other work, follows from the small-L limit above by letting L become as
small as Re−1/7 in view of the original expansions in section 2. Also, however, the enlarged height
parameter H of section 3 plays a role since now H tends to the order of Re2/7. The double limit
process implies an O(Re1/7aD) length of upstream influence and downstream influence for a body
of length comparable with the channel width aD; moreover, the three zones upstream, downstream
and surrounding the body from 1 to 3 above couple nontrivially as indicated in section 5. The sole
change occurs in the body zone 2 due to a Laplacian-like balance operating when the body length
becomes O(aD). Along with that the additional axial length scaling of H−1/2 that takes place at large
H in section 3 leads to the same axial O(aD) stage when the body enters the core.

The scalings and flow structure in this shorter-body scenario comply with those in (1), and the
details of the increased-length cases in that reference confirm those implied in the previous paragraph,
thus providing a direct match. Hence the assumptions made in (1) about longer-scale effects arising
in the presence of a relatively short body are justified by the present study. Further, for a body of
length between O(aD) and O(Re1/7aD) and negligible thickness the solution in (5.10), (6.1)–(6.4)
applies throughout.

6.2 Longer bodies

Likewise at large values of L the pressure response in (5.4) shows more than one spatial scale. For
x of O(1) the first term on the right dominates, giving an O(L2θ ) contribution in view of G in (5.11)
in contrast with the O(Lθ ) contribution from the second term under the assumption of (5.11) for hK .
Over the majority of the body where x is of O(L) the first and second terms are both of order L4/3θ .
Thus the flow structure and the order of magnitude of the pressure agree with those in (2) for longer
bodies. In particular, the pressure scaling of L2/3 in (2) over the body scale matches with the present
finding since the representative height and length factors are L1/3,L, respectively as L increases,
making the inclination θ reduce like L−2/3 typically.

A distinction here is that the pressure does pick up an effect which grows like X−2/3 at small X
(= x/L), nearer the leading edge, due to the first term in (5.4) which corresponds to an effect from
upstream influence as G is involved directly. This means that, at least over some parameter ranges,
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the Kutta condition at the trailing edge of the body may have more impact than suggested in the
above article because of the singular behaviour admitted nearer the leading edge, an aspect which
remains to be studied in detail. The pressure at O(1) distances here in terms of x from the leading
edge has the L4/3 scaling, given the θ scaling above.

7. Free movement of the body

Evolution with time can be incorporated. One way is through quasi-steady flow interacting with
unsteady body movement for large density ratios as in (1, 2). In that scenario, the nonlinear system of
section 2 remains intact with slow time dependence present but this is coupled with the body-motion
balances

M
d2h

dt2
=
∫ L

0

(
p− − p+) (x, t) dx, (7.1a)

I
d2θ

dt2
=
∫ L

0
(x − L/2)

(
p− − p+) (x, t) dx. (7.1b)

Here M, I are the scaled mass and moment of inertia of the body and h, θ are the unknown scaled
displacement of and rotation angle about the centre of mass, respectively similar to the effects in
section 5. The overbody is subjected to the pressure p+, while p− acts on the underbody. The centre
of mass is assumed to be at the midpoint of the body. Now the moving body surfaces take the forms

F±(x, t) = F±
1 (x) + h(t) + (x − L/2)θ (t), (7.1c)

however, with the shapes F±
1 (x) independent of the scaled time t but the leading edge height H now

varying in time. The unknown pressure differences in (7.1a), (7.1b) thus drive the body movements
laterally and rotationally. The body movement axially remains negligible by comparison (1, 2).

One notable feature concerns the influence on (7.1a), (7.1b) when H becomes large. The paramount
contributions in this regime come from the shortened region 4 of section 3 where the relatively large
pressure (see Figs 4 and 5) provokes the largest force and moment present. Linearising as in section 4
and then using an unknown constant Q for the time derivative as in (1, 2) with exponential dependence
exp(Qt) leads to Q2Mh,Q2Iθ on the left-hand sides in (7.1a), (7.1b). The second equation determines
Q and then the first determines h(t). Working with region 4 of section 3 indicates that positive θ ,
where G, π∗(1)

T , π∗
T are also positive, implies a positive p4 from (3.10a) and hence a positive d2θ/dt2

or Q2 from (7.1b). Specifically, we find the growth rate Q to be determined by

Q2 = H1/2Lπ∗
T/
(
2q∗I

)
, (7.2)

where the constants π∗
T , q∗ defined in section 3 and the moment of inertia I are all positive. In

consequence instability is induced (cf stabilisation measures in (2)). This agrees with the findings
in (1, 2) with the focus in the latter case on (viscous) effects independent of lateral position being
abetted by the present (inviscid) effects that do depend on lateral position. In particular, the growth
rate Q decreases as the 1/4 power of distance from the wall.
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8. Conclusions

Here, in concluding, we address several follow-on issues and possible future prospects, noting in
addition that practical examples are described in Appendix A.

Immediate follow-on points of note are as follows. First, the difficult nonlinear problems posed
originally in sections 2 and 3 should be of much interest in view of the linearised findings here.
These findings establish that the intricate problems of combined fluid and body motion over a wide
range of settings are closed and the analytical solutions will act as a guide for nonlinear case studies.
Second, two limit processes are coupled in the above subsections, namely scaled height H increasing
and length scale L decreasing or increasing depending on the particular case of concern. Letting
H alone increase instead leads to the flow structure for a body of interactive length O(Re1/7aD)
resident in the core. Here, the nonlinear system of section 2 applies in each wall layer but with the
pressure–curvature interaction holding only ahead of and behind the body, whereas the wall layers
beneath and above the body are subjected to conditions analogous to those in sections 3 and 4.
This represents another interesting nonlinear stage. The matching should tend to agree with the flow
structures in the earlier studies (1, 2) as body length is varied. Third, we would re-emphasise the
effects of upstream and downstream influence which are clarified by the present crossover (1/7)
case with its rather subtle structuring of the flow solution and the distinctions between short and
long scale interactions. Fourth is the importance of the local short-scaled Euler zone near the leading
edge of the body (see section 2), as it yields properties in the current interactive-length case that
produce (see section 3) an interesting and unexpected short-length flow structure as scaled heights H
become large.

Future study may include the following points (a–f). (a) Future work should tackle the nonlinear
versions of sections 2 and 3 as well as that mentioned in the first paragraph of the present subsection.
Essentially, the same problem is found for a wall jet as regards the linearised properties and solutions
of sections 4 and 5. (b) The current study yields interesting and sensitive flow structures when the
body resides near a channel wall and extra contributions to lift and moment on the body. The double
limits of small length L with large height H and of large L with large H need to be investigated
further to fill in more of the parametric dependence. (c) The implications for an external boundary
layer setting merit exploration; this case is likely to be analogous to the present one but with the
behaviour in region 4 of section 3 being significantly different. (d) Another way for unsteadiness
to enter play is through the fluid flow equations rather than (7.1a), (7.1b) and potentially this
admits classical channel flow instabilities (25, 26), contrasting with the non-classical instability
(1, 2) in (7.1a), (7.1b). (e) Implications exist possibly for branching and reconnecting flows. (f)
The axial velocity of the body has been taken as negligibly small throughout, an assumption which
could be relaxed as in the above two references. Similarly, it would seem beneficial to venture
further into parameter space regarding the effects of many bodies and of three spatial dimensions
for instance.
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APPENDIX A

Practical examples

To recap, given the many firm practical reasons and motivations described in the section 1, it is perhaps somewhat
surprising that little modelling of an applied-mathematical nature has been done previously in the subject of
fluid–body interactions. It was felt by us to be desirable to try starting to fill that gap despite any apparent
complexity in the subject. Our intent has been to make a beginning then, to tackle basic problems and to seek
analytical guidance above all. We have found that complexity or at least delicacy does indeed arise in the study:
in the case of a constriction in a channel there are only three main flow regions, the inviscid core and two
viscous-inviscid wall layers, whereas in the present case of a detached body several more important regions
come into play. On the other hand, concise analytical solutions have been derived for the body case, including
influences of body position, thickness and length, and these findings can guide further study.

In terms of practical examples we still need to be cautious, we cannot be sure yet if practical use will
ensue and we should not pretend that all regimes mentioned or not mentioned here are likely to be of practical
relevance. Nevertheless let us consider a range of Reynolds numbers Re, say 102–103 depending on the particular
application in mind, and apply the theoretical scalings. (A similar approach in (24) indicated close agreement
with direct numerical simulations for a cornered channel flow.) Take H to be 2 for example and ε to be 0.3.
Then the body length addressed is formally about 2–3 (from Re1/7) relative to the channel width of unity and
the body thickness is about 0.1–0.25 (from Re−2/7), as is the wall-layer thickness. The ε factor reduces that
thickness to 0.03–0.075 approximately for the linearised scenario, while laterally the body placement is at a
distance of 0.2–0.5 (from HRe−2/7) from the channel wall. Further the limiting cases discussed in subsections
6.1, 6.2 for shorter and longer bodies, respectively adjust the length estimate to the range 1–6 approximately.
Overall this theoretical configuration seems reasonably close to those relevant to a thin elliptical particle in
blood flow or to an ice shard or other thin particle in aeroengine dynamics especially.

APPENDIX B

Numerical solution of the Euler flow

In regard to solving the Euler-flow equation (2.5) an iterative scheme is applied. The incoming velocity profile
uE = u0(y) is supposed given. Hence far upstream the corresponding stream function profile ψE = ψ0(y) can
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be worked out through integration with respect to y, while the shear profile can be worked out by differentiation
in y, yielding

ψ0(y) and fE (y)
{= u′

0(y)
}
. (B.1)

Elimination of y betweenψ0(y), fE (y) in (B.1) therefore gives us the functional relation fE (ψ0) and thus fE (ψE )
throughout the Euler flow region since all streamlines are taken to emanate from far upstream. Suitable numerical
interpolation is used on this relation at each stage.

Next a guess is made forψE at every grid point (xE , y) where xE = xE,−∞ + (i − 1)�xE , y = yj = (j − 1)�y
and �xE , �y are small uniform steps in the axial and lateral directions, respectively, the integer i runs from
1 to I and j runs from 1 to J . Here, xE,−∞, xE,∞ are the axial endpoints of the computational grid such that
xE,∞ − xE,−∞ = (I − 1)�xE and I is the maximum value of i, while y = y∞ = (J − 1)�y represents the outer
edge of the grid laterally. Then (2.5) is addressed schematically in the interior of the domain in a straightforward
discretised form,

ψE (i − 1, j)− 2ψE (i, j)+ ψE (i + 1, j)

(�xE)
2

+ ψE (i, j − 1)− 2ψE (i, j)+ ψE (i, j + 1)

(�y)2
= fE (ψE (i, j)) ,

(B.2)
where ψE (i, j) now denotes the unknown numerical value at the typical grid point (i, j). The lateral boundary
conditions are

ψE (i, 1) = 0 for all 1 ≤ i ≤ I, (B.3)

ψE (i, J)− ψE (i, J − 1)

�y
= y∞ − �y

2
+ A0, (B.4)

ψE (i, j1) = CE for i1 ≤ i ≤ I. (B.5)

The constant A0 is given and the incident shear λ is taken as unity. The integer i1 signifies the starting position
of the thin body which appears as an aligned flat plate in the present region, whereas j1 fixes the local scaled
gap width (j1 − 1)�y = H , and the constant CE is the value of the scaled stream function on the body, a value
which can be derived by iteration or in our case deduced directly from (2.8a) where the pressure difference
πdiff = πG − π0 is prescribed. The conditions at the axial endpoints are imposed as

ψE (1, j) = ψ0(yj), (B.6)

ψE (I, j) = ψG
(
yj
)

for 1 ≤ j < j1, (B.7)

ψE (I, j) = ψT
(
yj
)

for j1 + 1 ≤ j ≤ J − 1, (B.8)

in view of the incoming conditions upstream and the approach downstream to quasi-parallel flow in the gap
and on top of the body in turn. The stream-function profiles on the right-hand sides in (B.7), (B.8) stem from
lateral integration of the velocity profiles uG, uT , respectively.

The right-hand side of (B.2) is evaluated from the latest guessed value of ψE , and then at all interior points
(B.2) is solved line by line throughout the domain, that is, at a given i the scheme solves for all ψE (i, j) subject
to (B.3)–(B.5), with ψE (i − 1, j), ψE (i + 1, j) taking the latest iterated values. The procedure marches forward
in i, applying (B.6)–(B.8) at the axial endpoints, updating the overall guesses ψE and revising the right-hand
side of (B.2), and then repeatedly sweeping the domain until convergence is deemed to occur.

Typical values taken for �xE , �y, I , J were 0.025, 0.025, 201, 201, respectively for the case of xE,∞, i1,
j1 equal to 2.5, 101, 33 in turn. The convergence criterion was that successive iterates for ψE should differ by
less than 10−6 throughout the domain.
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