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Abstract 

Fluidization is a prime example of complex granular flows driven by fluid-solid interactions. 

The interplay of gravity, particle-particle and fluid-particle forces leads to a rich spectrum of 

hydrodynamic behavior. A number of complex mathematical formulations exist to describe 

granular flows. At a macroscopic scale, Eulerian models based on the Kinetic Theory of 

Granular Flow (KTGF) have been successfully employed to simulate dilute and moderately 

dense systems, such as circulating fluidized bed reactors. However, their applications to dense 

flows are challenging, because sustained particle contacts are important. As solid fraction rises, 

the behavior of granular media responds dramatically to particle properties and changes in 

concentration. Lacking a coherent transition between formulations of dilute, dense and quasi-

static flow behavior, kinetic models are incapable of describing how microstructure emerges 

and affects the rheology. The behavior of transitional granular flows, such as pulsed fluidized 

beds, for which the particulate phase transitions between the viscous and plastic regimes, are 

good reminders of this limitation. In recent years, tremendous effort has been devoted to 

finding new ways to describe the effects of sustained solids friction and dense flow rheology. 

This article provides a perspective on this matter from the viewpoint of gas-solid fluidization 

and discusses advances in describing the dilute-to-dense transition in a continuum framework. 

Four innovative approaches prevail to extend or supersede the existing kinetic theory: (i) 

including effective restitution coefficients, (ii) coupling local granular rheological correlations, 
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(iii) introducing rotational granular energy, and (iv) combining non-local laws. While their 

reliability is still far from that of a Eulerian-Lagrangian approach, they lay a promising 

foundation for developing a rigorous description of granular media that merges the classical 

frameworks of continuous fluid and soil mechanics. The progress of continuum formulations 

does not compete with multi-scale modeling platforms with an applied focus. Ultimately, 

combining both is a prerequisite to developing new solid stress models that will improve not 

only the performance of macroscopic models, but also our understanding of granular physics. 

1. Introduction 

Granular flow is a fascinating area of fluid dynamics, however, the physics underpinning the 

collective behavior of powders is far less understood than that of fluids. Granular media show 

more complex dynamic behavior than ordinary fluids, due to the dissipation of energy in 

inelastic collisions and the creation of mesoscopic structures at moderate concentrations. The 

application of shear stress onto a collection of particles causes the transport of momentum and 

a proportional shear rate. When particles consolidate, stress can be transported through 

collective microstructures emerging from sustained particle contacts, leading to a solid-like 

response where stress induces a proportional elastic deformation or strain. In this transition 

region, granular matter, like other complex fluids, displays noteworthy dynamic features. 

Understanding the complex behavior of dense granular matter could unlock the potential to 

create new processes, materials and devices. Fig.1 illustrates different flow regimes associated 

with granular flows, and their commonly recognized concentrations. 

(Figure 1 to be put here) 

In a highly dilute state, the dispersion of a solid phase is purely driven by the surrounding flow 

field. The particle velocity is a local function of the fluid velocity, and inter-particle collisions 

are not frequent enough to impart any memory to the solid flow. As a result, many turbulent, 
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particle-laden flows, such as pneumatic conveyors, particulate matter in engines, inhalers and 

aerosols can be reproduced numerically by some sort of Lagrangian tracking framework with 

two-phase coupling to the fluid, described via a turbulence modeling platform, e.g. Large Eddy 

Simulations (LES) [1] or Reynolds Averaged Navier-Stokes (RANS) simulations. Stochastic 

models can estimate the rate of interparticle collisions and study associated processes, such as 

coalescence. However, as concentration rises, a higher collision rate leads to more energy 

dissipation. It then becomes necessary to estimate the momentum exchanged within the solid 

phase, which requires four-way coupled approaches.  

In addition to Lagrangian tracking, the emergence of KTGF more than half a century ago 

provided a rigorous theoretical basis to describe rapid, dilute granular flows as a continuum, 

by using the corresponding Boltzmann equations [2, 3]. The KTGF tracks the energy transport 

and dissipation via a so-called granular temperature, a type of pseudo-energy that quantifies 

the kinetic energy in the solid fluctuating velocity, as shown in Fig.1a [4]. The classic KTGF 

assumes the particles to be ideal rigid spheres, frictionless and slightly inelastic, whereby 

collisions are binary, instantaneous, and uncorrelated. These simplifications allow the particle 

velocity distribution to be treated as Maxwellian, but limit the application to the study of 

granular flows in dilute and moderately dense flows.  

When particles consolidate further, they enter first the transitional, and then the quasi-static 

regime. Transitional granular flows are observed experimentally as a local, yet nonlinear 

correlation between the stress and the rate of deformation, see Fig.1b, while quasi-static flows 

exhibit a strong time-dependence and non-locality characteristic of solids, which originates 

from the transport of momentum and stress through a structure of particle chains, see Fig.1c. 

Researchers in geophysical engineering and soil physics have focused on describing the effects 

of non-local granular rheology, which permits more physically relevant and accurate 

descriptions of steady-shear, dense flows [5]. Nevertheless, these closures are not available in 
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the traditional context of fluidization. To model dense gas-solid fluidization, the classic KTGF 

could be coupled with solid frictional stress models, originated from soil mechanics, to account 

for sustained particle contacts, as shown in Fig.1c. These correlations assume a local and 

instantaneous coupling between solid volume fraction and frictional stress, and have been 

derived empirically. As a result, the improvement attained is quite limited, and the classic 

KTGF-based continuous framework is still deficient in describing dense granular flows.  

Beyond continuum models, one could study all regimes of granular flow with fully resolved 

Lagrangian frameworks, such as Direct Numerical Simulations (DNS) based in finite-volume 

Lattice Boltzmann (LB) methods [6], or using averaged methods, such as a discrete element 

method (DEM), to resolve the individual particle motion using Newton’s laws and applying a 

contact model to describe each collision [7]. These methods provide a direct description of the 

physics by numerically solving the collective behavior of the solid phase, rather than modeling 

it with constitutive equations, but they are computationally prohibitive for large-scale 

applications. Several coarse-grained models have been developed to reduce the computational 

cost. For example, the Particle-in-Cell (PIC) approach combines aspects of both the Eulerian 

and Lagrangian frameworks [8], resolving the solid flow by tracking a particle cloud to obtain 

a representative point of mass for multiple particles, but including a collisional stress 

correlation to include the effect of particle collisions. Similarly, coarse-grained DEM 

represents the behavior of a group of particles tracked together as a single virtual particle [9], 

or applying corrections to the forces involved to recreate the behavior of a finer set of particles 

[10]. The loss of information due to averaging or coarsening, however, ignores scale-dependent 

mechanisms and the impacts of heterogeneity on the system. J. Li and his colleagues at the 

Institute for Process Engineering (Chinese Academy of Sciences) have developed new 

multiscale alternatives to include interactions at mesoscales. The energy-minimization 

multiscale (EMMS) methodology formulates stability conditions for each flow regime based 
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on the principle of “compromise in competition” between gas and solid flow to predict the 

macroscopic steady-state behavior [11, 12]. This generic platform, called “mesoscience” by Li, 

has shown increasing success, leading to a scale-dependent drag law addressing heterogeneity, 

a two-step correction to KTGF-based models, and a potential multiscale computational 

paradigm [13]. Nonetheless, even if solid-gas interactions could be properly addressed by 

EMMS, a correct description of nonlinear solid stress is fundamental to capture system 

dynamic behavior. A rigorous understanding of the underlaying granular rheology, in particular 

for transitional and quasi-static flows, is essential to both Eulerian and Lagrangian frameworks. 

Obtaining a proper macroscopic description of the transition from dilute to dense regimes 

represents a historical challenge to the modeling of fluidized beds, where the solid phase varies 

across a wide range of concentrations. The freeboard, entrainment, cyclone systems and 

transport lines develop a dilute solid flow; bubbling columns are dominated by moderate 

concentrations with occasional formation of dense assemblies; whereas spouting beds mainly 

consist of quasi-static flows. A comprehensive, yet flexible mathematical description has 

proven very hard. It must capture dense and transitional regimes but also be valid for dilute and 

moderate flows. For this reason, the KTGF is often taken as the starting point for improving 

continuous modelling platforms. While classic KTGF-based models could successfully 

reproduce the overall statistics for a range of operations, they cannot describe the system 

dynamics as they fail to identify the formation of dense areas. This hinders reliable scale-up 

and operation and, as a result, substantial efforts have been devoted to improve continuum 

frameworks that allow the transition towards dense rheology, including effects associated to 

sustained friction when long particle chains start to form [14, 15].  

This article discusses continuum formulations from the perspective of fluidization research, 

moving from the basic description of dilute flows towards an increasing level of complexity 

until reaching a solid mechanics approach. In Section 2, we discuss challenges associated with 
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the continuum description of frictional, dense flows in the context of fluidization. We then 

illustrate these issues through a dynamic benchmark problem that involves a transitional flow, 

and evaluate the performance of the various current-state-of-art models in Section 3. 

Subsequently, in Section 4 we provide our perspective on the state-of-the-art, with 

opportunities to progress toward a universal continuum framework that is suited to transition 

across different flow regimes, occurring in different areas of a fluidized bed or during different 

stages of its operation. 

2. Granular Rheology in Fluidization Technology 

A better understanding of granular flow is critical to improving multiphase chemical reactor 

performance. Drying, coating, fluid catalytic cracking (FCC) and gasification are examples of 

granular processes of particular relevance in the chemical, pharmaceutical, food and energy 

sectors [16]. Fluidization technology is used to create an intensive interphase transport between 

gases and solids under homogenous mixing [17]. One can classify fluidized beds in dilute-

phase and dense-phase operations. The solid volume fraction ranges from around 0.01 in a 

typical riser to 0.50 in a low-velocity bubbling fluidized bed [18]. The flow properties also 

depend significantly on the size and type of particles. Geldart classified powders into four 

different groups based on their fluidization behavior [19]. Large and heavy powders tend to 

spout and form gas channeling, while too small particles easily agglomerate due to their 

cohesive nature, making fluidization very difficult. Group B powders, widely used in industrial 

applications, manifest immediate bubbling at incipient fluidization with little bed expansion. 

When increasing the superficial velocity beyond the minimum fluidization velocity, Umf [20], 

the bed transitions from steady bubbling to slugging and, eventually, turbulent fluidization and 

entrainment. Different designs have been developed to take advantage of the flow properties 

of each regime.  

2.1. Dilute Gas-Solid Fluidized Systems 
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Existing kinetic frameworks have been tremendously useful to reproduce rapid fluidization, 

whereby one fluidizes particles under a high gas velocity to achieve intensive contact and large 

interphase transfer rates. In a typical setup, solids are carried out of a bed by high-velocity gas 

and recirculated back into the system forming a circulating fluidized bed (CFB). The riser often 

involves a highly turbulent motion forming lean phases to a maximum of 25% solid fraction 

[20], but they can also create local dense regions due to cluster formation in the returning pipes. 

CFB units are often coupled with a stripper and a regenerator, in which the outflowing catalysts 

can be regenerated to maintain high activity throughout the process. CFBs have a major impact 

in oil refining through large-scale FCC units for production of high-octane gasoline. In addition 

to moving beds [21], L-S. Fan and his group at Ohio State University have extensively 

investigated the application of CFBs in chemical looping processes for CO2 emission controls, 

associated to fossil fuel combustion and gasification [22, 23], in which the CO2 produced can 

be sequestered without further separation process [24]. The particulate phase in a CFB riser is 

typically modelled using a classic KTGF formulation [25] or hybrid approaches [16], because 

direct Lagrangian tracking is still computationally prohibitive. Nonetheless, the development 

of high-performance computing (HPC) with a new generation of Exascale architectures 

promises very large-scale Lagrangian simulations to become realistic. 

2.2. Dense Gas-Solid Fluidized Systems 

Fluidizing Geldart B particles at lower velocities leads to the collapse of the solids and the 

formation of gas voids. When the velocity is high enough, the voids span across the entire bed, 

forming a slugging flow. Decreasing the gas velocity further makes the slugs break down into 

bubbles and the bed consolidates forming a distinct top surface. Bubbling is the manifestation 

of an intrinsic instability in the exchange of momentum between the gas and particles [26]. As 

the gas bubbles form and rise, they move the solids up, into their wakes, and drifts cause 
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vigorous mixing. Thereby, the overall performance relies on bubble properties, such as size, 

rise velocity and spatial distribution.  

Controlling the flow pattern is difficult, because the bubble interactions are very hard to predict, 

leading to chaotic behavior and non-uniform gas residence times. Critically, phenomena such 

as coalescence, channeling and break-up are scale dependent, which causes distinctly different 

hydrodynamics in industrial units and tremendous challenges in the design and operation of 

new processes. The case of a plant in Brownsville, TX (USA) in 1950 provides a good 

illustration of such difficulties: Two commercial Fischer–Tropsch synthesis reactors were built 

based on experiments in a slugging pilot reactor, only to find out that, at commercial scale, 

bubble expansion and rise velocity were much higher than expected. The shorter residence time 

resulted in a 70% loss in yield [27]. Nowadays, modeling provides us with a wide array of tools 

to improve reactor design, leading to much tighter quantification of the uncertainty in scale-up, 

yet we face the same fundamental challenge in lacking ability to reliably control inherently 

unscalable, nonlinear phenomena. 

2.3. Dynamic Gas-Solid Fluidized Beds in a Transitional Regime: Pulsed Beds 

To tackle some of the described challenges, one can attempt to manipulate the hydrodynamics 

of fluidized beds using additional degrees of freedom in their design, so as to stabilize the 

bubbling phenomena before they degenerate into chaos [28]. Various techniques have been 

proposed to structure fluidized beds [28, 29]. In particular, pulsation-assisted fluidization has 

proven to be a useful, non-intrusive way to homogenize a fluidized bed at a relatively low cost 

[30, 31]. Furthermore, Coppens et al. [29, 32] have demonstrated that pulsation can be used to 

create a reproducible flow structure, whereby rising bubbles self-organize into a triangular 

lattice with an intrinsic horizontal wavelength  (Fig. 2). In such a pattern, gas bubbles nucleate 

at each cycle at alternate positions separated by ½ .  
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(Figure 2 to be put here) 

This structure only stabilizes at very dense conditions when the suspension oscillates around 

the minimum fluidization state. Within every oscillation period, the bed is allowed to 

consolidate for a short period of time, while the flow goes through a minimum. At this point, 

the existing bubbles rise slowly and maintain their shape, without collapsing or shifting 

laterally; the solids partially de-fluidize, but still carry the inertia gained during the previous 

rise in gas flowrate. When the gas velocity starts to increase again, the solids are gradually 

accelerated upwards, travelling diagonally towards the bubbles located at a higher level. As a 

result, a rhomboid region forms in between four bubbles (with vertices at alternate bubble 

positions in consecutive rows), where the solids remain densely packed, thus are far less 

mobile, as demonstrated in Fig.3. The formation of dense regions compartmentalizes the solid 

circulation. It also prevents the lateral movement of bubbles and a “catch-up effect”, hereby 

suppressing coalescence and breakage. This leads to a pattern, governed by a single cycle of 

bubble nucleation, rise and rupture at the bed surface. 

Hence, the formation of dense structures and the nucleation of bubbles are intimately related. 

Fig.3a illustrates this process with a series of images obtained with a high-speed camera (HSC, 

Photron FASTCAM SA1). Each structure forms in the wake of an existing bubble (the front 

vertex) when the solids circulate into its wake and form a pyramid pressed onto the bottom air 

distributor. The bed then collapses and, when the top bubble rises, the presence of the 

compressive stress in its tail prevents another bubble to be formed at this site, so that, in the 

next pulse, bubbles appear on both sides. The new bubbles (and associated side vertices) create 

a new set of pyramids in alternate positions. When the air velocity increases, these new bubbles 

rise, shaping the original pyramid into a rhomboid structure. During the next pulse, the presence 

of the two alternate pyramids causes a new bubble (the tail vertex) to form in the tail of the 

central rhomboid, pushing it upwards. In this way, the formation and disintegration of these 
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granular structures synchronize with the creation and motion of the gas bubbles. When the front 

vertex bubble reaches the surface, the structure becomes an inverted pyramid that is eventually 

pushed to the sides when the tail vertex bubble reaches the surface. 

The solid velocity magnitude contours depicted in Fig.3b were obtained with particle tracking 

velocimetry (PTV) analysis [33] of selected HSC videos and post-processed with a proper 

orthogonal decomposition (POD) method to correct particle image velocimetry (PIV) data [34]. 

These images confirm how regular structures appear and evolve, as well as connect them to the 

solid flows with diagonal transit lines between the bubbles. Despite some axial mixing of solids 

through the movement and rupture of the front and tail bubbles, long-range circulation is 

heavily suppressed. Mixing is less pronounced than under steady-flow operation, but it has now 

become a much more controlled, local process, which is driven by two characteristic length 

scales: the bubble size and the pattern wavelength. In such a system, one would expect to have 

very tight control over contact time and solid mixing, with transport rates that lie in between 

those in a fixed and a fluidized bed.  

(Figure 3 to be put here) 

3. The challenges of modeling pulsed beds in the transition from dilute to dense regime 

From a theoretical point of view, granular flow can be divided into three different regimes [35]. 

An inertial regime is often associated with a solid volume fraction of 0<ϕ<0.49 and strong 

agitation [36]. A transitional regime includes the transition from fluid-like to solid-like 

behavior when 0.49<ϕ<ϕc, where ϕc is defined as the critical packing. Beyond ϕc, granular 

media enter the quasi-static regime, where stresses become completely independent of shear 

rates. In the pulsating beds described above, the concentration oscillates, causing the particulate 

phase to transition in both space and time across the inertial and quasi-static regimes. The 

synchronization of the bubble nucleation and the formation of mesoscopic dense structures 
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discussed in Fig.3 indicate that the creation of a bubble pattern is a manifestation of the 

viscoplastic behavior of the particle assembly. For that reason, this phenomenon is an excellent 

benchmark to evaluate new theoretical formulations and their ability to reproduce transitional 

flows. A model capable of reproducing a regular bubble pattern would give a strong indication 

that it captures the dominant physics across all flow regimes.  

3.1 Modeling a structured bubble flow with Eulerian-Lagrangian approaches 

Not many researchers have studied regular bubble patterns numerically. Kawaguchi et al. [37] 

and Wang and Rhodes [38] performed 2D simulations and demonstrated that a pulsating gas 

flow facilitates homogenization. Nevertheless, they could not reproduce the triangular lattice 

observed experimentally. Our recent work, using a 3D computational domain, shows that 

reproducing the experimental patterns is possible by making use of standard CFD-DEM models 

in a quasi-2D bed [39]. Here, one can easily identify the formation of the dense regions 

described in Fig.3 in between the wake, the front and the side of rising bubbles. Fig.4 depicts 

the formation of dense regions with very low mobility in a single array of bubbles, once they 

are fully formed and rising. 

(Figure 4 to be put here) 

Fig.5 shows how the gas streamlines curve immediately to avoid the dense central region, using 

the bubbles as a shortcut to the top. When different bubble arrays coexist in the bed (Fig.5b) 

the gas penetrates nearby bubbles and shortcuts through the different arrays diagonally. When 

the gas velocity increases during a pulse, the particles are dragged towards bubbles at higher 

levels, creating the diagonal transit lines shown in Fig.3, and shaping the central dense regions 

into the rhomboids shown in Fig.3 and 4.  

(Figure 5 to be put here) 
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The qualitative behavior in the simulations is in good agreement with the visual inspection 

using high-speed cameras. The circulation of solids converging in the wake of a bubble forms 

a pyramidal region that first conditions the nucleation during the next pulse and then is pushed 

up to form a rhomboid that prevents the lateral movement of bubbles in the following pulse. In 

the case of a bed that accommodates multiple rows of bubbles, this structure also limits the 

axial movement (catch-up) during the following pulses. 

Frictional stress is essential to stabilize bubble flow [26]. Ongoing work with CFD-DEM and 

TFM simulations using different friction factors for the same system indicates that interparticle 

friction is critical in forming these regions, and thus a structured pattern. Along the same lines, 

other researchers have started to study the effect of the contact parameters. Bakshi et al.[40] 

analyzed the flow dynamics in 250 simulations of a scaled-down system, 5cm wide and 0.5cm 

thick. They found that the patterns cannot be formed in a bed of either near-elastic, low-friction 

particles or of highly inelastic, high-friction particles, as shown in Fig.6. This suggests that too 

low dissipation leads to the formation of large bubbles, which move and rise in the center of 

the bed, while too high dissipation fails to form a continuous flow of bubbles.   

(Figure 6 to be put here) 

In summary, recent work illustrates that solid mechanics plays an important role in forming 

dynamic bubble patterns. A stable flow structure emerges as a result of the alternation between 

the transitional and quasi-static regimes, whereby particles creep locally around bubbles and 

pack densely. To maintain this environment, the input energy must be dissipated largely via 

multiple enduring frictional contacts, whereas the bed still maintains a sufficient level of 

fluidization. A state-of-the-art Eulerian-Lagrangian approach explicitly tracks and resolves 

individual particle collisions; therefore, it can easily handle the rheology in different flow 

regimes without further assumptions and corrections.   
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3.2 Modeling a structured bubble flow with Eulerian-Eulerian approaches 

On the other hand, classical Eulerian-Eulerian frameworks have proven less successful in 

reproducing dense flows [41]. This is well known when modeling sandy piles, an hourglass, or 

U-tubes, where enduring friction dominates [16]. Classic KTGF has been derived to analyze 

rapid, dilute flows of slightly elastic spheres. Their inherent assumption that collisions are 

frictionless, binary and instantaneous, renders KTGF unable to account for sustained particle 

contact; thereby, it is limited to describe the inertial regime, where 0<ϕ<0.49. 

The state-of-the-art in describing dense flows in fluidization technology relies on coupling the 

KTGF with separate frictional stress models derived from the critical state theory of soil 

mechanics, originating from Coulomb’s frictional law. These closures include additive 

contributions due to friction on top of the KTGF kinetic-collisional terms (Eq.1). These 

frictional models are activated when the solid volume fraction ϕ exceeds a frictional packing 

limit, ϕf. The normal frictional stress is modeled solely as a function of solids fraction, coupling 

with different frictional shear viscosity models:  
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Johnson and Jackson [42] proposed a semi-empirical equation for the frictional solid pressure, 
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where Fr, n and p are the empirical constants. This correlation is often coupled with the 

frictional shear viscosity model proposed by Coulomb: 

sinf              (Eq.3) 

where θ is the angle of internal friction of the solids. Schaeffer [43] also derived a frictional 

shear viscosity model: 
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Here, I2D is the second invariant of the deviatoric stress tensor. This model is often coupled 

with the frictional pressure model proposed by Syamlal et al.[44]: 

( )n

f fP A              (Eq.5) 

where A and n are empirical constants; A=1025, n=10 and ϕf =0.59 are the typical values used.  

These widely used frictional stress models are of an empirical or semi-empirical nature, so one 

must underscore that, under the same conditions, the predicted stress can vary over many orders 

of magnitude [2]. Besides, they are extremely sensitive to the frictional packing limit, whose 

definition and selection are still debatable [45]. Given these limitations, it is not surprising that 

a classic formulation has not been able to reproduce convincingly a transitional flow. Our 

previous work shows how they can provide a reasonable prediction of other metrics, such as 

the bubble size [46], shown in Fig.7, while they still fail in recreating the correct dynamics of 

a structured bubble pattern. A pattern can indeed form occasionally in Eulerian-Eulerian 

simulations, but it is unstable and, more importantly, incorrect. Bubbles are often seen to 

originate from the same positions, leading to a square tessellation, which would then be 

disturbed quickly after several oscillations.  

(Figure 7 to be put here) 

The work of Bakshi et al. [47] on the formation of bubble patterns using Eulerian-Eulerian 

approaches in a full 3D domain reveals similar limitations. They show how the dimensionality 

of the domain affects the structure of the simulated bubble flow (Fig.8), due to the effects of 

front and rear walls. The authors associate 3D simulations to more reproducible bubble flows 

at f = 4Hz. Nevertheless, the resulting bubble structure is unstable and, as observed in other 

works, displays an incomplete triangular tessellation, which does not correspond to the 

experimentally observed pattern (compare Fig.2 and 8). In this context, it is difficult to 
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discriminate artifacts arising from a very steep numerical problem, from the correct 

reproduction of the underlying physics responsible for a pattern. The quantification of the 

regularity and reproducibility of a bubble structure are important to discern patterns and 

quantify their stability.  

(Figure 8 to be put here) 

These works demonstrate that the current formulation of the KTGF, coupled with a critical 

state yield stress correlation, is insufficiently predictive, because it tends to underestimate the 

effective shear viscosity and the dissipation of granular energy in the dense areas of the 

oscillating bed. Consequently, this formulation is unable to track the formation of the pivots 

described in Fig.3 and it overpredicts the solid circulation. The marked distinction between the 

two numerical frameworks can be attributed to the lack of a sophisticated model to describe 

how solid frictional stresses arise. 

More advanced constitutive relations have been put forward to describe dense granular flows, 

some of them rooted in related disciplines, such as geophysical engineering and soil physics, 

where granular plasticity is more often relevant [48]. Most of these correlations remain case-

specific and have not been extended to be generically applicable across all deformation 

regimes, let alone be part of a formulation compatible with a two-fluid modeling framework. 

As a result, the classic Eulerian-Eulerian framework based on a simple modification of the 

KTGF is still considered by many the state-of-the-art in modeling gas-solid fluidized flows, 

yet it is often utilized without paying sufficient care to the modeling objectives. 

4. Challenges to extend KTGF to dense flows 

This section reviews the limitations of KTGF-based models and potential routes to attain a 

framework that is more universally applicable to fluidization. However, it must be noted that 

KTGF has experienced wide success in predicting inertial-flow dominated fluidization. For 
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example, Li et al. performed both 2D and 3D KTGF simulations with three differently 

configured CFB risers, including different cross-sectional geometries and particle feeding 

directions [25]. Despite the significant quantitative differences between 2D and 3D 

simulations, pressure gradients and solids fraction were reproduced with good accuracy. 

Furthermore, the application of the KTGF to fluidized beds at small and well-controlled scales 

has had notable success in predicting bubble properties. To mention a few examples, Hulme et 

al. [49] simulated a 2D bubbling bed of Geldart B glass beads at 2Umf, showing quantitative 

agreement between the calculated and experimental axial profiles of the mean bubble size, 

measured by X-ray fluoroscopy. Bubble size, rising velocity and even solids circulation 

patterns and the expansion of bubbling beds of Geldart A and B particles have been captured 

using KTGF models [50]. Nonetheless, researchers looking at properties of the emulsion phase 

have voiced more concerning differences. For example, Hernández-Jiménez et al. measured 

properties using Particle Image Velocimetry (PIV) and Digital Image Analysis (DIA) in a 5mm 

thick quasi-2D bed fluidized using a small superficial velocity (1.75Umf) [51]. They found out 

that the KTGF model overpredicts the solids rising velocity by nearly one order of magnitude, 

despite good agreement in the bubble properties. As a result, substantial efforts have been made 

to extend the KTGF to rough and elastic particles, in order to account for more realistic energy 

dissipation processes [14, 15]. 

Formulating a robust closure for solids stress remains the major handicap of continuum models, 

in particular for dense granular flows. Historically, the solid stress expression has been closed 

via a constant solid viscosity evaluated from direct experimental measurements [3, 52, 53] or 

an empirical relationship that includes viscosity as an explicit algebraic function of solid 

volume fraction [54]. These closures are completely local and contain no time dependence, so 

they meet difficulties when describing dense flows.  
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The introduction of the KTGF allowed including weak non-local effects and a certain time 

evolution in the solid stress, through the transport of pseudo-thermal energy. Nevertheless, 

momentum transfer is still modeled locally. Efforts have been made to build a better 

mechanistic understanding of granular rheology and derive a simple, yet physically relevant 

theory. Comprehensive investigations have been carried out within the French research 

network, the Groupement De Recherche Milieux Divisés (GDR MiDi), to characterize steady, 

uniform, dense granular flows in terms of their velocity profiles, density profiles, and velocity 

fluctuations, in six different geometries for confined shear flows and surface flows [55]. This 

impressive body of work illustrates the richness and complexity of granular flow, and depicts 

the development of a very diverse range of velocity profiles under complex geometries. For 

example, they have shown how a linear or Bagnold solids velocity profile develops in an 

inclined-plane geometry surface flow, whereas a linear profile with an exponential tail appears 

in a drum, and a surface flow on top of a heap. In addition, the experimental study by Potapov 

and Campbell [56] has demonstrated that the ratio of maximum shear to normal stress, which 

is defined as the internal angle of friction in soil mechanics, is far from constant in hoppers. It 

has now become clear that one should not expect a soil plasticity based constitutive law alone 

to be enough to describe the flow behavior in the dense regime [57]. In this difficult context, 

several new approaches have been put forward to address the changes induced by sustained 

particle contacts, either in a local or non-local fashion [5, 58]. 

In the following sections, different routes are described to bridge KTGF for dilute and moderate 

flows with dense and quasi-static flows, in the context of fluidization technology. We discuss 

four promising mainstream modifications that open the ways to formulate universal solid stress 

closures. These potential formulations are presented with increasing degrees of complexity, 

from relatively innocuous modifications to the classic KTGF framework aimed at including 

the effects of friction in the dissipation of energy (Section 4.1) or the local rheology (Section 
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4.2), to the addition of full transport equations to address the transport of rotational energy 

(Section 4.3) and non-local effects associated to how microstructure affects the transport of 

momentum (Section 4.4). 

4.1. Friction represented by effective restitution coefficients 

Directly modifying the existing KTGF theory to account for an increasing solid friction effect 

is a natural first choice to progress into the transitional regime. Jenkins and Zhang [14] have 

proposed a simple modification of classic KTGF theory for nearly elastic collisions of slightly 

frictional spheres, which is widely recognized by the community. 

Since particles are treated as nearly elastic, the KTGF structure is essentially the same, and the 

rate of energy dissipation is mostly dependent on the effect of friction at a particle level. 

Assuming a Maxwellian rotational velocity distribution, the rotational granular temperature 

can be expressed in terms of the translational temperature balancing the production rate and 

dissipation rate of the rotational fluctuation energy in collisions. An effective restitution 

coefficient, eeff, can then be derived as a function of the normal restitution coefficient, e, solid 

friction, µ, and tangential restitution coefficient, β0, taking both the presence of inelasticity and 

friction into account for the total energy loss. When µ is small but µ0 is not, eeff can be expressed 

as follows: 
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where e, µ and β0 are parameters that can be characterized experimentally. The resulting eeff 

can easily be employed under the umbrella of the classical KTGF. The constitutive correlations 

for stress and flux of fluctuation energy are thereby influenced by friction via the change in 

granular temperature induced by the additional dissipation. The replacement of e with eeff aims 

to capture the decrease of the solid granular temperature and pressure when the interparticle 

friction coefficient increases, in a dilute regime [59]. 

Sun and Battaglia [60] implemented this methodology into MFIX-TFM (open source code 

from the National Energy Technology Laboratory from the USA) [44] to investigate the 

dynamics and bed expansion of a mono-dispersed bubbling gas-solid fluidized bed and the 

segregation in a bi-dispersed one, studying a 2D domain. Jenkins and Zhang’s model predicts 

stronger bubbling and a more dilute emulsion phase than the classical KTGF model, reaching 

better agreement with experimental, time-averaged bed heights. Besides, it was also shown 

that, while the classical KTGF model overpredicts segregation, Jenkins and Zhang's model 

provides good agreement with experimental segregation rates. However, other experimental 

validations reported by Goldschmidt et al. [61] show that the use of a lower eeff can also be 

detrimental and lead to artificially vigorous bubble dynamics, which suggests that particle 

friction could not be accounted for simply by applying a smaller restitution coefficient.  

More recently, Jenkins and Berzi [15] further extended the Garzo and Dufty formulation to 

include an additional length scale into the expression for the rate of collisional energy 

dissipation, with the purpose of accounting for very inelastic, dissipative collisions. The length 

is identified with the characteristic length of force chains of particles that are experiencing 
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multiple, correlated collisions when the solids approach the critical packing [62]. The use of 

such “chain length” correction intends to capture the increase in granular temperature and the 

decrease in shear stress ratio in the transitional regime. However, disparities remain between 

the predictions of a modified KTGF and DEM simulations for both solid stress and granular 

temperature [59]. To address the issue of overestimating energy dissipation in dense flow, Duan 

et al. [63] treated interparticle collisions as finite time processes, deriving a modifier for the 

collisional energy dissipation rate as a function of characteristic collision time, granular 

temperature and particle fraction. Compared to Jenkins and Berzi’s model, the resulting 

modified KTGF predicted the trend of granular temperature and solid velocity in better 

agreement with DEM simulations for non-homogeneous flows up to a solid packing of 0.57.  

4.2. Friction represented by local rheological principles 

A local rheological law-based approach to model dense granular stress has attracted the 

attention of the fluidization community, because of its simplicity and sound theoretical 

foundation. A number of works by the GDR MiDi group [55] have shown that the collective 

behavior of particles in the transitional regime shares many similarities with classical visco-

plastic fluids, such as Bingham fluids. The study proves the existence of local rheology for a 

variety of configurations, in which the shear stress only depends on local shear rate and solids 

pressure. Therefore, in principle, one could formulate appropriate constitutive laws to model 

dense granular flow stresses by extracting this local relationship. In a steady-state 

homogeneous granular flow, a dimensionless shear rate or inertial number, I, can be defined as 

the ratio of the deformation rate and the rearrangement rate, as shown in Eq.12: 
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where P is the isotropic solids pressure,   is the shear rate, dp stands for the particle size, and 

ρ is the particle density. Small values of I represent the quasi-static regime, where the 

macroscopic deformation is very slow compared to microscopic recovery, whereas a large I 

corresponds to rapid flow. An effective friction coefficient, µeff, can then be defined as: 

eff
P


             (Eq.13) 

 

where τ is the solids shear stress. Based upon a number of previous experimental [64] and 

computational works [65], Jop et al. [58] proposed a new constitutive relationship between the 

effective friction µeff and I, considering static friction effects: 
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where I0 is a constant, and µ2 and µs depend on the particle properties and can be measured 

experimentally. Considering dense granular flow as a form of peculiar non-Newtonian, 

incompressible fluids, Jop et al. [58] further generalized the stress tensor expressions: 

ij ij ijP                (Eq.15) 

 

ij ij    with ( )I P



          (Eq.16) 

where   is the second invariant of the shear rate tensor: 
1

2
   ij ij    . 

The simplicity and successful validation of this rheological law have motivated a number of 

subsequent computational works. For example, Schneiderbauer et al. [66] coupled this local 

rheological law with a Eulerian-Eulerian approach to model multiple-spout quasi-2D fluidized 

beds and a discharging process from a rectangular bin. The authors observed that the local 

rheological law-based model is able to simulate the flow pattern in the off-spout region 

correctly, where sustained particle contacts are dominating, and they achieved excellent 
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agreement for the discharged rate, with an error below 2.5%. An earlier formulation developed 

by Srivastava and Sundaresan [67], using a critical state-based frictional stress model, 

overpredicted the bed expansion in a single-spout bed, and did not generate the observed 

relationship between discharge rate and particle diameter. More recently, Farzaneh et al. [68] 

have studied the solid motion numerically in a 2D dense bubbling fluidized bed of glass beads, 

and compared local rheological models with state-of-the-art soil mechanics models. The soil 

mechanics-based models [43, 67] were shown to largely underpredict the solid stresses, leading 

to a completely different flow pattern to the one observed experimentally, whereas much better 

agreement was provided by the local rheology-based models. 

The solid critical packing is essential for a correct rheological formulation. Frictional spheres 

can jam statically between a random loose packing (~0.55) and a close packing (~0.634) in 3D 

domains under different preparation protocols [69]. Several researchers [69, 70] have 

demonstrated that the critical solid packing can be considered a function of the friction 

coefficient for soft particles, independently of the normal restitution coefficient. Along those 

lines, Chialvo et al. [59, 70] formulated an extension to the KTGF, based on a comparison of 

the classical framework at steady state with results of DEM simulations of a Couette flow. 

Their work extends the original Garzo-Dufty (GD) formulation [71] for dilute flow in a 

systematic way. Building on previous work, they proposed to couple a new local rheological 

model with the KTGF to bridge the dense and dilute regimes, along with a series of other 

corrections to bring the behavior of the modified KTGF in a steady shear flow in agreement 

with DEM simulations. They identified the following pitfalls and proposed the corresponding 

corrections: 

 Address the critical volume fraction and yields ratio dependence on the friction coefficient. 

 Propose a new radial distribution function to be continuous across different regimes and 

diverge at the critical packing, ϕc, specifically for non-equilibrium systems. 
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 Decompose solid shear stress to yield stress, estimated using a local rheological model, and 

inertial stress, calculated using KTGF analysis with a correction factor.   

 Modify the energy dissipation term to include an effective restitution coefficient that 

accounts for solid friction, and a correction factor to reproduce the dense-regime trends 

with respect to solid packing.  

Based on these modifications, they proposed the usual correlation for solids pressure as: 

P H            (Eq.17) 

Where Θ is the granular temperature. The solid shear stress, however, is formulated as a 

combination of a yield term and an inertial term:  

yield inertial             (Eq.18)
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where 
s is the yield stress ratio, and I0 is a constant. Following the work of Da Cruz et al. 

[65] and Jop et al. [58], the blending function  combines both inertial and yield stress on the 

basis of inertial rheology, whereby, at low shear rate the inertial term tends to zero and  tends 

to the value of the yield stress at repose, while at high inertial numbers the contribution of the 

yield stress drops and the inertial shear stress dominates the system. The solids inertial shear 

stress itself is given as the GD expression, 
GD , modified with a correction factor, : 

inertial GD             (Eq.21) 
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where α is a constant, and β is a transition factor. The numerical results showed reasonable 

improvement, when compared with DEM simulations over different flow regimes, in terms of 

granular temperature, pressure and shear stress, as illustrated in Fig. 9.  

(Figure 9 to be put here) 

It is important to notice that such modifications were derived from the analysis of a single 

homogeneous system, without the effect of gravity and under steady-state shear granular flow, 

in which temperature gradients are zero, so that the thermal conductivity effects vanish. The 

formulation is subject to further debate, and more extensive work would be necessary to make 

such empirical correlations valid for transient, non-homogeneous dense gas-solid flows. 

Incorporating the rotational degrees of freedom could somehow mitigate the reliance on 

empiricism and address the conversion of translational energy to rotational energy directly for 

a wide range of solid volume fractions, rather than via a constant effective restitution 

coefficient. 

4.3. Friction induced by rotational granular energy  

From a practical standpoint, the goal is the simplest possible KTGF formulation that can take 

into account interparticle friction in a physically realistic way. For that reason, the approaches 

mentioned earlier include solid friction indirectly, by making use of simplifying assumptions 

or focusing on a macroscopic model. Nonetheless, another natural solution extends the KTGF 

based on the transport of rotational granular energy. Following the work of Lun et al. [72], 

Yang et al. [73] constructed a complete set of balance equations and closures for the transport 

of rough spheres, incorporating both the rotational and translational kinetic granular energy 

balance on the inertial regime. The proposed set of equations reduces to the classical KTGF 

formulations in the limit of completely elastic and frictionless spheres (e→1 and µ→0). The 

translational granular temperature is formulated in the same way as in the original KTGF. The 
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authors assumed the bulk rotational velocity to be zero and neglected the change in rotational 

granular energy caused by interphase interactions, so that transport of rotational granular 

energy was reduced to consider just the diffusion term and the collisional dissipation term: 
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where 
r  is the rotational granular temperature, 

r  is the thermal conductivity of rotational 

granular energy, and 
r is the dissipation rate of rotational granular energy. The solid stress 

tensor considers both translational and rotational viscosity: 
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and the rotational viscosity is given as: 
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where A1 is defined as an integral of trigonometric functions, which can be found in [73]. 

The authors implemented these correlations to model dense bubbling beds of 1mm and 3mm 

glass beads at 3Umf to investigate the influence of particle friction. They observed a similar 

relation between granular temperature and solids fraction to Jenkins and Zhang’s models (Eq.6-

11) [14]. Due to the more realistic inclusion of energy dissipation, the granular temperature in 

both models is shown to be lower than that calculated using the classical KTGF.  

Yang et al. [74] also studied the performance of this model against PIV-DIA experimental data 

and results obtained using a Eulerian-Lagrangian approach in bubbling fluidized beds. They 

showed that both their model and Jenkins and Zhang’s model [14] overpredict the ascending 

and descending solid velocity in a bed fluidized at a low superficial velocity, 1.7Umf, while 

they underpredict it for larger velocities, ~2.3Umf (Fig.10). 
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(Figure 10 to be put here) 

Nonetheless, the extended model reaches better agreement with experimental results than 

Jenkins and Zhang’s model for the time-averaged particle axial velocity and the solid volume 

fraction. The distribution of translational granular temperatures and the solids circulation agree 

satisfactorily with the results of Eulerian-Lagrangian simulations, as shown in Fig. 11. 

(Figure 11 to be put here) 

Compared to the indirect way of describing rotation proposed by Jenkins and Zhang [14], the 

formulations developed by Yang et al. are promising advances in the inclusion of rotational 

granular energy. Discrepancies with the solid motion observed in DEM simulations are, 

however, still prominent, occasionally up to 50% in terms of time-averaged axial velocity. A 

major hurdle remains the assumption of a zero mean rotational velocity used in the derivation, 

which leads to a nearly uniform distribution of rotational granular temperature in the solid 

phase, which prevents its possible diffusion. DEM simulations, however, show higher 

rotational energy at the top center of the bed. Finally, Yang et al. also point to the use of 

simplified boundary conditions that impose a zero gradient of rotational temperature. This 

constraint impedes the dissipation of granular energy via particle-wall friction, even though 

wall friction is known to be an essential influence in quasi-2D systems [75]. 

4.4 Friction related to the formation of microscopic structures 

In contrast to transitional flows, quasi-static granular flows manifest completely different 

rheology, which is typified by non-locality, time-dependence or history effects. The rheology 

of a shear flow is local only if the stress tensor is a function of the shear rate at the same site, 

whereas any deviation is non-local [48]. The models discussed previously address frictional 

dissipation by assuming a local correlation between stress and the rate of deformation. A 

transitional flow has a local, rate-dependent rheology that is captured by the local I-μeff 
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rheological law for the inertial and transitional regimes (Eq.14). The latter is obtained from 

measurements in a steady, spatially uniform shearing environment, such as planar chute flow. 

However, when granular assemblies consolidate at a slow shear rate (for I<10-3, as suggested 

in [5, 65]), the granular behavior transitions to a rate-independent response, typical of a solid 

structure, which leads to non-local effects. For example, in a steady, yet non-uniform, slow, 

quasi-static flow, the effective friction coefficient, μeff, depends on the system geometry instead 

of approaching a constant friction coefficient μs [55, 56, 76]. In addition, creeping flows can 

occur before granules reaching their yield point in the quasi-static regime [55, 77]. These 

complex features result from long-range transmission of stresses, and cannot be captured by 

any of the local correlations discussed earlier, such as the I-μeff correlation in transitional 

granular rheology or Mohr-Coulomb theory [5, 78]. Therefore, new sources of non-locality or 

time-dependence beyond those considered in the KTGF framework are required to describe 

quasi-static flows.   

The drastic rheological changes observed in a quasi-static flow are intimately related to the 

creation of a microscopic solid structure at high solid fractions [14, 79] that is commonly 

neglected in the studies of the inertial regime. Quasi-static flows are characterised by persistent 

contacts with multiple neighbors, which lead to long-range transport of stress and momentum 

through an anisotropic (and non-local) force network. The time scales associated to this 

transport are much smaller than the relaxation time of any plastic rearrangement in the powder. 

Therefore, in complex configurations, a single kinematic variable, like the solid fraction ϕ used 

in the classic frictional stress models, becomes insufficient to describe the rheology. This brings 

the question of how non-local effects can be accounted for in a general formulation of granular 

flow? KTGF only allows for weak non-locality via the granular temperature and its time 

dependence. More advanced rheological models rooted in granular mechanics have addressed 

the non-local effects by incorporating an additional state field. In essence, they introduce a 
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secondary state variable, independent of the strain rate, but governed via a separate time-

evolution equation that describes the change in microstructure.  

A common alternative as a non-local measurement of the structure is the coordination number, 

i.e., the number of particles in contact with each other within a mesoscopic volume. Similar to 

the classical framework, Aranson and Tsimring [80, 81] decompose the overall stress tensor 

into a weighted solid- and fluid-like part. The ratio of the two terms is governed by a space-

time order field ψ = <Z/Zc>, where Z and Zc are the number of particles under persistent contacts 

and any contacts, respectively. A binary contact is considered persistent when the flow is below 

the yield condition or the contact duration is longer than a critical collision time. In such a way, 

ψ is unity when fluid-like behavior vanishes, whereas ψ approaches zero when fluid-like 

behavior dominates. To close the system, the authors assume that the time-evolution of ψ obeys 

a generic dispersion equation: 
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where D is a diffusion coefficient and ( , )F    is a derivative of the free energy density that 

accounts for the relative stability near the transition between solid-like and fluid-like behavior. 

The control coefficient is a function of the effective friction coefficient:  

2 2 2 2

eff 0 1 0( ) / ( )                (Eq.27) 

where tan-1μ0 and tan-1μ1 are the angle of repose and the internal angle, respectively. In 

subsequent work, Volfson et al. quantify the structure of the constitutive relation and free 

energy density function by fitting ψ and the stress relation with a simulated thin Couette flow 

[82, 83]. 

The complete set of constitutive equations yields a different rheology, incorporating a more 

realistic fluid-solid transition. This approach has been validated on multiple configurations, 

such as chute flow, Couette flow and a rotational drum [81-83], showing reasonable 
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quantitative agreement between the rheology and the velocity profiles expected from analytical 

solutions with experimental and computational results. Nevertheless, the creeping flow 

phenomenon is not yet addressed and the numerically fitted correlation is strongly sensitive to 

the configuration, i.e., 2D or 3D and the chosen contact models.   

Other promising non-local constitutive laws for creeping quasi-static flows were proposed by 

Kamrin [5]. Following the concept of fluidity in emulsions, the authors introduce a so-called 

granular fluidity, g, as a coarse-grained field that governs the non-locality [84, 85]. The 

granular fluidity is defined as the ratio of shear rate over the effective friction coefficient, µeff. 

When µeff > µs, the granular fluidity reduces to an alternative expression of the local rheology 

relation: 
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H is the Heaviside function, and b is a model parameter. Furthermore,  is defined as the 

internal length scale causing the fluidity to be affected by plastic rearrangements nearby, and 

is given by:  
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where A is a dimensionless scaling constant. A key feature of this formulation is that it may 

cover all the flow regimes, since  vanishes when the flow is above the yield condition. The 

two spatial dimensions are correlated via a non-local law, expressed as: 
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Simulated flows are consistent with analytical predictions for both a uniform planar chute flow, 

as well as a non-uniform annual shear flow. For a large I in a steady, annular shear flow, the 

profiles of μeff-I collapse onto a single curve and align with the local rheological law, whereas, 
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in the quasi-static regime, this law can reproduce the effect of the system geometry on the 

effective friction, see Fig.12a. Besides, the correlation captures a range of boundary-dependent 

frictional coefficients in quantitative agreement with DEM simulations, see Fig.12b.  

In further work, Zhang and Kamrin [86] demonstrated physically that granular fluidity can be 

regarded as a kinematically observable state variable. According to DEM simulations of three 

different 3D shear configurations, namely, homogeneous planar shear, planar shear with 

gravity and chute flows, they found that a universal hyperbola correlates the normalized 

granular fluidity, gd/δv, and solid packing, ϕ. Therefore, granular fluidity can be identified with 

two kinematic variables: the square root of the granular temperature, Θ, and the solid packing 

fraction, ϕ (Eq.31). This work opens the way to a rigorous, albeit complex introduction of non-

locality in a KTGF framework, linking fluidity with the transport of pseudo-thermal energy, as 

follows: 
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where F1 and F2 can be found from KTGF closures.  

(Figure 12 to be put here) 

Other alternative state fields have been put forward. For example, Sun and Sundaresan [87] 

correlate the rheology with the granular microstructure via two kinetic variables: contact or 

coordination number, Z, and the fabric anisotropy tensor, A, i.e., a statistical moment associated 

with the probability distribution function of a chosen directional vector. In this work, they 

formulated A against the unit particle center-to-center contact direction vector. They 

investigated two reversed quasi-static shear flows with DEM, in which the shear direction flips 

periodically, under either controlled pressure or controlled volume conditions. The solid 

pressure showed a sudden drop at the reversal of shear direction, followed by a slow recovery 

to the original value. In contrast, after the shear reversal, the effective friction coefficient 
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exhibited a quick change to the same magnitude with an opposite sign. Under this environment, 

the time evolution of the volume fraction, the effective friction coefficient and the solid 

pressure obeyed similar profiles as the change of coordination number, Z, and anisotropy tensor 

shear component, Axz, as shown in Fig.13.  

(Figure 13 to be put here) 

The scaled pressure can be expressed in terms of Z and A, as follows:  

2

1 2/ ( )( )cpd k a a Z Z  A          (Eq.32) 

where a1 and a2 are constant coefficients. The coordination number here is defined as Z =2Nc/N 

with Nc and N the total number of contacts and particles in the contact network, respectively. 

Zc is the critical value at jamming. The closure of the effective friction coefficient, μeff, is 

suggested as a function of the following quadratic fitting relation for A. 

 2

eff 1 2 3
ˆ ˆ ˆˆ ˆ: ( : )b b b   A S A S         (Eq.33) 

where b1, b2 and b3 are the modeling parameters; ˆ /S S D , with S the deviatoric strain rate 

tensor, and D the strain rate tensor. To close the model, Sun and Sundaresan also propose the 

time-evolution of both Z and A as functions of A and D. In the full set of equations, the 

constitutive laws were shown capable of tracking the time evolution of the effective frictional 

coefficient, fabric, coordination number and volume fraction under both steady and unsteady 

conditions for a range of particle friction coefficients. 

One must admit that from the perspective of fluidization, granules commonly take the form of 

a dynamic, non-uniform dispersion. Section 4.4 has discussed three promising avenues to 

describe quasi-static flow by addressing non-locality, from a steady homogeneous state to a 

heterogeneous state and then a dynamic state, with varying levels of complexity. In principle, 

combing non-local granular rheological models for the quasi-static regime with local rheology 

in the framework of the KTGF could lead to a full set of closures universally applicable across 

all deformation regimes for granular flows. Obviously, it is tempting to construct a generic set 
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of continuum equations in the two-fluid framework to tackle common fluidization problems. 

One must note that the models presented here were derived for fundamental studies and are 

largely “in the making”, but they represent a rigorous way forward.  

 5. Conclusions 

A full description of granular flow, even within the context of fluidization technology, has been 

an open challenge for many years. Kinetic models have been key, but, over the last two decades, 

their limitations have come to light when dealing with transitional or dense flow systems. 

Thanks to the development of high-performance computing (HPC) systems, access to a full 

resolution of granular rheology has improved, but Lagrangian simulations are still prohibitive 

at commercial scale. Even a scaled-down system, using upcoming exa-scale HPC with 

CPU×GPU hybrid architectures, would represent a tremendous challenge. From a practical 

point of view, a macroscopic description of gas-solids suspensions in a Eulerian framework 

will remain the industry standard in the mid-term for commercial reactor designs. Furthermore, 

from a theoretical perspective, there is undeniable value in developing deeper understanding 

of the rheology of powders. The challenge then is to obtain a simple, yet correct way to bridge 

both, up to now irreconcilable states of granular media: the inertial and quasi-static regimes.  

This article has discussed this challenge by describing granular media as a viscoplastic fluid. 

Some promising approaches to progress towards a complete hydrodynamic formulation of 

granular flow were highlighted. Advanced frameworks address the role of solid friction in a 

dense flow with different levels of complexity, namely via a) simple modifications to the KTGF 

to account for the associated energy dissipation, b) advanced local rheological models, or 

introducing new transport equations to include c) rotational degrees of freedom or d) a new 

state field describing the evolution of the granular microstructure and the associated non-local 

effects in momentum transport. For applications to fluidization, each of these avenues has its 

own merits, and the adequate level of complexity will depend on the application.  
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This work has also introduced the use of pattern formation in pulsating fluidized beds as a way 

to challenge existing models, because their behavior is intimately related to the transition 

between inertial and quasi-static regimes. Classic formulations cannot reproduce the creation 

of a dynamic pattern, because they fail to describe the viscoplasticity of the powder. So far, it 

is unclear how more advanced formulations would perform, but we propose that confronting 

modeling approaches with such a dynamic transitional flow is an excellent benchmark to 

validate and develop better closures and continuum models. A rheological formulation capable 

of capturing characteristic features of a dynamic bubble pattern, such as its appearance, bubble 

size, and wavelength, should be robust enough to reproduce transitions between dilute and 

dense, quasi-static flows. One could expect such a new generation of models to bring about 

major improvements in the ability to design mostly dense flows, such as spouting or dense 

bubbling beds. 
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List of symbols 

db bubble diameter, (m)   shear rate (m/s) 

dp particle diameter, (m) σ solid stress, (Pa) 

e particle normal restitution coefficient, (–) δij identity tensor, (-) 

eeff effective restitution coefficient, (-) η effective viscosity, (kg/(m·s)) 

f frequency of oscillating flow, (Hz) ηs yield stress ratio, (-) 

g0 radial distribution function, (-) θ angle of internal friction, (degree) 

g granular fluidity, (m/s) λ pattern wavelength, (cm) 

I inertia number, (-) λs solid bulk viscosity (kg/(m·s)) 

k particle stiffness, (N/m) μf frictional shear viscosity, (kg/(m·s)) 
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Figure 1: Schematic depiction of solid behavior in the (a) inertial regime, (b) transitional 

regime, and (c) quasi-static regime, with associated modelling methods.  
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Figure 2: Example of experimentally observed, dynamic bubble patterns in a quasi-2D bed of 

Geldart B particles, induced by pulsating the gas flow. Snapshots shown in (a) and (b) are 

separated by two periods of gas pulsation. 
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Figure 3: (a) Snapshots of the flow pattern in a dynamically structured pulsed bed, captured 

using a high-speed camera, and (b) corresponding computation of the solids velocity contours 

through PTV analysis. The color stands for the scale of the solid velocity, where red to blue 

depicts decreasing velocity. 
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Figure 4: Illustration of the dense areas in a structured fluidized bed. Quiver plot from CFD-

DEM simulations [39]. The marked area shows locked regions, grey: Vp/dp < 60s-1, red: Vp/dp 

< 6s-1. The bed has a solid velocity 60s-1< Vp/dp < 600s-1; the arrows in the region nearby the 

bubble, Vp/dp > 600s-1, are scaled down by 50%. 
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Figure 5: Simulated, patterned flow of bubbles in quasi-2D pulsed beds. The black lines 

represent the gas streamlines. Conditions: 238m glass beads; static bed height 4.5cm in a 

domain of 10×10×0.2cm. U0 (m/s) = 0.108+0.0877sin(2πft) with (a) f = 5Hz, and (b) f = 7Hz. 
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Figure 6: Simulation of small-scale pulsating fluidized bed encompassing one bubble. Average 

bubble diameter, db, versus lateral bubble position from the bed center, xc. Here, e and μ are 

normal restitution and friction coefficients, respectively. Domains a and b encompass 

simulations without any discernible pattern; domain c corresponds to simulations where the 

position of the bubble nucleation alternates between left and right positions. Static bed height 

is 3.8cm; bed cross-section is 5×0.5cm; U0/Um=1.3+0.7sin(2πft). The figure is reprinted with 

permission from [40]. 
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Figure 7: Variation of bubble size with pulse frequency in Eulerian-Eulerian simulations of a 

2D pulsed fluidized bed. The error bars represent the standard deviation in the bubble size 

distribution. The filled symbols stand for the experimental measurements, while the open 

symbols represent the computational results. The snapshots correspond to f = 3, 4 and 5 Hz. 

Conditions: 360m glass beads; bed width 40 cm; static bed height 40cm;  U0/Umf = 1.4+ 

0.4sin(2πft). The figure is reprinted with permission from [46]. 
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Figure 8: Snapshots of Eulerian-Eulerian simulations of a 2D oscillating bed for (a) 3D and (b) 

2D configuration. Conditions: 360m glass beads; static bed height 40cm; bed thickness 

1.5cm; U0/𝑈mf = 1.3+0.5sin(2πft) with f=4Hz. The figure is reprinted with permission from 

[47].  
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Figure 9: Rheological corrections to KTGF. Comparison of the Garzo-Dufty KTGF and the 

modified KTGF by Chialvo and Sundaresan with DEM for a steady shear flow. Granular 

temperature, pressure and shear stress ratio versus volume fraction are shown for the steady 

shear flows of 530m glass beads, with μ=0.5 and different restitution coefficients. The figure 

is reprinted with permission from [59]. 
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Figure 10: Rotational energy corrections to the KTGF framework. Comparison of the time-

averaged axial particle velocity using PIV-DIA with simulations at a height of 20cm, for (a) 

U0 = 2.35m/s and (b) U0 = 3.28m/s, with 3mm glass beads at a 30cm static bed height. The 

figure is reprinted with permission from [74]. 
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Figure 11: Rotational energy corrections to the KTGF framework. Comparison of time-

averaged solids volume fraction for (a) PIV-DIA, (b) Eulerian-Lagrangian simulations and (c) 

Eulerian-Eulerian simulations, using the modified KTGF models, with 3mm glass beads at a 

30cm static bed height. U0 = 2.35m/s. The figure is reprinted with permission from [74].  
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Figure 12: Non-local rheological corrections in quasi-static flows. μeff-I correlations in a steady 

annular shear rotational drum (a) at different size ratio R/dp from 25 to 200, and (b) at different 

shear rate of the shell, 2/ ( )wall p wallV m d P , from 0.00025 to 2.5. Non-local correlation 

predictions are shown as solid curves; the symbols denote the DEM results. The figure is 

reprinted with permission from [78]. 
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Figure 13: Evolution of (a) solid pressure and (b) effective friction coefficient under the 

constant volume condition, and (c) volume fraction under constant pressure conditions in 

comparison to the evolution of coordination number, Z, and Axz for particles subjected to 

unsteady shear. Blue square symbols denote the DEM results, while the red solid curves are 

the results from constitutive models. The macroscopic friction coefficient µ = 0.5 and the 

inertia number I ≈ 0.0003. The figure is reprinted with permission from [87]. 
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