
1 
 

How close are we to implementing a genetic risk score for coronary heart disease? 

 

 

Katherine Beaney1* , Fotios Drenos1,2, and Steve E Humphries1 

 

 

1 Centre for Cardiovascular Genetics, BHF Laboratories, Institute of Cardiovascular Science, 

University College London, London, UK 

 

2 MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of 

Bristol, Bristol, UK 

 

*Current address:  MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, 

Aviation House, 125 Kingsway, London WC2B 6NH 

 

 

 

Corresponding author: Professor Steve E Humphries, Centre for Cardiovascular Genetics, British 

Heart Foundation Laboratories, Institute of Cardiovascular Science, The Rayne Building 

University College London, London, UK WC1E 6JF, Tel 0207 679 6962 (internal 46962), email: 

steve.humphries@ucl.ac.uk 

 

 

Key Words : Genome wide association studies, Genetic Risk Score, Classical risk factors,  

 

 

 

mailto:steve.humphries@ucl.ac.uk


2 
 

 

Abstract 

Genome-wide association meta-analysis have now identified more than 150 loci where common 

variants (SNPs) are significantly associated with cardiovascular disease (CVD) and CVD end points. 

These can be used in combination, and “scaled” by their effect size, to create a “weighted” 

Genetic risk Score (GRS), which, in combination with an individual’s classical CVD risk factors, can 

be used to identify those at overall low, intermediate and high future risk.  Those at highest risk 

can be offered life-style and therapeutic options to reduce their risk and those at intermediate 

levels can be monitored. Here we discuss the selection of the best variants to be included in the 

GRS, and the potential utility of such scores in different clinical settings.  115 words 

 

Risk prediction scores using classical risk factors (CRFs) 

A large proportion of CHD events are preventable, therefore, predicting those at highest risk of 

developing the disease is an important public health consideration. To take advantage of the 

combined knowledge of how CRFs affect CHD risk, risk scores have been developed.  The first risk 

score for CHD that gained widespread use was developed from the Framingham Heart Study and 

thus is referred to as the Framingham score [1] Included in it were age, total cholesterol, HDL-

cholesterol, systolic blood pressure, diabetes and smoking (with separate equations for men and 

women). The score showed good predictively ability in some cohorts similar to that from which it 

was derived [2], but it was found to overestimate risk in other ethnic groups [3] and in other 

populations of European ethnicity where there was a lower incidence of CHD  [4, 5].  

In response to this, region-specific scores have been developed such as SCORE which was derived 

using data from 12 prospective European cohorts [6]. The development of large primary care 

electronic records has enabled risk scores to be derived from large population cohorts. In England 

the QRISK score was derived from the QRESEARCH database, (which contains 1.2 million 

individuals) to estimate risk of CVD (rather than CHD) [7]. This score was updated (QRISK2) to 

include a number of other risk factors, most notably self-reported ethnicity [8]. QRISK2 also 

includes measures of social deprivation. This was prompted by the observation that the 



3 
 

Framingham score underestimated risk in socially deprived individuals and thus could re-enforce 

social gradients in disease [9]. The QRISK2 model is updated annually (http://www.qrisk.org/).  

 

Primary prevention strategies and Current clinical guidance 

Many of the CRFs for CHD are modifiable and thus lifestyle interventions such as use of smoking 

cessation services and dietary review, form an important part of the strategy to reduce CHD risk. 

Prescription of lipid-lowering therapies, primarily statins, has also been used to compliment this. 

Statin use has been found to reduce risk of CVD events by approximately one fifth per 1mmol/l of 

LDL-cholesterol reduction, in a wide range of individuals [10]. A benefit has also been found in 

those with low CVD risk.  

When risk scores were first introduced into clinical practice, the Framingham risk score was 

recommended for use in both the USA and the UK, with the high risk group being defined as those 

having a ten-year risk of CHD ≥20% [11]. Those who fell into that category were then 

recommended for intensive lifestyle changes and prescription of lipid-lowering medications 

(usually statins). However, the joint guidelines issued by the American College of Cardiology (ACC) 

and the American Heart Association (AHA) developed new risk equations and lowered the high-

risk cut-off to ≥7.5% [12]. Similarly, in the UK the National Institute of Health and Clinical 

Excellence (NICE) updated their guidelines to recommend use of QRISK2 and lowered the high-

risk threshold to ≥10% ([13]. However, given the shortcomings in the available data for statin use 

there have been concerns particularly regarding the “medicalisation of healthy individuals” and 

the numbers of adverse events observed in certain groups [14].There is also evidence that uptake 

of statins in the those classified in the 10-20 % risk group is much lower than estimated by NICE 

[15] although larger studies are required to confirm this.   

However, the majority of cases of CHD/CVD come from individuals classified with average risk 

using the CRF risk scores – the so-called prevention paradox [16]. For example, when  QRISK2 

(2010 version) was validated with data from the health improvement network (THIN), (using a 

20% high-risk cut-off), 14% of men and 6% of women were identified as being at high risk. This 

captured 40% of the cardiovascular events in men and 26% of the cardiovascular events in women 

http://www.qrisk.org/
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[17]. This leaves scope for refinement of the risk score to discriminate better between those who 

do and do not go on to develop CVD.  

 

Use of genetics in risk prediction 

Data from twin studies has estimated the heritability of CHD mortality to be 40-60% [18,19] 

suggesting that inherited factors are likely to be making a strong contribution to an individual’s 

future risk of premature CVD. The identification of robustly associated CHD risk loci would be 

potentially of interest in risk prediction, since as being fixed at conception, they have a lifelong 

impact and need only be determined once. The first question is thus what genes and what 

common single nucleotide polymorphisms (SNPs) should be included in the genetic risk profile? 

Before 2007, when technology improvements enabled genome-wide association studies (GWAS) 

to address this question in a “hypothesis-free” way, studies in the field used knowledge of the 

pathophysiology of CVD to identify potential “candidate” genes. Combining published small 

studies using meta-analysis [20] lead to the identification of a number of potential candidates 

particularly in the areas of lipid metabolism (eg APOE, APOC3 and LPL). The post-2007 era of 

GWAS identified many previously unknown genomic loci with statistically significant associations 

with CVD, most strikingly with the simultaneous publication in 2007 of three GWAS studies that 

identified a single locus on chromosome 9p.21 [21-23]. This effect has been replicated in countless 

other studies and is an independent CHD risk factor in different ethnic groups [24]. 

To exploit the potential of GWASs to identify risk loci for CHD, the CARDIoGRAMplusC4D 

consortium was set up [25]. A meta-analysis fine-mapping GWAS results for CHD including over 

60,000 cases and 130,000 controls was published identifying more than 50 SNPs from 46 loci that 

were robustly associated with CHD. Reassuringly, many of the original candidate genes have been 

confirmed as GWAS “hits” for CVD, including APOE, APOC3 and LPL. This has been recently 

expanded and a GWAS meta-analysis investigating over 9 million SNPs using haplotype data from 

the 1000 genomes project in approximately 185,000 individuals was recently published [26]  Ten 

new CHD risk loci were identified (eight from an additive model and two from a recessive model).  

Overall, combining published data using meta-analysis, has now led to more than 80 loci that are 
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robustly associated with CHD [27], and for example 30 associated with CHD traits such as coronary 

calcification. (http://www.ebi.ac.uk/gwas/). 

As has been pointed out previously [28],  because of the polygenic nature of CVD, a common SNP 

is usually associated with only a modest risk effect size, while a SNP with a much larger risk effect 

is usually much less common. Table 1 shows a list of 25 GWAS CVD hits with the loci ranked by 

the sum of their effect size (given as an odds ratio (OR)) and their risk allele frequency (RAF) to 

give an overall estimate of their potential clinical utility.  While the ORs range from 1.23 to 1.04 

per risk allele carried, the RAFs for all of these SNPs are high, and overall there is a fourfold 

difference in score from the top to the lowest on this list. Six of these loci are known to be involved 

in lipid metabolism, as would be expected from our knowledge of the importance of dyslipidaemia 

in the development of CVD.  

 It is unlikely that there are any additional common SNPs to be found by GWAS meta-analysis that 

will outrank these 25, since SNPs with larger effects that are common would have been detected 

by the size of the datasets currently available. This means that any CVD SNP panel should 

therefore include all or at least have a good representation of these 25 SNPs or their proxies.  

 

Construction of a “Genetic Risk Score” 

Given the relatively small effect sizes associated with these risk loci, it is unsurprising that the 

addition of one variant into a CRF risk score does not result in improved predictive ability [29-31] 

This has led to the development of so-called “genetic risk scores” (GRSs) where SNPs at 

independent loci are combined. A GRS can be unweighted, where simply the number of risk alleles 

carried by an individual at each locus is summed. This model assumes that the risk effect 

associated with each SNP is equal (and additive) and this clearly is not the case. A more accurate 

GRS can be constructed if carriage of the individual SNPs are weighted using the published effect 

size [32]. An individual’s GRS can be adjusted for the population GRS (based on the RAFs present 

in the population) and then be combined with a CRF score such as the Framingham score or 

QRISK2 [8] to give an overall CHD risk estimate. 

 

http://www.ebi.ac.uk/gwas/
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Using a SNP Genetic Risk Score in men in the UK 

To illustrate the development and use of such a GRS we present data from a UK prospective cohort 

of ~2700 middle-aged men (the Second Northwick Park Hospital study -NPHSII), whose baseline 

characteristics are presented in Table 2. As expected, the men who went on to develop CHD were 

older, had higher BMI, higher systolic blood pressure, higher total cholesterol, LDL cholesterol, 

and a higher proportion were smokers and had diabetes, at baseline. As expected, those who 

subsequently developed CHD had a higher ten-year CHD risk as calculated using the Framingham 

risk score and those who subsequently developed CVD had a higher ten-year CVD risk as 

calculated using the QRISK2 score.   

In 2007 we started to develop a multi-SNP panel using 12 SNPs in candidate genes that, and 

showed that, when used in combination with the Framingham CRF algorithm they had the 

potential to identify individuals at high future risk of CHD [33, 34].  We next showed that, in this 

same cohort, the addition of a single SNP from the chromosome 9p21 GWAS CHD locus, improved 

the CRF area under the receiver operator characteristic curve (AROC) by 3% but that this effect 

was not statistically significant [29].  By mathematical modelling, we estimated that an additional 

three SNPs with similar risk size and RAF would be needed to have a significant improvement [29].  

We therefore developed  a 19 SNP GRS shown in Table 3 comprised of the 9p21 SNP plus six other 

GWAS loci identified at that time, supplemented by 12 common SNPs in candidate genes where 

published meta-analyses, mainly of case-control studies, had demonstrated robust albeit modest 

risk effects. The RAFs for these SNPs varied between 0.01 to 0.9 and the published Odds Ratios 

from 1.1-1.7. The mean of the GRS was significantly higher (p=0.01) in those who went on to 

develop CHD over 13.5 years of follow-up, but there was only a modest and non-significant 

improvement in discrimination (increase in AROC curve p=0.48) and risk classification (net 

reclassification improvement (NRI), p=0.28) compared to the Framingham algorithm alone [35]. 

Similar results were seen if only a 13-SNP GRS including SNPs in loci identified by the 

CARDIoGRAMplusC4D consortium was used. However, the key aspect of clinical utility is in the 

subjects at intermediate risk, since those with a Framingham 10 year CHD risk over 20% qualified 

for statin therapy (under the NICE guidelines at the time), while those at low risk (>10%) did not 

require any intervention. If the addition of the GRS can better discriminate those at intermediate 
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risk who subsequently go on to develop a CHD event then these subjects can be offered 

therapeutic advice and can reduce their subsequent risk. When considering only individuals who 

moved up a risk category with inclusion of the GRS, the improvement in risk classification was 

statistically significant (p=0.01) [35]. Overall these data suggest a modest clinical utility of this 19 

SNP GRS, with its main utility being confined to those at intermediate risk.   

The GSs were originally weighted using the effect sizes determined in meta-analyses of candidate 

gene studies or GWASs. However in the CARDIoGRAMplusC4D meta-analyses the ORs for several 

of the included SNPs had reduced in part because of the so-called “winners curse” [36], and in 

some cases had become non-significant, and the use of these more robust risk estimates should 

improve the clinical utility of the gene score. Also NICE now recommended the use of the QRISK 

algorithm [13] and we found that QRISK2 was better at predicating cardiovascular outcome in 

NPHSII compared to the Framingham score, with the Framingham score overestimating risk and 

showing poor calibration in the NPHSII men [37]. This is consistent with the literature where even 

the NICE-adjusted Framingham risk equations have been found to overestimate ten-year CHD risk 

in the UK population, particularly in men [17]. The superior performance of QRISK2 compared to 

the Framingham score is unsurprising given that QRISK2 was derived from a very large British 

cohort while Framingham was developed from the Framingham study based in Massachusetts, 

USA [1].  As shown in Figure 1A in the NPHSII men 49% were above the 10% 10 year CVD cut-off 

and the event rate in this group was 15.7%. Since 71% of all events occurring in the next 10 years 

were in this high risk group, treatment of all of these subjects is likely to be cost effective. By 

contrast in the 7% of men below 5% 10 year risk there were no CVD events during follow-up.  The 

intermediate group, which constitutes those where clinical judgement is required, represented 

44% of men with an event rate of 7.3%, and it is in this group where better risk stratification would 

be helpful.  

Updating the weightings to those determined in the CARDIoGRAMplusC4D analysis [25] improved 

the performance of the 19 SNP GRS. The weighted 19 SNP GRS was associated with CHD after 

adjustment for CRFs, (OR=1.31 per standard deviation, p=0.03). Not surprisingly since it includes 

seven loci involved in lipid metabolism, the GRS was significantly associated with higher total- and 

LDL-cholesterol and modestly with a reported family history of early CHD (p=0.03). As shown in 
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Figure 1B, 53% of men were now in the high risk group, with 80% of all events being correctly 

identified. Although 1 man in the intermediate risk group incorrectly was assigned to a lower risk, 

116 men (24% of group) moved up from the intermediate to the high risk category, of whom 13 

(11.2%) experienced an event. Overall, addition of the 19 SNP GRS to QRISK2 showed improved 

discrimination (AROC 0.68 v 0.70 p=0.02), and a positive net reclassification index (7%, p=0.04) 

compared to QRISK2 alone.  

Finally, one aim of our work is to identify a minimum SNP data set that will have clinical utility in 

CHD risk stratification, and thus replacing those SNPs which have non-significant CHD risk effects 

with SNPs with larger risk effects should improve clinical utility. To assess if the gene score could 

be improved, we removed five SNPs which had shown little evidence of an association with CHD 

in the CARDIoGRAMplusC4D meta-analysis. We then selected the top seven ranked SNPs from 

those robustly associated with CHD in CARDIoGRAMplusC4D shown in Table 1, discounting those 

in loci already included in the GRS. These were then genotyped in NPHSII and added into the GRS 

to create a 21 SNP GRS. This GRS was strongly associated with CHD even after adjustment for CRFs 

(OR=1.39 per standard deviation, 1.42x10-3), but the combined QRISK2 plus GRS score was poorly 

calibrated (p=0.03) and showed no improvement in discrimination (p=0.55) or reclassification 

(p=0.10) compared to QRISK2 alone [37]. While it is possible that the addition of SNPs who rank 

below these seven may improve clinical utility, the data suggest this improvement is at best likely 

to be modest. However, our results indicate that including the updated weighted 19 SNP GRS 

along with QRISK2 may have clinical utility in the UK population. 

 

Use of a SNP Genetic Risk Score in other studies. 

A number of CHD SNP GRSs have been assessed by others and are shown in Table 4.  In the UCLEB 

consortium of over 25,000 participants and ~2200 events for incident and prevalent CHD, a combined 

QRISK2 plus CARDIoGRAMplusC4D GRS score was used, although it should be noted that QRISK2 

was poorly calibrated in this cohort [38]. Although overall the combined score did not show 

additional benefit over and above QRISK2 alone, the GRS appeared to carry some utility when 

applied only to those who, according to conventional risk scoring, would have been classified at 
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intermediate risk, by moving some individuals who subsequently had an event into the high-risk 

category. The authors estimated that among 100,000 people from a population represented by 

the UCLEB studies, 29,445 would be classed as of intermediate risk according to the QRISK 

equation, and of these, 5,434 would then be reclassified as high risk once the GRS was applied, 

and 1,082 would suffer a CVD event if untreated with statins. Treatment with statins according to 

guidelines could postpone the CVD event in 20% of these, leaving a number needed to screen of 

462 to postpone one CVD event. Recent evidence suggests the risk reductions from statin therapy 

might be enhanced for those at highest risk15, so this figure may be conservative. 

The results of including a GRS constructed using the results of the CARDIoGRAMplusC4D meta-

analysis in CHD risk prediction have been somewhat disappointing. In the prospective Rotterdam 

study [39] found very limited benefit in the population-wide inclusion of the GRS in risk prediction. 

However, when 103 “suggestively” associated SNPs were included (giving a GRS of 152 SNPs) this 

second score improved the AUC compared to a model including traditional CRFs (although this 

was only statistically significant for prevalent CHD), indicating further gene discovery may 

therefore produce greater improvements. Improvements in both discrimination and 

reclassification were observed in a meta-analysis of six Swedish prospective cohorts [40] and in 

the Malmo Diet and Cancer (MDC) study [41]. Only the reclassification analysis in the MDC study 

was performed using the most recent guidelines however this was based on the US guidelines 

from the ACC/AHA [12] rather than the 10 % high risk cut-off recommended in the most recent 

NICE guidelines in the UK [13]. It has been suggested that due to the nature of case selection in 

GWASs, many of the variants identified in the CARDIoGRAMplusC4D meta-analysis are actually 

associated with CHD survival rather than an incident CHD event itself. This is supported by data 

from both the UCLEB consortium and the Rotterdam study where the gene score was more 

strongly associated with prevalent rather than incident disease [38,39]. This indicates that the 

weightings used may not accurately reflect the impact of each variant on incident CHD risk and 

thus effect sizes obtained from a prospective cohort should be used. This strategy was used by 

Ganna, Magnusson et al. and a better performance was observed with the inclusion of the GRS 

[40].  
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Clinical utility of CHD SNP Gene Scores - Statin Adherence 

One useful consequence of informing at-risk subjects of their genetic risk would be if such 

information motivates lifestyle changes or adherence to proscribed medication to a greater 

extent than CRF information alone.  A clinical trial from the US has examined this [42]. 203 subjects 

(mean age 59 years), at intermediate risk for CHD, and not on statins were randomly assigned to 

receive their 10-year probability of CHD based either on a Framingham CRF score or CRFs+GRS. 

The GRS included 28 CHD GWAS hit SNPs (12 of which are in the top 25 shown in Table 1), with 

each weighted by its published OR effect size. Subjects were told their risk as high or average or 

low by a genetic counsellor, with a discussion about starting statin therapy with a physician. After 

6 months follow-up the +GRS group had 9% lower LDL-C than the CRF group (p=0.04), with 

particular benefit seen in those given a high overall risk. This was because more subjects in the 

high risk group started statin therapy than in the CRF only group (39% vs 22%, p<0.01), and was 

not due to differences between the groups in dietary fat intake or levels of physical activity. These 

data support the view that in a clinical setting, a high genetic risk may be particularly motivating 

to start (and possible adhere to) lipid lowering medication 

 

Clinical utility of CHD SNP Gene Scores - Genetic vs lifestyle 

The GRS can be also used as a genetic instrument to compare the relative contribution of genetic 

and lifestyle factors in determining CHD risk. Using a GRS combining 50 CHD risk variants, Khera 

et al [43]  compared the genetically-determined CHD risk and lifestyle risk in three prospective 

cohorts in the USA and Sweden (total ~56,000 subjects with 5,103 CHD events). A healthy lifestyle 

was defined as a weighted composite of no current smoking, no obesity, regular physical activity, 

and a healthy diet. Results were consistent across the studies and, compared to those in the 

bottom quintile of the GRS, the relative risk of incident CHD in the top quintile was 91% higher 

among those in the top quintile. There was a modest but statistically significant association 

between GRS and a family history of premature CHD (low = 15.1%, intermediate = 16.9% and high 

18.7%, p>0.0001). Unsurprisingly, an unhealthy lifestyle (at least three of the four factors) 
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resulted in a substantially higher (~80%) risk of CHD and the effect of the genetic and lifestyle risk 

was essentially additive. Among those at high genetic risk, a favourable lifestyle was associated 

with a 46% lower CHD relative risk than an unfavourable lifestyle. In a sub-study of 4,260 subjects, 

both genetic and lifestyle factors were significantly associated with coronary artery calcification 

evaluated with computed tomography. One study (ARIC) included enough African-American 

participants (2,269 and 350 CHD events) to show that effects were consistent across ancestral 

groups and were of similar magnitude.   

 

Five year view 

There are several ways the GRS approach will change and develop over the next five years. Firstly, 

there are likely to be improvements in genotyping technology which will allow the use of a very 

large GRS, where every SNP on a genotyping platform could be included. Constructing large-scale 

GRSs using tens of thousands of SNPs with CHD risk estimates (from GWASs) has  been suggested 

[44] . While such a GRS may ultimately out-perform those constructed with only a selected subset 

of robustly associated SNPs, such an approach is not practical for a clinical setting, at least in the 

short-to-medium term. Abraham el al recently published a study [45] using five prospective 

population cohorts from Finland and the US, where over 49,000 SNPs were used. Addition of the 

GRS to CRF scores significantly improved the 10 years risk prediction (P < 0.001), particularly for 

individuals ≥60 years old (p < 0.001). However, how practical this approach will be in the short-to-

medium term remains to be seen. The statistical stringency for inclusion of a SNP could be relaxed 

only partially, by selecting all SNPs identified in the meta-analysis with an false discovery rate of 

say >10%. This approach has been assessed by Gana et al [40], but a 353 SNP GRS did not improve 

performance over the use of 46 robustly associated SNPs. Another approach would be to only 

include variants known to contribute to the process to atherosclerosis and/or of the onset of 

myocardial infarction, and thus a GRS could be created that is  more robustly associated with CHD 

[46] incidence, and this may provide a better instrument to estimate genetic risk of CHD.  

However, this would ignore variants that have been consistently robustly associated with CHD 

with no known no mechanism of action.  Ultimately a large-scale fully powered prospective study 

is required to alleviate the problem of survival bias in genetic association studies. If such data 
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became available this could be used to improve the precision of the weights for the GRS and that 

should improve performance.   

An alternative strategy to using all of the robustly associated GWAS risk variants is to select only 

variants known to be functional, for example by using the ENCODE [47] and eQTL [48] databases 

and protein change algorithms As can be seen in Figure 2 [49], only 7% of the GWAS hits are exonic 

altering an amino-acid in the cognate gene product and therefore may be directly affecting gene 

function, with another 7% being in the promoter region and thus may potentially be affecting 

gene expression. Over 70% are intronic or intergenic and are therefore of unknown or possibly of 

no functional consequence. The most notable such locus is on chromosome 9p21, which has the 

largest effect size of any common variant (see Table 1) but whose mechanism of action in the 

development of CHD remains obscure, a decade after discovery. In particular, the actual 

functional SNP or SNPs at this locus has not been definitively identified.  Thus most of the SNPs 

included in the score are GWAS hits where the lead SNP (i.e. that included in the score) is unlikely 

to be the functional SNP at that risk locus. Linkage disequilbrium (LD) between the lead and 

functional SNPs may differ between ethnicities, meaning that some SNPs will be better proxies 

than others. This will reduce the ability of the weighted GRS to accurately reflect CHD risk, 

particularly in different ethnic groups if the LD is less. Therefore, the second area of progress over 

the next five years will be the identification of the functional SNP (or possibly SNPs) at each risk 

locus, and molecular approaches [49] and guidelines for this process have recently been published  

[50]. 

As an example of this, the Low-Density Lipoprotein Receptor (LDLR) SNP rs6511720 (G>T), located 

in intron-1 of the gene, has been identified in GWAS as being associated with ~0.2mmol/l lower 

plasma levels of LDL-C and a ~12% lower risk of CHD [25]. Whether or not rs6511720 is itself 

functional or a marker for a functional variant elsewhere in the gene is not known. The SNP is in 

complete linkage disequilibrium with three intron-1 SNPs (rs141787760, rs60173709, 

rs57217136), so only one or more than one of these variants may be the functional SNP at this 

locus. Using luciferase reporter assays in the hepatoma cell line Huh7 cells we showed [51] that 

the rare alleles of both rs6511720 and rs57217136 (but not rs60173709) caused a significant 

increase in LDLR expression compared to the common alleles (+29% and +24%, respectively). 
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Multiplex Competitor-Electrophoretic Mobility Shift Assays identified that the transcription factor 

serum response element (SRE) binds to rs6511720, while retinoic acid receptor and signal 

transducer and activator of transcription 1 bind to rs57217136. These data show convincingly that 

both rs6511720 and rs57217136 are functional variants. Both minor alleles create enhancer-

binding protein sites for transcription factors and therefore contribute to increased LDLR 

expression, which is consequently associated with reduced LDL-C levels and 12% lower CHD risk.  

While analysing every GWAS CHD hit locus in this way constitutes a considerable amount of work, 

ultimately this will provide the most accurate panel of functional SNPs for risk prediction. 

Finally we need to be able to extrapolate the use of these GRSs, developed and validated in mainly 

cohorts of white Caucasians, to subjects of different ethnic backgrounds. In comparison to the 

genetics of CHD in those of Europeans ethnicity, very little is known about the genetics of CHD in 

either the South Asian or Afro-Caribbean populations. We have assessed the utility of the 19 SNP 

GRS in two case-control cohorts from Pakistan (Islamabad and Lahore) [35] and one from 

Guadeloupe in the Caribbean [52]. The GRS was higher in Afro-Caribbeans with CHD than in those 

without CHD (13.90 vs 13.17; P < 0.001) and was significantly associated with CHD after 

adjustment for cardiovascular risk factors, with an odds ratio of 1.40 (95% confidence interval, 

1.09-1.80) per standard deviation change. Not surprisingly, there were significant differences in 

allelic distributions between the NPHSII men and the Afro-Caribbean ethnic groups for 14 of the 

19 SNPs, and the GRS was substantially lower in Afro-Caribbean controls compared with white 

controls (13.17 vs 16.59; P < 0.001). By contrast, although the 19 SNP GRS (with the original 

weightings) were higher in cases compared to controls in the Islamabad sample GRS (2.24 v 2.34, 

p=0.04), the score was not associated with CHD after adjustment for age and sex, and there was 

no difference in GRS between cases and controls in the Lahore group. As in the Caribbean sample, 

in the Pakistani samples, risk allele frequencies were significantly lower compared to NPHSII for 

19 SNPs studied. The lack of an association is unlikely to be due to low power, rather, the poor 

performance of the GSs in the Lahore group can be at least partly attributed to the much broader 

definition of CHD used in recruitment the case group compared to the Islamabad study which 

used an MI phenotype (more like the “hard” endpoints used in the prospective NPHSII and the 

Guadeloupe study). Overall, the results indicate that the GSs provide a useful estimate of genetic 
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CHD risk in Afro-Caribbeans from Guadeloupe at least, but firm conclusions cannot be drawn from 

the Pakistani data, although they suggest that a different set of risk loci or SNPs may be required 

for risk prediction in the South Asian population. 

 

Expert Commentary 

In our view, it is now possible to implement a personal Genetic Risk Score, in combination with 

the individual’s CRFs to better risk identify subjects at high risk of future CVD.  The optimum 

number of SNPs to be included and which SNPs to choose, still requires further work, but since 

the OR for individual SNPs are all low, the inclusion or omission of any few SNPs does not appear 

to materially influence the utility of the GRS. We are unaware of any study that compares utility 

of scores that systematically drop or include SNPs that could address this. In the future, the 

technical issues of including a large number of SNPs (with vanishingly small and thus statistically 

unproven CHD risk) should be overcome using more advanced statistical and computational  

approaches. The main clinical utility is a modest improvement in risk stratification in subjects at 

intermediate future CVD risk, where the GRS helps identify subjects at higher than average CVD 

risk that their CRF risk data suggests.  Current data is encouraging that individuals given a high 

genetic risk find the information motivation to modify their behaviours to reduce their future risk. 

The clinical utility of the GS described here depends on the context, as pointed out recently for 

Type 2 Diabetes [34]. If a clinician is trying to predict the risk score of 65 year old men, the GS is 

irrelevant, since the vast majority will qualify for statin treatment under QRISK2 threshold set in 

the current NICE guidelines. By contrast for the age of 40 or 30 or even at birth the situation might 

be different. For example, at birth there will almost never be CRFs of concern but the GS can point 

much further in the future, suggesting that this individual might need to see a doctor when in 

their late thirties instead of past 40, as may otherwise be the case.   
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Key Issues 8-10 Bullet points 

 Classical Risk factor Algorithms such as Framingham and QRISK identify as “high risk” only 

a proportion of those subjects who subsequently go on to develop Coronary Heart Disease 

(CHD) 

 Candidate genes and common variants (SNPs) in these genes have been used to develop 

early Genetic Risk Scores (GRS). 

 The ability to carry out “hypothesis-free” gene discovery by Genome wide association 

studies (GWAS) has now led to the identification of more than 80 CHD risk loci, including 

many of the candidate genes identified earlier 

 These CHD risk SNPs can be combined in a GRS by weighting carriage of the risk allele by 

the meta-analysis effect size (dds Ratio) on CHD. 

 The 25 SNPs ranked by the product of their risk allele frequency and CHD Odds Ratio are 

unlikely to be bettered by any subsequent GWAS findings 

 While a GRS may be associated significantly with CHD risk, for it to have clinical utility it 

must add significantly to the ability of the CRF algorithm to risk stratify. 
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 Metrics to determine clinical utility include the Hosmer-Lemeshow test (to assess 

calibration), Area under the Receiver operating curve, (AROC) and improvement in Net 

Classification Index (NRI). 

 GRS with as few as 19 selected SNPs have been shown to have modest clinical utility in 

middle aged UK men. Inclusion of up to 50-160 additional SNPs gives some small gain in 

clinical utility. 

 Clinical utility is mainly confined to these subjects at intermediate risk as determined by 

CRFs, where subjects who move up a risk category using the GRS do have a high rate of 

future events, and could therefore be offered therapeutic advice. 
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Table 1: Top 25 CARDIoGRAMplusC4D CHD risk loci [25] ranked by ln(OR) multiplied by RAF 

 
RAF = Risk allele frequency. Genes shown in bold are involved in lipid metabolism. * = Loci included in 19 
SNP GRS  
 
 

Chromo
some 

Lead SNP Gene/Locus Odds 
Ratio 
(OR) 

Risk allele 
frequency (RAF) 

ln(OR) 
 x RAF 

19 rs445925 ApoE-ApoC1* 1.13 0.9 0.110 

4 rs7692387 GUCY1A3 1.13 0.81 0.099 

9 rs1333049 9p21* 1.23 0.47 0.097 

1 rs17114036 PPAP2B 1.11 0.91 0.095 

1 rs602633 SORT1* 1.12 0.77 0.087 

10 rs12413409 CYP17A1-CNNM2-NT5C2 1.1 0.89 0.085 

19 rs1122608 LDLR 1.1 0.76 0.072 

13 rs9515203 COL4A1-COL4A2 1.08 0.74 0.057 

9 rs3217992 9p21 1.16 0.38 0.056 

10 rs501120 CXCL12* 1.07 0.83 0.056 

6 rs9369640 PHACTR1 1.09 0.65 0.056 

7 rs11556924 ZC3HC1 1.09 0.65 0.056 

8 rs264 LPL* 1.06 0.86 0.050 

13 rs4773144 COL4A1-COL4A2 1.07 0.74 0.050 

6 rs4252120 PLG 1.07 0.73 0.049 

1 rs11206510 PCSK9* 1.06 0.84 0.049 

1 rs17464857 MIA3* 1.05 0.87 0.042 

1 rs4846525 IL6R 1.09 0.47 0.041 

15 rs7173743 ADAMTS7 1.07 0.58 0.039 

17 rs12936587 RAI1-PEMT-RASD1 1.06 0.59 0.034 

6 rs12205331 ANKS1A 1.04 0.81 0.032 

13 rs9319428 FLT1 1.1 0.32 0.030 

2 rs1561198 VAMP5-VAMP8-GGCX 1.07 0.45 0.030 

12 rs3184504 SH2B3 1.07 0.4 0.027 

8 rs2954029 TRIB1 1.05 0.55 0.027 



27 
 

Table 2: Baseline characteristics in NPHSII for those who did and did not go on to develop CHD 

during ten-year follow-up  

 

All variables are presented as the mean plus standard deviation, unless otherwise stated. 

Categorical variables were compared using chi-squared tests and continuous variables were 

compared using Welch’s t-tests, apart from the Framingham and QRISK2 risk scores which were 

compared using Mann Whitney tests (the median and interquartile range are given).  

  

Trait No CHD (n=2491) CHD (n=284) p-value 

Age (years) 55.91 (3.42) 56.64 (3.60) 4.12x10-3 

Sex (% Male) 100 % 100 % - 

Smoking    25 %  39 %  2.14x10-5 

BMI (kg/m2) 26.38 (3.42) 27.19 (3.44) 9.61x10-4 

Systolic Blood Pressure (mmHg) 137.00 (18.59) 144.09 (20.10) 9.68x10-7 

Total Cholesterol (mmol/l) 5.71 (1.01) 6.13 (1.05) 4.79x10-8 

LDL-cholesterol (mmol/l) 3.07 (1.00) 3.48 (0.97) 2.66x10-7 

HDL-cholesterol (mmol/l) 1.72 (0.59) 1.57 (0.53) 2.60x10-4 

Type 2 Diabetes  2 % 7 % 1.33x10-11 

Framingham ten-year CHD risk 0.12 (0.07-0.15) 0.17 (0.09-0.21) 4.33x1011-4 

QRISK2 ten-year CVD risk 0.09 (0.07-0.13) 0.13 (0.09-0.17)  1.93x10-14 



28 
 

Table 3: SNPs included in the 19-SNP and 21 SNP CHD risk GRSs.   
 

 
* Included in both the 19 SNP GS and the 21 SNP GS. For detailed methods see [35, 37].  OR = Odds Ratio.  
SNPs in highlighted section were those excluded in the 21 SNP score 

 

 

Table 4 in separate file  

SNPs included in the 19 SNP GS  
 

Gene/Locus  SNP Risk 
Allele 

OR OR in original 
score 

Frequency p-value* Source 

APOE* rs7412 C 1.25 0.80 0.87 - [53]  

APOE* rs429358 C 1.06 1.06 0.26 - [53] 

PCSK9* rs11591147 G 1.39 1.43 0.99 - [54] 

CDKN2A/9p21* rs10757274 G 1.23 1.29 0.47 1.39x10-52 [25]  

SORT1* rs599839 A 1.11 1.19 0.77 3.8x10-15 [25]  

LPA* rs10455872 G 1.32 1.70 0.06 3.80x10-13 [55] 

MIA3* rs17465637 C 1.14 1.14 0.74 1.36x10-8 [55] 

MRAS* rs9818870 T 1.07 1.15 0.14 2.62x10-9 [25]  

CXCL12* rs1746048 C 1.07 1.17 0.83 1.79x10-8 [25]  

LPL* rs328 C 1.09 1.25 0.91 2.34x10-4 [25]  

DAB2IP* rs7025486 A 1.04 1.16 0.29 2.14x10-3 [25]  

LPL* rs1801177 A 1.10 1.33 0.06 4.04x10-4 [25]  

LPA* rs3798220 C 1.28 1.92 0.01 4.90x10-5 [25]  

APOA5* rs662799 G 1.05 1.19 0.06 0.01 [25]  

CETP rs708272 C 1.04 1.28 0.56 0.04 [55] 

ACE rs4341 G 1.01 1.22 0.52 0.43 [55] 

APOB rs1042031 A 1.01 1.73 0.18 0.80 [25]  

NOS3 rs1799983 G 1.00 1.31 0.67 0.90 [55] 

SMAD3 rs17228212 C 1.01 1.21 0.31 0.94 [25]  

Additional SNPs included in the 21 SNP GS  
 

Gene/Locus  SNP Risk 
Allele 

OR 
 

Frequency Source 

GUCY1A3 rs7692387 G 1.13 0.81 [25]  

PPAP2B rs17114036 T 1.11 0.91 [25]  

CYP17A1-
CNNM2-NT5C2 

rs12413409 G 1.10 0.89 [25]  

LDLR rs1122608 G 1.10 0.76 [25]  

COL4A1-COL4A2 rs9515203 T 1.08 0.74 [25]  

PHACTR1 rs9369640f A 1.09 0.65 [25]  

ZC3HC1 Rs11556924 C 1.09 0.65 [25]  
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Figure Legends 
 
Figure 1 Cartoon showing an idealised distribution of the QRISK risk score in the NPHSII men and 
the risk cut-offs recommend for use in the UK by NICE. 1A) using QRISK, 1B) QRISK + GRS 
 
1A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1B 
 

 

 

 

 

 

 

 

 

Foot note. The data is based on a subset of 1213 NPHSII men (mean age 57 years) where 

complete 19 SNP genotype data and QRISK CRF data was available [37]. There were 133 CVD 

events over 13 years of follow up (event rate overall 11.0%). 
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Figure 2  
Pie chart showing the Genomic location of lead SNPs for CAD relative to the nearest gene of 
CHD GWAS hits (from [49]).  Lead SNP data derived from CardioGramPLUSC4D meta-analysis 
[25].  

 

 


