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Abstract Successful behaviour depends on the right balance between maximising reward and

soliciting information about the world. Here, we show how different types of information-gain

emerge when casting behaviour as surprise minimisation. We present two distinct mechanisms for

goal-directed exploration that express separable profiles of active sampling to reduce uncertainty.

‘Hidden state’ exploration motivates agents to sample unambiguous observations to accurately

infer the (hidden) state of the world. Conversely, ‘model parameter’ exploration, compels agents to

sample outcomes associated with high uncertainty, if they are informative for their representation

of the task structure. We illustrate the emergence of these types of information-gain, termed active

inference and active learning, and show how these forms of exploration induce distinct patterns of

‘Bayes-optimal’ behaviour. Our findings provide a computational framework for understanding how

distinct levels of uncertainty systematically affect the exploration-exploitation trade-off in decision-

making.

DOI: https://doi.org/10.7554/eLife.41703.001

Introduction
The balance between exploitation, that is choosing the most valuable option given current beliefs

about the world, and exploration, that is choosing options that allow us to forage and learn about

our environment, lies at the heart of decision-making and adaptive behaviour (Cohen et al., 2007;

Gottlieb et al., 2013). The trade-off between choosing to exploit or explore is a key focus of

computational theories of behaviour in both artificial intelligence and neuroscience, such as in rein-

forcement learning and Bayesian models of behaviour (Friston et al., 2015; Friston et al., 2017a;

Sun et al., 2011; Sutton and Barto, 1998a; Houthooft et al., 2016; Hauser, 2018). Importantly,

recent behavioural evidence suggests that humans perform a mixture of both random and goal-

directed exploration (Gershman, 2018a; Wilson et al., 2014a). Random exploration has been intro-

duced in early accounts of exploratory behaviour (Daw et al., 2006; Sutton and Barto, 1998a). This

behaviour is defined as a deviation from the currently most valuable policy by randomly sampling

any other option. A classical way of formalising random exploration is via �-greedy or softmax choice
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rules, where in the latter the tendency towards randomness is governed by an inverse temperature

parameter (Sutton and Barto, 1998a). A more refined account of random exploration has been

introduced via Thompson sampling (Thompson, 1933), where an agent samples from a posterior

over reward statistics and chooses the most valuable option with respect to this sample, thus taking

its uncertainty over reward statistics into account (Agrawal and Goyal, 2011; Speekenbrink and

Konstantinidis, 2015).

In contrast to random exploration, goal-directed, information-seeking exploration is guided by

the uncertainty in an agent’s model of the structure of the world. This implies that agents will selec-

tively sample options that are informative, that is that are associated with the highest uncertainty. A

prominent example of uncertainty-sensitive exploration is the upper confidence bound algorithm

(Agrawal, 1995; Auer et al., 2002; Kaelbling, 1994; Sutton and Barto, 1998a), which adds an

uncertainty bonus (Kakade and Dayan, 2002) to options that have not been sampled for a long

time or that are associated with high uncertainty. See (Gershman, 2018a; Gershman, 2018b) for a

discussion of these two types of exploration and specific predictions arising from these formulations.

It is challenging to provide a formal account of the trade-off between behaviour that aims at max-

imising reward and fulfils an agent’s preferences over states on the one hand, and acquiring informa-

tion about the world on the other. Furthermore, an important challenge lies in moving beyond

descriptive accounts of behaviour towards understanding the generative mechanisms of information

gain that could be implemented by a biological system. A particularly challenging aspect lies in pro-

viding a formal account of goal-directed exploration, where agents are ‘intrinsically motivated’ to

minimise uncertainty and actively learn about the world, closely linked to the concept of curiosity

(Kidd and Hayden, 2015; Oudeyer and Kaplan, 2007). This is particularly delicate because one can

dissociate different types of uncertainties. For example, if an agent is offered an option that may

have a positive or a negative outcome, she will be in a state of uncertainty at two levels. First, she

has no idea about the probabilities of winning or losing. For example, there could be a 50% or 99%

chance of winning. Second, even if she knew the probability of winning exactly (e.g. 50%), there will

still be some uncertainty about the outcome if she chose the option (whether she wins or not). These

types of uncertainties have been termed unexpected and expected uncertainty (Yu and Dayan,

2005) or, in economics, ambiguity and risk. The key point is that it is necessary to resolve ambiguity

first before agents can assess the value of options and their associated risk.

We discuss these different aspects of uncertainty-reduction in terms of Bayesian inference, by

casting choice behaviour and planning as variational probabilistic inference (Friston et al., 2013;

Friston et al., 2017a). Here, agents are assumed to form expectations over observable states (out-

comes) and infer policies that minimise the expected information-theoretic surprise about these

observations. These expectations reflect an agent’s preferences over observations, such that unde-

sired outcomes will be (a priori) unexpected and surprising. Thus, by minimising surprise, agents find

policies that make visiting preferred states more likely. This information-theoretic quantity can be

approximated by the expected free energy, which is a function of (approximate posterior) beliefs

about the states of the world, formed under a generative model based on a Markov decision pro-

cess, as will be described below.

Under this approach, different types of exploitative and exploratory behaviour emerge. The key

aspect that motivates goal-directed uncertainty reduction is the mapping from (hidden) states to

observations. This form of uncertainty reduction becomes relevant in partially observable problems,

where in addition to inferring the best policy; agents also have to infer the current (hidden) state

that caused an observation. In order to minimise uncertainty about the current state, agents can try

to navigate to (observable) outcomes, where the mapping to the underlying hidden state is unam-

biguous. A simple example is a bird that is searching for prey: in the case of high uncertainty about

the prey’s location, a bird might go to a vantage point first to minimise uncertainty about the prey’s

location (i.e. the underlying hidden state), before predation. Another example is contextual infer-

ence, where an agent needs to disclose the current context (i.e. the hidden state), in order to infer

what to do (e.g. is there milk in the fridge?). In case of contextual uncertainty, agents will prefer to

sample outcomes that allow for precise inference about the current context (e.g. sample the fridge),

before making a choice about whether to look for reward (e.g. whether or not to make tea). For-

mally, this means that agents will try to actively sample outcomes that have an unambiguous (low

conditional entropy) mapping to hidden states – hence active inference allowing for ‘hidden state

exploration’.
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Importantly, the exact same imperatives apply to beliefs about model parameters that describe a

subject’s knowledge about state transitions or the probability of various outcomes given the underly-

ing (hidden) states. In other words, uncertainty about states of the world is accompanied by uncer-

tainties about the contingencies that underwrite state transitions and the relationship between

hidden states and observable outcomes. In contrast to the examples above, which reflect uncertainty

about the underlying hidden state, given an agent’s model of the task this form of uncertainty

reflects an agent’s ignorance about the causal structure of the model per se. For example, agents

can be uncertain about the current context that determines the value of options (uncertainty about a

hidden state, ’is there milk in my tea?’) or uncertain about the value of options given a current con-

text (uncertainty about model parameters, ’what does milky tea taste like?’). To reduce the latter

type of uncertainty, agents can expose themselves to observations that complete ‘knowledge gaps’

and thereby learn the probabilistic structure of unknown and unexplored (novel) contingencies –

hence active learning allowing for ‘model parameter exploration’.

In the following, we introduce the theoretical framework underlying active inference and active

learning and use simulations to illustrate the emergence of these particular types of exploratory

behaviour. We consider the resolution of uncertainty about states and parameters in terms of

salience and novelty respectively; where ‘salience is to inference’ as ‘novelty is to learning’. We use a

simple two-armed bandit problem in which a subject has to choose between a risky high reward and

a safe low reward, where the probabilities of the risky option are unknown. Minimising expected

free energy leads to curiosity-driven active learning that initially favours the novel risky option,

because this option provides uncertainty reduction about an agent’s parameterisation of the task.

We show how the same computational framework motivates active inference in situations where cer-

tain actions disclose salient information about hidden states, such as whether there is currently a

high or low reward probability in the risky option. Based on this paradigm, we illustrate different

sorts of explorative behaviour, contrast them with random exploration or purely exploitative choices,

and consider how different tendencies emerge under different priors over beliefs about outcomes

and the precision of those beliefs.

Results

A generative model of a Markov decision process
Our theoretical approach assumes that agents, such as brains or economists, minimise the expected

free energy of future outcomes and hidden states. This premise allows us to derive generic update

rules for action (i.e. policy selection), perception, and learning based on variational Bayes, which is

described in more detail in the Materials and methods section and previous work (Friston et al.,

2013; Friston et al., 2017a). In the following, we provide a brief conceptual outline of this computa-

tional architecture to frame the discussion of active inference and active learning in the remainder of

the paper.

Active inference and active learning rest upon a generative model of observed outcomes as illus-

trated in Figure 1. This generative model is used to infer the most likely causes of outcomes, that is

what is the most likely true (hidden) state of the world (e.g. a current context) that caused a given

observation (e.g. a win or a loss). These states are called hidden because they are usually not or only

partially observable and can only be inferred through observations. Inferring beliefs about hidden

states (i.e. state estimation) is cast as an optimisation problem based on minimising variational free

energy, which finds the most likely (posterior) expectations about states of the world, given current

observations. This is the same optimisation found in machine learning, where (negative) free energy

is known as an evidence lower bound (ELBO). Importantly, agents can also infer different policies,

defined as sequences of actions, that determine the most likely observations they will make. This

means that observations depend upon policies, which requires the generative model to infer expect-

ations about future outcomes under different policies. Thus, in addition to forming posterior beliefs

about hidden states, active inference and learning rest on posterior expectations about the best pol-

icy to pursue in a given context. In other words, agents are assumed to infer ‘what is the current

state of the world’ and ‘what are the best actions to pursue’ based on the same generative model of

the environment.
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Variational free energy is a function of observations and probabilistic beliefs about hidden states

(see Materials and methods), and can be understood as a statistical quantity that measures the mis-

match (i.e. ‘surprise’) between true observations and predictions about those observations under the

generative model. Minimising this mismatch ensures that these beliefs approximate the true states,

given observations and maximises the (negative log) evidence of an agent’s generative model. The

key assumption of active inference and active learning is that we can apply the same logic to infer-

ence about hidden states and policies. In the context of inference about policies (‘what am I going

to do now?"), valuable policies are those that minimise variational free energy expected under that

policy, that is the mismatch between preferred and predicted outcomes, under a given policy. Effec-

tively, this compels agents to select policies that avoid surprising outcomes. This (expected) free

energy is a proxy for surprise or model evidence, and thus allows one to cast choice behaviour as

minimising expected surprise or, equivalently, maximising expected model evidence (Friston et al.,

2015). This provides a formal grounding for the notion of the ‘value’ of a policy: the value is defined

with respect to an agent’s generative model of the world, and valuable policies maximise the

expected log-evidence of that model.

Importantly, as illustrated in Figure 1 (see Materials and methods section, Equation 7 for details),

the value (goodness) of a policy G is determined by both extrinsic reward and intrinsic information

β

γ

c

π

B

d st

ot

st-1

A

Generative model

Observation model: mapping from hidden states to observations

Transition probabilities: mapping from current to next states contingent on policies

Beliefs about initial states in a task

Beliefs about outcomes in a task (=preferences)

Beliefs about policies

Parameters of observation model

Precision (inverse stochasticity in behaviour)

Value of policies

Figure 1. Generative model. A generative model specifies the joint probability of observations and their hidden causes. The model is expressed in

terms of an observation model (likelihood function, that is the probability of observations given true states) and priors over causes. Here, this likelihood

is specified by a matrix (A) whose rows are the probability of an outcome under all possible hidden states, Pðot jstÞ. The (empirical) priors in this model

pertain to transitions among hidden states (B) that depend upon policies (i.e. sequences of actions), Pðstþ1jst ;pÞ and beliefs about policies contingent

on an agent’s precision or inverse randomness, PðpjgÞ, as well as (full) priors on precision (specified by a Gamma distribution) and an agent’s

observation model (specified by a Dirichlet distribution). The key aspect of this generative model is that policies are more probable a priori if they

minimise the (sum or path integral of) expected free energy G pð Þ. This implies that policies become valuable if they maximise information gain by

learning about model parameters (first term) or hidden states (second term) and realise an agent’s preferences. Approximate inference on the hidden

causes (i.e. the current state, policy, precision and observation model) proceeds using variational Bayes (see Materials and methods). Right side depicts

the dependency graph of the generative model, with blue circles denoting hidden causes that can be inferred. s=Softmax function, Dir = Dirichlet

distribution, G= Gamma distribution, Q = (approximate) posterior. See Materials and methods for details.

DOI: https://doi.org/10.7554/eLife.41703.002
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gain. Depending on an agent’s prior uncertainty about the world, gaining information can refer to

exploring hidden states underlying observations, that is ‘active inference’, or exploring the correct

parameterisation of the agent’s world model, that is ‘active learning’. Interestingly, these two ten-

dencies can make opposing predictions about behaviour. Active learning allows for ‘model parame-

ter exploration’ and compels agents to actively seek novel combinations of hidden states and

outcomes to learn about the way in which outcomes are generated. Active inference allows for ‘hid-

den state exploration’ and compels agents to actively seek (known) salient observations that enable

them to infer the underlying hidden states unambiguously. For example, if an agent is certain that a

risky option has a 0.5 probability of being rewarded, this ‘certain ambiguity’ will be aversive

(depending on her risk preferences, see appendix I). However, if she is uncertain about a 0.5 proba-

bility, however, this ‘uncertain ambiguity’ means there is an opportunity to resolve uncertainty and

motivate active learning. In the following, we will explore this dialectic between ‘active learning’ and

‘active inference’ and speculate about their behavioural and neuronal underpinnings.

We will restrict our discussion of active inference and active learning to the context of discrete-

time Markov Decision Processes (Friston et al., 2013; Friston et al., 2015). In this setting, agents

are assumed to perform approximate inference based on variational Bayes, which casts a difficult

and usually intractable inference problem as a bound optimisation problem (Beal, 2003;

Bogacz, 2017; Gershman, 2019). This implies that expectations about hidden states are updated to

minimise variational free energy under a generative model. Figure 1 provides an illustration of the

Markovian generative model used in the simulations below. Observable outcomes ot at a particular

discrete time-step depend upon true hidden states st in the world, while hidden states evolve

according to Markovian transition probabilities contingent upon actions emitted by an agent. The

generative model is specified by two sets of arrays. The first, A, maps from hidden states to out-

comes. That means that A models an agent’s observation model or the emission function in a hidden

Markov model, specifying the likelihood of an observation under a given hidden state. The second,

B, prescribe the transitions among hidden states, contingent on a policy p. These transitions are

Markovian, such that the probability of the subsequent state is fully determined by the current state

and action. The arrays c and d encode prior expectations about observations, and initial states,

respectively. The former specifies an agent’s preferences or utilities over outcomes and determines

the ‘extrinsic’ reward component of a policy’s value, whereas the latter specifies an agent’s prior

beliefs about the starting point in a task. We refer to the Appendix I for a more detailed discussion

of the role of c and d in exploitative and exploratory behaviour. Finally, the precision g reflects an

agent’s stochasticity or randomness in behaviour. This precision term is parameterised by a rate

parameter b, such that the expected value of g is 1

b
. Note that under this generative model, g is a

hidden state that can be inferred. In the following simulations, however, we will focus on the role of

b in determining an agent’s overall level of stochasticity (i.e. ‘random exploration’) in behaviour, but

we discuss time-dependent updates of precision in the section on potential neuronal correlates of

active inference and active learning (section ‘Behavioural and neural predictions’).

In the following simulations of active learning and active inference (available online, cf.

Schwartenbeck, 2019a), we focus on the two kinds of information gain, namely, foraging for infor-

mation about the correct parameterisation of the observation model (active learning or ‘model

parameter exploration’) and using the observation model to accurately infer hidden states (active

inference or ‘hidden state exploration’). We will assume that state transitions as well as the number

and type of observations and initial states are already learned. How the state space and the dimen-

sions of the different matrices that determine the mapping between these states are themselves

learned is an important and interesting question but goes beyond the scope of this paper (see Lav-

ersanne-Finot et al., 2018 for a discussion of curiosity-driven learning of goal states, for instance).

Model parameter exploration via active learning
In this section, we simulate the effects of active learning or ‘model parameter exploration’ on behav-

iour (first term in Equation 7, Materials and methods section and Figure 1). The aim of this section

is to characterise the behavioural phenotype of active learning in different task settings, and contrast

this type of goal-directed exploration with random exploration. We simulate a simple experiment,

where an agent has to choose between a safe and a risky option, such as a rat in a T-shaped maze

seeking reward in one of two goal arms. . We assume that the agent knows that it can only sample
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one of the two arms and that one arm (left arm in Figure 2) contains a certain small reward whereas

the other arm (right arm in Figure 2) contains an uncertain, high reward. Importantly, however, the

agent does not know about the reward probabilities in the uncertain arm in the beginning of the

experiment, but can learn about these contingencies by updating its observation model via experi-

ence-dependent learning. Learning the observation model (i.e. building the A-matrix) is cast as

updating the concentration parameters of a Dirichlet distribution that specifies the mapping from

hidden states to observations (see Materials and methods for details). These updates effectively

reflect normalised counts of experienced particular state-outcome mappings, as will be illustrated

below.

Figure 2. Generative Model of a T-maze task, in which an agent (e.g. a rat) has to choose between a safe option (left arm) and an ambiguous risky

option (right arm). There are three different states in this task reflecting the rat’s location in the maze; namely, being located at the starting position or

sampling the safe or risky arm. Further, there are four possible observations, namely being located at the starting position, obtaining a small reward in

the safe option, obtaining a high reward in the risky option and obtaining no reward in the risky option. (A) The A-matrix (observation or emission

model) maps from hidden states (columns) to observable outcome states (rows, resulting in a 4x3 matrix). There is a deterministic mapping when the

agent is in the starting position or samples the safe reward. When the agent samples the risky option, there is a probabilistic mapping to receiving a

high reward or no reward. The A-matrix depends on concentration parameters a that are updated due to observing transitions between states and

observations (in this example: receiving a high or no reward in the risky option), where a0 reflects the prior concentration parameters without having

made any observation yet (prior to normalisation over columns). (B) The B-matrix encodes the transition probabilities, that is the mapping from the

current hidden state (columns) to the next hidden state (rows) contingent on the action taken by the agent. Thus, one needs as many B-matrices as

there are different policies available to the agent (shown here: choose safe or choose risky). Here, the action simply changes the location of the agent.

(C) The c-vector specifies the preferences over outcome states. In this example, the agent prefers (expects) to end up in a reward state and dislikes to

end up in a no reward state, whereas it is somewhat indifferent about the ‘intermediate’ states. Note that these preferences are represented as log-

probabilities (to which a softmax function is applied). For example, these preferences imply that visiting the high reward state is exp 4ð Þ » 55 times more

likely than the starting point (exp 0ð Þ ¼ 1) at the end of a trial. The d-vector specifies beliefs about the initial state of a trial. Here, the agent knows that

its initial state is the starting point of the maze.

DOI: https://doi.org/10.7554/eLife.41703.003
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Model structure
To simulate behaviour, one needs to specify the parameterisation of the generative model, which

has been described in detail in previous work (Friston et al., 2016). In this task, we need to define a

hyperprior on the precision of policy (choice) selection (b in Figure 1), which reflects the randomness

in policy selection. Unless otherwise specified, we have set b to a (standard rate parameter) value of

1. As shown in Figure 2, we define three different states in this task – as determined by the rat’s

location in the maze; namely, being located at the starting position or sampling the safe or risky

arm. Further, we define four possible observations; namely, being located at the starting position,

obtaining a small reward in the safe option, obtaining a high reward in the risky option and obtaining

no reward in the risky option. The A-matrix (observation model) then determines the mapping from

states to observations, while the B-matrix (transition probabilities) specifies the mapping between

hidden states given an action (which we assume to be learned). Further, we need to specify an

agent’s expectations over observations that reflect its preferences. These expectations are encoded

in a c-vector, which we have set to c ¼ 0 2 4 �2½ � in the following simulations, reflecting an

agent’s preference for being in the starting position, obtaining a safe reward, obtaining a high

reward and obtaining no reward in a risky option, respectively. Note that here and below these pref-

erences are defined as an agent’s log-expectations over outcomes, which means that preferences

are passed through a softmax function and correspond to log probabilities

(giving c ¼ �4:15 �2:15 �0:15 �6:15½ �). For example, the definition of these preferences

implies that the agent believes that visiting the high reward state is exp 4ð Þ» 55 times more likely than

visiting the starting point (exp 0ð Þ ¼ 1) at the end of a trial. The d-vector encodes an agent’s expecta-

tions about the initial state, which was defined to reflect full certainty about starting each trial in the

starting position of the maze. In simulations that include learning, we set the initial concentration

parameters for obtaining a high reward (or not) to 0.25 (i.e. position (3,3) and (4,3) in the A-matrix in

Figure 2), and these concentration parameters are updated according to a learning rate h, which

was set to 0.5. Figure 2 illustrates the architecture of the generative model of this task.

Active learning
Figure 3A illustrates an experiment that was simulated under active learning with an underlying

high-reward probability of 50% in the risky option. The bottom panel illustrates the evolution of

beliefs (concentration parameters) about the underlying emission probabilities of the task for every

trial of the experiment, which in turn determine policy selection as illustrated in the first panel. Note

that at the start of the experiment, the agent assigns equal probability to receiving a high reward

and no reward at the risky option, but these beliefs have very low certainty (i.e. very small concentra-

tion parameters). This leads the agent to explore and gather information in the beginning of the

experiment by choosing the risky option, that is to learn actively. After trial 10, the agent (correctly)

assigns a probability of 50% to a high reward in the risky option, but now with higher confidence

(i.e. larger concentration parameters). Consequently, the agent now prefers to exploit and sample

the safe option, driven by both the expected value of this option and a preference for visiting unam-

biguous states. Note that this result also depends on the agent’s risk preferences, as discussed in

Appendix I.

Figure 3B illustrates the same task but with a reward probability of 0.75 for the risky option.

Here, after a similar number of exploration trials as in Figure 3A, the agent becomes confident that

it should select the risky option, given its higher expected value. This can be seen by the fact that

the agent continues to select the risky option (blue dots) with high confidence (shaded area behind

blue dots, first panel) because the risky option is mostly rewarded (green dots, second panel).

The role of stochasticity in active learning
The above simulations highlight an important aspect of exploratory behaviour, namely behaviour

that is goal-directed and aims at reducing uncertainty about a specific part of an agent’s model, in

this example the part of the A-matrix (i.e. the observation or emission function) that specifies the

mapping from sampling the risky option to obtaining a high or low reward. This means that the

agent tries to gain insight into a particular part of the structure of world that it is unsure about.

Importantly, this predicts that this sort of exploratory behaviour will be most prevalent if there is

high uncertainty about the structure of a task, such as in the beginning of a game. This also suggests
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an important confound when investigating the influence of reward and uncertainty on behaviour;

namely, the fact that the rewarding options will often be associated with the lowest uncertainty

because they are sampled most frequently (Wilson et al., 2014a). This confound highlights the

importance of analysing behaviour at the beginning of an experiment when there is high uncertainty

about all available options (Gershman, 2018b; Gershman, 2018a).

As illustrated earlier, goal-directed information-gain can be contrasted with random exploration,

such as in �-greedy or softmax choice rules where the degree of randomness is governed by an

inverse temperature parameter (Sutton and Barto, 1998a). In its simplest form, random exploration

implies that exploratory behaviour will not be informed by an agent’s uncertainty about different

options or its uncertainty about different parts of the world. This implies that such behaviour will not

decrease uncertainty per se but may cause ‘accidental’ belief-updating due to random or stochastic

selection of different policies. Here, this sort of behaviour is controlled by the precision of policy

selection (see Equation 4 in Materials and methods). This means that random exploration can be

understood as imprecise behaviour. Importantly, the precision of behaviour does not depend on an

agent’s uncertainty about the world, such that there is no predicted relationship between ‘random

exploration’ and the time-course of an experiment (see below). Figure 4 illustrates the effects of

highly imprecise (b ¼ 2
3, Figure 4A) and highly precise (b ¼ 2

�3, Figure 4B) types of behaviour.

Note that the expected value of precision is the inverse of b, that is E gð Þ ¼ 1

b
(Figure 1).

Figure 3. Simulated responses during active learning. This figure illustrates responses and belief updates during a simulated experiment with 32 trials.

The first panel illustrates whether the agent sampled the safe or risky option as indicated by the blue dots, as well as the agent’s beliefs about which

action to select. Darker background implies higher certainty about selecting a particular action. The second panel illustrates the outcomes at each trial

and the utility of each outcome. Outcomes are represented as coloured dots, where purple refers to a small and safe reward, green to a high reward

and red to no reward in the risky option. Black bars reflect the utilities of the outcome. Note that these utilities are defined as log-probabilities over

outcomes (see main text and Figure 2), thus a value closer to zero reflects higher utility of an outcome. The third panel illustrates the evolution of

beliefs about the reward probabilities in the risky option (red = belief about no reward, green = belief about high reward). The fourth panel illustrates

the evolution of the corresponding concentration parameters of the observation model over time (red = concentration parameter for the mapping from

risky option to no reward, green = concentration parameter for the mapping from risky option to high reward, cf. Figure 2A). (A) In this example, the

simulated agent makes predominantly curious and novelty-seeking choices in the beginning of the experiment. After the tenth trial, the agent is

confident that the risky option provides a probability of 0.5 for receiving a high reward, which compels it to choose the safe option afterwards. (B) Same

setup as in (A), but now the true reward probability of the risky option is set to 0.75. After sampling the risky option in the beginning of the experiment

and learning about the high reward probability of that option, the agent becomes increasingly certain that the risky option has a high probability of a

reward. This compels the agent to continue sampling the risky option and only rarely visiting the safe option with low certainty, as illustrated in panel

one.

DOI: https://doi.org/10.7554/eLife.41703.004
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Broken ‘active learning’
Active learning predicts that the ability to learn about the environment and minimise uncertainty is a

determining factor of the value of policies. This can be illustrated by disabling the influence of active

learning on policy evaluation, as shown in Figure 5. In this case, policies cannot be distinguished in

terms of their uncertainty reduction about model parameters. Consequently, the value of policies is

determined by visiting preferred and unambiguous outcomes. This means that agents will not exhibit

active learning, and the only way to learn about the environment is by accidently (randomly) sam-

pling a non-preferred option. Figure 5 illustrates this problem: here, the true reward probability of

Figure 4. Effects of precision on behaviour. Same setup as in Figure 3, but now with varying levels of stochasticity. (A) A high degree of random

exploration results from very imprecise behaviour (b ¼ 2
3), whereas (B) highly precise behaviour (b ¼ 2

�3) results in very low randomness in behaviour.

DOI: https://doi.org/10.7554/eLife.41703.005

Figure 5. ‘Broken’ active learning (parameter exploration). Same setup as in Figure 3, but now with a true reward probability of 0.75 and no active

learning as a determinant of the value of policies (first term of Equation 7, Materials and methods section). (A) If behaviour is very precise (b ¼ 2
�3), the

agent will never find out that the risky option is more preferable than the safe option, because there is no active sampling of its environment. (B) In

contrast, if the agent’s behaviour has a higher degree of randomness (low precision, b ¼ 2
3), then it will eventually learn about the reward statistics in

the risky option from randomly sampling this alternative, and infer that it is preferable over the safe option.

DOI: https://doi.org/10.7554/eLife.41703.006
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the risky option is 0.75, but in the absence of any active learning, the agent can only find out about

the value of the risky option by randomly sampling this alternative. Thus, if the agent shows very pre-

cise (non-random) behaviour (Figure 5A), it is very unlikely to discover that the risky option is better

than the safe option, and only by showing very imprecise behaviour (Figure 5B) the agent will be

able to develop a (weak) preference for the risky option. This illustrates an intriguing point, namely

that random exploration may serve an adaptive function in the absence of goal-directed exploratory

behaviour, for example due to an agent’s inability to evaluate its uncertainty about the world.

Time courses of exploratory behaviour
A general problem when investigating the role of exploration in value-based decision-making is that

if an agent is allowed to move around freely, there will be a relationship between the reward statis-

tics of an option and its associated uncertainty. Rewarding arms will be associated with a lower level

of uncertainty simply because they are sampled more often (Gershman, 2018a; Gershman, 2018b;

Wilson et al., 2014a). To compare different computational architectures that might underlie explor-

atory behaviour and information-gain, it is therefore important to investigate the time-course of

behaviour, as illustrated in Figure 6 based on a true reward probability of 0.5 in many simulations of

the active learning task. Figure 6A illustrates the time-course of behaviour under active learning con-

ditioned on the concentration parameters of the A-matrix (observation model,)

Unsurprisingly, the agent strongly prefers to choose the risky option when she believes that the

reward probability is high (right bottom corner in Figure 6A) and strongly prefers to choose the safe

option if the probability of a high reward is low (left upper corner in Figure 6A). Importantly, we

also observe a gradient across the diagonal, such that agents have a strong preference to choose

the risky option if there is high uncertainty about its reward contingencies (i.e. both concentration

parameters of the A-matrix are low, lower left corner in Figure 6A). In contrast, the probability to

choose the risky option is very low if the agent is very certain that the probability to receive a high

reward is 0.5 (i.e. both concentration parameters of the A-matrix are high, upper right corner in

Figure 6A). In line with this, the probability of choosing the risky option over time under active learn-

ing shows that there is a very high preference for sampling the risky (uncertain) option in the begin-

ning of a trial, which then monotonically decreases over time (Figure 6C).

Figure 6B illustrates the time-course of behaviour without active learning but with a high degree

of random exploration (low prior precision), where the only way to learn about the true reward prob-

abilities is by randomly sampling the risky option. The pattern of Figure 6B reflects a noisier version

of Figure 6A. Aside from the larger randomness in behaviour, there is also an important difference

when uncertainty about the true reward statistics is high (lower left corner): in the absence of active

learning, there is no preference for the risky option when the relevant concentration parameters of

the A-matrix are both low (lower left corner of Figure 6B). This also becomes apparent when looking

at the time course of choosing the risky option, such that there is no initial preference for the risky

option reflecting uncertainty reduction in the beginning of a trial (Figure 6C). Rather, the probability

to select the risky option remains relatively stable across trials and reflects the overall level of ran-

domness in behaviour. If there is no learning at all (i.e. the concentration parameters of the A-matrix

do not change), the probability to choose the risky option is constant and simply reflects the sto-

chasticity of individual behaviour (Figure 6C).

Hidden state exploration via active inference
In this section, we illustrate a second type of behaviour that aims at gaining information about the

world, namely exploring about hidden states of a task, as reflected by the second term of Equation 7

(Materials and methods section). In contrast to ‘model parameter exploration’, which motivates

active learning to reduce uncertainty about an agent’s model of the world, ‘hidden state exploration’

motivates active inference to form accurate beliefs about the current state of the world, based on an

agent’s model of the task. One example of this behaviour is inferring the current context, which we

illustrate in the following simulations, using a slightly adjusted version of the previous task. We now

assume that the agent has learned that she could be in two possible (hidden) states in this task,

namely either in a context where the risky option provides high or low probability for obtaining a

reward, but this contextual information is hidden from her. However, in this version of the task, she
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can also choose to sample a cue before choosing the safe or risky option, which tells her about the

reward probabilities (i.e. context) of the current trial.

Figure 6. Time-course of active learning and random exploration. Simulations of 1000 experiments with 32 trials each under a true reward probability of

0.5. (A) Probability to choose the risky option as a function of the concentration parameters for high reward and no reward in the risky option under

active learning. The probability to choose the risky (uncertain) option is high if there is high uncertainty about this option at the beginning of a task.

Note how the probability of choosing the risky option decreases as the agent becomes more certain that the true reward probability of the risky option

is 0.5 (gradient along the diagonal). (B) When there is no active learning but high randomness (low prior precision, b ¼ 2
3), there is no uncertainty-

bonus for the risky option if the agent is uncertain about the reward mapping (lower left corner). The probability to sample the risky option increases

only gradually with increasing certainty about a high reward probability (gradient along x-axis). (C) Average probability to choose the risky option as a

function of time for active learning (as in A), random exploration (as in B) and in the absence of any learning. Active learning induces a clear preference

for sampling the informative (risky) option at early trials. In contrast, random exploration without active learning does not induce a preference for

uncertainty-reduction at early trials, and the probability to choose the risky option quickly converges as the estimate of the true reward probability

converges to 0.5 due to random sampling of the risky option. In the absence of any learning, the probability to choose the risky option is constant and

reflects the precision or randomness in an agent’s generative model (simulated with, b ¼ 2
1).

DOI: https://doi.org/10.7554/eLife.41703.007
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Figure 7. Generative model of a T-maze task, in which an agent (e.g. a rat) has to choose between a safe option (left arm) and a risky option (right arm).

In contrast to the previous task, the rat can now be in two different contexts that define the reward probability of the risky option, which can be high

(75%) or low (25%). Besides sampling the safe or risky option, it can now also sample a cue that signifies the current context. This results in a state space

of eight possible states, defined by the factors location (starting point, cue location, safe option, risky option) and context (high or low reward

probability in risky option). Further, there are seven possible observations the agent could make, namely being at the starting position, sampling the

safe option, obtaining a/no reward in the risky option, and sampling the cue that indicates a high/low reward probability. (A) The A-matrix (observation

or emission model) maps from hidden states (columns) to observable outcome states (rows, resulting in an 8 � 7 matrix). There is a deterministic

mapping when the agent is in the starting position, samples the safe reward or samples the cue. When the agent samples the risky option, there is a

probabilistic mapping to receiving a high reward or no reward that depends on the current context. In contrast to the previous example, no updates of

the A-matrix take place in this task. (B) The B-matrix encodes the transition probabilities, that is the mapping from the current hidden state (columns) to

the next hidden state (rows) contingent on the action taken by the agent, which simply changes the location of the agent. For simplicity, only the

transition probabilities for the factor location are shown, which replicate across the two contexts (resulting in an 8 � 8 transition matrix). (C) The c-vector

specifies the preferences over outcome states. In this example, the agent prefers (expects) to end up in a reward state and dislikes to end up in a no

reward state, whereas it is indifferent about the ‘intermediate’ states (starting position or cue location). The d-vector specifies beliefs about the initial

state of a trial. Here, the agent knows that its initial state is the starting point of the maze, but has a uniform prior over the two contexts. In experiments

where the context is stable, this uniform prior can be updated to reflect experience-dependent expectations about the current context.

DOI: https://doi.org/10.7554/eLife.41703.008
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Model structure
The generative model of the ‘hidden state exploration’ task is illustrated in Figure 7. We have used

the same formalisation as in the previous model, except that the agent now performs inference

about sampling the safe or risky option directly, or sampling a cue first that signifies the current con-

text, namely a high (75%) or a low (25%) probability to obtain a reward in the risky option. In com-

parison to the previous generative model illustrated in Figure 2, this increases the size of the state

space by the additional cue location and the (hidden) context factor, resulting in eight different
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Figure 8. Simulated responses during inference. In this experiment, the current context indicates either a high (75%) or low (25%) reward probability in

the risky option. The agent can gain information about the current context of a trial by sampling a cue, which signifies the current context. (A)

Simulated experiment with 32 trials and a random context that changes on a trial-by-trial basis: the first panel illustrates the choice of the agent at the

beginning of a trial and the agent’s beliefs about action selection (darker means more likely). Note that the agent always chooses to sample the cue

first before choosing the safe or risky option. The second panel illustrates the outcomes of every trial (purple = safe option, green = high reward in risky

option, red = no reward in risky option) and their utilities (black bars, closer to zero indicates higher utility). Note that a green or red outcome indicates

that the agent has chosen the risky option after sampling the cue. Dark red and green dots indicate the current context as signified by the cue (dark

red = low reward probability in risky option, dark green = high reward probability in risky option). Note that the agent only samples the risky option if

the cue indicates a high reward context. The third panel shows the evolution of beliefs concerning the current state (i.e. high or low reward context). (B)

Same setup as before, but now with a constant context that indicates a high reward probability in the risky option. Here, the agent becomes

increasingly confident that it is in a high reward context, which compels it to sample the risky option directly after about one third of the experiment,

whilst gathering information in the cue location in the first third of the experiment. (C) Time-course of the probability to sample the cue first as a

function of trial number in an experiment (in 1000 simulated experiments). If the context is random, there is a nearly 100% probability to sample the cue

first at every trial. In a stable context, the probability to sample the cue shows a sharp decrease once the agent has gathered enough information about

the current (hidden) state.
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(hidden) states (columns of A-matrix in Figure 7). The B-matrix encodes the transitions between dif-

ferent locations from the starting position of the maze; namely, sampling the cue, the safe option, or

the risky option. The c- and d-vectors are defined analogously to the previous example, except that

the d-vector now reflects a uniform prior about starting the maze in one of the two contexts. We did

not include any curiosity-driven learning in these simulations, except that we allowed for experience-

based updates of the d-vector in one simulation (Figure 8B), which describe a task in which the true

state of the task can be learned gradually. Updates of the (concentration parameters of the) d-vector

are implemented analogously to the updates of the A-matrix in the ‘parameter exploration’ example

above. Note that, in principle, such updates would also allow the agent to continuously learn about

the current reward probabilities of the risky option without sampling the cue first, analogously to the

‘model parameter exploration’ example. Importantly, however, parameter exploration will not work

if the context changes rapidly, such as on a trial-by-trial basis. This provides an important illustration

of the different time-courses of inference and learning (see ‘comparing model parameter and hidden

state exploration’ section below). In the following, we will illustrate active inference in a task with a

volatile and a stable context, and show how an agent fails to perform goal-directed exploration of

hidden states if active inference is compromised.

Active inference
Figure 8A illustrates ‘hidden state exploration’ in an experiment, where the current context cannot

be learned, that is changes randomly on a trial by trial basis. Active inference predicts that the agent

will always sample the cue at the beginning of every trial to reduce ambiguity about the current hid-

den state (context) (first and third panel of Figure 8A and blue line in Figure 8C). The subsequent

behaviour in a trial depends on the information obtained at the cue. If the cue signifies a context

with high reward probability (dark green dots in second panel of Figure 8A), the agent will choose

the risky option. In contrast, if the cue indicates a context with a small reward probability, she will

choose the safe option.

This simulation illustrates an important difference to the active learning simulations above: in

these simulations, there is nothing to be learned about the state of the world, because the current

state changes randomly on a trial by trial basis. Thus, this task could not be solved by learning the

reward-mapping of the risky option, because there is no knowledge about the reward statistics that

could be carried over from one trial to the next. This highlights the necessity to perform trial-by-trial

inference about the current state of the world, as opposed to continuous parameter learning.

Figure 8B illustrates simulations of the same task, but now with a stable context of a high reward

probability in the risky option, allowing for experience-dependent updates of the agent’s prior over

initial contexts (parameters in the d-vector, cf. Figure 7) based on information obtained from the

cue. In the first third of the experiment, we observe the same choice bias as in Figure 8A, namely a

preference to sample the cue first before choosing the safe or risky option. In this experiment, how-

ever, the agent always obtains the same information from the cue location, indicating a stable envi-

ronment with a high reward probability in the risky option. Once the agent becomes confident

enough in its beliefs about the current context, it starts to sample the risky option without sampling

the cue first (cf. red line in Figure 8C, see Appendix I for a more detailed discussion of the ‘cost’ of

sampling the cue). Note that in contrast to the ‘parameter exploration’ simulations above, the agent

updates its beliefs based on the (hidden state) information provided by the cue, not the actual out-

come (i.e. obtaining a reward). This can be seen in the belief-updating after trial five, for instance:

the agent samples the cue, which indicates a high reward probability context, and obtains no reward

from the risky option. Despite the negative outcome, it increases its belief about being in the high

reward context (third panel of Figure 8B), due to the information obtained from the cue.

Broken ‘active inference’
What happens if an agent fails to perform ‘hidden state exploration’? Figure 9 shows simulations of

behaviour when information-gain about the hidden state is not considered during policy selection.

This implies that the cue location has no informative value, and is equally preferable to the starting

location of the maze (because they have the same utility, cf. c-vector of Figure 8). This results in a

constant preference for the safe option, because this agent is insensitive to the informative value of

the cue. In the example illustrated in Figure 9, the agent fails to acknowledge that there is a high
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reward probability in the risky option and continues to prefer the safe option. Analogously to Fig-

ure 6, the only way to sample the cue (and other options) more frequently would be by increasing

the randomness in behaviour.

Comparing model parameter and hidden state exploration
We have shown that distinct response profiles for exploratory behaviour arise from different types of

uncertainties, namely uncertainty about model parameters and uncertainty about hidden states.

Active learning arises when agents choose options that decrease their uncertainty about the correct

parameterisation of the world, such as the reward probability in a risky option. Active inference, on

the other hand, aims at gathering information about the current (hidden) state of the world, for

example the current context. These behavioural tendencies can align or result in opposing predic-

tions for behaviour in different tasks. In this section, we provide direct comparisons of active learning

(parameter exploration) and active inference (hidden state exploration) in different variants of the

tasks introduced above. In these simulations, we use an identical parameterisation for these two

types of behaviour except that active learning is only governed by the first and third terms of Equa-

tion 7 (model updating and realising preferences) and active inference is only governed by the last

two terms of Equation 7 (realising preferences and minimising ambiguity). We contrast these types

of goal-directed exploration with a ‘random exploration’ agent with a higher degree of stochasticity

in its behaviour (see Materials and methods for details), but no bias for (goal-directed) parameter or

hidden state exploration, which serves as a baseline for the other two types of exploratory behav-

iour. Thus, this agent will be solely governed by the (third) realising preferences term in Equation 7,

but can still update its model of the task due to randomly sampling different options. We compare

these agents in situations where the risky option is either advantageous (reward probability of 85%)

or disadvantageous (reward probability of 15%). We use the average cumulative reward in 100 simu-

lated experiments with 32 trials each as a measure of performance for these three agents, where we

Figure 9. ‘Broken’ active inference. Same setup as in Figure 8, but now without a ‘hidden state exploration’ bias

in policy selection (second term of Equation 7, Materials and methods section). The agent fails to learn that there

is a constant high reward probability for the risky option because it does not gain information about the current

hidden state (context). Consequently, it continues to prefer the safe option. The probabilities to sample different

options (first panel) now simply reflect the agent’s prior preferences as encoded in the c-vector (cf., Figure 7).

DOI: https://doi.org/10.7554/eLife.41703.010
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define a low reward as one food pellet and a high reward as four food pellets that could be obtained

by the agent.

Figure 10 depicts the behaviour of these three agents in the task illustrated at the top of Fig-

ure 2, where a rat has to choose between a certain safe and an uncertain risky option. In line with

the previous simulations, we observe that the ‘parameter exploration’ agent quickly learns to prefer

the risky option if there is a high reward probability (left upper panel of Figure 10) and to avoid the

risky option if there is a low reward probability (right upper panel). The ‘random exploration’ agent

also converges on these estimates, but much slower. Interestingly, we observe that the ‘hidden state

exploration’ agent fails to adjust to the reward statistics of this task. This is because, from the per-

spective of this agent, there is no hidden state to explore that could be informative about the cur-

rent reward statistics. The only way to learn about the statistics of the task would be by sampling

observations that are a priori associated with high ambiguity. Such observations, however, are
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Figure 10. Response profiles of a ‘state exploration’, ‘parameter exploration’ and ‘random exploration’ agent in a task that requires learning. In the

task described at the top of Figure 2, only the ‘parameter exploration’ agent (no state exploration) flexibly adapts to the current reward statistics, whilst

the ‘state exploration’ (no parameter learning) agent fails to form a representation of the task statistics. Upper panel: probability for each of the three

agents to choose the risky option if it is associated with a high (left, 85%) or low (right, 15%) reward probability. Lower panel: average cumulative reward

(measured in pellets, where low reward = one pellet and high reward = four pellets) in 100 simulated experiments in a high (left) and low (right) reward

probability setting, indicating an advantage for the ‘parameter exploration’ agent when the risky option is associated with a high reward probability.
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aversive for a pure active inference agent, because they are associated with a high entropy (ambigu-

ity) in their mapping to underlying hidden states, which an active inference agent is compelled to

minimise. Consequently, it will always sample the safe option in this task. This induces a performance

pattern in which the ‘parameter exploration’ agent is superior to the other two agents if the reward

probability in the risky option is high, but not if the reward probability is low and the best course of

action is to sample the safe option (left and right lower panel of Figure 10).

In situations where state exploration is a necessary means for good performance, we should

expect a state exploration agent to outperform the other two. Figure 11 compares the three agents

in the task introduced in Figure 8, where the current context (high or low reward probability in the

risky option) changes unpredictably on a trial-by-trial basis but can be inferred from sampling a cue

that signifies the current context. This illustrates the opposite situation to Figure 10: here, the ‘state

exploration’ agent clearly outperforms the ‘parameter exploration’ and ‘random exploration’ agent.

Importantly, this illustrates that when the context changes randomly, there is no knowledge that

could be carried over from one trial to the next. Thus, active learning, which focuses on making

observations that allow to transfer insights from one trial to the next, will be ineffective. In contrast,

active inference, which focuses on making observations that allow for precise inference about the

current hidden state (context) at a trial, provides an effective solution to this problem (cf. Figure 7),

such that this agent always correctly infers the current context of a trial and, in consequence,

whether to sample the safe or risky option.

Figure 12 compares the three agents in the task introduced in Figure 8, which has the same

design as the previous example but now with a stable (high or low) reward context across the entire

experiment. This task can be solved with both active learning and active inference. The active learn-

ing agent has a high bias for sampling the risky option in the beginning of the experiment, and will

Figure 11. Response profiles of a ‘state exploration’, ‘parameter exploration’ and ‘random exploration’ agent in a task that requires inference. In the

problem introduced in Figure 7, where an agent can infer the randomly changing context from a cue, ‘parameter exploration’ will be ineffective,

because there is no insight that could be transferred from one trial to the next. ‘State exploration’, in contrast, provides an effective solution to this

task, because it allows an agent to infer the current context on a trial-by-trial basis. Left panel: probability to choose the informative cue at the

beginning of a trial. This shows that only the ‘state exploration’ agent correctly infers that it has to sample the cue at the beginning of every trial to

adjust its behaviour to the current context (defined as a high or low reward probability in the risky option). Consequently, it outperforms the ‘parameter

exploration’ and ‘random exploration’ agent in its cumulative earnings in this task (right panel).

DOI: https://doi.org/10.7554/eLife.41703.012
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thus learn whether it is associated with a high or low reward probability. The active inference agent

has a strong preference for sampling the cue in the beginning of the experiment, but can adjust its

prior over the current context due to stable (high or low reward) feedback from the cue (as illus-

trated in Figure 8). Thus, both the ‘state exploration’ and ‘parameter exploration’ agent will clearly

outperform the ‘random exploration’ agent.

Figure 12. Response profiles of a ‘state exploration’, ‘parameter exploration’ and ‘random exploration’ agent in a task that requires learning or

inference. Same problem as in Figure 11, but now with a stable high or low reward context (as in Figure 8B). This task can be solved by either

sampling the risky option to learn about its reward statistics (‘parameter exploration’), or sampling the cue to learn about the current context and

adjusting the prior over contexts due to constant feedback from the cue (‘state estimation’). This can be seen in the response profiles in the upper

panel, such that the ‘parameter exploration’ agent has a strong preference for sampling the uncertain risky option in the beginning of the trial (left and

right), while the ‘state exploration’ agent only starts sampling the risky option at the beginning of the trial if it has sampled the cue several times

before, which always indicates a high reward context (left, cf. Figure 8 ). This leads to a similar performance level of these two agents as measured by

the cumulative reward, which exceeds the performance of the ‘random exploration’ agent (lower panel).

DOI: https://doi.org/10.7554/eLife.41703.013
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In sum, we have outlined different types of goal-directed exploratory behaviour that emerge

under a probabilistic account of behaviour. In tasks where there is no hidden state that can inform

an agent about current reward contingencies, an active learning agent performing parameter explo-

ration will outperform an active inference agent performing hidden state exploration. In contrast, if

there is an informative hidden state that changes unpredictably, active inference outperforms active

learning. Only if there is a stable hidden state for a longer period in a task, both active learning (by

learning from observations) and active inference (by gathering information about the hidden state)

will lead to adaptive behaviour. This illustrates an important difference between active learning and

active inference. Active learning is most efficient over longer timescales if information remains rele-

vant over trials, whereas active inference is most efficient over shorter timescales, when contingen-

cies can change on a trial-by-trial basis.

This concludes our investigation of the different response profiles of parameter exploration and

hidden state estimation in different tasks (but see appendix for further simulations on the effect of

other parameters on these behaviours). Next, we explore how these types of goal-directed explora-

tion relate to empirical results on information gain in animals. We refer to Appendix 2 for a discus-

sion of other computational frameworks of curiosity and exploration and their relation to the

computational architecture we have presented here.

Behavioural and neuronal predictions
In this section, we will discuss key behavioural and neuronal predictions of active inference and

active learning, serving two purposes. First, we present testable predictions for behaviour and the

neuronal mechanisms of active learning and active inference. Second, we discuss empirical evidence

in relation to these predictions. Despite using a ‘rat’ as an exemplar agent above, the model-based

predictions reported here are not restricted to rodents. Consequently, we will discuss various predic-

tions by drawing from the entire animal literature.

Active inference and active learning in behaviour
While active inference and active learning provide a general and flexible architecture for inferring

individual differences in behaviour (see appendix), it nevertheless makes specific predictions about

the interplay of exploitative and exploratory behaviour. A key prediction is that information should

have an additive effect in relation to reward (cf., Figure 1 and Equation 7, Materials and methods

section). This means that an agent’s reward- and information-sensitivity can be manipulated sepa-

rately. Importantly, there is an implicit weighting for the tendency towards exploitation and (goal-

directed) exploration. This weighing is determined by two factors: the precision of prior preferences

and the degree of uncertainty about the world. If there is a high degree of uncertainty in an agent’s

observation model or beliefs about the current state, there will be a strong motivation for (intrinsic)

active learning or active inference, respectively. If an agent’s preferences over outcomes are very

precise, on the other hand, then the (extrinsic) ‘realising preferences’ component will have a stronger

impact on policy selection. These precision and uncertainty effects are distinct from the precision of

policy selection that determine an agent’s randomness – akin to an inverse temperature parameter

in softmax response rules.

The implicit weighting between (intrinsic) information and (extrinsic) reward predicts that an

agent’s information-seeking behaviour will not be directly informed by the agent’s utilities (cf.,

Yang et al., 2016, Box 2); for example, by being more sensitive to information about highly reward-

ing options. This implies that states can become ‘interesting’ that are entirely ‘uninteresting’ from an

extrinsic reward perspective. However, empirical evidence shows that highly rewarding options may

be more salient than options that are associated with a low reward, which is an important interaction

that we will discuss in more detail below (Figure 13).

Another prediction for behaviour concerns the interplay of exploration and exploitation over

time. In the simulations above, an agent’s preference distribution is assumed to be stable, whereas

her uncertainty about the world changes. Consequently, goal-directed information-gain will be prev-

alent at the beginning of a trial, whereas exploitative behaviour and stochastic action selection

remain constant throughout a task. Note that we have focused on a simple one-shot active learning

or two-shot active inference task; however, the present framework also accommodates exploration-

exploitation trade-offs for larger policy depths, based on the sum of the expected free energies
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over time (Equation 4, Materials and methods section). This will make an agent sensitive to large

information (or reward) gains at later time-steps and not just the subsequent step (i.e., the agent will

not be myopic).

Several lines of experimental work suggest that animals are sensitive to information gain, and

assign a value to information that competes with a reward-based (extrinsic) value of an option.

Figure 13. Dynamic relationship between reward and information. (A) Empirical findings from Blanchard et al., 2015 suggest a modulatory effect of

reward on the value of information. The higher the expected reward of the options, the more do monkeys prefer the option with the additional

information about the reward identity during the delay period. For example, the preference for the informative option will be stronger if both options

offer 315mL of water compared to both options offering 75mL of water. (B) Assuming a constant salience of different offer amounts (i.e. a constant

precision of policy selection), active learning (and inference) predicts a preference for the informative option that is constant across different reward

amounts (simulated from 0 to 10 pellets). That means that the preference for the informative option is the same when both options offer 1 or 10 pellets,

for instance. (C) When taking a dynamic change of the precision of policy selection for different offer amounts into account (ranging parametrically

between b ¼ 2 for zero pellets in both offers and b ¼ 2
�1 for 10 pellets in both offers), the simulated preferences match the empirical results from

Blanchard et al., 2015. This highlights the importance of the interplay between the (extrinsic and intrinsic) values of options in active learning and

active inference.

Ó 2014 Neuron. All rights reserved. Reprinted from Blanchard et al. (2015) with permission from Elsevier. This panel is not available under CC-BY and

is exempt from the CC-BY 4.0 license
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Often, these behavioural tests are based on ‘cue signalling tasks’. In these tasks, an animal chooses

between two options followed by a reward after a delay. Crucially, in one of these options the out-

come is signalled to the animal during the delay; such that the animal can resolve its uncertainty

about the upcoming reward. This additional signal – during the delay – has no instrumental value

and does not shorten the delay period. It is debatable to what extend this task truly reflects an

explicit value of information in exploratory (curious) behaviour as simulated above (Wang et al.,

2018); rather than just a change in the anticipation of rewards that may itself be attractive

(Iigaya et al., 2016). Either way, however, this paradigm assesses an animal’s preference for non-

instrumental information, as opposed to pure exploitative behaviour. In the following, we use empiri-

cal paradigms inspired by the ‘cue signalling task’ to discuss behavioural and neuronal evidence for

the encoding of ‘information’ implicit in active inference and learning.

Past work has shown that animals assign a value to gaining information about the outcome in

such ‘cue signalling tasks’. Pigeons appear to prefer (on average) a two pellet option over a ‘safe’

three pellet option, if the two pellet option includes an additional signal about the reward size dur-

ing the delay period (Zentall and Stagner, 2012; Zentall and Stagner, 2011). Analogously, starlings

show a preference for an option with a lower reward probability, if there is an informative cue in the

delay period (Vasconcelos et al., 2015). This effect is stronger if the cue is shown shortly after the

animal’s choice, as opposed to close to the outcome delivery. The same – from an economic per-

spective ‘suboptimal’ or ’bounded rational’ behaviour – has been found in rats (Chow et al., 2017),

monkeys (Blanchard et al., 2015; Bromberg-Martin and Hikosaka, 2009; Smith et al., 2017), and

humans (Iigaya et al., 2016).

These empirical results suggest that non-instrumental information provides an additional value to

an option, in addition to its external reward. Importantly, this additional informative value can render

an option more valuable even though its objective (economic or extrinsic) value is lower than alterna-

tive options. As previously noted, one central prediction from the computational framework pre-

sented here is that information provides an additive value to an option, which is evaluated alongside

its extrinsic value. This resonates closely with the above results, where the signalling cue provides an

additional value to an option and makes it more likely than alternative options that have higher

extrinsic (economic) value.

However, the assumption that the value of an option reflects the linear sum of its extrinsic and

intrinsic value may not always be true. Importantly, Blanchard et al., 2015 have found that monkeys

are more sensitive to information if the option has higher extrinsic value (see Figure 13A). Using

water as reward, they report that “the value of information may have a multiplicative effect on the

value of water amount, just as probability does in a conventional gambling task, time does in a dis-

counting task, or effort does in an effort task’’. That means that the more water was at stake for a

given gamble, the more monkeys preferred to choose the option that included a signal during the

delay period before receiving the outcome.

Figure 13 reproduces the effects reported by Blanchard et al., based on an active learning agent

(assuming that now there are two options with a 0.5 probability for obtaining a reward, but with an

information bonus for one of the two options). We find a strong behavioural bias towards the infor-

mative option, confirming the experimentally observed information bias in monkeys. This is in line

with the additive effect of information on the value of a policy as predicted by active learning.

Figure 13B shows that this additive effect results in a constant preference for sampling the option

that is associated with higher uncertainty, irrespective of the reward magnitude of the two options

(simulated for 0 to 10 pellets). In other words, the agent will consistently prefer the uncertain option

if the objective values are the same (diagonal of Figure 13b). This agent, however, is insensitive to

the total amount of reward, such that it will exhibit the same preference for the informative option if

both options offer 1 or 10 units of reward, for instance, which is in contradiction with Blanchard

et al.’s empirical findings. Importantly, active learning and active inference can also account for an

interaction between reward and information, as reported in the original results (shown in

Figure 13A). A supra-additive effect (as seen by Blanchard et al.) is expressed when taking a

dynamic nature of the precision of policy selection into account. Previous studies have shown that

reward or information modulate attention (by acting as a salience signal), which in active learning

and active inference is reflected by a change in the level of the precision in policy selection

(Friston et al., 2012; Feldman and Friston, 2010; Moran et al., 2013; Schwartenbeck et al.,

2016). This is in line with previous work on curiosity and exploration, where attention and salience
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have been identified as mechanisms that modulate curiosity. For example, Kidd et al. have found

that infants direct less attention towards information about overly simple or overly complex stimuli

(Kidd et al., 2012; Kidd et al., 2014), suggesting that they ‘implicitly decide to direct attention to

maintain intermediate rates of information absorption’ (Kidd and Hayden, 2015). Further, it has

been shown that a neuronal effect for novelty critically depends on attention towards the reward-

predicting feature of a stimulus, as opposed to when subjects had to make reward-unrelated judge-

ments about stimuli (Krebs et al., 2009). Importantly, these results suggest that attention towards

the rewarding properties of a stimulus modulate the effects of its informative value.

Figure 13C illustrates this point by assuming a change in the precision of policy selection as a

function of the value of options (precision ranging parametrically from b ¼ 2
1 for zero pellets in both

options to b ¼ 2
�1 for 10 pellets in both options). Assuming policy precision is itself optimised, our

model expresses a remarkably similar pattern to that observed in Blanchard et al., confirming the

supra-additive effect of information. Thus, from the perspective of active learning (and inference),

the empirical observation of a modulatory effect of reward on information speaks to an interplay

between the value of different options, which provide empirically testable behavioural and neuronal

predictions (see open questions below). Note that in the simulations of Figure 13C we varied the

(hyper-)prior (b in Figure 1) on precision in analogy to our simulations above. An extensive body of

work, however, investigates the time-sensitive updating of precision (g in Figure 1) itself by treating

it as a hidden state that can be inferred (FitzGerald et al., 2015; Friston et al., 2014; Friston et al.,

2017a), to which we will return below.

Neuronal mechanisms of active inference and active learning
While the focus of this work is on the computational mechanisms of exploratory and curiosity-driven

behaviour, the theoretical framework of active learning and inference also makes predictions about

the neuronal encoding of information and ensuing curiosity. It is thereby crucial to understand how

(i) (expected) intrinsic and extrinsic value are represented neuronally, and (ii) how their neuronal

encoding allows the processing and updating of information during active sampling. In particular,

we will focus on two key results about the neuronal basis of information-gain and curiosity that have

been reported across different species; namely, the encoding of information in subcortical dopami-

nergic structures and the orbitofrontal cortex (OFC).

The OFC has been reported to encode relevant task variables (predictions) during reward-guided

decision-making in an orthogonal manner, such as the expected reward and the reward probability

of different options (Padoa-Schioppa and Assad, 2006; Rudebeck et al., 2008; Rushworth et al.,

2011; Stalnaker et al., 2018; Wilson et al., 2014b). Most importantly, Blanchard et al., 2015 have

detected different populations of neurons in OFC that encode expected reward (water) and

expected information. This implies that OFC neurons signal reward and information in an indepen-

dent and not integrated way, such that OFC may serve as a kind of workshop that represents ele-

ments of reward that can guide choice but not a single domain general value signal" (Kidd and

Hayden, 2015). This is an important observation, because exactly this form of neuronal representa-

tion is predicted by the construction of an additive value signal based on active inference and learn-

ing, and thus makes OFC a key candidate for the encoding of extrinsic and intrinsic value of

different options as predicted under this framework (Equation 7 in Materials and methods).

A second key candidate for the neuronal implementation of active inference and learning is the

dopaminergic midbrain. Dopamine is known to play a key role in orchestrating the cost-benefit

trade-off implicated in the active inference examples above (Hauser et al., 2017, see Appendix 1

for a more detailed discussion). In addition, dopamine neurons have been shown to encode ‘infor-

mation prediction errors’ analogously to ‘reward prediction errors’ (Montague et al., 1996;

Schultz et al., 1997). Bromberg-Martin and Hikosaka (2009) found that dopaminergic neurons sig-

nal the information content conveyed by an informative cue in a cue signalling task, just as they sig-

nal unexpected (omissions of) reward. Importantly, this suggests that these neurons did not

differentiate between (extrinsic) reward and (intrinsic) information. Second, a more recent study has

shown that dopamine neurons signal prediction errors in reward as well as sensory prediction errors

about reward identity that are orthogonal to the reward magnitude (Takahashi et al., 2017). These

results suggest that the sum firing of dopamine neurons may reflect a ‘common currency’ for predic-

tion errors about task information and extrinsic reward. Similar signals in dopamine-rich midbrain
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regions have been implicated in recent studies in humans (Boorman et al., 2016; Iglesias et al.,

2013; Nour et al., 2018; Schwartenbeck et al., 2016).

These empirical observations above are closely aligned with the formalism of active inference and

learning as illustrated here. In the setting of active inference and learning, the function of dopamine

has been linked to the role of the precision of policy selection (Friston et al., 2014; Friston et al.,

2012). The role of this precision is twofold: as illustrated above, the (hyper-)prior on precision (b in

Figure 1) reflects the overall level of randomness (goal directedness) in behaviour. Additionally, pre-

cision is updated on a trial-by-trial basis based on variational (approximate) inference (not discussed

or simulated above). These variational precision updates have the form of a prediction error between

the prior and posterior expected free energy of policies (as described in Figure 1 or Equation 7 in

Materials and methods, see Friston et al. (2017a) for a detailed treatment and derivation of these

variational updates). In other words, the predicted dopamine responses will reflect the difference

between the expected (prior) and actual (posterior) reward, model update and knowledge about

hidden states (i.e. the difference between prior and posterior beliefs about the value of a policy).

These predictions for dopaminergic signals correspond closely with empirical results reported in

(Bromberg-Martin and Hikosaka, 2009; Takahashi et al., 2017), since an ‘information’ or ‘identity’

prediction error results from the difference between prior and posterior beliefs about model param-

eters and hidden states.

Dopaminergic neurons are a key target area of OFC, and it has been hypothesised that the pre-

diction error signal in dopamine neurons may critically rely on OFC input (Kidd and Hayden, 2015;

Takahashi et al., 2011), and that error-driven learning critically depends on the interplay between

those two regions (Jones et al., 2012; Takahashi et al., 2009). Intriguingly, these speculations reso-

nate with the fact that it required both the (intrinsic and extrinsic) value of options as well as the pre-

cision of policy selection in Figure 13C to reproduce the behavioural effect reported by Blanchard

et al. (Figure 13A). Taken together, these simulations and empirical results suggest that active infer-

ence and active learning may critically depend on a factorised (intrinsic and extrinsic) value represen-

tation in OFC and a unified update signal in dopaminergic nuclei.

It is important to note that, besides the encoding of information in the OFC and dopaminergic

nuclei, the physiological basis of exploration and active sampling has also been associated with other

neuronal mechanisms. There has been much recent interest in the neuronal basis of active sensing in

animals, such as whisking (Bush et al., 2016; Campagner et al., 2016; Grant et al., 2009;

Ranade et al., 2013; Yang et al., 2016). Further, in humans exploratory choices and information

gain have been correlated with activity in the insula and dorsal anterior cingulate cortex

(Blanchard and Gershman, 2018; Kolling et al., 2012; Muller et al., 2019; van Lieshout et al.,

2018) as well as the rostrolateral prefrontal cortex (Badre et al., 2012; Daw et al., 2006;

Ligneul et al., 2018).

Outstanding questions
While some of the key predictions from active learning and inference are closely aligned with empiri-

cal results, open questions remain, which we briefly outline below.

. It remains to be established to what extent active learning and active inference are mecha-
nisms dissociable in behaviour and brain function, and to what degree these mechanisms
make use of different cognitive and physiological resources. For instance, it is unclear whether
the preference for advance information in the ‘cue signalling task’ can be attributed to active
learning or active inference. One possible way to dissociate these processes is by investigating
the time-course of information-seeking behaviour. Active learning predicts a decrease of
exploratory behaviour over time, because the agent’s uncertainty over its observation model
decreases with accumulated sensory experience. Active inference does not necessarily predict
a decrease in information seeking in tasks where there is no enduring context that could be
learned (Figure 7). Under such circumstances, active inference predicts a constant preference
for sampling a cue (which appears more in line with empirical results from the ‘cue signalling
task’).

. Timing effects have been shown to modulate information gain behaviour in the ‘cue signalling
task’, such as a stronger effect of an informative cue right after a choice – as opposed to closer
in time to the presentation of the outcome (Vasconcelos et al., 2015). Our framework
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currently makes no predictions about such temporal effects but could well be extended to
accommodate such timing effects.

. Similarly, in the framework presented here one would not expect to see horizon effects in
behaviour, such that information about the task becomes more valuable with an extended
temporal horizon. This contrasts with empirical results on exploration (Wilson et al., 2014a). It
will be important for future work to accommodate such effects, for example, in terms of an
(inverse) discounting parameter for information.

. Active inference and active learning predict a factorised value representation in its neuronal
encoding, such as in OFC neurons. Importantly, in a task where animals can gain information
about models and states, ‘value’ neurons should exhibit a factorised representation for the
expected information about model parameters, states and reward. This is in line with but goes
beyond a factorised representation of information and value as reported elsewhere
(Blanchard et al., 2015).

. If the value of a policy is constituted by potential information about models, states and reward,
then we would expect to see a prediction error for these three quantities. For example, dopa-
mine neurons should signal the difference between expected and actual reward, but also
between the expected and actual information about model parameters and hidden states (in
line with Takahashi et al., 2017), for instance). Further, given that information about models
and states as well as reward are measured in a common currency (i.e., expected free energy),
one would expect to see trade-offs between those quantities. For example, one would expect
a positive dopaminergic response for a mildly aversive but highly informative outcome.

. Our simulations predict that the supra-additive effect found by Blanchard et al., depends on
the interplay between dopaminergic neurons and neurons in the OFC. This implies that if one
disrupts dopaminergic input after extensively training an animal on the task, OFC neurons
should reflect an additive (Figure 13B) but not supra-additive (Figure 13C) effect of reward
and information.

Learning about the structure of a task, besides maximising extrinsic reward, likely depends on a

yet unknown integrated circuit of neuronal systems. For example, it has been shown that representa-

tions of task structure in OFC critically depend on input from the ventral subiculum

(Wikenheiser et al., 2017), but the neuronal encoding that underlies structure learning in the hippo-

campal formation, OFC and neuromodulatory systems (and their interaction) is largely unknown.

Discussion
We have illustrated the emergence of active inference and active learning when casting choice

behaviour as probabilistic inference. Under the assumption that behaviour maximises model evi-

dence or (equivalently) minimises surprise over future outcomes, this implies that choice behaviour

will reflect a tendency to fulfil preferences and maximise utility, but also to minimise uncertainty

about the current state of the environment and the relevant task contingencies. Whilst the tendency

to fulfil ones preferences reflects exploitative behaviour, uncertainty reduction induces exploratory

behaviour. We have contrasted such ‘goal-directed’ exploratory behaviour with ‘random’ exploration

caused by imprecise and stochastic behaviour that is unrelated to an agent’s uncertainty about the

world.

This perspective makes specific predictions for behaviour. In particular, it introduces a distinction

between the uncertainty about current states, which can be resolved by active inference, and uncer-

tainty about model parameters, which can be resolved via active learning. Both uncertainties moti-

vate goal-directed exploration but make different predictions for actual decision-making. Minimising

the uncertainty over hidden states predicts that agents will seek observations from which there is a

clear and precise mapping to the underlying hidden state, such as moving to a vantage point to infer

the location of prey or sampling a cue that allows to infer the current context. Importantly, this sort

of uncertainty reduction depends on a particular representation of the structure of the task and a

particular parameterisation of that representation, which allows an agent to assess the mapping

from observations to hidden states. We argue that agents are also driven by minimising the uncer-

tainty about this parameterisation itself, as illustrated in the first simulations on ‘parameter explora-

tion’. Minimising the uncertainty over model parameters can even result in behaviour that conflicts

with minimising the uncertainty over hidden states – in situations where agents try to sample options

that are associated with high ambiguity but also with high novelty or information gain.

Schwartenbeck et al. eLife 2019;8:e41703. DOI: https://doi.org/10.7554/eLife.41703 24 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.41703


Consequently, a key prediction for behaviour is that the uncertainty about contingencies will modu-

late the effect of uncertainty about hidden states on behaviour. An option will be very interesting

(i.e. informative) if its outcomes are ambiguous due to high uncertainty about the mapping from this

option to possible outcomes, but the same option will be highly aversive if the agent is very certain

that it leads to ambiguous outcomes.

In other instances, ‘model parameter exploration’ and ‘hidden state exploration’ can motivate

similar types of behaviour. Our simulations, however, highlight an important conceptual distinction

between active learning and active inference in their respective time courses. As mentioned above,

it is possible to cast our ‘hidden state exploration’ example as an active learning problem, if we

assume that the current context is stable enough to be learned over time. A key requirement for

learning the context, however, is that it is possible to carry information from one trial to the next. If

this continuity is broken, for example by changing the context randomly on every trial, the agent has

to rely on active inference in order to gain information about the task. Thus, our framework predicts

that active learning will be particularly useful if there are stable regularities or rules in the world that

can be learned. Active inference, on the other hand, will be useful if behaviour has to adapt to trial-

by-trial changes. In other tasks, active inference and active learning may interact, such as by learning

about specific contingencies within a particular context. For example, imagine your favourite craft

beer brewery introduces a novel beer based on the flavour of coffee and oranges. This might pres-

ent a suitable instance for actively learning about the parameterisation of your preferences for coffee

and orange flavoured beer, resulting in a large curiosity-bonus for this choice. However, you might

be aware that you have a strong preference for Lager over Stout. Consequently, it might be useful

to actively infer the hidden state of the novel beverage by asking the bartender what sort of beer

you will obtain before placing your curiosity-driven order.

These considerations highlight the distinction between ‘goal-directed’ exploratory behaviour in

the form of minimising uncertainty about hidden states or model parameters, ‘random’ exploratory

(i.e., imprecise) behaviour and exploitative decision-making. The trade-off between these behaviou-

ral tendencies is governed by their relative precision. For example, if an agent strongly prefers one

particular outcome over all other outcomes, she will display predominantly exploitative behaviour

with the aim of attaining this outcome. In contrast, if there is one option that is associated with very

high uncertainty about its mappings to outcomes, behaviour will be dominated by sampling that

option until its associated uncertainty is resolved. Our simulations also illustrate that random explo-

ration becomes adaptive if active learning or active inference is broken (or impossible). If the uncer-

tainty about model parameters and hidden states fails to inform behaviour, the only way to learn

about the world is through a higher degree of random sampling of different options. Our simulations

have shown that this is the only way to (slowly and inefficiently) learn about the advantage of novel

options in the absence of goal-directed exploratory behaviour. Further, it is important to note that

these types of exploration themselves depend on a model of the task, such as an observation model

or a model of the transitions between states. It will be a key challenge for future work to understand

how agents build and compare these models in the first place, which provide the basis for inference

and learning.

The distinction between active learning and active inference resonates with previous accounts of

minimising different types of uncertainty, for example, the difference between unexpected and

expected uncertainty (Yu and Dayan, 2005). However, the distinction between active learning and

active inference emphasises the difference between uncertainty about model parameters and uncer-

tainty about (hidden) states. This distinction can also be thought of as different modes of addressing

different types of uncertainties. For example, an agent could reduce her unexpected uncertainty (‘is

the reward probability 50% or 99%?’) via actively learning the ‘reward parameterisation’ of an option

or via actively inferring the ‘reward state’. Whilst active inference can often be a faster and more effi-

cient way of reducing uncertainty, it also requires additional (structural) knowledge about the task,

for example, that there is either a 50% or 99% ‘reward probability state’ but nothing in-between.

Likewise, an agent can arrive at an accurate estimate of the expected uncertainty of an option (‘there

is a 50% chance that there will be a reward’) via active learning and accumulating evidence that the

true ‘reward parameter’ is 0.5, or via active inference and forming a precise belief that the current

‘reward state’ is 0.5.

This framework also promises a refined understanding of goal-directed cognitive deficits within

the spectrum of neuropsychiatric disorders and accompanying animal models. For example,
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individuals diagnosed with Schizophrenia and schizoaffective disorders are reported to suffer from

cognitive deficits associated with both active inference and active learning (Koch et al., 2010;

Morris et al., 2008; Waltz et al., 2007; Weickert et al., 2009). However, a specific characterisation

of how diagnosed individuals differ in their information gain during adaptive behaviour has remained

elusive. In a scenario where an individual suffers predominantly from working memory deficits or

contextual integration failures, active inference may become impaired, resulting in reduced adaption

to task contingencies. On the other hand, reduced efficiency in trial and error learning and atten-

tional outcome deficits may speak to impairments predominantly in active learning. Whilst active

inference and active learning may not always be entirely independent, this framework proposes the

translation of individual performance into measurable parameters that reflect these different strate-

gies in behaviour. A successful empirical dissociation of these behavioural phenotypes promises a

refined assessment of cognitive deficits due to a more accurate understanding of the underlying

neuropathological mechanisms, resulting in improved differentiability and predictability of cognitive

dysfunction in individual subjects.

In summary, we have highlighted the distinction between learning about the world as a conse-

quence of random or imprecise behaviour (‘random exploration’) and goal-directed uncertainty

reduction. Further, we have shown how these types of behaviour arise when casting behaviour as

probabilistic inference. We have identified two types of goal-directed exploratory behaviour, namely

active learning that reduces the uncertainty that relates to the parameterisation of an agent’s gener-

ative model of the world, and active inference that reduces uncertainty about hidden states in the

world given an agent’s generative model. This former type of uncertainty-reduction will compel an

agent to sample novel contingencies that enable learning about the true mappings and thus induce

‘model parameter exploration’. The latter type of uncertainty-reduction about hidden states moti-

vates agents to sample salient observations that allow for precise, unambiguous inference about the

current state, thus performing ‘hidden state exploration’. We have shown that this distinction makes

relevant predictions for the predominance of different types of exploration in different tasks

depending on whether active learning or active inference is more adaptive. This will be critical for

understanding the different motives underlying curiosity and information-seeking in animals and arti-

ficial intelligence, and provides mechanistic insight into suboptimal choice behaviour arising from

broken active inference or active learning.

Materials and methods
The generative model illustrated in Figure 1 implies that outcomes (observations) are generated in

the following way: first, a policy is selected using a softmax function of expected free energy for

each policy (see below), which also depends on the agent’s degree of randomness (precision) in

behaviour. Sequences of hidden states are then generated based on the probability transitions spec-

ified by the selected policy. These hidden states then generate outcomes. State inference corre-

sponds to inverting the generative model given a sequence of outcomes, while (parameter) learning

corresponds to updating the mapping between hidden states and outcomes. Consequently, ‘per-

ception’ corresponds to inferring (optimising) expectations about hidden causes with respect to vari-

ational free energy, while learning corresponds to accumulating concentration parameters. These

variables constitute the sufficient statistics of the approximate posterior beliefs, denoted by the

probability distribution Qðs;p;AÞ, where s;p;A are the hidden or unknown variables (see below).

Variational free energy and inference
In variational Bayesian inference (model inversion), one has to specify the form of an approximate

posterior distribution. This form uses a mean field approximation, in which posterior beliefs are

approximated by the product of marginal distributions over hidden causes. Here, this approximate

posterior takes the following form:

Qð~s;p;AÞ ¼Qðs1jpÞ:::QðstjpÞQðpÞQðAÞ

QðstjpÞ ¼CatðstÞ

QðpÞ ¼CatðpÞ

QðAÞ ¼DirðAÞ
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where Cat refers to a categorical distribution and Dir to a Dirichlet distribution. Note that we do not

address belief updating about precision (QðgÞ) in our simulations, which have been discussed in

detail in previous work (FitzGerald et al., 2015; Friston et al., 2017b).

Having specified a Markovian generative model and the approximate posterior, one can define

the variational free energy and resulting update equations that are used to infer hidden causes, as

well as the expected free energy over future states under policies, which defines the value of a

policy.

Variational Bayesian inference implies that by minimising variational free energy with respect to

the specified posterior QðxÞ over hidden causes x (where x ¼ fs;p;Ag in our example) we approxi-

mate the true posterior Pðxj~oÞ:

QðxÞ ¼
QðxÞ

argminF»Pðxj~oÞ (1)

There are several equivalent expressions for variational free energy: one is in terms of the entropy

minus energy:

F ¼EQðxÞ½lnQðxÞ� lnPðx;~oÞ�

¼EQðxÞ½lnQðxÞ� lnPðxj~oÞ� lnPð~oÞ�

¼DKL½QðxÞjjPðxj~oÞ�� lnPð~oÞ (2)

where ~o¼ ðo1; . . . ;otÞ denotes observations up until the current time t. Because the (KL) divergence

cannot be less than zero, the last equality means that free energy is minimised when the approxi-

mate posterior QðxÞ becomes the true posterior Pðxj~oÞ. In this case, the variational free energy

becomes the negative log evidence for the generative model.

Rewriting Equation (2) shows that variational free energy can also be written as

F ¼DKL½QðxÞjjPðxÞ��EQðxÞ½lnPð~ojxÞ� (3)

This implies that minimising variational free energy maximises the expected likelihood of observa-

tions under the approximate posterior (‘accuracy’) whilst minimising the divergence between the

approximate and true distribution over hidden causes (‘complexity’). Having defined the objective

function, the sufficient statistics encoding posterior beliefs can be updated by minimising variational

free energy, as discussed in detail in (Friston et al., 2017a; see also appendix of Parr and Friston,

2018 for the derivation of these updates). Given the focus of this paper, we will discuss inference on

valuable policies in detail below.

As we have shown above, minimising free energy ensures that expectations about hidden causes

are close to the true posterior over hidden causes, given observed outcomes. However, if we want

to apply this notion to define the value of actions and policies, we need to consider potential future

outcomes and states under a given policy. This can be achieved by making the log prior probability

of a policy the (negative) free energy expected under that policy (Friston et al., 2017b):

PðpÞ ¼ sð�g �GðpÞÞÞ

GðpÞ ¼
X

t

Gðp;tÞ (4)

where t refers to a time-step in the future, t2 ftþ 1; . . . ;Tg with t reflecting the current time step.

Note that the expected free energy over future states that determines the value of a policy resem-

bles the expected value of future reward in reinforcement learning (Sutton and Barto, 1998a),

although there is no discount parameter over future states. g reflects a precision parameter that gov-

erns an agent’s goal-directedness and randomness in behaviour, parameterised by a gamma func-

tion with rate parameter b (see Figure 1). Based on these beliefs about policies, agents sample an

action, where the randomness of this sampling is governed by a precision parameter a (see below).

Here, we simulate ‘one-shot’ experiments, in which there is no time-sensitive updating of precision,

but we illustrate the role of the hyper-prior on precision (b) to simulate stochasticity or ‘random

exploration’ in behaviour.

Using the same definition of free energy as in Equation 1), we can now define the expected free

energy that defines the value of a policy. To do so, we need to make two changes to the definition
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of the free energy in Equation 1). First, we need to define an approximate posterior conditioned on

a policy. Second, given that we evaluate policies with respect to future observations that have not

yet occurred, the expectation in Equation 1) needs to incorporate those future states (Parr and Fris-

ton, 2018). Consequently, we obtain ~Q ¼ Qðot; st;AjpÞ, and by defining ~Q ¼ Qðst;AjpÞPðotjst;AÞ, we

can write the free energy as (see Solopchuck, 2018 for a step-by-step tutorial of this derivation):

Gðp;tÞ ¼E~Q½lnQðst;AjpÞ� lnPðot; st;AjpÞ� (5)

Gðp;tÞ ¼E~Q½lnQðst;AjpÞ� lnPðot; st;AjpÞ�

¼E~Q½lnQðAÞþ lnQðstjpÞ� lnPðAjst;ot;pÞ� lnPðstjot;pÞ� lnPðotÞ�

»E~Q½lnQðAÞþ lnQðstjpÞ� lnQðAjst;ot;pÞ� lnQðstjot;pÞ� lnPðotÞ� (6)

And eventually (cf. Friston et al., 2017a; Equation 2.2):

Gðp;tÞ ¼E~Q½lnQðAÞ� lnQðAjst;ot;pÞ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Model parameter exploration

þE~Q½lnQðstjpÞ� lnQðstjot;pÞ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hiddenstateexploration

� E~Q½lnPðotÞ�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Realising preferences

(7)

This formulation of behaviour predicts that choices will be governed by three principles; namely,

minimising uncertainty about model parameters (parameter exploration or active learning), minimis-

ing uncertainty about hidden states (hidden state exploration or active inference) and obtaining pre-

ferred outcomes (realising preferences or goals).

Preferences over outcomes are defined as prior (log-) expectations over outcomes (c in Figure 1

and Figure 2C). Thus, policies become valuable if they minimise the deviation between expected

and actual outcomes, which introduces the concept of surprise minimisation to choice behaviour.

The focus of the present paper, however, is on the first two terms of the value of a policy.

The first term in the equation above reflects the mutual information between beliefs about model

parameters before and after making a new observation and reflects active learning (cf., Yang et al.,

2016). The notion of finding policies that maximise mutual information is equivalent to maximising

(expected) Bayesian surprise (Itti and Baldi, 2009), where Bayesian surprise is the divergence

between posterior and prior beliefs about hidden causes. Because mutual information cannot be

less than zero, it disappears when the (predictive) posterior ceases to be informed by new observa-

tions. This means that ‘active learning’ will search out observations that resolve uncertainty about

the world (e.g. foraging to resolve uncertainty about the reward probability of a risky option). How-

ever, when there is no posterior uncertainty – and the agent is confident about the structure of the

world – there can be no further information gain and preferences over outcomes (i.e. rewards or util-

ity) will dominate policy selection. This resolution of uncertainty is closely related to satisfying artifi-

cial curiosity (Schmidhuber, 1991; Still and Precup, 2012) and the ‘value of information’

(Howard, 1966). The second term of the value of a policy, on the other hand, reflects the mutual

information of believes about states before and after making an observation and reflects active infer-

ence. This term quantifies how well agents can infer the underlying cause of an observation, and

motivates agents to seek observations that decrease uncertainty about the current hidden state with

respect to this mapping. Taken together, these two terms predict that policies will be preferred if

they allow agents to optimise the parameterisation of their observation model and at the same time

make observations that enable precise inference about the state of the world, given their observa-

tion model.

The posterior mapping from hidden states to outcomes (A) is parameterised as Dirichlet distribu-

tion, whose sufficient statistics are concentration parameters (Friston et al., 2016). These concentra-

tion parameters effectively reflect the (normalised) number of times a particular combination of

states and outcomes has been encountered.

Actual updates of an agent’s observation model (A-matrix) at time-point t take place via updating

these concentration parameters with respect to current observations and an individual learning rate

h (Friston et al., 2016):

lnA¼ ðatÞ� ða0Þ (8)

where at reflects the update of the concentration parameters depending on the observed state-
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outcome mapping at trial t, at ¼ at�1 þh �
P

t ot 
 st (
 is the cross-product), and a0 reflects the (prior)

concentration parameters at the beginning of the experiment, with  referring to a psi- or digamma-

function (i.e. a column-wise normalisation of concentration parameters). Note that a refer to the con-

centration parameters specifying an agent’s observation model via PðAÞ ¼DirðaÞ. Effectively, Equa-

tion (8) implies that learning of the observation model takes place by counting the number of

transitions from one particular hidden state to a particular outcome, modulated by an individual

learning rate.

From the perspective of this paper, the two key terms that define the value of a policy are the

opportunities for information gain pertaining to the mapping between hidden states and outcomes

(first term), and about hidden states (second term). The former reflects an agent’s reduction in

uncertainty about model parameters, whilst the latter reflects an agent’s reduction in uncertainty

about hidden states. These two terms imply that policies will be preferred if they resolve uncertainty

about the way in which hidden states generate outcomes (‘model parameter exploration’) and about

the hidden states underlying observations (‘hidden state exploration’).

In addition to the precision (stochasticity) of policy selection, one can define a precision of action

selection under inferred policies, a: Pðat jaÞ ¼ sða � lnPðatjQðpÞÞÞ, where Q pð Þ reflects the approxi-

mate posterior beliefs about policies p. In the above simulations, we have set a to 4 in the active

learning simulations and to 16 in the active inference examples. Note that we have defined different

values for a based on the difference in the number of available policies in these two examples, but

the results of our simulations do not depend on particular values of a. In the section on ‘Comparing

model parameter and hidden state exploration’, we have set a to 8 for both the active learning and

active inference agent to ensure comparability of the two agents, and we have set a to 1 to create a

random exploration agent (to ensure consistency across the different simulated tasks).

Code availability
The above simulations are based on routines available that are available as Matlab code in the SPM

academic software: http://www.fil.ion.ucl.ac.uk/spm/ based on the epistemic learning demo in the

DEM toolbox of SPM.

The exact simulations and figures of this paper can be reproduced based on code at the follow-

ing github repository: https://github.com/schwartenbeckph/Mechanisms_Exploration_Paper using

the Curiosity_Paper_Figures.m File (Schwartenbeck, 2019a; copy archived at https://github.com/eli-

fesciences-publications/Mechanisms_Exploration_Paper).

These simulations are based on a broader tutorial on active inference and active learning that can

be found at https://github.com/schwartenbeckph/CPC_

ActiveInference2018 (Schwartenbeck, 2019b; copy archived at https://github.com/elifesciences-

publications/CPC_ActiveInference2018). This tutorial includes important procedures for fitting such

models to real behaviour – and evaluating parameter recovery (i.e. identifiability). This application

goes beyond the scope of this paper but represents a crucial step in applying active inference and

learning models to empirical data.
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Laversanne-Finot A, Péré A, Oudeyer P. 2018. Curiosity driven exploration of learned disentangled goal spaces.
arXiv. https://arxiv.org/abs/1807.01521.

Ligneul R, Mermillod M, Morisseau T. 2018. From relief to surprise: dual control of epistemic curiosity in the
human brain. NeuroImage 181:490–500. DOI: https://doi.org/10.1016/j.neuroimage.2018.07.038, PMID: 30025
853

Luciw M, Kompella V, Kazerounian S, Schmidhuber J. 2013. An intrinsic value system for developing multiple
invariant representations with incremental slowness learning. Frontiers in Neurorobotics 7:9. DOI: https://doi.
org/10.3389/fnbot.2013.00009, PMID: 23755011

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK,
Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D.
2015. Human-level control through deep reinforcement learning. Nature 518:529–533. DOI: https://doi.org/10.
1038/nature14236, PMID: 25719670

Montague PR, Dayan P, Sejnowski TJ. 1996. A framework for mesencephalic dopamine systems based on
predictive hebbian learning. The Journal of Neuroscience 16:1936–1947. DOI: https://doi.org/10.1523/
JNEUROSCI.16-05-01936.1996, PMID: 8774460

Moran RJ, Campo P, Symmonds M, Stephan KE, Dolan RJ, Friston KJ. 2013. Free energy, precision and learning:
the role of cholinergic neuromodulation. Journal of Neuroscience 33:8227–8236. DOI: https://doi.org/10.1523/
JNEUROSCI.4255-12.2013, PMID: 23658161

Morris SE, Heerey EA, Gold JM, Holroyd CB. 2008. Learning-related changes in brain activity following errors
and performance feedback in schizophrenia. Schizophrenia Research 99:274–285. DOI: https://doi.org/10.
1016/j.schres.2007.08.027, PMID: 17889510

Schwartenbeck et al. eLife 2019;8:e41703. DOI: https://doi.org/10.7554/eLife.41703 32 of 45

Research article Neuroscience

https://doi.org/10.1101/265504
http://arxiv.org/abs/1901.07945
http://arxiv.org/abs/1901.07945
https://doi.org/10.1016/j.tics.2013.09.001
https://doi.org/10.1016/j.tics.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24126129
https://doi.org/10.1152/jn.90783.2008
http://www.ncbi.nlm.nih.gov/pubmed/19036871
https://doi.org/10.1073/pnas.1705643114
http://www.ncbi.nlm.nih.gov/pubmed/28808037
http://arxiv.org/abs/1605.09674
https://doi.org/10.1109/TSSC.1966.300074
https://doi.org/10.1016/j.neuron.2013.09.009
https://doi.org/10.1016/j.neuron.2013.09.009
http://www.ncbi.nlm.nih.gov/pubmed/24139048
https://doi.org/10.7554/eLife.13747
https://doi.org/10.1016/j.visres.2008.09.007
https://doi.org/10.1016/j.visres.2008.09.007
http://www.ncbi.nlm.nih.gov/pubmed/18834898
https://doi.org/10.1126/science.1227489
https://doi.org/10.1126/science.1227489
http://www.ncbi.nlm.nih.gov/pubmed/23162000
https://doi.org/10.1007/BF00993348
https://doi.org/10.1016/S0893-6080(02)00048-5
https://doi.org/10.1016/S0893-6080(02)00048-5
http://www.ncbi.nlm.nih.gov/pubmed/12371511
https://doi.org/10.1371/journal.pone.0036399
https://doi.org/10.1371/journal.pone.0036399
http://www.ncbi.nlm.nih.gov/pubmed/22649492
https://doi.org/10.1111/cdev.12263
http://www.ncbi.nlm.nih.gov/pubmed/24990627
https://doi.org/10.1016/j.neuron.2015.09.010
https://doi.org/10.1016/j.neuron.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26539887
https://doi.org/10.1016/j.neuroimage.2009.12.031
http://www.ncbi.nlm.nih.gov/pubmed/20006717
https://doi.org/10.1126/science.1216930
http://www.ncbi.nlm.nih.gov/pubmed/22491854
https://doi.org/10.1016/j.neuropsychologia.2009.01.015
http://www.ncbi.nlm.nih.gov/pubmed/19524091
http://www.ncbi.nlm.nih.gov/pubmed/19524091
https://arxiv.org/abs/1807.01521
https://doi.org/10.1016/j.neuroimage.2018.07.038
http://www.ncbi.nlm.nih.gov/pubmed/30025853
http://www.ncbi.nlm.nih.gov/pubmed/30025853
https://doi.org/10.3389/fnbot.2013.00009
https://doi.org/10.3389/fnbot.2013.00009
http://www.ncbi.nlm.nih.gov/pubmed/23755011
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1523/JNEUROSCI.16-05-01936.1996
https://doi.org/10.1523/JNEUROSCI.16-05-01936.1996
http://www.ncbi.nlm.nih.gov/pubmed/8774460
https://doi.org/10.1523/JNEUROSCI.4255-12.2013
https://doi.org/10.1523/JNEUROSCI.4255-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23658161
https://doi.org/10.1016/j.schres.2007.08.027
https://doi.org/10.1016/j.schres.2007.08.027
http://www.ncbi.nlm.nih.gov/pubmed/17889510
https://doi.org/10.7554/eLife.41703


Muller TH, Mars RB, Behrens TE, O’Reilly JX. 2019. Control of entropy in neural models of environmental state.
eLife 8:e39404. DOI: https://doi.org/10.7554/eLife.39404, PMID: 30816090

Nour MM, Dahoun T, Schwartenbeck P, Adams RA, FitzGerald THB, Coello C, Wall MB, Dolan RJ, Howes OD.
2018. Dopaminergic basis for signaling belief updates, but not surprise, and the link to paranoia. PNAS 115:
E10167–E10176. DOI: https://doi.org/10.1073/pnas.1809298115, PMID: 30297411

Ostrovski G, Bellemare MG. 2017. Count-Based exploration with neural density models. arXiv. https://arxiv.org/
abs/1703.01310.

Oudeyer P-Y, Kaplan F, Hafner VV. 2007. Intrinsic motivation systems for autonomous mental development. IEEE
Transactions on Evolutionary Computation 11:265–286. DOI: https://doi.org/10.1109/TEVC.2006.890271

Oudeyer PY, Kaplan F. 2007. What is intrinsic motivation? A typology of computational approaches. Frontiers in
Neurorobotics 1. DOI: https://doi.org/10.3389/neuro.12.006.2007, PMID: 18958277

Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:
223–226. DOI: https://doi.org/10.1038/nature04676, PMID: 16633341

Parr T, Friston KJ. 2018. The computational anatomy of visual neglect. Cerebral Cortex 28:777–790. DOI: https://
doi.org/10.1093/cercor/bhx316, PMID: 29190328

Pezzulo G, Rigoli F, Friston KJ. 2018. Hierarchical active inference: a theory of motivated control. Trends in
Cognitive Sciences 22:294–306. DOI: https://doi.org/10.1016/j.tics.2018.01.009, PMID: 29475638

Ranade S, Hangya B, Kepecs A. 2013. Multiple modes of phase locking between sniffing and whisking during
active exploration. Journal of Neuroscience 33:8250–8256. DOI: https://doi.org/10.1523/JNEUROSCI.3874-12.
2013, PMID: 23658164

Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, Walton ME, Rushworth MF. 2008. Frontal
cortex subregions play distinct roles in choices between actions and stimuli. Journal of Neuroscience 28:13775–
13785. DOI: https://doi.org/10.1523/JNEUROSCI.3541-08.2008, PMID: 19091968

Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. 2011. Frontal cortex and reward-guided
learning and decision-making. Neuron 70:1054–1069. DOI: https://doi.org/10.1016/j.neuron.2011.05.014,
PMID: 21689594

Schmidhuber J. 1991. Curious Model-Building control systems. In: Proc International Joint Conference on Neural
Networks, Singapore. IEEE 1458–1463.

Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward. Science 275:1593–1599.
DOI: https://doi.org/10.1126/science.275.5306.1593, PMID: 9054347

Schulz E, Gershman SJ. 2019. The algorithmic architecture of exploration in the human brain. Current Opinion in
Neurobiology 55:7–14. DOI: https://doi.org/10.1016/j.conb.2018.11.003

Schwartenbeck P, FitzGerald TH, Mathys C, Dolan R, Friston K. 2015. The dopaminergic midbrain encodes the
expected certainty about desired outcomes. Cerebral Cortex 25:3434–3445. DOI: https://doi.org/10.1093/
cercor/bhu159, PMID: 25056572

Schwartenbeck P, FitzGerald THB, Dolan R. 2016. Neural signals encoding shifts in beliefs. NeuroImage 125:
578–586. DOI: https://doi.org/10.1016/j.neuroimage.2015.10.067, PMID: 26520774

Schwartenbeck P. 2019a. Mechanisms_Exploration_Paper. Github. 14270b6.https://github.com/
schwartenbeckph/Mechanisms_Exploration_Paper

Schwartenbeck P. 2019b. CPC_ActiveInference2018. GitHub. 8c8edf5.https://github.com/schwartenbeckph/CPC_
ActiveInference2018

Smith TR, Beran MJ, Young ME. 2017. Gambling in rhesus macaques (Macaca mulatta): The effect of cues signaling
risky choice outcomes. Learning & Behavior 45:288–299. DOI: https://doi.org/10.3758/s13420-017-0270-5,
PMID: 28421468

Solopchuck O. 2018. Tutorial on active inference. Neuroscience.
Speekenbrink M, Konstantinidis E. 2015. Uncertainty and exploration in a restless bandit problem. Topics in
Cognitive Science 7:351–367. DOI: https://doi.org/10.1111/tops.12145, PMID: 25899069

Srinivas N, Krause A, Kakade SM, Seeger M. 2010. Gaussian process optimization in the bandit setting: no regret
and experimental design. arXiv. https://arxiv.org/pdf/0912.3995.pdf.

Stalnaker TA, Liu TL, Takahashi YK, Schoenbaum G. 2018. Orbitofrontal neurons signal reward predictions, not
reward prediction errors. Neurobiology of Learning and Memory 153:137–143. DOI: https://doi.org/10.1016/j.
nlm.2018.01.013, PMID: 29408053

Still S, Precup D. 2012. An information-theoretic approach to curiosity-driven reinforcement learning. Theory in
Biosciences 131:139–148. DOI: https://doi.org/10.1007/s12064-011-0142-z, PMID: 22791268

Sun Y, Gomez F, Schmidhuber J. 2011. Planning to be surprised: optimal bayesian exploration in dynamic
environments. Artificial Intelligence 6830:41–51.

Sutton R, Barto A. 1998a. Reinforcement Learning. an Introduction. Cambridge, MA: MIT Press.
Sutton RS, Barto AG. 1998b. Reinforcement learning: an introduction. Advances in Cancer Research 104:322.
Takahashi YK, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G. 2009. The
orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron
62:269–280. DOI: https://doi.org/10.1016/j.neuron.2009.03.005, PMID: 19409271

Takahashi YK, Roesch MR, Wilson RC, Toreson K, O’Donnell P, Niv Y, Schoenbaum G. 2011. Expectancy-related
changes in firing of dopamine neurons depend on orbitofrontal cortex. Nature Neuroscience 14:1590–1597.
DOI: https://doi.org/10.1038/nn.2957, PMID: 22037501

Takahashi YK, Batchelor HM, Liu B, Khanna A, Morales M, Schoenbaum G. 2017. Dopamine neurons respond to
errors in the prediction of sensory features of expected rewards. Neuron 95:1395–1405. DOI: https://doi.org/
10.1016/j.neuron.2017.08.025, PMID: 28910622

Schwartenbeck et al. eLife 2019;8:e41703. DOI: https://doi.org/10.7554/eLife.41703 33 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.39404
http://www.ncbi.nlm.nih.gov/pubmed/30816090
https://doi.org/10.1073/pnas.1809298115
http://www.ncbi.nlm.nih.gov/pubmed/30297411
https://arxiv.org/abs/1703.01310
https://arxiv.org/abs/1703.01310
https://doi.org/10.1109/TEVC.2006.890271
https://doi.org/10.3389/neuro.12.006.2007
http://www.ncbi.nlm.nih.gov/pubmed/18958277
https://doi.org/10.1038/nature04676
http://www.ncbi.nlm.nih.gov/pubmed/16633341
https://doi.org/10.1093/cercor/bhx316
https://doi.org/10.1093/cercor/bhx316
http://www.ncbi.nlm.nih.gov/pubmed/29190328
https://doi.org/10.1016/j.tics.2018.01.009
http://www.ncbi.nlm.nih.gov/pubmed/29475638
https://doi.org/10.1523/JNEUROSCI.3874-12.2013
https://doi.org/10.1523/JNEUROSCI.3874-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23658164
https://doi.org/10.1523/JNEUROSCI.3541-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19091968
https://doi.org/10.1016/j.neuron.2011.05.014
http://www.ncbi.nlm.nih.gov/pubmed/21689594
https://doi.org/10.1126/science.275.5306.1593
http://www.ncbi.nlm.nih.gov/pubmed/9054347
https://doi.org/10.1016/j.conb.2018.11.003
https://doi.org/10.1093/cercor/bhu159
https://doi.org/10.1093/cercor/bhu159
http://www.ncbi.nlm.nih.gov/pubmed/25056572
https://doi.org/10.1016/j.neuroimage.2015.10.067
http://www.ncbi.nlm.nih.gov/pubmed/26520774
https://github.com/schwartenbeckph/Mechanisms_Exploration_Paper
https://github.com/schwartenbeckph/Mechanisms_Exploration_Paper
https://github.com/schwartenbeckph/CPC_ActiveInference2018
https://github.com/schwartenbeckph/CPC_ActiveInference2018
https://doi.org/10.3758/s13420-017-0270-5
http://www.ncbi.nlm.nih.gov/pubmed/28421468
https://doi.org/10.1111/tops.12145
http://www.ncbi.nlm.nih.gov/pubmed/25899069
https://arxiv.org/pdf/0912.3995.pdf
https://doi.org/10.1016/j.nlm.2018.01.013
https://doi.org/10.1016/j.nlm.2018.01.013
http://www.ncbi.nlm.nih.gov/pubmed/29408053
https://doi.org/10.1007/s12064-011-0142-z
http://www.ncbi.nlm.nih.gov/pubmed/22791268
https://doi.org/10.1016/j.neuron.2009.03.005
http://www.ncbi.nlm.nih.gov/pubmed/19409271
https://doi.org/10.1038/nn.2957
http://www.ncbi.nlm.nih.gov/pubmed/22037501
https://doi.org/10.1016/j.neuron.2017.08.025
https://doi.org/10.1016/j.neuron.2017.08.025
http://www.ncbi.nlm.nih.gov/pubmed/28910622
https://doi.org/10.7554/eLife.41703


Tang H, Houthooft R, Foote D, Stooke A, Chen X, Duan Y, Abbeel P. 2016. #Exploration: A Study of Count-
Based Exploration for Deep Reinforcement Learning. Advances in Neural Information Processing Systems 30
(NIPS 2017).

Thompson WR. 1933. On the likelihood that one unknown probability exceeds another in view of the evidence of
two samples. Biometrika 25:285–294. DOI: https://doi.org/10.1093/biomet/25.3-4.285

van Lieshout LLF, Vandenbroucke ARE, Müller NCJ, Cools R, de Lange FP. 2018. Induction and relief of curiosity
elicit parietal and frontal activity. The Journal of Neuroscience 38:2579–2588. DOI: https://doi.org/10.1523/
JNEUROSCI.2816-17.2018, PMID: 29439166

Vasconcelos M, Monteiro T, Kacelnik A. 2015. Irrational choice and the value of information. Scientific Reports 5:
1–12. DOI: https://doi.org/10.1038/srep13874

Waltz JA, Frank MJ, Robinson BM, Gold JM. 2007. Selective reinforcement learning deficits in schizophrenia
support predictions from computational models of striatal-cortical dysfunction. Biological Psychiatry 62:756–
764. DOI: https://doi.org/10.1016/j.biopsych.2006.09.042, PMID: 17300757

Wang MZ, Sweis BM, Hayden BY. 2018. A Testable Definition of Curiosity. CDS Newsletter.
Weickert TW, Goldberg TE, Callicott JH, Chen Q, Apud JA, Das S, Zoltick BJ, Egan MF, Meeter M, Myers C,
Gluck MA, Weinberger DR, Mattay VS. 2009. Neural correlates of probabilistic category learning in patients
with schizophrenia. Journal of Neuroscience 29:1244–1254. DOI: https://doi.org/10.1523/JNEUROSCI.4341-08.
2009, PMID: 19176832

Wikenheiser AM, Marrero-Garcia Y, Schoenbaum G. 2017. Suppression of ventral hippocampal output impairs
integrated orbitofrontal encoding of task structure. Neuron 95:1197–1207. DOI: https://doi.org/10.1016/j.
neuron.2017.08.003, PMID: 28823726

Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD. 2014a. Humans use directed and random exploration to
solve the explore–exploit dilemma. Journal of Experimental Psychology: General 143:2074–2081. DOI: https://
doi.org/10.1037/a0038199

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014b. Orbitofrontal cortex as a cognitive map of task space.
Neuron 81:267–279. DOI: https://doi.org/10.1016/j.neuron.2013.11.005, PMID: 24462094

Yang SC-H, Wolpert DM, Lengyel M. 2016. Theoretical perspectives on active sensing. Current Opinion in
Behavioral Sciences 11:100–108. DOI: https://doi.org/10.1016/j.cobeha.2016.06.009

Yu AJ, Dayan P. 2005. Uncertainty, neuromodulation, and attention. Neuron 46:681–692. DOI: https://doi.org/
10.1016/j.neuron.2005.04.026, PMID: 15944135

Zentall TR, Stagner J. 2011. Maladaptive choice behaviour by pigeons: an animal analogue and possible
mechanism for gambling (sub-optimal human decision-making behaviour). Proceedings of the Royal Society B:
Biological Sciences 278:1203–1208. DOI: https://doi.org/10.1098/rspb.2010.1607

Zentall TR, Stagner JP. 2012. Do pigeons prefer information in the absence of differential reinforcement?
Learning & Behavior 40:465–475. DOI: https://doi.org/10.3758/s13420-012-0067-5

Schwartenbeck et al. eLife 2019;8:e41703. DOI: https://doi.org/10.7554/eLife.41703 34 of 45

Research article Neuroscience

https://doi.org/10.1093/biomet/25.3-4.285
https://doi.org/10.1523/JNEUROSCI.2816-17.2018
https://doi.org/10.1523/JNEUROSCI.2816-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29439166
https://doi.org/10.1038/srep13874
https://doi.org/10.1016/j.biopsych.2006.09.042
http://www.ncbi.nlm.nih.gov/pubmed/17300757
https://doi.org/10.1523/JNEUROSCI.4341-08.2009
https://doi.org/10.1523/JNEUROSCI.4341-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19176832
https://doi.org/10.1016/j.neuron.2017.08.003
https://doi.org/10.1016/j.neuron.2017.08.003
http://www.ncbi.nlm.nih.gov/pubmed/28823726
https://doi.org/10.1037/a0038199
https://doi.org/10.1037/a0038199
https://doi.org/10.1016/j.neuron.2013.11.005
http://www.ncbi.nlm.nih.gov/pubmed/24462094
https://doi.org/10.1016/j.cobeha.2016.06.009
https://doi.org/10.1016/j.neuron.2005.04.026
https://doi.org/10.1016/j.neuron.2005.04.026
http://www.ncbi.nlm.nih.gov/pubmed/15944135
https://doi.org/10.1098/rspb.2010.1607
https://doi.org/10.3758/s13420-012-0067-5
https://doi.org/10.7554/eLife.41703


Appendix 1
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Effects of other model parameters
While our focus is on comparing ‘state exploration’ and ‘model parameter exploration’, that is

active inference and active learning, respectively, it is important to note that the behaviour

illustrated in our simulations also depends on other key parameters, which we consider in the

following. In particular, we will address the role of an agent’s (prior) parameterisation of its

observation model, an agent’s preferences over outcomes and the parameterisation of beliefs

about hidden states. We will refer to the task with no cue and an uncertain reward probability

in the risky option as the learning task, and to the task with a cue and an unknown hidden

state that determines the reward statistics as the inference task.

Active inference and active learning provide a general and flexible framework for

understanding individual variation in exploitative and exploratory behaviour. Animals can differ

markedly in their risk preferences, learning speed or sensitivity to uncertainty. As we will show

in this appendix, different risk preferences result from an agents’ preference distribution over

outcomes. A predominance of risk-averse or risk-seeking behaviour arises from highly precise

prior preferences that either emphasize not forgoing a small reward or obtaining a large

reward, respectively. Further, a flat preference distribution induces a diminished prevalence of

reward-based, extrinsically motivated behaviour and renders the animal more sensitive to

information gain. The tendency towards epistemic foraging is also determined by an agent’s

learning rate, which affects the time-course of intrinsically motivated behaviour, and prior

confidence, which (in analogy with prior preferences), determines overall sensitivity to

information. Inferring such individual differences in an animal’s ‘world model’ requires careful

fitting of choice behaviour and model comparisons given a particular task of interest (see

‘code availability’ section).

Prior uncertainty over the observation model determines the value
of information
In active learning, the key prior that determines an agent’s sensitivity to information is

specified by the concentration parameters of the agent’s observation model (in Figure 2). The

effects of these concentration parameters are illustrated in Figure 6A, which affords two key

insights. First, an agent prefers the risky option if it beliefs that receiving a reward is likely

(lower right corner of Figure 6A) but prefers the safe option if it beliefs that receiving a

reward is unlikely (upper left corner of Figure 6A). Second, and more importantly from the

perspective of active learning, the agent will prefer to sample the risky option if it has an

uncertain uniform prior about the reward statistics (lower left corner of Figure 6A) but prefer

the safe option if it has a certain uniform prior about receiving a reward (upper right

corner of Figure 6A).

The agent’s prior over its observation model, however, incorporates additional knowledge

about the task structure, such as the mapping from the safe location to a small reward or the

observations in the starting position. The role of this parameterisation is illustrated in

Appendix 1—figure 1. Appendix 1—figure 1A illustrates an experiment where an agent has

a very imprecise prior over the observation model, by specifying a0 as

a0 ¼

1=4 1=4 1=4
1=4 1=4 1=4
1=4 1=4 1=4
1=4 1=4 1=4

2

6
6
4

3

7
7
5
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Appendix 1—figure 1. The agent’s prior on the observation model determines the value of

information of the risky option. Same setup as in Figures 3–5, but with different priors over the

observation model. (A) Full uncertainty over an agent’s observation model induces the same

information value for all three options, whereas uncertainty over the mapping from the

starting point or safe option induce a specific epistemic value for these options (B and C).

These priors can also induce optimistic (D) or pessimistic (E) behaviour, based on a high (prior)

reward expectation in a low reward probability (0.25) task or a low (prior) reward expectation

in a high reward task (0.75), respectively. (F) A lower learning rate leads to slower learning

about a low reward probability (0.25) in the risky option or, equivalently, to a longer

dominance of information-seeking behaviour.

DOI: https://doi.org/10.7554/eLife.41703.017

This leads to a uniform probability for choosing to stay at the starting position, or choosing

the safe or risky option at the first time-step. In this example, once the agent has sampled the

starting position at the first time-step, it will then choose the safe or risky option at the second

time-step, because now these two options have the highest information gain. Only after

choosing the safe and risky option at time-step two and three, respectively, the agent starts to

explore – and exploit in a more goal-directed manner. How long this pure information gain

period lasts also depends on an agent’s learning rate (see description of Appendix 1—figure

1F below). Appendix 1—figure 1B and 1C illustrate the same type of behaviour, but now

with an imprecise mapping – from the starting position or the safe option – to different

outcomes. Note that the information gain period lasts longer if there is uncertainty about the

safe option compared to the starting position, because there is an additional exploitative

motivation for choosing the safe option that delivers a small reward.

Figure Appendix 1—figure 1D and 1E illustrate the effects of non-uniform priors over

reward statistics on active learning. Appendix 1—figure 1D corresponds to prior

concentration parameters that reflect the upper right corner of Figure 6 by specifying a0 as

a0 ¼

1 0 0

0 1 0

0 0 8

0 0 1=4

2

6
6
4

3

7
7
5

This induces a highly optimistic prior belief about obtaining a reward in the risky option.

Simulating task performance under a low reward probability (p(reward)=0.25) shows that the

agent samples the risky option several times before the observations overcome the

(pathologic) optimism induced by the agent’s prior. In contrast, Appendix 1—figure 1E
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illustrates the opposite pattern (with the prior concentration parameter for receiving no

reward in the risky option set to 2). This induces pessimistic behaviour – that results in a

persistent preference for choosing the safe option. In this example, the agent never learns that

it lives in an environment with a high reward probability (p(reward)=0.75), because it never

samples the risky option, which would allow it to overcome its pessimistic prior beliefs.

Finally, Appendix 1—figure 1F illustrates a task where the agent learns only slowly from

observations (h ¼ 0:05 instead of 0.5 as in the simulations above, see Equation 8). Here, it

takes the agent about the first third of the experiment to learn about the low reward

probability (0.25) in the risky option. In other words, the value of information of the risky

option dominates behaviour for a longer period than in the simulations illustrated in

Figures 3–5.

Prior preferences over outcomes determine risk preferences and
the cost of information
Besides an agent’s prior beliefs about the likelihood of outcomes, another key determinant of

active learning and inference is an agent’s prior preference over different outcomes. In the

simulations above, we defined an agent’s preferences as c = [0 2 4 -2], which reflect its

preferences for the starting position, a small reward, a high reward, and no reward,

respectively (see Figure 2). Note that in active learning and inference, these preferences are

defined as log-probabilities over outcomes. For example, the above specification implies that

the agent expects to end up in a high reward state exp 4ð Þ» 55 times more than in the starting

position (exp 0ð Þ ¼ 1). Consequently, the agent tries to infer behaviour that maximises these

log-probabilities over observations, and thus minimises surprise.

Importantly, these preferences over outcomes determine an agent’s risk preferences.

Appendix 1—figure 2 illustrates these effects in the active learning task, with a true

underlying reward probability of 0.5 for the risky option. The ensuing behaviour shows that

different risk preferences change the response profile for choosing the risky option over time.

Appendix 1—figure 2. Prior preferences over outcomes determine an agent’s risk preferences.

Same setup as in Figure 6A but with varying preferences over outcomes, compared to the

reference specification of c = [0 2 4 –2] in log-space used above (bright blue line), which
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reflects an agent’s preference for the starting position, the small safe reward, the high reward

and no reward, respectively. Dark blue line reflects the same information seeking behaviour in

the beginning of an experiment but less risk aversion in later trials by equating an agent’s

preference for obtaining no reward to staying in the safe position (c = [0 2 4 0]). Purple line

reflects a risk seeking agent (c = [0 2 8 –2]) whereas red line reflects a risk averse agent (c = [0

2 4 –4]). Yellow line reflects an agent that has an equal preference for the high and low reward

(c = [0 4 4 –2]), and consequently never chooses the risky option. Green line reflects an agent

with flat preferences (c = [0 0 0 0]), which is purely driven by information gain until it

converges on a stable probability for choosing the risky option. Time-course averaged over

1000 experiments.

DOI: https://doi.org/10.7554/eLife.41703.018

The above preference specification implies that – in log-space – obtaining no reward in the

risky option is equivalent to losing the low reward of the safe option. Appendix 1—figure 2

shows that a prior of c = [0 2 4 0] (dark blue line), which equates the preference for no reward

with the starting position, makes the agent less risk averse compared to a prior of c = [0 2 4 –

2] (bright blue line). In both parameterisations, behaviour is dominated initially by information

gain, but converges to a higher probability for choosing the risky option over time, if the

agent is less risk averse. Alternatively, a preference for no reward of �4 (red line) makes the

agent much more risk (i.e., no reward) averse – with a zero probability of choosing the risky

option, after the true reward probability is learned. This contrasts with a risk seeking agent

that has a strong preference for obtaining a high reward (c = [0 2 8 –2], purple line). If the

agent has the same preference for the small reward as for the high reward (c = [0 4 4 0],

yellow line), the agent will never sample the risky option, because the extrinsic reward

dominates policy selection. In contrast, if the agent has flat preferences over observations (c =

[0 0 0 0], green line), behaviour will be dominated by information gain (in the risky option) in

early trials and slowly converges towards a uniform preference for any of the three options

(stay at starting point, safe or risky option).

Note that in the above parameterisation of an agent’s preferences one would not

necessarily distinguish between rewards (or their omission) and punishments, even though one

could also introduce these as separate factors over outcomes (Pezzulo et al., 2018).

A central aspect of these simulations is that these preferences not only control an agent’s

risk preferences in active learning tasks, but also the cost of information as illustrated in the

active inference task. This follows because log-preferences can be thought of in terms of cost

(or, formally, counter-evidence to an agent’s model). By navigating to preferred (expected)

outcomes, the agent minimises cost (i.e., surprise).

This is illustrated in Figure 8B, where the agent infers a stable high reward context and

shifts from sampling the cue at the beginning of a trial towards sampling the risky option

immediately. There is no actual need to switch to sampling the risky option immediately,

because there still are two time-steps available. However, given it has formed precise beliefs

about the current task state, there is no additional value of information for sampling the cue.

Sampling the cue is costly, because it is less preferred (expected) than obtaining a reward in

the safe or risky option. This results from specifying an agent’s preferences as c = [0 2 4 –2 0

0], reflecting its preferences for the starting location, the safe reward, the high reward, no

reward and visiting the cue (signalling a high or low reward), respectively. This specification

induces a cost for visiting the cue location as opposed to sampling the preferred option

immediately. This cost for sampling the cue has to be matched by the information gain

imparted by the cue, hence the shift from sampling the cue to sampling the risky option

immediately at the beginning of a trial in Figure 8B.

Appendix 1—figure 3 illustrates this point further. Compared to a neutral agent illustrated

in Appendix 1—figure 3B (equivalent to Figure 8B), an agent that has a preference for

sampling the cue (c = [0 2 4 –2 0.5 0.5], Appendix 1—figure 3A) will always go to the cue at

the beginning of a trial, no matter how certain it is about the current context. In contrast, if the

cue is even more costly (c = [0 2 4 –2 �0.5 –0.5], Appendix 1—figure 3C), the agent has a

preference for leaving it as early as possible, but may have to return several times because it
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has not fully resolved its uncertainty. Figure Appendix 1—figure 4 illustrates these time-

sensitive behaviours over multiple simulated experiments.

Appendix 1—figure 3. Prior preferences over outcomes determine the cost of sampling infor-

mation in the active inference task – single experiment simulations. (A) An agent that prefers

sampling the cue will continue to sample the cue at the beginning of a trial, even if its

uncertainty about the hidden state has been resolved. (B) An agent with neutral preferences

for the cue will switch to sampling the preferred (risky) option immediately once its uncertainty

about the (high reward) hidden state is sufficiently resolved (equivalent to Figure 8B). (C) An

agent with a negative preference for the cue will try to switch to the preferred option as

quickly as possible, but may go back to sample the cue more often because its uncertainty has

not been resolved sufficiently.

DOI: https://doi.org/10.7554/eLife.41703.019
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Appendix 1—figure 4. Prior preferences over outcomes determine the cost of information sam-

pling in the active inference task – simulations over multiple experiments – simulations over

1000 experiments.. The yellow line reflects the agent introduced in Figure 8B with neutral

preferences for the cue location, specified as c = [0 2 4 –2 0 0], which reflects its preferences

for the starting location, safe reward, high reward, no reward and the cue location (signalling a

high or low reward state), respectively. Agents with a slight preference for visiting the cue only

slowly decrease their preference for sampling the cue at the beginning of a trial (purple: c = [0

2 4 –2 0.25 0.25]; green: c = [0 2 4 –2 0.5 0.5]). Agents with a negative preference for the cue

location move away from sampling the cue quicker (red: c = [0 2 4 –2 �0.25 –0.25]; blue: c =

[0 2 4 –2 �0.5 –0.5]). Time-course averaged over 1000 experiments.

DOI: https://doi.org/10.7554/eLife.41703.020

Beliefs about hidden states in dynamic environments
Importantly, all simulations above are based on environments with a static structure, which

allows agents to converge on one stable representation of the task over time. In reality,

however, environments are volatile and change over time, such that new statistics have to be

learned or novel hidden states have to be inferred. The simplest example of a dynamic

environment is a reversal task, in which the true hidden state changes over time.

A detailed treatment of this issue goes beyond the scope of this paper. However, an

important quality check for the present formulation is whether behaviour adapts to a changing

environment. Appendix 1—figure 5 and 6 illustrate adaptive behaviour in the active inference

task. Here, we introduced a reversal of the hidden state after half of the experimental trials,

such that the agent is in a high reward context in the first 16 trials followed by a low reward

context in the next 16 trials (as indicated by a change from ‘green’ context to ‘red’ context in

the second panel of Appendix 1—figure 5A and Appendix 1—figure 5B). Appendix 1—

figure 5A shows that an active inference agent correctly infers the high reward context and

moves slowly towards choosing the risky option immediately at the beginning of the trial (first

time-step). After the switch to a low reward context in trial 16, however, the agent starts

sampling the cue again. This behaviour is induced by a negative feedback in the risky option in

trial 17 and is then reinforced by feedback from the cue, which now signals a low reward

context. Thus, the active inference agent correctly infers whether the current context has
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changed, and whether a recent increase in its uncertainty about the current context increases

the value of information at the cue location again.

Appendix 1—figure 5. An active inference agent correctly infers a change in the environment –

single experiment simulations. (A) An active inference agent correctly learns that it starts in a

high reward environment, and slowly begins to sample the risky option at the beginning of a

trial once it has inferred a high reward context. After a switch of context to a low reward

environment in trial 16, however, the agent starts sampling the cue again. This is induced by a

negative outcome at trial 17 and then further reinforced by a different context signalled by the

cue. Thus, the active inference agent correctly infers when to start sampling information again

as a function of its uncertainty about the world. (B) If an agent has optimistic prior

expectations about being in a high reward context, it starts sampling the risky option

immediately even at the beginning of the experiment, and it will take the agent longer to infer

a switch of context in the second half of the experiment.

DOI: https://doi.org/10.7554/eLife.41703.021
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Appendix 1—figure 6. An active inference agent correctly infers a change in the environment –

simulations over multiple experiments. Same agents as in Appendix 1—figure 5 (A and B)

simulated over 1000 experiments. The neutral active inference agent correctly infers a switch

after the first half of the experiment and starts sampling the cue again. The optimistic active

inference agent does not sample the cue in the first half of the experiment, but starts visiting

the cue location once it has inferred that the context has changed.

DOI: https://doi.org/10.7554/eLife.41703.022

As introduced above, a central aspect of these simulations are an agent’s beliefs about the

current context, which can be parameterised with concentration parameters akin to an agent’s

observation model. These priors over beliefs about the context are specified in an agent’s

d-vector (see Figure 7). In Appendix 1—figure 5A, the d-vector reflects an uncertain uniform

prior over being in one of the two contexts (d = [0.25 0.25 0 0 0 0 0 0]). Appendix 1—figure

5B illustrates an example where the agent has a strong prior expectation about starting in a

high reward context (d = [8 0.25 0 0 0 0 0 0]). This motivates the agent to sample the risky

option immediately without sampling the cue first, and only when it has sampled enough

evidence in favour of a change of context (several trials after the actual change) it starts

sampling the cue at the beginning of a trial again. Appendix 1—figure 6 illustrates the time-

course of behaviour for these two agents over multiple experiments.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.41703.016

Relationship to other computational approaches to
exploration
There has been much recent interest in understanding the mechanisms of exploration and

curiosity. As mentioned in the introduction, the simplest account of exploration has been cast

in terms of �-greedy and softmax choice rules with an inverse temperature parameter

(Sutton and Barto, 1998b), which governs the randomness in behaviour and thus the

deviation from rational, exploitative choices. However, this account of exploration can be

problematic because often it is unclear whether this truly captures (random) exploratory

tendencies or just different forms of noise (e.g., Findling, Skvortsova, Dromnelle, Palminteri, &

Wyart, 2018). In active inference and learning, the tendency towards randomness is captured

by the (prior) precision of policy selection (b) as shown in the simulations in the main text. In

the one-shot and two-shot tasks simulated here, this (prior) precision plays a very similar role

to an inverse temperature parameter. In more sophisticated tasks with larger policy depths,

precision itself will be updated (inferred) over time, implying that an agent’s ‘inverse

temperature’ has a time-sensitive Bayes optimal solution and the agent infers the ‘best’ level

of randomness based on task events.

Two prominent examples of more sophisticated routines for goal-directed and random

exploration are upper confidence bounds (UCB) and Thompson sampling, respectively. These

computational frameworks have been discussed in much detail in previous work

(Gershman, 2018a; Gershman, 2018b; Schulz and Gershman, 2019). The central idea of

UCB is to add an additional value to an option that reflects its informative value. Similar to a

novelty bonus (Kakade and Dayan, 2002), this additional value can reflect the number of

times this option has been sampled previously (Auer, 2002; Auer et al., 2002) or the variance

in an agent’s beliefs about the value of this option (Srinivas et al., 2010). Thompson sampling,

on the other hand, is a more sophisticated algorithm for random exploration. Here, the key

idea is that agent’s sample from beliefs about the reward statistics of different options, and

then exploit (i.e., take the most valuable option) with respect to this sample. Thus, the

uncertainty about the reward statistics guides the degree of randomness in behaviour, and

consequently controls the degree of random exploration.

As shown in Gershman (2018a) and Gershman (2018b), these two classes of algorithms

have different effects on the exploitation-exploration trade-off. Uncertainty bonuses such as

UCB add a value to sampling an option in addition to its expected value. This induces an

intercept shift in the probability for sampling this option, as shown in Appendix 2—figure 1

(left panel). The higher the uncertainty bonus, the higher is the agent’s preference for

sampling this option, even if its expected value is smaller than other options (in line with the

additive aspects of Blanchard et al.’s findings). In contrast, random exploration, such as

Thompson sampling, induces a change of the slope in the choice function, such that more

randomness induces a flatter choice function (Appendix 2—figure 1 right panel).

Appendix 2—figure 1B illustrates that these effects closely correspond to the effects of active

learning or active inference and precision on behaviour. ‘Model parameter exploration’ or

‘hidden state exploration’ is defined as an additive term in the agent’s value function

(Equation 7, Materials and methods section) and can thus be seen as aspects of information-

directed exploration. Thus, it induces an intercept shift analogously to UCB (displayed in

Appendix 2—figure 1B left panel for ‘model parameter exploration’ in active learning, effects

for active inference are analogous). Precision, or randomness, on the other hand, affects the

slope of the agent’s preference function (Appendix 2—figure 1B, right panel) and plays a

very similar role to an inverse temperature parameter.
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Appendix 2—figure 1. Effects of different algorithms for exploration on choice probabilities.

(A) Left panel: Algorithms based on an uncertainty bonus, such as UCB, change the intercept

in the probability for choosing the uncertain option, plotted as a function of the difference in

expected value between the uncertain option and an alternative option. Right panel:

Algorithms based on randomness, such as Thompson sampling, change the slope of the

choice probability, where an increase in randomness decreases the steepness of the choice

curve. Reproduced from (Gershman, 2018a) (B) Left panel: ‘model parameter exploration’ in

active inference acts as an uncertainty bonus and, analogously to UCB, changes the intercept

of the probability to sample an uncertain option as a function of the prior uncertainty over this

option. Different lines reflect different concentration parameters for the mapping to high or

no reward in the risky option (cf., Figure 2, CP = concentration parameter). ‘Hidden state

exploration’ in active inference has analogous effects. Right panel: prior precision of policy

selection (b) affects the randomness of choice behaviour, and consequently the slope of the

choice function.Reprinted from Gershman (2018a) with permission from Elsevier. This panel is

not available under CC-BY and is exempt from the CC-BY 4.0 license.

DOI: https://doi.org/10.7554/eLife.41703.024

The recent interest in deep neural networks their application to more realistic tasks has led

to an increased focus on algorithms for exploration. This is motivated by a characteristic failure

of ‘deep reinforcement learning’ models in tasks that require goal-directed exploratory

behaviour, such as the Atari game Montezuma’s revenge (Burda et al., 2018b; Mnih et al.,

2015). These tasks are difficult because reward is sparse and many states are only visited

once, if at all, and thus motivate a more flexible definition of an intrinsic reward that guides

behaviour.

Much progress in this field is based on defining intrinsic motivation as the expected

learning progress in a given problem, such that agents ‘plan to be surprised’ (Barto, 2013;

Burda et al., 2018a; Luciw et al., 2013; Oudeyer et al., 2007; Oudeyer and Kaplan, 2007;

Schmidhuber, 1991; Sun et al., 2011; Itti and Baldi, 2009). This is conceptually similar to

defining an uncertainty bonus for a given option. Given that these methods are often difficult

to apply to large-scale problems, other algorithms for novelty detection have been proposed.

Count-based methods use previous visits of a state as a measure for their novelty, with a

recent extension of pseudo-count methods to generalise these methods to more complicated

(non-tabular) problems (Bellemare and Srinivasan, 2016; Ostrovski and Bellemare, 2017;
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Tang et al., 2016). Other forms of novelty detection are based on (exemplar) classification

methods (Fu, 2017) or ‘network distillation‘, where the difference between a trained and a

random network is used as a measure for novelty, based on how much an observation deviates

from the training set (Burda et al., 2018b).

Perhaps closest to the framework presented here is the Variational Information Maximising

Exploration algorithm (Houthooft et al., 2016), which is based on the idea of finding future

trajectories (policies) that maximise the sum of entropy reduction in beliefs about environment

dynamics. This means that agents should visit states that maximise the mutual information of

prior and posterior beliefs about transition probabilities in the environment. Note that this

follows a very similar logic to our treatment of active inference, except that it is applied to the

agent’s transition probabilities (B-matrix in Figure 2) rather than its observation model (A-

matrix in Figure 2).

Note that, while many of the above algorithms have successfully introduced the notion of

exploration and novelty to large-scale problems, a key motivation behind our proposed

framework is understanding the generative mechanisms that underlie information gain and its

trade-off with reward maximisation. How inference based on these generative mechanisms

proceeds in more complicated tasks – where a representation of the feature or state space

needs to be learned in the first place to build the A, B, c, and d-matrices of Figure 2 and 7 –

is an important question for future work.
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