UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Fitness Landscape of the Fission Yeast Genome

Grech, L; Jeffares, DC; Sadée, CY; Rodríguez-López, M; Bitton, DA; Hoti, M; Biagosch, C; ... Bähler, J; + view all (2019) Fitness Landscape of the Fission Yeast Genome. Molecular Biology and Evolution 10.1093/molbev/msz113. (In press). Green open access

[thumbnail of msz113.pdf]
Preview
Text
msz113.pdf - Published Version

Download (1MB) | Preview

Abstract

The relationship between DNA sequence, biochemical function and molecular evolution is relatively well-described for protein-coding regions of genomes, but far less clear in non-coding regions, particularly in eukaryote genomes. In part, this is because we lack a complete description of the essential non-coding elements in a eukaryote genome. To contribute to this challenge, we used saturating transposon mutagenesis to interrogate the Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both raw insertion-density and HMM-defined fitness estimates showed significant quantitative relationships to gene knockout fitness, genetic diversity, divergence and expected functional regions based on transcription and gene annotations. Through several analyses, we conclude that transposon insertions produced fitness effects in 66-90% of the genome, including substantial portions of the non-coding regions. Based on the HMM, we estimate that 10% of the insertion depleted sites in the genome showed no signal of conservation between species and were weakly transcribed, demonstrating limitations of comparative genomics and transcriptomics to detect functional units. In this species, 3' and 5' untranslated regions were the most prominent insertion-depleted regions that were not represented in measures of constraint from comparative genomics. We conclude that the combination of transposon mutagenesis, evolutionary and biochemical data can provide new insights into the relationship between genome function and molecular evolution.

Type: Article
Title: Fitness Landscape of the Fission Yeast Genome
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/molbev/msz113
Publisher version: https://doi.org/10.1093/molbev/msz113
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Keywords: Schizosaccharomyces pombe, Tn-Seq, cellular fitness, gene function, non-coding genome, transposon mutagenesis
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Education
UCL > Provost and Vice Provost Offices > School of Education > UCL Institute of Education
UCL > Provost and Vice Provost Offices > School of Education > UCL Institute of Education > IOE - Psychology and Human Development
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Experimental Psychology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment
URI: https://discovery.ucl.ac.uk/id/eprint/10074336
Downloads since deposit
88Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item