

Draft Manuscript For Review. Reviewers should submit their review at http://mc.manuscriptcentral.com/humrep

Cancer risk in children born after donor assisted reproductive technology

Journal:	Human Reproduction
Manuscript ID	HUMREP-17-0550.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	06-Oct-2017
Complete List of Authors:	Williams, Carrie; University College London, Great Ormond Street Institute of Child Health Bunch, Kathryn; University of Oxford, National Perinatal Epidemiology Unit Murphy, Michael; University of Oxford, Nuffield Department of Obstetrics & Gynaecology Stiller, Charles; National Cancer Registration and Analysis Service Botting, Beverley; University College London, Great Ormond Street Institute of Child Health Wallace, Wiliam; Department of Reproductive and Developmental Sciences, Division of Child Life and Health,, University of Edinburgh Davies, Melanie; UCLH Foundation Trust, Reproductive Medicine Unit Sutcliffe, Alastair; University College London, Great Ormond Street Institute of Child Health
Keywords:	childhood cancer, donor treatment, cohort study, CHILD FOLLOW-UP, ASSISTED REPRODUCTION
Subject Section:	Reproductive Epidemiology

SCHOLARONE[™] Manuscripts

1 2	TITLE: Cancer risk in children born after donor assisted reproductive technology
3 4 5	RUNNING TITLE: Childhood Cancer after donor ART
6 7	Dr CL Williams ¹ , Mrs KJ Bunch ² , Dr MFG Murphy ³ , Mr CA Stiller ⁴ , Dr BJ Botting ¹ , Professor WH
8	Wallace ⁵ , Dr MC Davies ⁶ , Professor AG Sutcliffe ^{*1} .
9	
10	^{1.} University College London, Great Ormond Street Institute of Child Health, London, UK, WC1 1EH. ^{2.}
11	National Perinatal Epidemiology Unit, University of Oxford, Oxford, UK, OX3 7LF. ^{3.} Nuffield
12	Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK, OX3 9DU ^{4.} National
13	Cancer Registration and Analysis Service, Oxford, UK, OX4 2GX. ⁵ . Paediatric Oncology Department,
14	Royal Hospital for Sick Children, University of Edinburgh, Edinburgh, UK, EH9 1LF. ^{6.} Reproductive
15	Medicine Unit, Institute for Women's Health, University College London Hospitals, London, UK, NW1
16	2BU.
17	
18	*Corresponding Author: Professor A G Sutcliffe, Policy, Practice and Populations Unit, University
19	College London, Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH
20	or <u>a.sutcliffe@ucl.ac.uk</u>

22	ABSTRACT
23	Study question: Do children born after donor assisted reproductive technology (ART) have an
24	increased risk of developing childhood cancer in comparison to the general population?
25	Summary answer: This study showed no overall increased risk of childhood cancer in individuals
26	born after donor ART.
27	What is known already: Most large population based studies have shown no increase in overall
28	childhood cancer incidence after non-donor ART; however other studies have suggested small
29	increased risks in specific cancer types, including haematological cancers. Cancer risk specifically in
30	children born after donor ART has not been investigated to date.
31	Study design, size, duration: This retrospective cohort study utilized record linkage to determine the
32	outcome status of all 12,186 children born in Great Britain (1992-2008) after donor ART. The cohort
33	included -12,137 members contributed 95,389 person-years of follow-up (average follow-up 7.86
34	years).
35	Participants, setting, methods: Records of all children born in Great Britain (England, Wales,
36	Scotland) after all forms of donor ART (1992-2008) were linked to the UK National Registry of
37	Childhood Tumours (NRCT) to determine the number who subsequently developed cancer by 15
38	years of age, by the end of 2008. Rates of overall and type specific cancer (selected a priori) were
39	compared with age, sex and calendar year standardised population-based rates, stratifying for
40	potential mediating/moderating factors including sex, age at diagnosis, birth weight, multiple births,
41	maternal previous live births, assisted conception type, and fresh/ cryopreserved cycles.
42	Main results and the role of chance: In our cohort of 12,137 children born after donor assisted
43	reproductive technology (52% male, 55% singleton births), no overall increased risk of cancer was
44	identified. There were 12 cancers detected compared to 14.4 expected (standardised incidence ratio
45	(SIR) 0.83; 95% confidence interval (CI) 0.43-1.45; <i>P</i> =0.50). A small, significant increased risk of
46	hepatoblastoma was found, but the numbers and absolute risks were small (<5 cases observed; SIR

47	10.28; 95%CI 1.25-37.14; P<0.05). This increased hepatoblastoma risk was associated with low
48	birthweight.
49	Limitations, reasons for caution: Although this study includes a large number of children born after
50	donor ART, the rarity of specific diagnostic sub-groups of childhood cancer results in few cases and
51	therefore wide confidence intervals for such outcomes. As this is an observational study, it is not
52	possible to adjust for all potential confounders; we have instead used stratification to explore
53	potential moderating and mediating factors, where data were available.
54	Wider implications of the findings: This study is the first to investigate cancer risk in children born
55	after donor ART. Although based on small numbers, results are reassuring for families and clinicians.
56	The small but significant increased risk of hepatoblastoma detected was associated with low
57	birthweight, a known risk factor for this tumour type. It should be emphasised that the absolute risks
58	are very small. However, an on-going investigation with a longer follow-up is needed.
59	Study funding/competing interest(s): This work was funded by Cancer Research UK
60	(C36038/A12535) and the National Institute for Health Research (405526) and supported by the
61	National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital
62	for Children NHS Foundation Trust and University College London. The work of the Childhood Cancer
63	Research Group (CCRG) was supported by the charity CHILDREN with CANCER UK, the National
64	Cancer Intelligence Network, the Scottish Government and the Department of Health for England
65	and Wales. There are no competing interests.
66	Trial registration number: N/A

68 **Key Words:** childhood cancer, assisted reproductive technology, donor treatment, cohort study,

- 69 epidemiology, data linkage.
- 70

71

Page 4 of 20

72 INTRODUCTION

73	Donor ART treatment cycles utilize donor sperm, oocytes or embryos and result in approximately 10%
74	of all births after ART in the UK (Human Fertilisation & Emryology Authority 2013). Given that most
75	donors have few, if any, fertility problems, children born after donor ART represent a subtly different
76	population than children born after non-donor ART. This inherent difference, together with the
77	increasing use of donor ART cycles and the extra uncertainty faced by couples using donor gametes,
78	places greater importance on follow-up studies differentiating between children born after donor
79	and non-donor ART.
80	The possibility of an increased risk of childhood cancer in individuals born after ART has been
81	suggested previously (Hargreave et al. 2013; Puumala et al. 2012; Schieve et al. 2004; Sutcliffe and
82	Ludwig 2007; Kallen et al. 2010). Systematic reviews have provided conflicting evidence (Raimondi,
83	Pedotti, and Taioli 2005; Hargreave et al. 2013; Reigstad et al. 2017), with a recent meta-analysis
84	suggesting a small but significant increased risk of cancer in children born after ART (Relative Risk
85	1.33; 95%Cl 1.08-1.63) (Hargreave et al. 2013). Two large, population based studies, published since,
86	reported no overall increased risk and no increased risk in haematological cancers (Sundh et al. 2014;
87	Williams et al. 2013). However, these studies did not include children born after donor ART (Sundh
88	et al. 2014; Williams et al. 2013). A further, smaller, population based study showed no overall
89	increased risk of childhood cancer, but did find a significant increase in leukaemia and Hodgkin
90	lymphoma (Reigstad et al. 2016). This study did include some children born after donor ART but did
91	not estimate risk in this group separately (Reigstad et al. 2016).
92	We conducted a large population-based linkage study, aiming to provide risk estimates for childhood
93	cancer overall and for specific diagnostic subgroups (chosen a priori), in individuals born after donor
94	ART.

95

96 MATERIALS AND METHODS

97 **Population and cohort participants**

98	All records relating to 12,186 children born between January 1st 1992 and December 31st 2008 in
99	Great Britain (England, Wales and Scotland) after donor ART were identified by the Human
100	Fertilization and Embryology Authority (HFEA). Donor ART is defined as 'all treatments or procedures
101	including in-vitro handling of both human oocytes and sperm, or embryos, for the purpose of
102	establishing a pregnancy' using donor oocytes, sperm or embryos (Zegers-Hochschild et al. 2009).
103	The HFEA is legally required to record treatment and outcome details of all ART cycles in the UK,
104	including those using donor gametes or embryos. Thus the dataset is considered effectively
105	complete (HFEA act 2008).
106	
107	Ethical approval
108	Approval for the study was obtained from the National Information Governance Board and the
109	London Research Ethics Committee including approval for the restricted use of data without
110	individual written informed consent. One of the conditions attached to approval of this study
111	prevents the publication of cells containing less than five individuals. Patients can withdraw consent
112	for their HFEA data to be used for research. At the time of the study, 0.3% of all families using ART
113	had done so; their data were not included.
114	
115	Outcome data
116	Details of cancer incidence were obtained from the National Registry of Childhood Tumours (NRCT).
117	During the study period, the NRCT was the largest national population-based childhood cancer
118	registry world-wide, ascertaining validated information from multiple sources about children, under
119	15 years, diagnosed with cancer in the UK (Kroll et al. 2011). The NRCT is considered almost
120	complete for the study period(Kroll et al. 2011). The International Classification of Childhood Cancer
121	3 rd edition (ICCC3), was used to categorise cancers (Steliarova-Foucher et al. 2005). Co-morbidities,
122	known at the time of a child's cancer diagnosis, were reported to the NRCT by the registering

123 oncology centre, and data are reasonably complete for major congenital anomalies.

125 Data linkage

126	Ethical regulations stipulated that identifiable data were only viewed directly by HFEA staff.
127	Therefore data linkage was undertaken by two members of HFEA staff independently from each
128	other, following a robust data linkage protocol, developed to maximize linkage sensitivity and
129	specificity, used and described in another similar study (Williams et al. 2013). Linkage was directly
130	overseen by CLW, KJB and BB. A total of 12,186 eligible HFEA records of children born after donor
131	ART 1992-2008 were linked to all 14,896 NRCT eligible records of children documented as having
132	been born 1992-2008, and having developed cancer before January 1st 2009. All potential matches
133	using this inclusive linkage protocol were anonymously reviewed by CLW and KJB. BB reviewed any
134	cases where the validity of the match was questionable (n=2, both unanimously rejected by all three
135	reviewers).
136	
407	
137	Statistical analyses and calculation of expected rates
137	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date,
138	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date,
138 139	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the
138 139 140	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the analyses as no valid date of birth was available and therefore person-years at risk could not be
138 139 140 141	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the analyses as no valid date of birth was available and therefore person-years at risk could not be determined. Expected cancers in the cohort were calculated by multiplying person-years at risk by
138 139 140 141 142	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the analyses as no valid date of birth was available and therefore person-years at risk could not be determined. Expected cancers in the cohort were calculated by multiplying person-years at risk by the corresponding national incidence rates (1-year age bands by calendar year and sex) for children
138 139 140 141 142 143	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the analyses as no valid date of birth was available and therefore person-years at risk could not be determined. Expected cancers in the cohort were calculated by multiplying person-years at risk by the corresponding national incidence rates (1-year age bands by calendar year and sex) for children born and diagnosed in Great Britain. Standardized Incidence Ratios (SIR) were calculated comparing
138 139 140 141 142 143 144	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the analyses as no valid date of birth was available and therefore person-years at risk could not be determined. Expected cancers in the cohort were calculated by multiplying person-years at risk by the corresponding national incidence rates (1-year age bands by calendar year and sex) for children born and diagnosed in Great Britain. Standardized Incidence Ratios (SIR) were calculated comparing observed cancers within the cohort to expected values. Exact 95% confidence intervals and two-
138 139 140 141 142 143 144 145	Person-years at risk were calculated from date of birth until the soonest of cancer diagnosis date, December 31, 2008 or the child's 15 th birthday. There were 49 children (0.4%) excluded from the analyses as no valid date of birth was available and therefore person-years at risk could not be determined. Expected cancers in the cohort were calculated by multiplying person-years at risk by the corresponding national incidence rates (1-year age bands by calendar year and sex) for children born and diagnosed in Great Britain. Standardized Incidence Ratios (SIR) were calculated comparing observed cancers within the cohort to expected values. Exact 95% confidence intervals and two- sided P values were calculated assuming a Poisson distribution (Breslow and Day 1987). Analyses

149 **RESULTS**

- Included in this study were 12,137 children who contributed 95,389 person-years follow-up, with an
 average duration of 7.86 years. Cohort demographics are detailed in Table 1.
- 152

153	Twelve children were linked to NRCT records and therefore identified as having developed cancer.
154	Baseline demographics appeared broadly similar for cohort members who did and did not develop
155	cancer (data not shown separately given the small numbers). The median age at cancer diagnosis
156	was 2.6 years (inter-quartile range 1.2-5.2). There were no children with more than one cancer
157	diagnosis. There were 14.4 cancers expected within the cohort, resulting in an unadjusted SIR of 0.83
158	(95% CI 0.43-1.45; Table 2). Sensitivity analysis including the two potential cases rejected during
159	data-linkage did not substantially alter the results (SIR 0.97; 95% CI 0.53- 1.63; data not shown). The
160	results did not change appreciably when stratified by sex, age at diagnosis, birthweight, birth
161	multiplicity, maternal parity, type of ART, and fresh versus cryopreserved embryos (Table 2),
162	although the small number of events in some strata have resulted in wider confidence intervals.
163	
164	No significant excess risk was seen for any major ICCC3 category, with the exception of hepatic
165	tumours (Table 3). A significant excess of hepatic tumours was detected (SIR 9.12; 95%CI 1.11-32.95;
165 166	tumours (Table 3). A significant excess of hepatic tumours was detected (SIR 9.12; 95%Cl 1.11-32.95; Table 3), all of which were hepatoblastomas (SIR 10.28; 95%Cl 1.25-37.14; Table 3; Absolute excess
166	Table 3), all of which were hepatoblastomas (SIR 10.28; 95%Cl 1.25-37.14; Table 3; Absolute excess
166 167	Table 3), all of which were hepatoblastomas (SIR 10.28; 95%CI 1.25-37.14; Table 3; Absolute excess risk 18.66 per million person-years at risk, 95%CI 0.24-73.39). This excess was associated with low
166 167 168	Table 3), all of which were hepatoblastomas (SIR 10.28; 95%CI 1.25-37.14; Table 3; Absolute excess risk 18.66 per million person-years at risk, 95%CI 0.24-73.39). This excess was associated with low birthweight and was only seen in children with birthweight <2500g (SIR 28.00; 95%CI 3.39-101.14; <i>P</i> =
166 167 168 169	Table 3), all of which were hepatoblastomas (SIR 10.28; 95%CI 1.25-37.14; Table 3; Absolute excess risk 18.66 per million person-years at risk, 95%CI 0.24-73.39). This excess was associated with low birthweight and was only seen in children with birthweight <2500g (SIR 28.00; 95%CI 3.39-101.14; <i>P</i> =

173 population based cohort of children born after donor ART. This is in line with two similar recently

- 174 published cohort studies of children born after non-donor ART (Sundh et al. 2014; Williams et al.
- 175 2013). The recently published study combining data on 91,796 children born after non-donor ART in

176	four Nordic countries found no significant increase in overall cancer rates (adjusted Hazard Ratio
177	1.08; 95%Cl 0.91-1.27) (Sundh et al. 2014). Similarly our previous study of 106,013 children born
178	after non-donor ART over the same study period and from the same population as our current study,
179	did not show an overall increased risk of cancer (SIR 0.98; 95%CI 0.81-1.19) (Williams et al. 2013).
180	
181	This study is the first, to our knowledge, to explore cancer risk in children born after donor ART and
182	uses high quality data from two population-based data sets. NRCT data are virtually complete for the
183	study period (Kroll et al. 2011) and reporting to the HFEA is mandatory (HFEA act 2008). Whilst this
184	study is the first to investigate cancer risk after donor ART, it is based on previously published
185	methodology (Williams et al. 2013). There were very few cases with uncertain linkage (n=2), and
186	sensitivity analysis including these did not substantially alter results.
187	
188	Although this is a population-based study covering the whole of Great Britain over a 17 year time
189	period which includes a large number of children born after donor ART, the rarity of specific
190	diagnostic sub-groups of childhood cancer and thus the small number of cases reported in this study
191	result in wide confidence intervals for individual outcomes. As this is an observational study, it is not
192	possible to adjust for all potential confounders. We have instead used stratification to explore the
193	role of a number of potential moderating and mediating factors, where data are available.
194	Additionally, this study was not able to compensate for deaths and emigrations within this cohort.
195	However, given the age of the cohort and extrapolating from national data (Office for National
196	Statistics 2010), we would estimate under normal circumstances not more than 69 members of the
197	original cohort would have died during follow-up (0.6%). Emigration rates are harder to estimate,
198	but we assume not more than 2% are likely to have emigrated during follow-up. It was not possible
199	to adjust for socio-economic status (SES) as no measure of SES was available for the cohort as a
200	whole. It is also possible that there were other unknown potential confounding factors, which we
201	were unable to take into account. Whilst the overall numbers of children born after oocyte donation,

202	sperm donation or embryo donation were available, these data were not available for analysis at an
203	individual level. Our study had an average follow-up of 7.86 years. Therefore we are not able to
204	comment definitively on risk of cancer subtypes with a peak age of onset beyond 7 years.
205	
206	A significantly increased risk of hepatoblastoma was detected in this study of children born after
207	donor ART, and was associated with low birthweight. A similar increased risk of hepatoblastoma,
208	associated with low birthweight, was seen in our previous study of children born after non-donor
209	conception (SIR 3.64; 95% CI 1.34-7.93) (Williams et al. 2013). The Nordic group found a 2- fold
210	increase risk of hepatic tumours in children born after non-donor ART; although this was based on
211	small numbers and confidence intervals were wide and included 1, they did find a hazard ratio of
212	2.61 (aHR2.61 (0.74-9.26; adjusted for country, maternal age, parity, sex, gestational age and birth
213	defects) (Sundh et al. 2014). Beckwith-Wiedemann syndrome (BWS) is also a risk factor for
214	hepatoblastoma (Puumala et al., 2012), and children born after ART are at increased risk of BWS
215	(Amor and Halliday 2008). There was a small number of children (less than five) in our cohort with
216	BWS, but there were no cases of hepatoblastoma in children with BWS or related anomalies.
217	
218	There is a known, consistent, inverse association between birth weight and hepatoblastoma risk
219	(O'Neill et al. 2015; Heck et al. 2013; de Fine Licht et al. 2012; Ansell et al. 2005; Spector et al. 2009;
220	Spector et al. 2008; Ikeda, Matsuyama, and Tanimura 1997; McLaughlin et al. 2006; Tanimura et al.
221	1998). Children born after ART are known to have significantly lower birth weight than children born
222	after spontaneous conception (McDonald et al. 2010; Helmerhorst et al. 2004). Unfortunately as we
223	were unable to adjust for birth weight, instead stratifying for this factor in both studies, we are
224	unable to determine whether children in these studies have increased risk of hepatoblastoma
225	mediated solely due to their low birth weight or whether children with low birth weight born after
226	ART are at higher risk than they would be if born after spontaneous conception. The Nordic study did

- 227 not adjust for birth weight directly, but adjusted for gestational age, which did not materially alter
- their rate estimate for hepatic tumours (Sundh et al. 2014).

- 230 In conclusion, this study provides evidence against an increased risk of overall childhood cancer in
- 231 individuals born after donor ART, which is reassuring for parents and clinicians alike. For the majority
- of individual diagnostic subgroups, risk estimates were not significantly raised. A significant
- 233 increased risk of hepatoblastoma was observed, in line with that found in our recent study of
- children born after non-donor ART. This was associated with low birth weight, itself a known risk
- factor for hepatoblastoma. Although this finding was not observed in non-UK studies (Sundh et al.
- 236 2014; Kallen et al. 2010), further investigation is warranted. However it should be emphasised that
- the absolute risks are very small.

239 ACKNOWLEDGEMENTS

- 240 We would like to acknowledge the help and support of Dr Helen Klip (Department of Epidemiology,
- 241 The Netherlands Cancer Institute) and of the UK Human Fertilisation and Embryology Authority
- 242 (HFEA).
- 243

244 AUTHORS' ROLES

- 245 Dr Williams jointly conceptualized and designed the study, devised the linkage protocol, supervised
- the linkage and carried out the analysis, drafted the initial manuscript and approved the final
- 247 manuscript as submitted.
- 248 Mrs Bunch jointly conceptualized and designed the study, devised the linkage protocol, jointly
- supervised the linkage and carried out the analysis, reviewed and revised the manuscript, and
- approved the final manuscript as submitted.
- 251 Mr Charles Stiller jointly conceptualized and designed the study, interpreted data, reviewed and
- revised the manuscript, and approved the final manuscript as submitted.
- 253 Dr Michael Murphy jointly conceptualized and designed the study, interpreted data, reviewed and
- revised the manuscript, and approved the final manuscript as submitted.
- 255 Dr Beverley Botting jointly conceptualized and designed the study, review data linkage, interpreted
- 256 data, reviewed and revised the manuscript, and approved the final manuscript as submitted.
- 257 Professor Hamish Wallace jointly conceptualized and designed the study, interpreted data, reviewed
- and revised the manuscript, and approved the final manuscript as submitted.
- 259 Dr Melanie Davies jointly conceptualized and designed the study, interpreted data, reviewed and
- 260 revised the manuscript, and approved the final manuscript as submitted.
- 261 Professor Alastair Sutcliffe jointly conceptualized and designed the study, interpreted data,
- reviewed and revised the manuscript, and approved the final manuscript as submitted.
- 263 FUNDING

264	This work was funded by Cancer Research UK (C36038/A12535) and the National Institute for Health
265	Research (405526) and supported by the National Institute for Health Research Biomedical Research
266	Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College
267	London. The work of the Childhood Cancer Research Group (CCRG) was supported by the charity
268	CHILDREN with CANCER UK, the National Cancer Intelligence Network, the Scottish Government and
269	the Department of Health for England and Wales.
270	
271	CONFLICT OF INTEREST
272	There are no conflicts of interest.
273	
274	REFERENCES
275	Amor DJ and Halliday J. (2008) A review of known imprinting syndromes and their association with
276	assisted reproduction technologies. Hum Reprod; 23 2826-34.
277	
278	Ansell P, Mitchell CD, Roman E, Simpson J, Birch JM, and Eden TO. Relationships between perinatal
279	and maternal characteristics and hepatoblastoma: a report from the UKCCS. Eur J Cancer 2005; 41
280	741-8.
281	
282	Breslow NE and Day NE. Statistical Methods in Cancer Research. Volume II, 1987. International
283	Agency for Research on Cancer, Lyon, France.
284	
285	de Fine Licht S, Schmidt LS, Rod NH, Schmiegelow K, Lahteenmaki PM, Kogner P, Trager C, Stokland T,
286	and Schuz J. Hepatoblastoma in the Nordic countries. Int J Cancer 2012; 131 E555-61.
287	
288	Hargreave M, Jensen A, Toender A, Andersen KK, and Kjaer SK. Fertility treatment and childhood
289	cancer risk: a systematic meta-analysis. Fertil Steril 2013; 100 150-61.

290	
291	Heck JE, Meyers TJ, Lombardi C, Park AS, Cockburn M, Reynolds P, and Ritz B. Case-control study of
292	birth characteristics and the risk of hepatoblastoma. Cancer Epidemiol 2013; 37 390-5.
293	
294	Helmerhorst FM, Perquin DA, Donker D, and Keirse MJ. Perinatal outcome of singletons and twins
295	after assisted conception: a systematic review of controlled studies. BMJ 2004; 328 261.
296	
297	Human Fertilisation & Embryology Authority. Egg and Sperm Donation in the UK 2012-2013.
298	(http://www.hfea.gov.uk/9370.html). Accessed: 17/5/2017
299	
300	Ikeda H, Matsuyama S, and Tanimura M. Association between hepatoblastoma and very low birth
301	weight: a trend or a chance? J Pediatr 1997; 130 557-60.
302	
303	Kallen B, Finnstrom O, Lindam A, Nilsson E, Nygren KG, and Olausson PO. Cancer risk in children and
304	young adults conceived by in vitro fertilization. <i>Pediatrics</i> 2010; 126 270-6.
305	
306	Kroll ME, Murphy MF, Carpenter LM, and Stiller CA. Childhood cancer registration in Britain: capture-
307	recapture estimates of completeness of ascertainment. Br J Cancer 2011; 104 1227-33.
308	
309	McDonald SD, Han Z, Mulla S, Ohlsson A, Beyene J, Murphy KE, and Knowledge Synthesis G. Preterm
310	birth and low birth weight among in vitro fertilization twins: a systematic review and meta-analyses.
311	Eur J Obstet Gynecol Reprod Biol 2010; 148 105-13.
312	
313	McLaughlin CC, Baptiste MS, Schymura MJ, Nasca PC, and Zdeb MS. Maternal and infant birth
314	characteristics and hepatoblastoma. Am J Epidemiol 2006; 163 818-28.
315	

316	O'Neill KA, Murphy MF, Bunch KJ	, Puumala SE, Carozza SE,	, Chow EJ, Mueller BA, McLaughlin CC,
-----	---------------------------------	---------------------------	---------------------------------------

- 317 Reynolds P, Vincent TJ, et al. Infant birthweight and risk of childhood cancer: international
- population-based case control studies of 40 000 cases. *Int J Epidemiol* 2015; 44 153-68.
- 319
- 320 Office for National Statistics. Interim Life Tables United Kingdom (1980-80 to 2008-2010).
- 321 (https://www.ons.gov.uk/ons/rel/lifetables/interim-life-tables/2008-2010/rft-ilt-uk-2008-2010.xls).
- 322 Accessed: 17/5/2017

- 324 Puumala SE, Ross JA, Feusner JH, Tomlinson GE, Malogolowkin MH, Krailo MD, and Spector LG.
- 325 Parental infertility, infertility treatment and hepatoblastoma: a report from the Children's Oncology
- 326 Group. *Hum Reprod* 2012; 27 1649-56.

327

Raimondi S, Pedotti P, and Taioli E. Meta-analysis of cancer incidence in children born after assisted
 reproductive technologies. *Br J Cancer* 2005; 93 1053-6.

330

- 331 Reigstad MM, Larsen IK, Myklebust TA, Robsahm TE, Oldereid NB, Brinton LA, and Storeng R. Risk of
- 332 Cancer in Children Conceived by Assisted Reproductive Technology. *Pediatrics* 2016; 137 e20152061.

333

- 334 Reigstad MM, Oldereid NB, Omland AK, and Storeng R. Literature review on cancer risk in children
- born after fertility treatment suggests increased risk of haematological cancers. Acta Paediatr 2017;
- 336 106 698-709.

337

- 338 Schieve LA, Rasmussen SA, Buck GM, Schendel DE, Reynolds MA, and Wright VC. Are children born
- after assisted reproductive technology at increased risk for adverse health outcomes? *Obstet*

340 *Gynecol* 2004; 103 1154-63.

342	Spector LG, Johnson KJ, Soler JT, and Puumala SE. Perinatal risk factors for hepatoblastoma. Br J	
343	Cancer 2008; 98 1570-3.	
344		
345	Spector LG, Puumala SE, Carozza SE, Chow EJ, Fox EE, Horel S, Johnson KJ, McLaughlin CC, Reynolds P,	
346	Behren JV, et al. Cancer risk among children with very low birth weights. Pediatrics 2009; 124 96-104	
347		
348	Stata Statistical Software: Release 12. College Station TX: Stata Corp LP, City.	
349		
350	Steliarova-Foucher E, Stiller C, Lacour B, and Kaatsch P. International Classification of Childhood	
351	Cancer, third edition. Cancer 2005; 103 1457-67.	
352		
353	Sundh KJ, Henningsen AK, Kallen K, Bergh C, Romundstad LB, Gissler M, Pinborg A, Skjaerven R,	
354	Tiitinen A, Vassard D, et al. Cancer in children and young adults born after assisted reproductive	
355	technology: a Nordic cohort study from the Committee of Nordic ART and Safety (CoNARTaS). Hum	
356	Reprod 2014; 29 2050-7.	
357		
358	Sutcliffe AG and Ludwig M. (2007) Outcome of assisted reproduction. Lancet; 370 351-9.	
359		
360	Tanimura M, Matsui I, Abe J, Ikeda H, Kobayashi N, Ohira M, Yokoyama M, and Kaneko M. Increased	
361	risk of hepatoblastoma among immature children with a lower birth weight. Cancer Res 1998; 58	
362	3032-5.	
363		
364	Human Fertilisation and Embryology Authority Act 2008	
365	(http://www.legislation.gov.uk/ukpga/2008/22/contents). Accessed: 17/5/2017	
366		

- 367 Williams CL, Bunch KJ, Stiller CA, Murphy MF, Botting BJ, Wallace WH, Davies M, and Sutcliffe AG.
- Cancer risk among children born after assisted conception. *N Engl J Med* 2013; 369 1819-27.

- 370 Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, van der
- 371 Poel S, International Committee for Monitoring Assisted Reproductive T, and World Health O. The
- 372 International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World
- Health Organization (WHO) Revised Glossary on ART Terminology, 2009. Hum Reprod 2009; 24 2683-

374 7.

Table I. Cohort Characteristics.

Variable	Frequency (%) ¹
N	12,186
Sex	
Male	6,326 (52)
Female	5,851 (48)
Multiple births	
Singletons	6,697 (55)
Multiple Births Birth weight	5,489 (45)
Mean (SD) g	2,807 (812)
Birth weight group (g)	2,007 (012)
≤2499	3,980 (33)
2500g-3999	7,379 (61)
≥4000	679 (6)
Gestational age at birth	
Mean (SD)	37.1 (3.3)
Type of donor treatment	
Donated oocytes	5209 (43)
Donated sperm	6508 (53)
Donated embryos	469 (4)
Type of ART	
IVF	9,764 (80)
ICSI and other micromanipulation ²	2,110 (17)
Not recorded Fresh/ frozen cycles	310 (3)
Fresh Cycle	10,207 (84)
Cryopreserved Cycle	1,949 (16)
Stage at embryo transfer	
Blastocyst	5,402 (44)
Cleavage	370 (3)
Not recorded	6,414 (53)
Maternal age at birth of child	
Mean (SD) years	37.8 (6.2)
Paternal age at birth of child	
Mean (SD) Years	40.3 (7.4)
Infertility cause	· ·
Both Male & Female	2,734 (22)
Female Factor only	2,847 (23)
Male Factor only	4,706 (39)
Unexplained	740 (6)
Not recorded	1,159 (10)
Duration of infertility	
Mean (SD) years	6.1 (4.1)
Previous maternal ART cycles	
0	4,799 (39)
≥1	7,385 (61)
Previous maternal live births	2 5 4 5 (24)
0 ≥1	2,546 (21) 2,535 (21)
∠⊥ Unknown	2,555 (21) 7,105 (58)
UIKIOWI	(00) (01, 1

¹Frequencies do not always add up to 12,186, and percentages to 100, where data is unrecorded and treated as missing ²Intracytoplasmic sperm injection (ICSI): a procedure in which a single spermatozoon is injected into the oocyte cytoplasm; Micromanipulation: a technology that allows micro-operative procedures to be performed on the spermatozoon, oocyte, zygote, or embryo.

Table II. Overall cancer risk stratified by potential mediating/moderating factors.

	All Cancers ¹			
Mediating/ Moderating Factor	Person years follow-up	SIR	95% CI	
Overall	95,389	0.83	0.43-1.45	
Sex				
Male	49,418	1.13	0.52-2.14	
Female	45,970	0.47	0.10-1.36	
Age group at diagnosis (years)				
0	11,734	1.29	0.27-3.78	
1-4	38,917	0.82	0.30-1.79	
5-9	31,688	0.82	0.18-2.57	
10-14	13,051	0.00	0.00-2.14	
Birth weight (g)				
<2500	33,048	0.80	0.22-2.05	
2500g-3999	56,398	0.93	0.40-1.84	
≥4000	4,776	0.00	0.00-4.00	
Multiple Births				
Singletons	50,331	0.91	0.37-1.87	
Multiple Births	45,058	0.74	0.24-1.73	
Previous maternal live births				
0	18,940	1.04	0.21-3.03	
1 or more	21,165	0.62	0.08-2.25	
Type of ART				
IVF	83,548	0.89	0.44-1.58	
ICSI and other micromanipulation	10,083	0.00	0.00-1.76	
Not recorded	1,734	3.26	0.08-18.2	
Fresh/ Cryopreserved cycle				
Fresh	80,153	0.83	0.40-1.52	
Cryopreserved	14,830	0.88	0.11-3.18	
Not recorded	406	0.00	0.00-55.7	

¹Numbers of cancers observed not given, as ethical regulations preclude publishing cells containing fewer than five cohort members.

Table III. Cohort cancer risk by specific cancer type.

Cancer Type and ICCC3 categories ²	Person years of follow up	Standardized Incidence Ratio ¹	95% Confidence Interval
All cancers			
ICCC-3 groups I to X11	95,389	0.83	0.43-1.45
Leukaemia			
ICCC-3 group I	95,445	0.61	0.13-1.78
CNS tumours			
ICCC-3 group III	95,435	1.17	0.32-2.99
Neuroblastoma			
ICCC-3 group IV	95,464	0	0.00-2.03
Retinoblastoma			
ICCC-3 group V	95,452	3.29	0.40-11.87
Renal tumours			
ICCC-3 group VI	95,460	0.94	0.02-5.25
Hepatic tumours			
All- ICCC-3 group VII	95,454	9.12	1.11-32.95*
Hepatoblastoma, ICCC-3 group VIIa	95,454	10.28	1.25-37.14*
Bone tumours and extra osseous sarcomas			
All- ICCC-3 groups VIII and IX	95,464	0	0.00-2.50
Osteosarcoma- ICCC-3 group VIIIa	95,464	0	0.00-18.38
Ewing's Sarcoma- ICCC-3 group-VIIIc, IXd, division 1& 2	95,464	0	0.00-12.41
Rhabdomyosarcoma- ICCC-3 group IXa	95,464	0	0.00-5.91
Other Sarcomas- ICCC-3 groups VIIIb, VIIId, VIIIe IXb, IXc, IXd divisions 3 to 11, IXe	95,464	0	0.00-10.45
Germ cell tumours			
ICCC-3 group X	95,464	0.00	0.00-6.59

¹Numbers of cancer observed not given, as ethical regulations preclude publishing cells containing fewer than five cohort members.

²Cancer type classified according to ICCC3 coding²⁹

* = P<0.05. ** =P<0.01*** =P<0.001