Microvascular Ion Transport through Endothelial Glycocalyx Layer: New Mechanism and Improved Starling Principle

Xi Zhuo Jiang (XZJ), Yiannis Ventikos* (YV), Kai H. Luo* (KHL)

Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK

*Corresponding Author:
YV: y.ventikos@ucl.ac.uk
KHL: k.luo@ucl.ac.uk
Postal Address: Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
Tel: +44 (0)20 7679 3916

Author Contribution:
XZJ conducted the simulation, analyzed the results, and drafted the manuscript.
YV finalized the manuscript and supervised the research.
KHL finalized the manuscript and supervised the research.

Running Head: Microvascular ion transport through EGL
Abstract: Ion transport through the endothelial glycocalyx layer is closely associated with many vascular diseases. Clarification of ion behaviors around the endothelial glycocalyx layer under varying circumstances will benefit pathologies related to cardiovascular and renal diseases. In this research, a series of large-scale molecular dynamics simulations are conducted to study the response of ion transport to the changing blood flow velocity and the shedding of endothelial glycocalyx sugar chains. Results indicate that blood flow promotes the outward Na⁺ transport from the near-membrane region to the lumen via the endothelial glycocalyx layer. Scrutiny of sugar chain dynamics and their interactions with Na⁺ suggests that corner conformation of endothelial glycocalyx sugar chains confines the movement of the Na⁺ whereas stretching conformation facilitates the motion of Na⁺ ions. The flow impact on ion transport of Na⁺ is non-linear. Based on the findings, the Starling principle and its revised version, which are prevalently used to predict the ion transport of the endothelial glycocalyx layer, are further improved. An estimation based on the further revised Starling principle indicates that physiological flow changes the osmotic part of transendothelial water flux by 8% compared with the stationary situation.

Keywords: ion transport; endothelial glycocalyx layer; Starling principle; microvascular

New and Noteworthy:

The biophysical roles of negatively charged oligosaccharides of the endothelial glycocalyx have gained increasing attention due to their importance in regulating microvascular fluid exchange. The Starling principle and its revisions are at the heart of the understanding of fluid homeostasis in the periphery. Here, the blood flow changes the conformations of glycocalyx sugar chains, thereby influencing...
availability of Na\(^+\) for transport. Based on the findings, the Starling principle and its revision are further improved.
Introduction

Endothelial glycocalyx layer (EGL) is a thin layer with a thickness of 50 to 500 nm coating endothelial cells. The EGL features the dendritic structures of the endothelial glycocalyx (EG) which has been extensively studied for its functionality as a mechanotransducer (43, 44). Meanwhile, the EGL is also recognized as an effective Na\(^+\) buffer (30) due to the negatively charged sugar chains of the glycocalyx (32, 38, 47). Vascular diseases are intimately associated with the extracellular ion concentrations (20, 29). For example, *ex vivo* results indicate that sodium overload could stiffen the vascular endothelial cells (31) and alter the release nitric oxide which is a hallmark of endothelial function (20). In previous studies, the impact of salt on the endothelial and vascular phenotype has been clarified (20); however, its inverse problem — how the endothelial surface structure (i.e. EG) affects the ion behavior — has not been sufficiently studied. Furthermore, as endothelial cells are the first barrier directly exposed to blood, what is the consequence of a changing blood velocity on ion distributions? The answers to these problems will contribute to our understanding of pathologies of EG-related renal and cardiovascular diseases.

The mechanism describing fluid transport in EGL is the Starling principle (41). According to this principle, the movement of flow across semipermeable membranes is determined by the net imbalance between the hydraulic pressure difference and the osmotic absorption pressure of the plasma proteins. Since the net imbalance drives the motion of solutes, it is also called the filtration force (FF) in the Starling principle. When the Starling principle is applied to EGL, the osmotic pressure difference has to be revised by considering the colloid osmotic pressure beneath the EGL (21). In the revised Starling principle, the FF is calculated by:
In Eq. (1a), \(\Delta P \) is the hydrostatic pressure difference, \(\sigma \) is the Staverman’s osmotic reflection coefficient (42) representing the degree of leakiness to a specific solute, and ranges in value from 0 to 1. \(\Pi_p \) and \(\Pi_g \) are the osmotic pressure in plasma and beneath the EGL, respectively.

Incorporating Jacobus van’t Hoff’s law relating osmotic pressure to solute concentration, (i.e. \(\Pi = iRTc \)), the FF can be rewritten as

\[
\text{FF} = \Delta P - \sigma \Pi
\]

\(\sigma = \Pi_p - \Pi_g \) \hspace{1cm} (1b)

where \(i \) is the dimensionless van’t Hoff index, \(R \) is the ideal gas constant and \(T \) is the temperature, \(c_p \) and \(c_g \) are the molarities in plasma and beneath the EGL, respectively.

Despite the successful applications of the revised Starling principle to predicting fluid exchange as reviewed by Levick and Michel (21), the principle seems to be unable to answer our proposed question – will changes in blood velocity affect ion distributions? If at all, what is the mechanism for such an influence? Meanwhile, we are also curious about the influence of the EG structure and composition on fluid exchange, which is also an open question attracting intense interest from scientists.

In this context, the objective of this research is to investigate the response of the endothelial ion distribution (mainly \(\text{Na}^+ \)) to the modification of two principal factors associated with cardiovascular diseases (i.e. change of blood velocity (44) and shedding of EG sugar chains (5)). To mimic the two scenarios, large-scale molecular dynamics (MD) simulations with fine structural information of the EG biomolecules and surrounding ions are conducted. Dynamics of the biomolecules and the surrounding ions (e.g. \(\text{Na}^+ \)) are to be scrutinized. Finally, a further revision of the
Starling principle considering changing blood flow velocity and EG configuration is proposed.

Methods

System construction. Three EG elements, each of which is composed of a core protein and six sugar chains, are considered in this research. Syndecan-4 (Syn-4) proteoglycan and heparin sulphate (HS) sugar residues are selected to model the EG core protein and sugar chains, respectively. As shown in Fig. 1a, the whole space is divided into two compartments by the lipid bilayer. Above the lipid bilayer is the ectodomain, representing the space outside the endothelial cells, where flow passes by. This region contains negatively-charged HS sugar chains, Syn-4 ectodomain in connection with HS sugar chains, water molecules and ions. Below the lipid bilayer is the cytoplasm, representing the inner space of the cell, which is filled with the Syn-4 cytoplasmic protein, water molecules and ions. All the biomolecules are solvated and ionized to NaCl solution with a concentration of 0.1 M NaCl. Together with the Na\(^+\) added to neutralize the negatively charged EG elements, the total Na\(^+\) molarity in the intact EG cases (i.e. Cases a to d in Table 1) is about 0.15 M, and Cl\(^-\) molarity is 0.1 M. The simulation box is a hexagonal prism with an area of 820 nm\(^2\) and height of 72 nm. The flow/EG system comprises 5,800,000 atoms in total.

Protocol details. The TIP3P water model (18) was selected to simulate water molecules. The CHARMM biomolecular force field (23) was applied on proteins and the lipid bilayer. Force field parameters for sugar chains have been validated in previous studies (6).

The system was first equilibrated under an isothermal-isobaric ensemble, followed by a canonical ensemble. The velocity Verlet integration method (2) was
used to advance the positions and velocities of atoms in time steps of 2-fs. Particle mesh Ewald (8) electrostatics with a grid density of 1/Å³ was used. The SETTLE algorithm (28) was used to enable the rigid bonds connected to all hydrogen atoms. The van der Waals interactions were calculated using a cut-off of 12 Å with a switching function starting at 10 Å (6). The last frame of the equilibrium simulation was used as the initial configuration of every simulation involved in this research as listed in Table 1. In flow simulations, a Lowe-Andersen thermostat, a specific thermostat exclusively for flow problems, was selected to maintain the temperature at 310K. Periodic boundary conditions were used in all three directions. Detailed set-up about the boundary conditions was introduced in our previous publications (14, 16).

All MD simulations were performed using the software suite NAMD 2.9(34). The visualization of the molecular structures was performed via the VMD (12) package. All parallel simulations and non-visualized post-processing were conducted on ARCHER, UK’s national supercomputing service. To obtain a simulation result with physical time of 1 ns, 9,000 compute cores were simultaneously used for about 2 hours.

Details about the construction of the flow/EG system and the protocol information can be found in our previous publication (16).

Flow simulations and case set-ups. In this research, NaCl solution was used as a simplification of the blood flow, as the focus of this study was the ion transport through the EGL. To generate a flow in the ectodomain, external forces in the x direction were imposed on oxygen atoms of water molecules in the ectodomain, and the tactic has been practiced in previous MD studies (14, 16, 35). As reported in our previous study (16), an external force with an order of magnitude of 0.001 fN would
generate a laminar flow with a physiological bulk flow velocity; the presence of the EG disturbs the flow profiles, leading to the oscillations of velocity distribution in space. For the bulk flow, according to Newton’s Law of Motion and assuming the changes in interactions between water molecules and surroundings can be neglected, the resulting bulk flow velocity is supposed to be in proportion to the external force. Thus, the cases with changing blood flow velocity were simulated via changing the strengths of external forces. To study the Na⁺ behavior under various EG configurations, two shedding scenarios of the sugar chains were also constructed. Meanwhile, a diffusion case in which no external forces were imposed on water oxygens was also studied. Table 1 summarizes principal parameters of the in silico experiments involved in this research.

Table 1 Principal parameters for in silico experiments.

<table>
<thead>
<tr>
<th>Case</th>
<th>External force, f (fN)</th>
<th>Number of sugar chains, N</th>
<th>Physical time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.003</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>b</td>
<td>0.002</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>c</td>
<td>0.001</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>e</td>
<td>0.003</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>f</td>
<td>0.003</td>
<td>9</td>
<td>15</td>
</tr>
</tbody>
</table>

Stratifying the ectodomain. To explore the spatial distribution of charges, a space with a height of 50 nm in the ectodomain was stratified into 25 equal bins (14). In each bin, the molarities of sugar chains and ions (Na⁺ and Cl⁻) were calculated.
Statistical analysis. Differences of means were analyzed by ANOVA for every two groups. In Fig. 2a, the base case is Case d (with an external force of 0), and sample sizes of Cases a to d are 300, 210, 210, and 80, respectively. In Fig. 2b, the base case is Case a (N=18), and the first 150 samples are used herein. Sample sizes of both Cases e (N=15) and f (N=9) are 150. In Fig. 5a, the base case is Case d (with an external force of 0), and sample sizes of Cases a to d are 300, 210, 210, and 80, respectively.

Results

Distribution of Na\(^+\) molarity around the EGL

To investigate the Na\(^+\) transport through the EGL, the spatial distribution of ions is a prerequisite. The EG features its negatively charged sugar chains in the ectodomain, and the charge distribution of the sugar chain residues in terms of molarity is illustrated in Fig. 1b. The molarity distribution used in this research is consistent with previous experimental results in order of magnitude (1, 11, 13). To maintain a neutral system, in the region with rich sugar chains (below 42 nm in height), the initial Na\(^+\) molarity distribution along height (Fig. 1c) is nearly symmetric to its sugar residue counterpart (17). Fig. 1c also indicates that the Na\(^+\) molarity near the lipid membrane region (e.g. \(h = 6\) nm) prevails over that (\(c_p\)) above the sugar chain rich region (e.g. \(h = 46\) nm) (17). The pertinent Na\(^+\) molarities in individual regions are \(c_g\) and \(c_p\) in Eq. (6). For simplification, the Na\(^+\) molarities at \(h = 6\) nm and \(h = 46\) nm were used to estimate \(c_g\) and \(c_p\), respectively.

Fig. 2a illustrates the Na\(^+\) molarity differences (\(\Delta c = c_g - c_p\)) in the two regions beneath and above the sugar chain rich area with normalized time (defined as the ratio...
of instantaneous time over the total time involved) under changing flow velocities via varying the values of external forces. The mean molarity difference value of the time series in the equilibrium (no flow) case is greater than its flow counterparts ($p(0.003 fN, \text{no flow}) < 0.005$ and $p(0.002 fN, \text{no flow}) < 0.005$). This phenomenon indicates that the flow facilitates the diffusion of Na+ across the dendritic sugar chain area, and the facilitation is consistent with the convection-diffusion transport phenomenon at macroscales (33).

The scenarios of sugar chain shedding are accomplished via reducing the number of sugar chains (The removal strategy is described in detail in Ref. (15).). Due to the removal of the negatively charged sugar chains, the initial Na+ distribution has been modified to maintain a neutral system. To facilitate comparison, a relative molarity difference is adopted to study the effects of sugar chain numbers on the ion transport. The relative molarity difference, c, is defined as in Eq. (2).

$$c = \frac{\Delta c - \Delta c_0}{\Delta c_0} = \frac{\Delta c}{\Delta c_0} - 1$$

where Δc is the molarity difference as defined previously, and Δc_0 is the molarity difference at the start of every simulation. Fig. 2b illustrates the relative molarity differences under situations with various numbers of sugar chains. The Na+ molarity gradient orients from the lipid membrane to the flow regardless of whether the sugar chains are partially removed or not, for the value of relative molarity difference is greater than -1 for all the three situations. Furthermore, dramatic decreases in the molarity differences are also observed in the sugar chain reduced cases (Cases e and f in Table 1), as negative values of c are frequently observed during the time series as shown in Fig. 2c. In Cases e and f, the removal of the sugar chains reduces the steric hindrance for outward Na+ ion transport, resulting in the decrease in the molarity.
Therefore, the negativity of \(c \) values in these two cases implies an impairment in the functionality of the EG as a filter or buffer for Na\(^+\) ions.

Mechanism for flow impact on Na\(^+\) transport

Fig. 2a shows that the blood flow velocity affects the Na\(^+\) ion transport. In Fig. 2b, the influence on transport from the geometric configuration of sugar chains can also be partially attributed to the velocity change due to the reduction of sugar chains. Therefore, to reveal the mechanism of flow impact on Na\(^+\) ion transport is to find out the pathway via which flow affects the Na\(^+\) behavior.

Conformations and interactions. Previous computational (14, 35) and experimental (40) studies suggest that flow modifies conformations of biomolecules (e.g. sugar chains). To elucidate whether the conformational changes influence Na\(^+\) behavior, two sugar chains of the same composition with different initial conformations (Fig. 3a) are selected from the no-flow case (Case d in Table 1) and their interactions in terms of the coordination numbers (CNs) of surrounding Na\(^+\) ions are examined. The CNs of the surrounding Na\(^+\) ions are quantified by the numbers of heavy atoms (i.e. nitrogen, oxygen and sulphate atoms) of the sugar chain residues within a cut-off distance of 2.5 Å around the Na\(^+\) ions (The value of the cut-off distance is based on the radial distribution result reported in Ref. (9)). Time-evolutions of the average CNs of Na\(^+\) are illustrated in Fig. 3b, together with the probability density distributions in Fig. 3c. The conformations of sugar chains are measured via a center-to-center vector \(R_{ctc} \) connecting the two centers of mass of a bisected sugar chain, which is reported effective in describing polymer rotational dynamics (19). Three geometric parameters related to the vector \(R_{ctc} \), as illustrated in Fig. 3d, are used to depict the conformations of the two sugar chains with their time-
evolutions shown in Fig. 3e to 3g. As illustrated in Fig. 3e to 3g, the conformations of the two sugar chains vary in dissimilar patterns. Thus, it can be concluded that the sugar chain conformations affect the interactions between the Na\(^+\) ions and sugar chains.

The major conformational difference of the two sugar chains of interest (Fig. 3a) resides in segments with corner shapes. To reveal how the corner shape affects the interaction between Na\(^+\) and sugar chains, two segments with identical residue sequence but one featuring a corner shape and the other with a stretching shape are selected as labelled in the inner panel of Fig. 4a. The numbers of Na\(^+\) around both segments throughout the no-flow simulation are recorded. The probability density distributions of the surrounding Na\(^+\) numbers in Fig. 4a suggest that the corner conformation of the sugar chain favors the accumulation of Na\(^+\); by contrast, its stretching counterpart facilitates the movement of the Na\(^+\). To further explore how the corner conformation accumulates Na\(^+\), the residence rates of initial Na\(^+\) ions around the corner and stretching conformations are calculated. The residence rate is calculated as

\[
\text{residence rate}_{Na,j} = \frac{n_{Na,j}}{n_{Na,0}}
\]

In Eq. (3), \(n_{Na,j}\) is the number of Na\(^+\) ions retained from the initial frame of the simulation at the instant \(j\), and \(n_{Na,0}\) is the number of Na\(^+\) ions at the initial frame of the simulation. As shown in Fig. 4b, the higher residence rate of Na\(^+\) in the corner case indicates that more ions stay around the corner sugar chain. At the initial stage, B01B chain has a corner conformation which traps the ions, resulting in a high residence rate. As the corner conformation gradually uncoils, the trapped ions are
released, leading to a comparable residence rate to the A01B chain. Therefore, the corner conformation accumulates Na\(^+\) by confining the ions within its “realm”.

Flow and Na\(^+\)/sugar-chain interactions. As reported in our previous MD research (16) and an experimental study (40), flow can stretch coils of sugar chains. Consequently, fewer corner structures are expected in flow cases. To further quantify the corner structures, an index—solvent accessible surface area (SASA) (24) — is calculated in individual cases. SASA is the area of the surface swept out by the center of a probe sphere rolling over a molecule. For the union of atom balls, SASA is the boundary of the ball union to have their radius increased by the probe radius (usually 1.4 Å as used in this research). The total SASAs of all sugar chains in the NaCl solution were calculated and averaged by the total residues therein. A larger value of average SASA per residue implies fewer corner structures within the sugar chains. As illustrated in Fig. 5a, comparison of the average SASA values among the flow and the no-flow cases suggests a decreasing number of corners when flow passes by, as expected. Accordingly, fewer ions in the sugar-chain-rich region are observed in flow cases. In other words, more Na\(^+\) ions are carried out of the sugar-chain-rich region in the flow cases, which explains the smaller concentration differences of the flow cases (Fig. 2a) from the perspective of the geometry. In Fig. 5a, the SASA values increase when flow passes by, but do not increase as the external force increases. The increases in SASA values in the flow cases can be attributed to the disturbance of the equilibrium of the sugar chains from the external force: the flow activates the motion of sugar chains away from the equilibrated states. Nevertheless, the external forces applied here are not strong enough to cause severe deformations of the sugar chains (14), which lends the flow to an obstacle-dominant regime as discussed in Ref. (15),
leaving the unpredictable relationship between the SASA values and the external forces.

Flow causes conformational changes of sugar chains thereby affecting the Na\(^+\)/sugar-chain interactions; on the other hand, it also breaks the equilibrium between Na\(^+\) ions and sugar chains via transferring momentum to ions. Fig. 5b displays two snapshots of the sugar chain conformations and velocity fields of the surrounding Na\(^+\) ions in a fixed region of the simulation domain of Case a. As illustrated in Fig. 5b, flow modifies the velocity fields of ions as it changes the conformations of sugar chains. As flow accelerates, the average SASA decreases (Fig. 5a) which benefits the residence of Na\(^+\) ions in the sugar-chain-rich region; however, the large impulse from water molecules on Na\(^+\) can also facilitate the movement of ions thereby promoting the ion transport. Therefore, the impact of flow velocity on ion transport is non-linear. A rough estimation shows that the order of magnitude of Na\(^+\) hydration energy (~100 kcal/mol (27)) is 100 times larger than the electrostatic interactions between Na\(^+\) and sugar chains (~ kcal/mol (25)). Thus, when flow accelerates, the impulse from water molecules dominates the ionic movements: water molecules collide and transfer momentum to ions, which encourages the z-direction motion of Na\(^+\) thereby promoting the Na\(^+\) transport. Particularly, a negative correlation between the Na\(^+\) molarity difference and flow velocity can be expected.

Indeed, the large impulse case (Case a) also geometrically primes the Na\(^+\) transport. A scrutiny of three components of the vector \mathbf{R}_{cte} indicates that a large θ value is observed in the 0.003fN case (Fig. 5c), and the large θ value can geometrically facilitate the ion transport out of the sugar-chain-region. Consequently, a declining number of Na\(^+\) ions are observed in the sugar-chain-region as the external force increases (Fig. 5d).
Further revision of Starling principle

Considering the gradient of Na\(^+\) ions around the EGL and the influence of flow velocities and sugar chain configurations, the filtration force in the revised Starling principle for Na\(^+\) ions is proposed to be in the form

\[
FF = \Delta P + \sigma (\Pi_g - \Pi_p) \gamma = \Delta P + \sigma iRT (c_g - c_p) \gamma
\]

(4)

In Eq. (4), \(\gamma\) is the revising coefficient for including the effects of flow velocity and sugar chain configuration, and is expected to be determined by

\[
\gamma = \frac{\Delta c(v_x, \rho_N)}{\Delta c(v_x = 0, \rho_N,\text{intact})}
\]

(5)

In Eq. (5), \(v_x\) is the bulk flow velocity, and \(\rho_N\) is the geometric density of sugar chains. For example, in this research, \(\rho_N\) is the ratio of the number of sugar chains to the area of lipid bilayer patch. In the equation, the numerator is the molarity difference under a certain flow velocity and a certain sugar chain configuration; the denominator is the molarity difference in equilibrium system with intact sugar chains.

To determine \(\gamma\), the relation between the molarity difference and the blood flow velocity together with the geometric density of sugar chains needs to be established. Although the previous section suggests a complicated effect of flow velocity on the Na\(^+\)/sugar-chain interactions, for simplification, linear relation is still assumed here. Indeed, raw data of Table 2 implies that linear relation is capable of describing the trend of the changing molarity differences with flow velocity and geometric density of sugar chains. Therefore, the molarity difference is expressed as:

\[
\Delta c(v_x, \rho_N) = a_0 + a_1 v_x + a_2 \rho_N
\]

(6)
In Eq. (6), \(a_0\) is the intercept of the linear regression, and \(a_1\) and \(a_2\) are the coefficients for velocity and geometric configuration of sugar chains, respectively. For demonstration, the intercept and coefficients are calculated based on the raw data (provided in Table 2 with \(\Delta c_a\) representing the average molarity difference throughout an individual time-evolution) of the cases in Table 1. In linear regression of multiple variables, the intercept and coefficients are \(a_0 = 0.0336\), \(a_1 = -0.1091\) and \(a_2 = 1.6802\).

Incorporating these values into Eq. (5) and also assuming that \(\rho_N\) being 18/820 nm\(^2\) in this research is the normal physiological situation without shedding of sugar chains then gives

\[
\gamma = \frac{0.0336 - 0.1091v_x + 1.6802\rho_N}{0.0705}
\]

(7)

<table>
<thead>
<tr>
<th>Case</th>
<th>(\Delta c_a) (M)</th>
<th>(v_x) (m s(^{-1}))</th>
<th>(\rho_N) (nm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.062</td>
<td>0.0556</td>
<td>18/820</td>
</tr>
<tr>
<td>b</td>
<td>0.065</td>
<td>0.0953</td>
<td>18/820</td>
</tr>
<tr>
<td>c</td>
<td>0.067</td>
<td>0.0153</td>
<td>18/820</td>
</tr>
<tr>
<td>d</td>
<td>0.071</td>
<td>-0.0035</td>
<td>18/820</td>
</tr>
<tr>
<td>e</td>
<td>0.026</td>
<td>0.3411</td>
<td>15/820</td>
</tr>
<tr>
<td>f</td>
<td>0.028</td>
<td>0.2240</td>
<td>9/820</td>
</tr>
</tbody>
</table>

As a rough estimation, the coefficient \(\gamma\) in Case a is 0.92, which means physiological flow changes the osmotic part of transendothelial water flux by 8% compared with a stationary situation.

It is noteworthy that Eq. (1b) is valid for dilute solution, and the derivation of the improved Starling principle in this research is based on Eq. (1b). Thus, the coefficients proposed by this research are valid for dilute solution.
Discussion

Osmotic reflection coefficient

The value of σ of capillary walls to NaCl in single perfused capillaries of the frog mesentery was experimentally determined to be 0.068 ± 0.03 by Curry et al. (7) before the indication of the EG as a semipermeable layer. In the following discussion, we would refer the value to individual ions (i.e. Na$^+$ and Cl$^-$), as Na$^+$ and Cl$^-$ ions are distributed differently around the EGL. We shall discuss the likely value change based on the present results.

In their experiment, σ is estimated in accordance with the classic Starling principle where $\text{FF} = \Delta P - \sigma iRT(c_p - c_i)$; c_i is the solute concentration on the interstitial fluid side and approaches zero in the experiment. FF and ΔP were first determined or measured, before σ was calculated by the expression $\sigma = (\Delta P - \text{FF})/\left(iRT(c_p - c_i)\right)$. We first discuss how σ is changed by the evaluation from the revised Starling principle. Indeed, discrepancy would occur if σ is calculated by the revised Starling principle (Eq.(1b)) where $\sigma = (\Delta P - \text{FF})/\left(iRT(c_p - c_g)\right)$. To distinguish, σ_{cl} refers to the value obtained from the classic Starling principle and σ_{re} for its revised counterpart. Give that c_g may affect the orientation of osmotic pressure gradient, it is convenient to use the absolute values to calculate σ, i.e. $\sigma_{\text{cl}} = |\Delta P - \text{FF}|/(iRT|c_p - c_i|)$ and $\sigma_{\text{re}} = |\Delta P - \text{FF}|/(iRT|c_p - c_g|)$. The molarity of Na$^+$ added in the experiment is 0.1 M (total 0.21 M, including Na$^+$ from original perfusate) (7), which means $|c_p - c_i| = 0.1$ M (c_i is assumed to be 0 in the classic Starling principle). In our simulation, as suggested in Fig. 2a, the maximum of $|c_p - c_g|$ is smaller than 0.1 M. Thus, σ_{re} is greater than σ_{cl}. It is noteworthy that our model assumes an infinite endothelial cell surface without clefts or pores between endothelial cells. Such assumptions could overestimate c_g, as...
the transport of Na\(^+\) ions to the interstitial fluid side is prevented. Even so, a higher \(c_g\) than \(c_i\) can still be presumed, as the negative charge of the EGL would prime the accumulation of Na\(^+\) ions. Therefore, the classic Starling principle underestimates the osmotic reflection coefficient of Na\(^+\). We further consider the effect of the varying blood velocities on the evaluation of \(\sigma\). To distinguish, \(\sigma_{im}\) is used to represent the osmotic reflection coefficient by Eq. (4), and
\[
\sigma_{im} = \frac{|\Delta P - FF|}{iRT|c_p - c_g|\gamma} = \frac{\sigma_{re}}{\gamma}.
\]
As \(\gamma\) is usually smaller than 1, a flowing blood would further aggravate the underestimation.

Potential experimental practice

The experimental difficulty resides in the measurement of solute molarity in the subglycocalyx space (\(c_g\)), as such a space is extremely difficulty to access. Thus, in a majority of the experimental studies, the osmotic part of the revised Starling principle is simplified. As shown in Eq. (4), the new multiplier, \(\gamma\), works on the osmotic part, which means experimental measurements with simplification in the osmotic part would be affected by the introduction of \(\gamma\).

Generally, two principles are used in the measurement of permeability: Landis-Michel’s (26) and Li et al’s (22). In Landis-Michel’s method and its adaptations, the osmotic part is simplified, resulting in the biased measurement results. For example, the aforementioned osmotic reflection coefficient is underestimated. Analogously, the hydraulic conductivity measured by Pocock et al.(36) is overestimated. By contrast, Li et al’s method refrains from the osmotic term by setting the osmotic pressure to 0. Thus, theoretically, Li et al’s experiments would not result in biased estimation of hydraulic conductivity.
It is noteworthy to recall Betteridge et al.’s method in vascular permeability measurement with the aid of advanced imaging techniques (3). The principle is actually consistent with Landis-Michel’s (26), and the biased estimation cannot be neglected. However, their method lends an inspiration to access the molarity in the subglycocalyx space by the advanced image technology. If successful, the osmotic term can be precisely measured, and the biased estimation can be eliminated.

Physiological implication.

The physiological role of the EGL includes regulating endothelial permeability by maintaining an oncotic gradient across the endothelial barrier (4). Damages to the EG due to dietary factors or diseases can lead to impairment in the endothelial barrier properties (10, 45). For example, in sepsis, the elevated porosity of endothelium by the inflammatory injury would prime the motion of albumin through the endothelial cleft, which drives oedema (46). Indeed, the present research suggests a way to alleviate oedema by regular moderate exercises: the slightly elevated blood flow velocity after moderate exercise training will result in a reduction in the osmotic part of Eq. (4), leading to a decrease in transvascular fluid permeability which alleviates oedema. The benefit of exercise training to alleviation of oedema was reported in an experimental study (37).

Assumptions of the model.

Some simplifying assumptions are established in the present research. The composition of a realistic EGL is dynamic and continuously affected by the dynamic equilibrium between the soluble components (such as plasma protein) and other blood constituents (39). In this research, a simplified model focused on the EG and Na⁺ interactions was constructed, without any plasma proteins. To mimic physiological
conditions, the molarities of Na\(^+\) and Cl\(^-\) in this research are set to be 0.15 M and 0.10 M, respectively, as described previously. These values can be regarded acceptable, as clinic data suggest that the usual reference ranges of serum sodium and chloride of healthy populations are 0.133 M-0.146 M for Na\(^+\) and 0.095 M-0.108 M for Cl\(^-\), respectively. (Clinic data are from Clinical Biochemistry Reference Ranges Handbook by Eastbourne District General Hospital & Conquest Hospital, Hastings, V1.8, ratified in August 2018). Therefore, the physiological implications obtained from the present study are still meaningful.

The simplified model can capture the conformational changes of the EG sugar chains and their interactions with Na\(^+\). However, it fails to predict the impact of other blood constituents on Na\(^+\) transport. In this regard, the 8% deviation in the osmotic permeability is idealized, and can be revised by incorporating additional experimental data. Further wet-lab experiments measuring the permeability under varying flow conditions would contribute to the re-assessment of the Starling principle. Alternatively, retrospective analysis of historical data based on different flow regimes would also benefit the revision of the principle.

The height of the EGL in the present model is of the order of ~10 nm. As mentioned in the introduction, the height of EGL varies within a wide range from 50 to 500 nm. According to the present model, a higher EGL may increase the difficulty in carrying Na\(^+\) out of the EGL layer due to the increased steric hindrance. However, the impact of other blood constituents on Na\(^+\) transport is unknown. Therefore, how the permeability of Na\(^+\) changes with the heights of EGL remains unclear, and additional experimental efforts focusing on the permeability under varying EGL heights are expected to provide further information.
As mentioned previously, an infinite lipid membrane without clefs or pores between endothelial cells is assumed in this research by the application of periodic boundary conditions. Hence, transendothelial water flux is not simulated. However, the conclusions obtained from the present research can still be extended to complex situations, as the interactions between sugar chains and ions would not be affected by cleft or pore structures located away from their close proximity.

To conclude, a series of large-scale molecular dynamics simulations were conducted to investigate the microvascular ion transport via the EGL under varying blood flow velocities and different sugar chain configurations. The research leads to new findings about the effects of blood flow velocities and sugar chain configurations on the Na^+ ion transport, and an improved Starling principle. In particular, blood flow promotes the outward Na^+ transport from the near-membrane region to the lumen via the EGL. Furthermore, flow velocity influences the transport via the conformational changes of sugar chains, which affects the Na^+/sugar-chain interactions as well as transferring momentum to ions (see also the schematic of the mechanism in Fig. 6). Detailed analysis on the interactions further reveals that the effects of flow velocity are non-linear. Based on these findings, the widely used Starling principle and its revised version describing the microvascular fluid exchange is further improved by introducing a factor representing the effects of flow velocity and sugar chain configuration. An estimation based on the further revised Starling principle suggests that physiological flow changes the osmotic part of transendothelial water flux by 8% compared with the stationary situation. This research provides a unique insight into ion transport through the EGL by bridging the macroscopic phenomena and atomic events, which adds to our understanding of microvascular fluid exchange.
It is worth noting that despite significant advances in high-end computing, our MD simulations, though unprecedented, are still confined to simulation time and length of nanoscales, leaving many questions concerning the multiscale multiphysics facets of the EGL unanswered. The links between the dynamics of the EGL and EG-related renal and cardiovascular diseases add a further dimension of complexity that is beyond the scope of this paper. The advent of exascale computing machines, together with the development of reliable coarse-grained MD offers the prospect of an \textit{in silico} technique for investigating EG and cardiovascular problems.

Disclosures

There are no conflicts to declare.

Grants

This work was supported by the UK Engineering and Physical Sciences Research Council under the project UK Consortium on Mesoscale Engineering Sciences (UKCOMES) (Grant Nos. EP/L00030X/1 and EP/R029598/1).

References

5. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, and Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and

Figure Captions:

Fig. 1 Initial configuration and charge distributions. a. Initial configuration of the intact EG system in this research (water and ions are not shown). b. and c. are initial molarity distributions of the sugar chains and ions (Na\(^+\) and Cl\(^-\)), respectively (previously published in (16)).

Fig. 2 Distributions of Na\(^+\) molarity differences at changing flow velocities and time-evolutions under different situations with varying sugar chain numbers. a. Distributions of Na\(^+\) molarity differences, \(\Delta c = c_g - c_p\), under varying blood velocities resulting from varying external forces (17). Notch values are the mean values. The values in each boxplot were individually obtained from the pertinent experiment conducted for the designated period as shown in Table 1. b. Relative molarity differences in the scenario with shedding sugar chains. Each point was averaged among five consecutive recorded timesteps, and each bar represents the mean ± SD. The first 15-ns results of the N=18 case (Case a in Table 1) were compared with the N=15 (Case e in Table 1) and N=9 cases (Case f in Table 1). c. Distributions of the signs of \(c\) values in the recorded timesteps in cases with various sugar chain numbers. For the N=18 case, the first 15-ns results were used. In the three cases, signs of 150 timesteps were counted. Statistical significances in a and b were checked by ANOVA. ***p<0.001 vs. external force of 0; n.s. (not significant) p>0.05 vs. external force of 0.

Fig. 3 Coordination numbers of Na\(^+\) and conformations of two sugar chains. a. Two sugar chains of the same composition with different initial conformations. b. Time-evolution of the coordination numbers of Na\(^+\) around the two sugar chains in one single equilibrium simulation lasting for 8 ns (Case d in Table 1). The coordination numbers are quantified by the numbers of heavy atoms (i.e. nitrogen, oxygen and sulphate atoms) of the sugar chain residues within a cut-off distance of
2.5 Å around the Na\(^+\) ions. (The value of the cut-off distance is based on the radial
distribution result reported in Ref. (9))
c. Probability density distribution for the
coordination numbers. The data were collected every 0.1 ns from the 8-ns equilibrium
simulation. The probability density distribution was calculated based on the 80
collected statistics.
d. Geometric parameters to depict the conformation of a sugar
chain. The conformations of sugar chains are measured via a center-to-center vector
\(\mathbf{R}_{\text{ctc}}\) connecting the two centers of mass of a bisected sugar chain, which is reported
effective in describing polymer rotational dynamics (19).
e. Time-evolutions of the two sugar chains in terms of the three geometric parameters in the 8-ns
equilibrium simulation. The conformations of the two sugar chains vary in dissimilar
patterns. Thus, it can be concluded that the sugar chain conformations affect the
interactions between the Na\(^+\) ions and sugar chains.

Fig. 4 Probability density distributions of numbers of Na\(^+\) around two segments,
and residence rate of Na\(^+\) around both segments. a. Probability density
distributions of numbers of Na\(^+\) around two segments with identical residue sequence
but different conformations (highlighted yellow in the inner panel). The data were
collected every 0.1 ns from the 8-ns equilibrium simulation (Case d in Table 1). The
probability density distribution was calculated based on the 80 collected statistics.
b. Comparisons of residence rates of Na\(^-\). The higher residence rate of Na\(^+\) in the corner
case suggests ions are confined by the corner conformation.

Fig. 5 Flow impact on Na\(^+\) ion transport. a. Average SASA values under varying
flow conditions. The lines in the boxes represent the means. Statistical significances
were checked by ANOVA. ***\(p<0.001\) vs. external force of 0. b. Average sugar chain
conformations and Na\(^+\) velocity fields at first and last timesteps of Case a, projected
on a region in the XoZ plane with \(x\) from -100 Å to 100 Å and \(z\) from 30 Å to 350 Å.
The sugar chain conformations were averaged over the y direction from -40 Å to 40 Å to facilitate visualization. In the calculation of the Na\(^+\) ion velocity fields of individual timestep, the region in the XoZ plane were divided by 20×20 grids, and the velocities of Na\(^+\) ions in each grid were then averaged. c. θ value changes with the external forces. d. Number of Na\(^+\) ions remaining in the sugar-chain-rich region under varying flow situations. In c and d, the probability density distributions were calculated based on data collected every 0.1 ns from individual simulations.

Fig. 6 Schematic of the mechanism for flow impact on Na\(^+\) transport. Flow influences the Na\(^+\) transport via the conformational changes of sugar chains and transferring momentum to Na\(^+\).