Sex differences in 1-year rehospitalization for heart failure and myocardial infarction after primary percutaneous coronary intervention

Huili Zheng, MSc1; Ling Li Foo, PhD1; Huay Cheem Tan, MBBS2; A. Mark Richards, PhD3; Siew Pang Chan, PhD3; Ronald C.H. Lee, MBBS2; Adrian F.H. Low, MBBS2; Derek J. Hausenloy, PhD3,4,5,6,7,8; Jack W.C. Tan, MBBS9; Anders O. Sahlen, MD9,10; Hee Hwa Ho, MBBS11; Siang Chew Chai, MBBS12; Khim Leng Tong, MBBS12; Doreen S.Y. Tan, BSc13; Khung Keong Yeo, MBBS9; Terrance S.J. Chua, MBBS9; Carolyn S.P. Lam, PhD4,9*; Mark Y. Chan, PhD2,3,8

1. National Registry of Diseases Office, Health Promotion Board, Singapore
2. National University Heart Centre, National University Hospital, Singapore
3. Cardiovascular Research Institute, National University of Singapore, Singapore
4. Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore
5. The Hatter Cardiovascular Institute, University College London, United Kingdom
6. Barts Heart Centre, St Bartholomew's Hospital, United Kingdom
7. The National Institute of Health Research University College London Hospitals
8. Biomedical Research Centre, United Kingdom
9. Yong Loo Lin School of Medicine, National University of Singapore, Singapore
10. National Heart Centre, Singapore
11. Karolinska Institutet, Sweden
12. Tan Tock Seng Hospital, Singapore
13. Changi General Hospital, Singapore
14. Khoo Teck Puat Hospital, Singapore

*These authors supervised the work equally as senior authors.
Address for correspondence:

Mark Y. Chan

MBBS, MHS, PhD

Associate Professor of Medicine

Yong Loo Lin School of Medicine, National University of Singapore

Senior Consultant Cardiologist

National University Heart Centre, National University Health System

Tel: +65 6772 5538

Fax: +65 6872 2998

Email: mark-chan@nuhs.edu.sg

Word count: 3650
It is unclear whether universal access to primary percutaneous coronary intervention (pPCI) may reduce sex differences in 1-year rehospitalization for heart failure (HF) and myocardial infarction (MI) after ST-elevation myocardial infarction (STEMI). We studied 7,597 consecutive STEMI patients (13.8% women, N=1,045) who underwent pPCI from January 2007 to December 2013. Cox regression models adjusted for competing risk from death were used to assess sex differences in rehospitalization for HF and MI within 1 year from discharge. Compared with men, women were older (median age 67.6 vs 56.0 years, P<0.001) with higher prevalence of co-morbidities and multivessel disease. Women had longer median door-to-balloon time (median 76 vs 66 minutes, P<0.001) and were less likely to receive drug-eluting stents (19.5% vs 24.1%, P=0.001). Of the medications prescribed at discharge, fewer women received aspirin (95.8% vs 97.6%, P=0.002) and P2Y12 antagonists (97.6% vs 98.5%, P=0.039), but there were no significant sex differences in other discharge medications. After adjusting for differences in baseline characteristics and treatment, sex differences in risk of rehospitalization for HF attenuated (HR 1.05, 95% CI 0.79-1.40), but persisted for MI (HR 1.68, 95% CI 1.22-2.33), with greater disparity among patients aged ≥60 years (HR 1.83, 95% CI 1.18-2.85) than those aged <60 years (HR 1.45, 95% CI 0.84-2.50). In conclusion, in a setting of universal access to pPCI, the adjusted risk of 1-year rehospitalization for HF was similar among the sexes, but women had higher adjusted risk of 1-year rehospitalization for MI, especially older women.

Key words: sex differences; rehospitalization for heart failure; rehospitalization for myocardial infarction; primary percutaneous coronary intervention
Introduction

1 in 4 patients with acute myocardial infarction (MI) are rehospitalized within 12 months of discharge\(^1\). Women are known to have higher rate of rehospitalization after acute MI than men\(^2\). Sex disparities in post-MI rehospitalization were often attributed by women being less likely to receive primary percutaneous coronary intervention (pPCI)\(^4\). It is unclear if sex differences in outcomes persist in the contemporary era where pPCI is the universal treatment among patients with ST-segment elevation MI (STEMI).

Singapore is a country in South East Asia with a population of 5.5 million and a balanced sex distribution (49% men and 51% women in 2017)\(^5\). The combination of small land mass and economic resources has enabled Singapore’s public healthcare system to provide round-the-clock and universal access to pPCI for all patients with STEMI through its nationwide network of pPCI-capable public hospitals since 2007.

We sought to determine whether sex differences in 1-year rehospitalization exist among STEMI patients with pPCI in Singapore. Specifically, we assessed the relationship of baseline characteristics and variables associated with STEMI care with 2 cardiac-specific causes of rehospitalization: heart failure (HF) and MI. Furthermore, since prior studies have shown that younger women have poorer outcomes after MI\(^6\)\(^,\)\(^7\)\(^,\)\(^8\), we sought to ascertain whether sex disparities in rehospitalization for HF and MI differed among young (aged <60 years) and older (aged ≥60 years) patients.

Methods

This is a retrospective study of patients enrolled in the Singapore MI Registry (SMIR). The SMIR is an ongoing population-based registry established in 2007\(^9\). It captures acute MI treated by the public and private hospitals, as well as out-of-hospital acute MI deaths. More than 95% of acute MI in Singapore are managed at the public hospitals each year. State legislature mandates data collection on acute MI without the need for prior written informed consent from patients and the quality of acute MI care is closely monitored across all public
hospitals by the Ministry of Health. The SMIR identifies MI cases from (i) Hospital Inpatient Discharge Summaries and (ii) cardiac biomarker lists from all hospitals, (iii) claims data and (iv) Casemix and Subvention data from the Ministry of Health, and (v) death data from the Ministry of Home Affairs, based on International Classification of Diseases (ICD) 9th (Clinical Modification) code of 410 and ICD 10th (Australian Modification) code of I21 and I22. To ensure data accuracy and consistency, yearly internal audit is performed by the Registry to ensure interrater reliability of \geq95%. Detailed data collection method has been described in previous publications10,11.

The SMIR data was matched with procedural data from the Singapore Cardiac Databank. Further matching was done with claims data from the Ministry of Health to ascertain rehospitalization outcomes.

We included patients who were admitted for STEMI and underwent pPCI from January 2007 to December 2013 in all public hospitals with onsite pPCI capabilities in Singapore. We excluded patients transferred from non-pPCI capable hospitals (N=417, Supplemental Figure 1).

The 2 primary endpoints of interest were unplanned fatal and non-fatal rehospitalization for HF and MI within 1 year after discharge for STEMI. The rehospitalization diagnoses were based on claims data submitted to the Ministry of Health by the hospitals. Each patient has a primary diagnosis, which the clinical team deems to be the primary cause of hospitalization, and \geq1 secondary diagnoses, which are deemed to be complications that may have arisen during hospitalization. Rehospitalizations with a primary diagnosis of HF or MI were considered in our study. The full list of primary diagnoses is shown in the Supplemental Materials.

Baseline characteristics and variables related to STEMI care were compared between the sexes using Wilcoxon Rank Sum test for numeric variables and Chi-Square test for categorical variables. To account for attrition from mortality and circumvent
overestimation of event rate, death was treated as a competing event when examining the
relationships between sex and time to rehospitalization for HF or MI using cox regression.12
The cox regression models were built hierarchically, starting with sex only (model 1).
Subsequently, other demographic variables (age, ethnicity), past medical history
(hypertension, diabetes, hyperlipidemia, cardiovascular disease i.e. MI/ PCI/ coronary artery
bypass grafting/ stroke/ peripheral arterial disease) and presenting features on admission
(Killip class, creatinine, number of narrowed coronary arteries, pre-PCI thrombolysis-in-
myocardial-infarct (TIMI) flow grade, coronary artery intervened) were added (model 2).
Finally, variables related to STEMI care (door-to-balloon time, use of stent, use of
thrombectomy, use of intra-aortic balloon pump, procedure success, use of glycoprotein IIb-
IIIa inhibitor, aspirin given at discharge, beta blockers given at discharge, lipid lowering
drugs given at discharge, renin-angiotensin system inhibitors given at discharge, P2Y\textsubscript{12}
antagonists given at discharge, highest Killip class during hospitalization, lowest left
ventricular ejection fraction (LVEF) during hospitalization) were added (model 3). Among the
independent variables included in the cox regression models, pre-procedure TIMI flow grade
had the highest proportion of missing data (10\%). Missing data were addressed using
multiple imputation with 20 imputed datasets and no auxiliary variable based on the Markov
Chain Monte Carlo procedure, which assumes that all variables in the imputation models
have a joint multivariate normal distribution.13,14 Kaplan-Meier survival curves were used to
visually assess sex differences in time to rehospitalization for HF and MI. To ascertain
whether sex disparities in rehospitalization for HF and MI were equally prevalent among
patients aged <60 years and \(\geq\)60 years, we tested for interaction between sex and age
based on model 3.

This study was conducted according to the Helsinki declaration, and the National
Healthcare Group Domain Specific Review Board allowed for waiver of patients’ consent as
the data used were anonymized and analyses were done at a central data repository
(National Registry of Diseases Office) with data protection measures in place. All statistical
analyses were done using STATA SE (version 13) software. All reported P-values were 2-sided and P-values <0.05 were considered to be statistically significant.

Results

Between January 2007 and December 2013, there were 7,597 consecutive STEMI patients who underwent pPCI from all public hospitals in Singapore. 1,045 (13.8%) of them were women (Table 1). Compared to men, the median age of women at STEMI onset was a decade older (67.6 vs 56.0 years, \(P<0.001 \)). Women were less likely to have history of MI (7.8% vs 12.1%, \(P<0.001 \)), prior PCI (6.7% vs 10.7%, \(P<0.001 \)) or being current or former smokers (14.0% vs 72.4%; \(P<0.001 \)), but were more likely to have history of hypertension (69.9% vs 48.6%, \(P<0.001 \)), diabetes (43.2% vs 24.5%, \(P<0.001 \)), hyperlipidemia (54.1% vs 42.8%, \(P<0.001 \)) and stroke (6.7% vs 3.1%, \(P<0.001 \)). The median creatinine was lower among women (75 vs 92 \(\mu \)mol/L, \(P<0.001 \)). Women were less likely to have pre-procedure complete occlusion of the infarct-related artery (TIMI flow grade 0: 66.8% vs 73.0%, \(P<0.001 \)), but more likely to have HF on admission (Killip class \(\geq II \): 20.6% vs 14.9%, \(P<0.001 \)). Although multivessel disease, defined as \(\geq 2 \) major epicardial arteries with >50% stenosis, was more common among women at the time of emergent coronary angiography (33.4% vs 32.5% with double vessel disease and 32.1% vs 28.9% with triple vessel disease, \(P=0.030 \)), there was no significant difference in the rate of multivessel PCI performed during hospitalization (4.9% vs 4.6%, \(P=0.666 \)).

Women had longer median door-to-balloon (76 vs 66 minutes, \(P<0.001 \)) and symptom-to-balloon (233 vs 192 minutes, \(P<0.001 \)) time (Table 2). HF during hospitalization was more common among women (Killip class \(\geq II \): 15.4% vs 10.2%, \(P<0.001 \)), but not left ventricular systolic dysfunction, defined as left ventricular ejection fraction <50% (64.1% vs 61.6%, \(P=0.137 \)). Use of drug-eluting stent (19.5% vs 24.0%, \(P=0.001 \)) and thrombectomy (50.3% vs 56.9%, \(P<0.001 \)) were less common among women. Although the prescription rates of aspirin (95.8% vs 97.6%, \(P=0.002 \)), P2Y\(_{12} \) antagonists (97.6% vs 98.5%, \(P=0.039 \))
and glycoprotein IIb-IIIa inhibitors (24.9% vs 31.9%, \(P<0.001 \)) were lower among women, there were no significant sex differences in beta blockers, lipid lowering drugs and renin-angiotensin system inhibitors prescription at discharge.

Women had higher unadjusted risk of rehospitalization for both HF (hazard ratio 1.83, 95% confidence interval 1.42-2.35) and MI (HR 1.78, 95% CI 1.30-2.45) (Table 3). After adjusting for baseline characteristics, sex differences were no longer observed for HF rehospitalization (HR 1.05, 95% CI 0.79-1.40), but persisted for MI rehospitalization (HR 1.68, 95% CI 1.22-2.33). Further accounting for variables related to STEMI care yielded similar results (HF rehospitalization: HR 1.04, 95% CI 0.78-1.40; MI rehospitalization: HR 1.71, 95% CI 1.23-2.38) (Figures 1 and 2).

Stratifying by age, women had higher unadjusted risk of rehospitalization for HF than men in the <60 years age group (HR 1.89, 95% CI 1.14-3.13), but not in the \(\geq 60 \) years age group (\(P=0.120 \)) (Table 3). The interaction between sex and age for HF rehospitalization was not statistically significant (\(P \) for interaction=0.671). In contrast, women had higher unadjusted risk of rehospitalization for MI than men in the \(\geq 60 \) years age group (HR 1.91, 95% CI 1.26-2.91), but not in the <60 years age group (\(P=0.090 \)) (Table 3 and Supplemental Figure 3). The interaction between sex and age for MI rehospitalization was statistically significant (\(P \) for interaction=0.029). After adjusting for baseline characteristics, the higher risk of rehospitalization for HF among women in the <60 years age group attenuated (\(P=0.272 \)) (Supplemental Figure 2). However, the higher risk of rehospitalization for MI among women in the \(\geq 60 \) years age group persisted after adjusting for baseline characteristics (HR 1.83, 95% CI 1.18-2.85). The sex difference in risk of rehospitalization for MI among patients aged \(\geq 60 \) years persisted after further accounting for variables related to STEMI care (HR 1.82, 95% CI 1.16-2.86) (Supplemental Figure 3).

Discussion
Our study found that among patients with STEMI who underwent pPCI, women were older with a higher prevalence of co-morbidities, multivessel disease and heart failure on admission, compared to men. Women had longer ischemic time and were less likely to receive drug-eluting stents (DES), thrombectomy and antiplatelet agents. Women were approximately 1.8 times more likely to be rehospitalized for HF or MI within 1 year of discharge in unadjusted analyses. After adjusting for baseline characteristics, sex differences in risk of rehospitalization for HF attenuated, but persisted in rehospitalization for MI. Further accounting for variables related to STEMI care yielded similar results. The higher risk of rehospitalization for MI among women than men was more pronounced in the ≥60 years age group than in the <60 years age group.

HF is a common complication of STEMI15. Besides being generally older than men at the onset of STEMI, women also tend to have HF on admission, longer ischemic time, and higher burden of hypertension and diabetes— all of which are risk factors that have an established association with HF16. The attenuation of statistical significance after accounting for differences in baseline characteristics suggests that the higher risk of rehospitalization for HF among women was largely explained by their higher baseline risk. We further observed high prescription rates of beta blockers and renin-angiotensin system inhibitors at discharge for both sexes. Notably, >75% of women and men received beta blockers and renin-angiotensin system inhibitors at discharge, which was in excess to the prevalence of left ventricular systolic dysfunction among women (64.1%) and men (61.6%). As both beta blockers and renin-angiotensin system inhibitors are known to reduce the risk of adverse ventricular remodeling after a large infarct17, it is plausible that the similarly high prescription rates of beta blockers and renin-angiotensin system inhibitors among both sexes may also be responsible in part for the similar adjusted risk of rehospitalization for HF.

In contrast to rehospitalization for HF, the risk of rehospitalization for MI remained higher among women after adjusting for sex differences in baseline characteristics. Despite studies showing that women derive greater benefit from DES than men18, there were
significantly lower use of DES among women in our study. The lower use of DES among women was limited to patients ≥ 60 years of age (women 16.9%, men 23.9%, $P<0.001$). Procedure success was similarly high in both sexes despite higher rate of pre-procedure complete occlusion of the infarct-related artery among men. In the same vein, the rate of multivessel PCI was similarly low in both sexes despite multivessel disease being more common among women. However, the interaction between sex and complete revascularization for MI rehospitalization was not statistically significant (P for interaction=0.441). Unmeasured variables may be postulated to explain the higher risk of rehospitalization for MI among women in our study. Having typically smaller and less compliant conduit arteries, coupled with concomitant risk factors such as diabetes and complex lesions, put women at a higher risk of restenosis19,20. Hormonal fluctuation, especially during menopause in women, may lead to macrovascular and microvascular alterations, leaving older women vulnerable to a decreased ability to sustain adequate vascular repair21. Smooth muscle cell dysfunction is more commonly seen in women, which may lead to impairment of coronary flow reserve22. Spontaneous coronary artery dissection also occurs more frequently in women23. Although it is a rare cause of MI, a study by Tweet et al. found that revascularization did not protect against recurrent spontaneous coronary artery dissection even in patients presenting with preserved vessel flow24. Women are known to have a higher risk of bleeding than men, which could lead to early discontinuation of dual-antiplatelet therapy (DAPT) with a subsequent increased risk of MI25. Moreover, women tend to have poorer medical adherence than men26,27. Dreyer et al. further observed that women had poorer health and psychosocial status after MI and adjusting for health status and psychosocial status attenuated sex differences in post-MI rehospitalization2. Our study covered an unselected population using national data, which were captured in a standardized manner across all hospitals and is expected to yield results with high internal validity. While the long study period of seven years (2007 to 2013) is a strength, progress in management of STEMI has been rapid and hence there are likely to be time-
varying trends that may not be fully accounted in our study. Studies have questioned the accuracy of primary diagnoses coded by hospitals\(^{28}\), yet others have shown that major contributory disease conditions can be reliability identified with a positive predictive value >80\(^{29}\). As higher risk of rehospitalization for MI among women persisted after adjusting for all potential confounders available in our study, we can only conclude that these variables are able to only partially explain the association between sex and rehospitalization for MI and attribute the unexplained sex disparity to other unmeasured variables, such as duration of DAPT, medication adherence and psychosocial status.

In conclusion, in a setting of universal access to pPCI, sex disparities persist in STEMI treatment and outcomes. Compared with men, women with STEMI are more likely to experience treatment delay, less likely to receive DES and DAPT, and more likely to be rehospitalized for HF and MI. Sex differences in rehospitalization for HF but not MI appear to be largely explained by their differing baseline risk. To better understand how to mitigate the sex disparity in rehospitalization for MI after pPCI, future studies should focus on sex differences in the complexity and severity of coronary artery disease and evaluate their interaction with the impact of intensification of secondary preventive medical therapy and more complete revascularization in women.

Acknowledgement

The authors express their gratitude and appreciation to the teams at the Singapore Myocardial Infarction Registry and the Singapore Cardiac Databank.

Source of funding

This study was supported through internal funding from the National Registry of Diseases Office, Ministry of Health, National Heart Centre Singapore and National University Heart Centre Singapore.

Disclosures
There are no potential conflicts of interest, including related consultancies, shareholdings and funding grants.
Figure legends

Figure 1: Time to rehospitalization for heart failure
Event curves show the adjusted rehospitalization events

Figure 2: Time to rehospitalization for myocardial infarction
Event curves show the adjusted rehospitalization events

7 Khera R, Jain S, Pandey A, Agusala V, Kumbhani DJ, Das SR, Berry JD, de Lemos JA, Girotra S. Comparison of readmission rates after acute myocardial infarction in 3 patient age groups (18 to 44, 45 to 64, and ≥65 years) in the United States. *American Journal of Cardiology* 2017; 120(10): 1761-1767

8 Champney JG, Frederick PD, Bueno H, Parashar S, Foody J, Merz CN, Canto JG, Lichtman JH, Vaccarino V. The joint contribution of sex, age and type of myocardial infarction on hospital mortality following acute myocardial infarction. *Heart* 2009; 95: 895-899

10 Yeo KK, Zheng H, Chow KY, Ahmad A, Chan BPL, Chang HM, Chong E, Chua TSJ, Foo DCG, Low LP, Ong MEH, Ong HY, Koh TH, Tan HC, Tang KF, Venketasubramanian N. Comparative analysis of recurrent events after presentation with an index myocardial infarction or ischemic stroke. *European Heart Journal Quality Care Clinical Outcomes* 2017; 3(3): 234-242

23 Virints CJ. Spontaneous coronary artery dissection. *Heart*. 2010; 96: 801-808

