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ABSTRACT 

 

Background: Ischemic stroke and coronary heart disease are important contributors to the global 

disease burden and share atherosclerosis as the main underlying cause. Recent evidence from a 

genome-wide association study (GWAS) suggested that single nucleotide polymorphisms (SNP) near 

the MMP12 gene at chromosome 11q22.3 were associated with large-vessel ischemic stroke. Here we 

evaluated and extended these results by examining the relationship between MMP12 and 

atherosclerosis in clinical and experimental studies.    

Methods and Results: Plasma concentrations of MMP-12 were measured at baseline in 3 394 

subjects with high-risk for cardiovascular disease (CVD) using the Olink ProSeek CVD I array. The 

plasma MMP-12 concentration showed association with incident cardiovascular and cerebrovascular 

events (130 and 67 events respectively over 36 months) and carotid intima-media thickness 

progression (p=3.6x10-5). A GWAS of plasma MMP-12 concentrations revealed that SNPs rs499459, 

rs613084 and rs1892971 at chr11q22.3 were independently associated with plasma MMP-12 (p<5x10
-

8). The lead SNPs showed associations with mRNA levels of MMP-12 and adjacent MMPs in 

atherosclerotic plaques. MMP-12 transcriptomic and proteomic levels were strongly significantly 

increased in carotid plaques compared with control arterial tissue and in plaques from symptomatic vs. 

asymptomatic patients. By combining immunohistochemistry and proximity ligation assay, we 

demonstrated that MMP-12 localises to CD68+ macrophages and interacts with elastin in plaques. 

MMP-12 silencing in human THP-1 derived macrophages resulted in reduced macrophage migration. 

Conclusions: Our study supports the notion that MMP12 is implicated in large-artery atherosclerotic 

stroke, functionally by enhancing elastin degradation and macrophage invasion in plaques. 

 

Key words: atherosclerosis, carotid intima-media thickness, matrix metalloproteinase, plaque rupture, 

stroke, vascular disease 
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INTRODUCTION 

 

Atherosclerosis is a major cause of coronary heart disease (CHD) and along with cardioembolism 

contributes significantly to ischemic stroke (IS). The disease involves gradual accumulation of lipids 

and inflammatory cells encapsulated by fibrotic tissue in the intima of larger arteries [1]. Erosion or 

rupture of the fibrous cap covering the atherosclerotic plaque exposes plaque content to circulating 

blood and triggers thrombosis that may lead to myocardial infarction (MI) and stroke. The more 

recent view of plaque rupture and erosion suggests that atherosclerotic lesions undergo circles of 

remodelling, involving both stabilisation and destabilisation events, rather than being gradually 

weakened in a continuous manner [2].  

Plaque remodelling involves breakdown of extracellular matrix (ECM), which is a process partly 

controlled by matrix metalloproteinases (MMPs), a family of 20 secreted or membrane-associated 

endoproteinases and their inhibitors [3, 4]. Evidence for a role of MMPs in cardiovascular disease 

(CVD) has been obtained from studies in transgenic disease models and in studies investigating some 

MMPs as biomarkers for clinical events [5-10]. In contrast, few studies have evaluated the role of 

MMPs in CVD using human genetics integrated with mRNA and protein expression in carotid tissue. 

Robust genetic association between the MMP gene cluster (chromosome 11q22.3) and large artery 

stroke was recently demonstrated in genome-wide association study (GWAS) (13). In addition, 

association between SNPs at the 11q22.3 locus and COPD has been demonstrated [11-13]. The lead 

SNP for large-artery stroke, rs660599, is located near the MMP12 gene and it was shown that the 

MMP-12 mRNA expression in disease tissue is increased compared to healthy controls, which 

suggested that MMP-12 drives the genetic association signal for stroke observed at 11q22.3 [13].  

It is well established that identification of the causal gene of GWAS loci is challenging, mainly due to 

high degree of linkage disequilibrium across large regions of the genome but also because distal 

genomic regulation of genes is common. The 11q22.3 region is no exception as it harbours several 

other members of the MMP family (MMP7, MMP20, MMP8, MMP10, MMP1, MMP3 and MMP13), 

of which many have been suggested to play a role in atherosclerosis. Therefore, additional evidence is 

required to establish the role of MMP-12 in large-artery stroke. To address this question, we applied 

an integrative approach and investigated MMP-12 protein and gene variants in relation to carotid 

intima-media thickness (cIMT) progression, incident CVD, transcriptomic and proteomic levels in 

carotid plaque tissue, followed-up with detailed in situ and in vitro studies (design shown in Fig. 1).  
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MATERIAL AND METHODS 

 

The IMPROVE study 

The IMPROVE study is a multicentre, longitudinal, observational study, which recruited 3 711 

subjects with at least three cardiovascular risk factors but who were asymptomatic for CVD. Subjects 

were recruited from Finland, France, Italy, the Netherlands, and Sweden. Detailed cIMT 

measurements were performed at baseline, after 15 months and at 30 months. The Fastest-IMTmax-progr 

parameter, herein referred to as cIMT progression, was previously developed and evaluated in the 

IMPROVE study and found to independently predict new CVD events [14]. Incident CVD end points 

were defined as occurrence of myocardial infarction, angioplasty, diagnosis of angina pectoris, 

angioplasty, coronary artery bypass grafting and/or sudden cardiac death, ischemic stroke, transient 

ischemic attack, peripheral revascularization, and/or diagnosis of intermittent claudication during a 

median follow-up of 36 months. Further design features and definitions of the study are described in 

the online supplement and in previously published articles [14, 15]. 

Plasma MMP-12 concentrations were measured at baseline using the Olink ProSeek CVD array I 

(Olink Proteomics, Uppsala, Sweden), according to the standard protocol [16]. The inter-plate 

coefficient of variation for the MMP-12 assay was 14 %, as estimated using a pooled plasma control 

across all plates. The measurements were carried out in 3 394 IMPROVE participants in whom 

genotype information post quality control (QC) was also present. Plasma MMP-12 activity was 

measured in duplicates in 20 plasma samples from the IMPROVE cohort. Ten samples were randomly 

chosen from the 75-95
th
 percentile of plasma MMP-12 concentration and ten from the 5-25

th 

percentile.  Activity was measured with the Fluorimetric Sensolyte 520 MMP-12 Assay Kit 

(Anaspec), which specifically detects elastin degradation products (desmosin). 

Genotyping in the IMPROVE study was performed using the Illumina CardioMetabochip and the 

Immunochip arrays [17, 18]. The combined SNP genotyping data on both platforms were merged and 

subjected to the following QC using PLINK 1.7, standard programming tools and manual proof-

reading. SNPs were excluded for probe to genome mismatch, incorrect assignment of allelic variants 

in the array design, failed Hardy-Weinberg Equilibrium test at 1x10-6, call rate <95% or failed 

Illumina genotype calling QC. Samples were excluded that showed evidence of gender mismatch, 

abnormal inbreeding coefficient, failed cryptic relatedness test or had an overall sample call rate 

<95%. After QC and filtering out of SNPs with a minor allele frequency of <0.5%, a total number of 

260 484 unique SNPs in 3 403 subjects remained for analysis. 
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The BiKE study 

Patients undergoing surgery for symptomatic (S) or asymptomatic (AS), high-grade (>50% NASCET) 

carotid stenosis at the Department of Vascular Surgery, Karolinska University Hospital, Sweden were 

consecutively enrolled in the study and clinical data recorded on admission [19]. Symptoms of plaque 

instability were defined as transitory ischemic attack (TIA), minor stroke (MS) and amaurosis fugax 

(retinal TIA; AF). Patients without qualifying symptoms within 6 months prior to surgery were 

categorised as AS and indication for carotid endarterectomy based on results from the Asymptomatic 

Carotid Surgery Trial (ACST) [20]. Carotid endarterectomies (carotid plaques, CP) and blood samples 

were collected at surgery and retained within the Biobank of Karolinska Endarterectomies (BiKE). 

This study involved 3 non-overlapping sub-cohorts of patients, where one Affymetrix microarray 

dataset was generated by profiling n=127 atherosclerotic plaques (of which n=87 were from S+40 

from AS patients) and n=10 normal arteries (further referred to as the ‘large dataset’) and the other by 

profiling n=50 plaques (n=40 from S+10 from AS patients) and n=5 normal arteries (further referred 

as the ‘small dataset’). DNA genotyping by Illumina chips was carried out on patients from the ‘large’ 

sub-cohort, and used for expression quantitative trait loci (eQTL) analyses. The third sub-cohort of 

n=18 BiKE plaques (n=9 from S+9 from AS patients, matched for gender, age and statin medication) 

were analysed using LC-MS/MS as previously described [21]. For these proteomic analyses, a central 

portion of the plaque corresponding to the maximum stenosis was separated from the respective 

downstream peripheral end (adjacent tissue) of the plaque and used in comparisons [22, 23]. Details 

of patient demographics, sample processing, microarray and proteomic analyses have been described 

previously and the study was approved by the regional Ethics Committee [24-27].  

In this study CHD [28] was defined as stable and unstable angina, nonfatal MI and coronary death and 

large artery stroke as thrombosis or embolism due to atherosclerosis of a large artery (internal carotid-

, middle cerebral-, vertebral- or basilar arteries) [29]. The study cohorts and workflow are presented in 

Fig. 1.  

 

Statistical analyses 

Association between plasma MMP concentrations, SNPs and cIMT at baseline and progression 

(fastest-IMTmax-progr) and incident CVD were tested using linear or logistic regression models with one 

basic model adjusting for recruitment centre, age, gender and another advanced model including also 

Framingham risk score parameters i.e. smoking, diabetes, systolic blood pressure, HDL-C and total 

cholesterol. Survival analysis of plasma MMP-12 tertiles was performed using Cox-regression. A 

total number of 67 cerebrovascular and 130 coronary endpoints were observed after 36 months in the 

subset of 3 394 IMPROVE subjects with complete baseline clinical data, genetic information and 
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plasma MMP-12 measurements. A total of 260 484 SNPs from the combined Illumina Immunochip 

and Metabochip genotyping arrays were tested as determinants for plasma MMP-12 using the Plink 

1.9 Wald-test of residuals derived from a linear regression model that adjusted for recruitment centre, 

age, gender, smoking, diabetes, hypertension, BMI and Olink ProSeek analysis batch [30]. The 

standard p-value threshold for genome-wide significance at 5x10-8 was used in the discovery of novel 

SNPs linked to plasma MMP-12 concentrations. Microarray and proteomic dataset analyses of BiKE 

samples were performed as reported previously [21, 24]. Correlation between mRNA or protein levels 

was assessed using Spearman whereas ANOVA was used for multi-group comparisons, with p<0.05 

as threshold for statistical significance. In the in vitro studies, cells were automatically counted using 

the “Cell Counter” plugin of the ImageJ software. Differences between the groups were tested using 

Student’s t-test.  

Additional methods are available in the online Supplemental Material. 
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RESULTS 

 

Plasma MMP-12 levels associate with cIMT progression and incident cardiovascular events 

MMP-12 plasma concentrations were positively correlated with age, smoking and diabetes and 

inversely with HDL-C in the IMPROVE study (Table 1), whereas no or weak correlations were 

observed with gender, systolic blood pressure or total cholesterol. Plasma MMP-12 at baseline was 

tested as potential predictor of cIMT both at baseline and in progression, using a basic model and an 

advanced model with additional adjustment for Framingham risk score baseline parameters. As 

previously shown by Goncalves et al [10], plasma MMP-12 was associated with cIMT at baseline, 

with the average thickness across all measured segments showing the strongest association (Table 2). 

The plasma MMP-12 concentration was also positively associated with faster cIMT progression, 

which persisted after adjustment for Framingham score parameters (Table 3). The association between 

plasma MMP-12 concentration and cIMT progression persisted even after additional adjustment for 

IMTmax at baseline (standardized beta=0.052, p=0.008). Plasma MMP-12 levels were also associated 

with incident CVD at 36 months (n=197) after adjustment for study site, age and gender (odds ratio 

1.26, 95% confidence interval (1.03-1.55), p=0.028). The odds ratio for cerebrovascular events (n=67) 

was 1.45, 95% confidence interval (1.03-2.05), p=0.034. After adjustment for Framingham risk score 

parameters, associations with both all CVD events and with cerebrovascular events only were 

attenuated (odds ratio 1.13, 95% confidence interval (0.91-1.40), p=0.26 and odds ratio 1.25, 95% 

confidence interval (0.87-1.81), p=0.22, respectively). A survival analysis of plasma MMP-12 tertiles 

suggested that patients in the highest tertile progressed more rapidly to cerebrovascular endpoints 

compared to the middle and lowest tertile (Cox-regression p=0.022, Supplementary Fig I) After 

adjustment for covariates, the association was no longer significant (p=0.15).  

Of note, MMP-1, MMP-3, MMP-7 and MMP-10 (present on the Olink CVD I assay) were also tested 

for association with cIMT at baseline, cIMT progression and incident CV events, but did not pass 

significance levels. 

 

SNPs at 11q22.3 and plasma MMP-12 concentrations 

Next, we aimed to assess whether SNPs at 11q22.3 were linked to plasma MMP-12 concentration 

using the IMPROVE study. Of a total number of 260 484 SNPs, 12 SNPs exceeded the standard 

threshold for genome-wide significance at 5x10
-8

 for association with plasma MMP-12 concentration 

(Supplementary Fig II). All associated variants mapped to the MMP gene cluster region on 

chromosome 11q22.3. SNP rs660599, previously associated with risk of stroke in the 
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METASTROKE study by Traylor et al (13), was associated with plasma MMP-12 at p=8.8x10-35. To 

identify potential additional association signals at this locus, conditional analyses were performed by 

adding the lead variant as covariate in linear regression models of adjusted plasma MMP-12. After 

three rounds of conditioning, including in order rs499459, rs1892971 and rs613804, no association 

signal at 5x10-8 remained (Supplementary Table I).  The r2 measure for linkage disequilibrium (LD) 

was less than 0.01 for any combination of these SNPs, suggesting that the effects of rs499459, 

rs1892971 and rs613804 on plasma MMP-12 concentration are independent from one another 

(Supplementary Table II). Finally, for the 3 variants emerging from IMPROVE analyses (rs499459, 

rs1892971 and rs613804) and the 1 from METASTROKE study (rs660599), we also stratified the 

association with plasma MMP-12 levels, mean and max cIMT and plaque area by each allele 

(Supplementary Table III). Interestingly, our results show that the A allele of rs660599, which was 

previously associated with stroke risk in the METASTROKE study, here associated with higher cIMT 

for the different intima-media measures, however the same allele also associated with lower plasma 

MMP-12 concentration. Similarly, the A allele of rs499459 associated with higher cIMT 

measurements and lower plasma MMP-12 levels.  

 

SNPs in the MMP12 region affect its mRNA expression in atherosclerotic plaque tissue  

In order to evaluate potential associations of SNPs rs499459, rs613804, and rs1892971 with plaque 

MMP-12 mRNA levels in patients with carotid atherosclerosis, eQTL analyses were performed using 

microarray data from the BiKE cohort. A tentative association was found for rs1892971 with MMP-

12 mRNA levels in plaques (p=0.079) (Fig. 2A). To investigate whether the effect of rs1892971 was 

specific for MMP12 or related also to adjacent genes in the MMP gene cluster, we tested its 

association with expression of MMP1, MMP3 and MMP13 in plaques, but no significance could be 

shown (Fig. 2A). A proxy for rs499459 (rs566125, r
2
=0.92; D’=1) showed no association with 

MMP12 plaque expression in the whole cohort, but when the association was stratified according to 

the patient phenotype, this variant showed significance particularly in plaques from asymptomatic 

patients (Supplementary Fig III). However, it was also significantly associated with expression of 

MMP1, MMP3 and marginally with MMP13 (p=0.00048, p=0.02 and p=0.045, respectively, Fig. 2B). 

No significance was obtained by similar eQTL analyses for rs613804. In addition, we sought to 

evaluate whether the reported lead SNP for large-artery atherosclerotic stroke, rs660599, was also 

related to MMP12 expression levels in plaques. A perfect proxy for rs660599, rs615098 (R2=1, D’=1) 

showed association with MMP12 mRNA expression in plaques generally (p=0.0039), as well as in 

plaques from asymptomatic patients (p=0.005) and symptomatic ones (p=0.049) separately 

(Supplementary Fig III). Interestingly, this variant also showed strong associations with both MMP1 

and MMP3 levels in plaques (p=0.0016 and p=0.0025, respectively, Fig. 2C). Other MMPs in this 
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region (MMP7, MMP8, MMP10, MMP20 and MMP27) were also examined for association with these 

variants, but showed no significance.  

Further analysis of LD in the associated genomic region using the SNIPA tool [31] with data from the 

European part of the 1000 genomes project, showed that rs499459 is located in a broader region of 

high LD with multiple other SNPs (including the lead SNP for stroke rs660599), that span MMP1, 

MMP3 and MMP12. In contrast, rs613804 is located in a region of high LD near and some distance 

downstream of the MMP12 gene. SNP rs1892971 (and those in high LD) is located in a narrow 

intergenic region upstream of MMP12 and downstream of MMP13 (Supplementary Fig IV).  

Of note, MMP-12 mRNA expression levels found in plaques from these eQTL analyses, were several 

fold higher than levels of any other interrogated MMP in this region.   

 

MMP12 is highly elevated in carotid plaques from symptomatic patients 

Indeed, on the transcriptomic level we observed strong upregulation of the MMP-12 mRNA 

expression in two independent microarray datasets comparing plaques vs. normal arteries (Fig. 3A). 

In the large dataset, the difference between these groups was log mean±SD=8.14±0.17, p<0.0001 

whilst in the smaller dataset it was log mean±SD=5.20±0.22, p<0.0001. Further upregulation was 

noted by stratifying patients into symptomatic vs. asymptomatic category (large dataset log 

mean±SD=0.74±0.33, p=0.03), and a trend towards upregulation in symptomatic patients was noted 

also in the smaller dataset (not shown). A strong enrichment of MMP-12 was confirmed on the 

proteomic level, with mean difference ±SD=0.90±0.10, p=0.04 comparing central plaques vs. adjacent 

tissue and mean difference±SD=1.00±0.07, p=0.03 by comparing plaques from symptomatic vs. 

asymptomatic patients (Fig. 3A).  

To evaluate the previous publications reporting high expression of MMP-12 in macrophages [32-35], 

we next investigated the correlation between MMP-12 expression and macrophage cell markers in 

plaques (Fig. 3B). MMP-12 transcript was strongly significantly correlated with that of macrophage 

markers CD163 (Spearman r=0.67, p<0.0001), CD36 (r=0.81, p<0.0001) and MAC2 (r=0.72, 

p<0.0001), and similarly positive significant correlations of MMP-12 with macrophage markers were 

confirmed on the protein level. 

 

MMP-12 localizes to macrophages and interacts with elastin in plaques 

In continuation, we sought to trace the MMP-12 protein and its major substrate elastin in human 

carotid arteries by immunohistochemistry. No signal for MMP-12 was present in a normal artery 
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whereas elastin was abundantly expressed in the media, as expected (Fig. 4A, arrows). In plaques we 

localized total MMP-12 mostly to macrophage-rich regions in the necrotic core by co-staining with an 

antibody against macrophage marker CD68 (Fig. 4B, third panel, arrows and Supplementary Fig VA). 

We also detected preserved, orderly packed elastin fibres sub-intimally at the plaque periphery, where 

no MMP-12 was expressed (Fig. 4B, second panel, arrows). However, towards the necrotic core, 

staining for elastin appeared gradually disarranged and co-localized with MMP-12 (Fig. 4B, second 

panel, enlarged inset), and was lost in consecutive sections of areas near the fibrous cap with 

condensed MMP-12
+
 macrophages (Supplementary Fig VA, enlarged insets). Signal for active MMP-

12 was observed diffusely in the extracellular matrix in the lesions, where elastin fibres were 

disarranged or absent (Supplementary Fig VB, arrows). Furthermore, by proximity ligation assay 

(PLA) we showed that MMP-12 and elastin proteins co-interact in plaques in situ, particularly in 

regions with moderate to strong MMP-12 expression (Fig. 4C, enlarged insets). 

 

MMP-12 levels correlate with elastin breakdown in plasma and plaques from atherosclerotic 

patients 

We also assessed the relationship between MMP-12 concentration and elastin degradation in plasma 

from the IMPROVE cohort, by measuring the level of the released degradation product desmosin. 

With equal elastin substrate amount available, we observed on average a 22% elevated elastin 

degradation in plasma samples with high MMP-12 levels compared to those with low MMP-12 levels 

(mean 56.1±5.84 vs. 46.0±9.20 µM desmosin, p=0.15, Supplementary Fig VIA). Similarly, in plaques 

we observed a strongly significant inverse correlation between MMP-12 and elastin protein levels (r= 

-0.47, p=0.004, Supplementary Fig VIB). Together with immunostainings for active MMP-12 in 

plaques, our results confirm an association between higher MMP-12 levels and increased elastolytic 

activity both in plasma and plaques from atherosclerotic patients.  

 

MMP-12 silencing leads to reduced macrophage recruitment and ECM invasion capacity  

In vitro experiments were performed to evaluate the previous studies suggesting that MMP-12 

influences macrophage migration and degradation of ECM proteins [34]. MMP-12 mRNA expression 

in THP-1 derived human macrophages was effectively inhibited by siRNA and the reduction was 

estimated to 70% by qPCR analysis (Supplementary Fig VII). Western blot demonstrated that MMP-

12 mRNA downregulation was associated with ~25% reduction in active MMP-12 protein in 

macrophages (Supplementary Fig VII). Our results showed that macrophages with reduced MMP-12 

levels exhibited ~30% lower invasion capacity compared to controls (%invasion=45±13 vs. 64.5±12, 
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p=0.01). We then examined the macrophage invasion capacity upon lowering of the MMP-12 

availability with an MMP-12-specific antibody, in both the control and the silenced cells. MMP-12 

inhibition by antibody blocking resulted in ~31% less macrophage invasion compared to controls 

(%invasion=16.5±4.2 vs. 23.9±5.2, p=0.04). Furthermore, we observed a reduction in the total 

number of macrophages invading through the ECM once the antibody was introduced. The mean 

reduction was 63%, p=0.02 for cells with suppressed MMP-12 levels and 62%, p=0.02 for those with 

normal MMP-12 levels (Fig. 5A).  

In addition, we sought to identify whether MMP-12 expression levels in macrophages affected the 

recruitment of other macrophages. We observed that the migration of new macrophages was 20% 

lower towards macrophages with reduced MMP-12 expression. Post migration, 28.5% 

(mean=430.5±27 cells) of the total cell count in the Transwell chamber originated from macrophages 

that migrated towards those with suppressed MMP-12, whereas 35.4% (mean=743.5±81 cells) 

originated from the population of macrophages that had migrated towards those with unchanged 

MMP-12 expression (p=0.01, Fig. 5B). 
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DISCUSSION 

 

We used an integrative approach based on genetics, transcriptomics and proteomics in clinical and 

experimental samples to demonstrate that i) MMP-12 is regulated at the mRNA and protein level by 

SNPs in the MMP gene cluster, ii) its plasma concentration is linked to cIMT progression as well as 

cerebrovascular events in high-risk subjects, and iii) it is highly enriched in human atherosclerotic 

plaques where it interacts with elastin and enhances macrophage invasion. Moreover, we link a SNP 

near MMP12 that was previously shown to be associated with stroke by Traylor et al. [13] with 

plasma MMP-12 concentrations and mRNA expression of MMP-12, but also with other MMPs in 

carotid plaques. Therefore, the present investigation in combination with the recent article by Traylor 

et al. suggests that MMP-12 may be causally implicated in large-artery stroke. 

We found that three SNPs, rs499459, rs613804 and rs1892971, which are all located in chromosome 

11q22.3 region near the genes MMP1, MMP3, MMP12 and MMP13, were independently associated 

with plasma MMP-12 concentration. No other signals at genome-wide significance were observed in 

our study, although we acknowledge that SNPs outside of chromosome 11q22.3 with smaller effects 

on plasma MMP-12 may still exist. The finding links chromosome 11q22.3 to plasma MMP-12, but 

does not provide conclusive evidence that the associations are mediated via the MMP12 gene itself, as 

other genes in the region may also play a role in determining the plasma MMP-12 concentration. To 

further investigate whether the SNPs associated with plasma MMP-12 levels were specifically 

involved in the regulation of MMP-12 or had effects on neighbouring MMPs too, we performed 

eQTL analyses in carotid plaques. The results revealed that rs1892971 is marginally linked to MMP-

12 mRNA expression, whereas rs499459 is an eQTL also for MMP-1 and MMP-3. Based on the LD 

analysis and the eQTL results, one may speculate that rs1892971 is more distinctly related to the 

MMP12 gene whereas rs499459 and SNPs in LD such as rs660599 may influence a broader set of 

MMPs in the region. Analysis also indicated that rs499459 and rs660599 variants may have the 

potential to highlight a subgroup of patients that are clinically silent at the time of surgery 

(asymptomatic), but that may confer a higher risk of stroke, based on association with MMP-12 

expression in their plaques. 

In the IMPROVE study, we showed that increased plasma MMP-12 concentration at baseline was 

robustly associated to baseline cIMT. This result is well in line with the previous report by Goncalves 

et al. In addition, we observed that plasma MMP-12 at baseline predicted a higher rate of cIMT 

change over time, regardless of the baseline cIMT, and an increased risk of suffering a 

cerebrovascular event within 36 months from baseline. We noted that the association of plasma 

MMP-12 with prospective CVD events was attenuated by adjustment for Framingham risk score 
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parameters, which implies that MMP-12 in plasma reflects presence of one or several of the 

Framingham score risk factors. Indeed, positive correlations between plasma MMP-12 and systolic 

blood pressure, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol 

(LDL-C) have previously been reported [10], which limits the implications of the reported association 

of plasma MMP-12 with cIMT progression for CHD. Importantly, since MMP-12 concentrations 

measured with our plasma assay may not necessarily reflect the proteinase activity of MMP-12, we 

addressed this issue by a complementary experiment where we confirmed that subjects with higher 

plasma MMP-12 concentrations showed an overall higher concentration of the elastin degradation 

product desmosin.  

We also assessed MMP-12 expression in a large biobank of human carotid endarterectomy samples 

and found that it was strongly enriched at both transriptomic and proteomic levels in plaques 

compared to undiseased arteries, as well as in plaques from patients that suffered stroke compared to 

asymptomatic ones, which not only validates but also extends previous publications about MMP-12 

[32]. Regarding the proteomic enrichment of MMP-12 in central vs. distal segments of plaques, these 

areas have been identified as areas of severe plaque complications vs. stable growth respectively. It 

has been recognized that the central part is associated with all components of a complicated lesion 

(fibrous cap, necrotic core, shoulder region) and increased incidence of cap rupture, while the adjacent 

peripheral end was associated with higher SMC content and represents the fibrotic intima [36-38]. 

Taken together with our genetic data, these findings underscore the significance of MMP-12 in 

prevalent as well as incident stroke. 

Interestingly, Scholtes et al. earlier showed that patients having a high proportion of MMP-12 

expressing macrophages in their carotid plaques are more likely to suffer subsequent stroke and MI 

[33]. In our study, MMP-12 protein was localised to macrophages and shown to interact with elastin 

in situ, especially in areas of degraded ECM. It has been previously demonstrated that MMP-12 has 

broad substrate specificity for a range of ECM proteins, including type IV collagen, fibronectin, 

laminin, vitronectin and basement membrane proteins, while potential regulators of MMP-12 in the 

atherosclerotic environment include several pro-atherosclerotic inflammatory cytokines and growth 

factors released by various cells in the atherosclerotic milieu, such as macrophages, smooth muscle 

and endothelial cells [39]. Considering that MMP-12 activates MMP-2 and MMP-3 [40], we suggest 

that besides direct effects, higher expression of MMP-12 could also lead to activation of these other 

MMPs in plaques, which would further increase degradation of the fibrous cap and promote plaque 

instability. Considering that plaque rupture frequently occurs over a macrophage-rich area near the 

shoulder of the plaque [41], it is interesting to hypothesize that macrophages expressing MMP-12 may 

particularly contribute to thinning and rupture of the fibrous cap and subsequent adverse events. It is 

worth noting here that the BiKE cohort comprises only advanced lesions (AHA grade IV and V), and 

therefore cannot provide information about disease progression. Also, the phenotyping of patients 
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based on the presence or absence of cerebral symptoms was likely insufficient to completely exclude 

overlap between symptomatic and asymptomatic groups, since lesions from asymptomatic patients 

may vary in morphological features of plaque instability [27]. In addition, since atherosclerosis 

presents different features in different vascular beds, we limit our findings about MMP-12 to carotid 

arteries.   

Important studies that have helped to expand the understanding of MMP-12 in atherosclerosis were 

published by Liang et al [42], who demonstrated that rabbits overexpressing human MMP-12 in tissue 

macrophages developed more extensive atherosclerosis in large arteries compared to controls, and 

Johnson et al, who showed that a murine specific MMP-12 inhibitor significantly reduced 

atherosclerotic plaque area in Apo-E knockout mice fed a Western diet [43]. The MMP-12 inhibitor 

treatment induced additional beneficial changes, such as attenuated macrophage invasion and 

apoptosis. Our in vitro results support the notion that MMP-12 influences macrophage invasion, as we 

were able to validate these previous studies by showing markedly decreased migration through the 

ECM upon MMP-12 suppression [34]. Moreover, we demonstrated that MMP-12 suppression not 

only attenuated macrophage invasion, but also reduced the recruitment of other macrophages. One 

may speculate that the invasion-promoting effects of MMP-12 contribute to a vicious cycle where the 

rate of new macrophage recruitment into plaques is amplified by increased production of MMP-12 in 

plaque macrophages and a systemic release of MMP-12 to the circulation. Therefore, suppression of 

MMP-12 could promote double protective effects on the progression of disease: in reducing the 

invasion capacity of macrophages and prohibiting further macrophage recruitment, as well as in 

ameliorating the overall inflammation. One limitation of our invasion assay with the secondary 

macrophage migration setup could be the degradation level of the ECM coating for the newly 

invading macrophages. This could be dependent not only on the primary macrophages in the culture 

(control or siMMP-12), but also the number of the available cells. Thus, a less degraded ECM present 

in the control macrophage culture might provide an easier access for migration and affect the 

secondary invasion rate. However, these effects are likely to be reflective of the pathophysiological 

situation in plaques as well, and in vitro may be considered less significant due to the presence of 

potent chemo-attracting properties of the medium environment in the bottom well.  

Altogether, in the present study we show that MMP-12 transcriptomic and proteomic levels are 

strongly significantly increased in plaques compared with control tissue and in plaques from 

symptomatic vs. asymptomatic patients. MMP-12 localises to CD68+ macrophages in plaques, where 

it interacts with elastin and its silencing results in reduced macrophage migration. These studies 

clearly link higher MMP-12 mRNA and protein levels in plaques to increased atherosclerotic disease. 

In contrast, it appears that genetically lower plasma MMP-12 is significantly associated with 

increased cIMT measurements and risk of stroke. Our study does not aim to disentangle this 

seemingly complex relationship, but as one potential explanation we suggest is the locus pleiotropy, 
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as it is possible that the MMP12 SNPs (in addition to plasma MMP-12) are also associated with other 

yet unknown factors, which may be responsible for their observed protective effects. It may also be 

that MMP-12 expression has differential effects during early atherogenesis compared to advanced 

stages, and even the differential local vs. systemic effects should be taken into account. We speculate 

that plasma MMP-12 may have a protective function, which it can exert on the growing plaque in the 

vasculature by ’surveying’ and minimizing the plaque deposits especially during early atherogenesis, 

while the MMP-12 secreted by macrophages within the late stage plaques degrades the tissue 

rendering it more prone to rupture.  

Despite encouraging pre-clinical data, the design and development of selective MMP inhibitors for 

therapeutic use in CVD still remains at an early stage. The failure of the first generation of broad-

spectrum inhibitors undermined continued evaluation of MMPs as disease targets, and the main focus 

recently has been to design inhibitors targeting detrimental MMPs, without interfering with those that 

have an important role in preventing the progression of disease [44]. To achieve this, a greater 

understanding of the general MMP functions remains essential, including potential differences in how 

MMP-12 particularly contributes to carotid vs. coronary vascular disease. In conclusion, our study 

strengthens the support for MMP-12 as a causal factor in large-artery atherosclerotic stroke and 

highlights its role in macrophage invasion and elastin degradation. 
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TABLE AND FIGURE LEGENDS 

 

Fig 1. Flow-chart of the study cohorts and design. Analyses of plasma MMP-12 concentrations in 

relation to cIMT progression, future CVD events and SNPs were conducted in the IMPROVE study, 

which recruited 3,397 subjects with high CVD risk but without manifest CVD at baseline. These 

investigations were followed by eQTL analyses of the associated SNPs in relation to MMP-12 mRNA 

expression in atherosclerotic plaque specimens from 127 patients undergoing carotid endarterectomy 

in the BiKE study. Furthermore, MMP-12 mRNA and protein expression levels were examined in 

atherosclerotic plaques compared to control tissues (non-atherosclerotic arteries or adjacent distal 

plaque tissue). Finally, MMP-12 protein localisation, activity and interaction with elastin and the 

effects of MMP-12 silencing were investigated using molecular biology methods in plaques, plasma 

and functional assays in vitro.  

Table 1. Association of plasma MMP-12 and Framingham risk parameters. Partial correlations 

with correction for study recruitment site were calculated to assess the relationship between plasma 

MMP-12 and Framingham score parameters. R indicates the correlation coefficient. 

Table 2. Association of plasma MMP-12 with baseline cIMT. CCA indicates common carotid 

artery, standardised beta indicates the standard deviation change per standard deviation of the cIMT 

measure. R2 model indicates the variability explained by linear regression model adjusted for age, 

gender, smoking, total cholesterol, HDL cholesterol, diabetes, systolic blood pressure and study 

centre. 

Table 3. Association of Framingham score parameters and plasma MMP-12 with cIMT 

progression. cIMT progression was defined as previously described (Baldassarre D et al. J Am Coll 

Cardiol 2012; 60: 1489-99.). The left side of the Table shows correlation coefficients and p-values for 

single-parameter correlations with correction only for study site. The right side of the Table shows 

results from a multiple linear regression model that included all parameters shown. The beta-values 

are given as standard deviation per standard deviation of cIMT progression.  

Fig 2. eQTL analysis of MMP12 associated SNPs in atherosclerotic plaques. MMP12 variant 

rs1892971 was found to be tentatively associated to MMP-12 mRNA expression in carotid plaques. 

This variant was also un-associated to the expression of other MMPs from the same locus in plaques 

(A). Variant rs566125 was strongly associated to the expression levels of MMP-1 and marginally also 

MMP-3 and MMP-13, but not MMP-12 (B). SNP rs615098 (a perfect proxy for METASTROKE 

MMP12 associated variant rs660599) was marginally associated to MMP-12 expression in plaques, 
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and significantly to the expression of both MMP-1 and MMP-3 (C). Plots show median±standard 

deviation (SD).  

Fig 3. Expression analyses of MMP-12 in carotid plaques. MMP-12 mRNA is upregulated in 

plaques (cp) compared with normal arteries (na) and in plaques extracted from symptomatic (s) 

compared with asymptomatic (as) patients. Plots show log2 mean±SD (upper panels). Similarly, 

MMP-12 protein levels are enriched in plaques compared with adjacent arterial tissue, and in plaques 

from symptomatic vs. asymptomatic patients. Plots show mean relative levels with SD (A). MMP-12 

transcript and protein are significantly correlated with macrophage markers (CD163, CD36 and 

MAC2) in BiKE plaques (B). 

Fig 4. Localisation of MMP-12 in plaques. In the normal artery no MMP12 immunoreactivity was 

detected, while elastin (green signal) was abundant in the media (A, arrows). In consecutive plaque 

sections (B), MMP-12 was localised to the CD68
+ 

macrophage-rich regions in the necrotic core (third 

panel, arrows and enlarged inset). Intact elastin fibres were present at the periphery of the plaques 

(middle panel, green staining, arrows) where no MMP-12 (red signal) was expressed, but they 

appeared gradually disarranged closer towards the necrotic core where MMP-12 was enriched 

(enlarged inset). By proximity ligation assay (PLA) in consecutive plaque sections, positive signal for 

MMP-12 and elastin co-interacting proteins was detected (enlarged inset, middle panel), specifically 

in regions with moderate to strong MMP-12 expression (C). As positive control PLA probe directed 

to MMP-12 antibody was used, showing areas of intense MMP-12 expression in the necrotic core 

(arrows, third panel). No PLA signal was observed in the negative control (enlarged inset, first panel). 

Fig. 5. MMP-12 RNA silencing and antibody blocking reduce macrophage migration. Panel in A 

(left) shows THP-1 derived macrophages migrated through a Transwell chamber without bottom 

coating. Middle panel shows macrophages migrated through a Transwell with MaxGel coating. Right 

panel shows macrophages incubated with 0.25mg MMP-12 antibody prior to migration through a 

Transwell with MaxGel coating. All chambers had 8mm diameter holes at the bottom of the top 

Transwell, cells were stained with the nuclear stain DAPI (blue). In (B) macrophage nuclei stained red 

(DRAQ5) represent the primary invaded cells in control or siMMP12 conditions, while macrophage 

nuclei in blue (DAPI) represent the migrated cells in both conditions. Purple coloured nuclei are those 

double stained for DRAQ5/DAPI. On average, 70% (±16.2% SD, p=0.011) more macrophages 

migrated towards the control macrophages than towards siMMP12 macrophages. The quantification is 

represented as a bar graph in the last panel.  
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FIGURES AND TABLES 

 

Figure 1.  
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Table 1.  

 

  Plasma MMP-12 

  R P-value 

Age 0.24 8.7E-45 

Female gender -0.03 0.097 

Smoking 0.19 4.2E-29 

Total cholesterol (mmol/L) 0.01 0.633 

HDL cholesterol (mmol/L) -0.13 9.3E-15 

Diabetes 0.05 0.002 

Systolic blood pressure (mm Hg) 0.04 0.024 

 

  

Page 32 of 52Journal of Internal Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

25 

 

Table 2.  

 

 

 

  Standardised beta p-value R2 model 

Mean CCA IMT .091 5.6E-08 0.190 

Mean Bulb IMT .088 3.3E-07 0.151 

Mean IMT .112 5.4E-12 0.242 

Max IMT .100 6.9E-09 0.155 

Plaque area .099 5.4E-10 0.268 

 

 

 

 

  

Page 33 of 52 Journal of Internal Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

26 

 

Table 3.  

 

 

 Correlations 
 

Multiple Linear Regression 

  R2 p-value 
 Standardised 

Beta 
p-value 

Age 0.04 0.027  0.069 0.001 

Female gender -0.08 2.0E-05  -0.074 2.0E-05 

Smoking 0.07 3.1E-04  0.038 0.042 

Total cholesterol (mmol/L) 0.04 0.021  0.053 0.008 

HDL cholesterol (mmol/L) 0.02 0.297  -0.052 0.011 

Diabetes -0.07 2.9E-04  0.038 0.051 

Systolic blood pressure (mm Hg) 0.06 1.6E-03  0.042 0.04 

Plasma MMP-12 (arbitrary units) 0.11 1.1E-09  0.074 5.0E-05 
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Supplemental Materials and Methods 

Proteomic analysis of plaques 

Atherosclerotic plaques from n=18 BiKE patients (n=9 symptomatic + 9 asymptomatic; 

matched for male gender, age and statin medication) were analysed using LC-MS/MS as 

previously described 1. Briefly, protein samples were digested by trypsin and the resulting 

tryptic peptides were TMT-labeled and pooled. Pooled samples were cleaned by Strong 

Cation exchange columns (Phenomenex) and subjected to LC-MS/MS analysis. The sample 

pools were separated on a 4 hour gradient using an UPLC-system (Dionex UltiMate™ 3000) 

coupled to a Q-Exactive mass spectrometer (Thermo Fischer Scientific, San Jose, CA, USA). 

The fragment spectra from the mass spectrometer were matched to a database consisting of 

theoretical fragment spectra from all human proteins and filtered at a 1% False Discovery 

Rate on the peptide level to obtain protein identities (Uniprot). Quantitative information was 

acquired by using the TMT reporter ion intensities. 

Immunohistochemistry (IHC)  

All IHC reagents were from Biocare Medical (Concord, CA). Isotype rabbit and mouse IgG 

were used as negative controls. In brief, 5 µm sections were deparaffinized in Tissue Clear 

and rehydrated in an ethanol series. For antigen retrieval, slides were subjected to high-

pressure boiling in DIVA buffer (pH 6.0). After blocking with Background Sniper, primary 

antibodies: total MMP-12 (ab66157, Abcam), elastin (ab77804, Abcam), active MMP-12 

(ab38908) and CD68 (ncl-1-cd68, Novocastra) were diluted in Da Vinci Green solution, 

applied on slides and incubated at room temperature for 1 hour. A double-stain probe-

polymer system containing alkaline phosphatase and horseradish peroxidase was applied, 

with subsequent detection using Warp Red and Vina Green. Slides were counterstained with 

Hematoxylin QS (Vector Laboratories, Burlingame, CA), dehydrated and mounted in Pertex 

(Histolab, Gothenburg, Sweden). Images were taken using a Nikon OPTIPHOT-2 microscope 

equipped with a digital camera and processed with NIS-Elements software. 

Proximity Ligation Assay (PLA) 

Plaque slides were first de-paraffinized in Tissue Clear and rehydrated in an ethanol series. 

For antigen retrieval, slides were subjected to high-pressure boiling for 10 min in DIVA 

buffer (pH 6.0). After blocking with Background Sniper, primary antibodies against MMP-12 

(ab66157, Abcam) and elastin (ab77804, Abcam) were diluted in Da Vinci Green solution, 

applied on slides and incubated at +4C overnight in a humid chamber. PLA probe ligation and 

amplification steps were performed using Duolink In Situ Detection Brightfield kit (DUO 
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92012, Sigma-Aldrich), following manufacturer’s instructions. Thereafter, slides were 

rehydrated in ethanol series and mounted for visualization.  

Cell Culture  

Human monocyte leukaemia cell line THP1 (ATCC Cat. No. TIB-202) was grown in 

suspension at 37°C in a humidified 5% CO2 incubator in RPMI (Gibco, Life Technologies) 

medium supplemented with 2mM L-Glutamine, 10% FBS, 50 U/mL penicillin, and 50 µg/mL 

streptomycin. THP1 cells were seeded at 3.5 106 densities into polystyrene treated 20 mm 

Falcon cell culture disposable dishes (Corning) and differentiated into macrophage-like cells 

by addition of PMA to a final concentration of 50 ng/ml for 72h 2, 3. TransIT-siQuest (Mirus 

Bio LLC) was used as transfection reagent. siRNA oligonucleotides specific for MMP-12 

(catalogue no. s8873) and scramble siRNA used as negative control were purchased from 

Ambion (Life Technologies). Silencing was performed at a cell density of around 3.5 to 4 

x106 cells per Petri dish in 10 ml complete RPMI medium, 0.4 nmol of MMP-12 siRNA was 

used with 20 µl TransIT-siQuest reagent. The dishes were incubated at 37°C in a humidified 

5% CO2 incubator for 24 hours.  

Validation of MMP-12 silencing by siRNA 

Silencing efficacy was measured with quantitative PCR and Western blot.  PCR amplification 

was performed in 96-well plates in 7900 HT real-time PCR system (Applied Biosystems), 

using TaqMan® Universal PCR Master Mix (Applied Biosystems) and TaqMan® Gene 

Expression Assays (Hs00899662_m1 for measuring MMP-12 expression). All samples were 

measured in triplicates. Results were normalized to the equal mass of total RNA as well as the 

Ct values of RPLPO internal control (probe Hs99999902_m1). The relative amount of target 

gene mRNA was calculated by 2 (-∆∆Ct) method. For Western blot, proteins were extracted 

using RIPA buffer on ice. Samples were reduced with β-mercaptoethanol and heated to 95ºC 

for 10 minutes. Proteins were separated using Mini-Protean® TGX™ Precast Gels 4-20% 

(BIORAD) and transferred to Immun-Blot® PVDF membrane (BIORAD) for 1h. Primary 

and secondary antibodies were added to the membranes in recommended dilutions.  

Invasion and migration assays 

For invasion assay, polycarbonate membrane cell culture inserts (ID: CLS3422, Sigma 

Aldrich, Corning® Transwell®) with 8 µm pores were coated with MaxGel ECM (final 

concentration 0.1 mg/ml, catalog no. E0282 Sigma-Aldrich) for 2 hours at 37°C in a 

humidified 5% CO2 incubator. Macrophages at density of 1.5 x 105 cells in 500µl medium 

were added to the polycarbonate well inserts, inserts transferred to the 24-well plate and 
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incubated for 22 hours. For migration assays, cells were washed and stained with DRAQ5 in 

Petri dishes for 10 minutes in dark. The staining solution was removed and the cells washed 

twice with PBS. Macrophages were then detached by adding 1ml Cellstripper non-enzymatic 

solution (Corning) to the Petri dishes. The cells were collected and centrifuged for 5 minutes 

at 1000 rpm, cell pellet was diluted with serum free RPMI medium and 1.5 x 105 cells in 500 

µl medium were added to the inserts which were previously invaded with either siMMP-12 or 

scramble transfected macrophages.  

Fluorescent stainings 

The medium in the insert wells was aspirated and the wells were washed twice with PBS and 

placed in clean wells. 200 and 500µl DAPI (0.5 µg/ml in PBS) was added to the upper 

respective lower wells and incubated for 5 minutes in dark. Non-invaded cells from the top of 

the insert wells were scraped off by cotton swabs. For the macrophage invasion staining, cells 

were stained with DRAQ5 at final concentration of 5µM in PBS for 20 minutes in dark. 

Images were obtained using a reversed Leica SP5 confocal microscope, equipped with a 20 × 

1.4 lens and diode and Helium lasers. Images were processed using ImageJ software.   
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Supplemental Figures and Tables 

 

Supplementary Fig I  

 

Plasma MMP-12, adjustments 

Odds ratio, 95 

% confidence 

interval 

P-value 

Plasma MMP-12 tertiles adjusted for age, gender and 

site 
1.45 (1.06-1.99) 0.022 

Plasma MMP-12 tertiles adjusted for site, age, 

gender, smoking, diabetes, total cholesterol, HDL-C 

and systolic blood pressure 

1.26 (0.92-1.773) 0.15 

 

Supplementary Fig I. Cumulative hazard curves of cerebrovascular events for MMP-12 

tertiles in the IMPROVE study analysed using Cox-regression with adjustment for site, age 

and gender. A total of 67 cerebrovascular events occurred in IMPROVE during the 36-month 

follow-up, n=14 in lower and n=33 in higher tertiles, respectively. 
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Supplementary Fig II 

 

 

 

 

 

Supplementary Fig II. Manhattan plot and regional plot for association of plasma MMP-12 

in the IMPROVE study. 
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Supplementary Table I 

 

 

 

    

Plasma MMP-12 
 

Plasma MMP-12, p-values from 
conditional tests 

rs id Position Alleles MAF BETA SE P Nearest Gene rs499459 rs1892971 rs613804 

rs499459 102,693,186 A,G 18.3% -0.565 0.030 8.26E-76 
MMP1,  
MMP3 NaN 4.56E-66 1.36E-70 

rs655403 102,708,507 C,T 18.5% -0.538 0.029 5.70E-72 MMP3 3.49E-01 1.93E-63 6.32E-67 

rs660599           

rs1892971 102,795,606 A,G 25.9% 0.304 0.027 7.97E-29 
MMP12(dist=49842),  
MMP13(dist=18115) 4.94E-19 NaN 6.67E-36 

rs671188 102,829,455 C,T 43.9% -0.234 0.024 1.02E-21 
MMP13,  

DCUN1D5 1.45E-04 2.07E-09 7.33E-27 

rs2186789 102,911,494 G,T 23.9% -0.247 0.028 4.98E-18 
MMP13(dist=85031),  
DCUN1D5(dist=9919) 2.30E-03 4.32E-10 3.05E-18 

rs1144397 102,682,285 G,T 44.9% -0.207 0.024 1.28E-17 
MMP1,  
MMP3 1.78E-01 9.85E-08 3.03E-27 

rs613804 102,720,421 C,T 5.7% 0.415 0.053 3.80E-15 
MMP3(dist=6079),  

MMP12(dist=13043) 7.33E-10 2.88E-22 NaN 

rs501371 102,748,450 A,G 5.9% 0.398 0.052 2.24E-14 
MMP12(dist=2686),  
MMP13(dist=65271) 2.49E-09 1.46E-21 4.18E-01 

rs1277718 102,747,551 C,G 5.9% 0.398 0.052 2.33E-14 
MMP12(dist=1787),  
MMP13(dist=66170) 2.59E-09 1.58E-21 4.18E-01 

rs1942524 102,838,300 C,T 26.8% 0.175 0.027 1.38E-10 
MMP13(dist=11837), 

 DCUN1D5(dist=83113) 9.89E-06 8.05E-07 9.93E-12 

rs484915 102,673,248 A,T 41.4% 0.148 0.024 1.65E-09 
MMP1(dist=4282), 
MMP3(dist=33280) 4.74E-01 3.30E-06 5.35E-14 

rs650108 102,708,787 A,G 25.3% 0.163 0.028 5.39E-09 MMP3 2.15E-01 5.89E-22 2.18E-03 

 

 

 

Supplementary Table I. SNPs associated with plasma MMP-12 at genome-wide 

significance with and without conditioning on lead SNPs. 
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Supplementary Table II 

 

 

 

 

 

 

 

Supplementary Table II. Linkage disequilibrium between the SNPs identified in the present 

study and the lead SNP for large-artery stroke. 

 

 

  

SNP Lead SNP stroke Distance (bp) LD r² LD D' MAF 

rs499459 rs660599 -36,571 0.44 -0.77 18.1 % 

rs613804 rs660599 9,336 0.28 1 5.7 % 

rs1892971 rs660599 65,849 <0.01 0.1 25.9 % 

 rs660599 0 1 1 21.0 % 
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Supplementary Table III 

 

 

 

 
n Plasma MMP-12 Mean IMT Max IMT Plaque area 

   
Mean SD Mean SD Mean SD Mean SD 

rs660599 A A 133 6.66 0.83 0.95 0.21 2.27 0.91 97.78 57.57 

 
A G 1190 6.98 0.73 0.9 0.2 2.12 0.86 89.71 54.37 

 
G G 2143 7.22 0.66 0.88 0.2 1.97 0.77 85.21 53.78 

p-value, ANOVA trend 8.8E-35 
 

1.2E-04 
 

6.0E-08 
 

0.01 
 

rs1892971 A A 237 7.39 0.66 0.9 0.21 1.99 0.8 89.09 55.4 

 
A G 1316 7.21 0.68 0.88 0.2 1.99 0.78 86.11 54.29 

 
G G 1913 7.02 0.71 0.89 0.2 2.07 0.83 87.78 54 

p-value, ANOVA trend 7.8E-29 
 

0.05 
 

1.3E-04 
 

0.12 
 

rs499459 A A 115 6.41 0.79 0.95 0.21 2.3 0.91 102.56 58.35 

 
A G 1037 6.9 0.7 0.91 0.2 2.15 0.87 93.42 53.97 

 
G G 2314 7.25 0.66 0.88 0.2 1.97 0.77 83.69 53.73 

p-value, ANOVA trend 3.6E-66 
 

8.5E-04 
 

2.1E-05 
 

8.0E-03 
 

rs613804 A A 6 7.33 0.58 -0.08 0.09 0.30 0.14 59.56 36.47 

 
A G 379 7.37 0.68 -0.06 0.09 0.28 0.16 83.51 53.02 

 
G G 3059 7.09 0.70 -0.06 0.09 0.28 0.17 87.78 54.38 

p-value, ANOVA trend 3.3E-13 
 

0.34 
 

0.56 
 

0.10 
 

 

 

 

 

Supplementary Table III. Association for each of the main study SNPs with plasma MMP-

12 levels, mean and max cIMT and plaque area, stratified by alleles.  

  

Page 47 of 52 Journal of Internal Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Supplementary Fig III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig III. eQTL analysis of MMP12 associated variants in atherosclerotic 

plaques, stratified according to the patient phenotype. For rs1892971, none of the 

asymptomatic patients in BiKE could be found with AA genotype. Plots show median with 

min to max whiskers.   

Page 48 of 52Journal of Internal Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplementary Fig IV 

 

 

 

Supplementary Fig IV. Analysis of the linkage disequilibrium at the MMP12 locus.  
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Supplementary Fig V 

 

 

 

Supplementary Fig V. Additional photomicrographs showing the localization of MMP-12 in 

plaques. MMP-12 (red signal) is strongly expressed by cells in the necrotic core, occasionally 

underlined by the remaining elastin fibres (green staining, enlarged insets) (A). In consecutive 

sections from plaques, total MMP-12 (red signal) was localised to the macrophage-rich 

regions in the necrotic core (B, second panel, arrows). Active MMP-12 (third panel, arrows) 

was observed diffusely in the extracellular matrix of the lesions, especially in regions where 

elastin fibres (fourth panel, arrows) were disarranged or completely absent.  
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Supplementary Fig VI 

 

 

 

 

 

Supplementary Fig VI. Positive association between plasma MMP-12 concentration and 

elastolytic activity (A). Error bars represent mean±standard deviation (SD). Total MMP-12 

protein levels are inversely correlated to elastin levels in plaques (B).  
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Supplementary Fig VII 

 

 

 

 

Supplementary Fig VII. Validation of MMP-12 silencing in vitro. Western blot analysis of 

total and active MMP-12 levels in macrophages treated with MMP-12 siRNA or scramble 

control (left panel). Right panel shows relative MMP-12 mRNA levels quantified by qPCR. 

The values are expressed as fold change compared to control and represent mean±SD of four 

independent experiments. 
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