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Abstract. Boiling histotripsy employs a number of millisecond-long High Intensity Focused 

Ultrasound (HIFU) pulses with high acoustic peak pressures at the HIFU focus to mechanically 

fractionate soft tissue. Studies have shown the mechanisms underpinning this tissue fractionation 

process; however, the question of how HIFU exposure conditions affect lesion formation still 

remains unclear. In the present work, a high-speed camera and a passive cavitation detection 

(PCD) system were used to investigate the dynamics of bubbles induced and the corresponding 

mechanical damage generated in optically transparent tissue-mimicking phantoms with two 

different boiling histotripsy exposure conditions (1. P+ = 85.4 MPa, P- = – 15.6 MPa; 2. P+ = 

71.5 MPa, P- = – 13.4 MPa at focus). Our results clearly showed that there is a positive 

relationship between the size of a boiling bubble and the lesion dimension. At P+ = 85.4 MPa 

and P- = – 15.6 MPa, a relatively larger boiling bubble was, for instance, produced at the focus 

in the gel phantom followed by the presence of a wider cavitation cluster progressing toward the 

HIFU transducer, resulting in the formation of a larger lesion compared to that with P+ = 71.5 

MPa and P- = – 13.4 MPa.   

1.  Introduction 

Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses shock wave 

heating and millisecond boiling to mechanically break down soft tissue without causing significant 

thermal damage [1]. The feasibility of using boiling histotripsy for the treatment of solid tumours has 

been demonstrated in animals [2-7]. These ex- and in vivo studies have clearly shown that a boiling 

histotripsy-induced lesion comprises complete fragmentation of soft tissue and is sharply demarcated 

between treated and untreated regions at a cellular level.  

Mechanisms behind boiling histotripsy have been investigated both numerically and experimentally. 

Initially, a millisecond long shockwave with acoustic peak positive (P+) and negative (P-) pressures at 

the focus of P+ > 40 MPa and P- < 10 – 15 MPa can raise tissue temperature to 100oC, resulting in the 

creation of a boiling vapour bubble at the focus [8]. This is possible because enhanced tissue heating 

caused by shockwaves which contain tens of higher harmonics of the fundamental frequency can lead 

to a significant temperature rise. The size of a boiling bubble formed at the focus then expands to around 

a millimetre due to the asymmetry of the shape of a shockwave used in a boiling histotripsy exposure 

and water vapour that transports into the bubble [9, 10]. After the production and explosive growth of a 

boiling bubble, the shock scattering effect enables inertial cavitation clouds to be induced in front of the 

boiling bubble progressing toward the HIFU source [11]. Shear stresses produced around an oscillating 
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boiling bubble together with violent bubble collapses involved in inertial cavitation can lead to the 

formation of a tadpole-shaped mechanically destructed lesion [11, 12], which is a typical lesion shape 

resulting from boiling histotripsy. 

It is of paramount importance to control as well as to predict the size of a lesion at a given boiling 

histotripsy exposure condition. Whilst our previous study [11] has demonstrated the underpinning 

mechanisms of boiling histotripsy, particularly the interaction of a boiling vapour bubble with incoming 

incident shockwaves, the question of how exposure conditions affect the size of a lesion produced 

remains. To that end, in this study, a high-speed camera and a passive cavitation detection (PCD) system 

are used to investigate the dynamics of bubbles induced and the corresponding mechanical damage 

generated in optically transparent tissue-mimicking phantoms exposed to two different HIFU fields.  

2.  Methods 

2.1.  HIFU experimental methods 

 

A schematic diagram of the experimental set up used in this study is depicted in figure 1. The HIFU 

experiments were conducted in a water bath filled with degassed and de-ionised water at 20oC. A 2 MHz 

HIFU transducer (Sonic Concepts H106, Bothell, WA, USA) with an aperture size of 64 mm, a focal 

length of 62.6 mm and lateral and axial full width half maximum pressure dimensions of 1.05 mm and 

6.67 mm respectively was used to perform boiling histotripsy. This HIFU source was experimentally 

characterised with a calibrated needle hydrophone (Precision Acoustics Ltd, Dorchester, UK) in our 

previous work [7]. A function generator (Agilent 33220A, Santa Clara, CA, USA) and a linear 55 dB 

power amplifier (ENI 1040L, Rochester, NY, USA) were employed to drive the transducer with the 

following pulsing protocol: a 10 ms-long HIFU pulse with either Pelect = 200 W or 150 W electrical 

power supplied to the transducer. A power meter (Sonic Concepts 22A, Bothell, WA, USA) was 

connected between the HIFU source and the power amplifier to measure the level of electrical power 

Pelect. Acoustic peak pressure values at the focus with Pelect = 200 W or 150 W and the corresponding 

temperature rises in an optically transparent tissue phantom were obtained by numerically solving the 

Khokhlov-Zaboloskaya-Kuznetsov (KZK) and the bioheat transfer (BHT) equations using the HIFU 

Simulator v1.2 [13]. From the simulations, the times to reach the boiling temperature of 100oC were 

predicted to be 3.66 ms (Pelect = 200 W, P+ = 85.4 MPa, P- = – 15.6 MPa) and 6.97 ms (Pelect = 150 W, 

P+ = 71.5 MPa, P- = – 13.4 MPa). Figure 2 shows the calculated acoustic waveforms at the focus with 

the corresponding peak temperature in the phantom. The physical properties used in the KZK and the 

BHT simulations are provided in table 1.  

During the experiments, the position of the HIFU source was fixed in the water bath whilst the tissue 

phantom was attached to a customised 3D positioning system. To minimise ultrasonic reflections, an 

acoustic absorber was placed on the opposite end of the water bath to the transducer. In addition, for 

recording purpose, a 10 MHz focused PCD transducer (Sonic Concepts Y107, Bothell, WA, USA) 

featuring of a wide bandwidth (10 kHz to 20 MHz) linked to an oscilloscope (LeCroy HDO 6054, 

Berkshire, UK) was employed to obtain acoustic emissions induced at the HIFU focus in the phantom 

during HIFU exposure. The recording was performed at a sampling frequency of 0.5 GHz. 
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Figure 1. HIFU experimental set up used in the present study. 

 

 

 

  
Figure 2. (a) Computed acoustic waveforms and (b) corresponding peak temperatures at the HIFU focus 

in the tissue phantom with Pelect = 200 W (red solid lines, P+ = 85.4 MPa, P- = – 15.6 MPa at focus) and 

150 W (blue dashed lines, P+ = 71.5 MPa, P- = – 13.4 MPa at focus). The times to reach boiling 

temperature of 100oC were respectively 3.66 ms and 6.97 ms. 
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Table 1. Physical properties of the tissue phantom used in the KZK 

and the BHT simulations. These parameters were obtained from 

[2]. 

Properties Value 

Speed of sound 1544 ms-1 

Mass density 1044 kgm-3 

Absorption coefficient at 1 MHz 15 dBm-1 

Coefficient of nonlinearity  4.0 

Specific heat capacity per unit volume 5.3  106 Jm-3oC-1 

Thermal diffusivity 1.3  107 m2s-1 

Ambient temperature 20 oC 

  

In this work, an optically transparent tissue mimicking gel phantom (1.5 × 3 × 6 cm), which has 

similar acoustic and thermal properties to those of liver [2], was exposed to HIFU fields to examine (a) 

the dynamics of bubbles produced as well as (b) the level of mechanical damage induced at the HIFU 

focus. Prior to the experiments the phantom was kept at room temperature until its temperature reached 

20oC. A recipe for making this liver tissue phantom used, whose measured physical properties are shown 

in table 1, is well documented in [11]. The distance from the phantom surface to the centre of the HIFU 

transducer was 57.6 mm, whereby the HIFU focus was 5 mm below the surface of the phantom. A total 

of 23 tissue phantoms (i.e., 17 for Pelect = 200 W and 6 for Pelect = 150 W) was used in the present study.   

 

2.2.  High speed camera set up used 

 

A high speed camera (FASTCAM-ultima APX, Photron, San Diego, CA, USA) operating at 15,000 

frame per second (fps) with a 12 X Navitar lens (Navitar, Rochester, NY, USA) was employed in this 

study to optically capture bubble dynamics induced at the HIFU focus in the gel phantom with a shutter 

speed of 1/15,000 s and a pixel resolution of 1028 128 (24 μm/pixel). The HIFU exposure and the 

image capturing process were in sync together via a camera processor (FASTCAM-ultima APX, 

Photron). After the experiments, captured images were post-processed in Photron FASTCAM Viewer 

(Photron) for size measurements of bubbles. This was done by counting the pixels representing the 

bubble. Each measurement was repeated over three times All experiments were backlit with an 

illuminating system (Solarc ELSV-60, General Electric Company, Fairfield, CT, USA).  

3.  Results  

Figures 3 and 5 respectively show series of high speed camera images captured during a 10 ms-long 

HIFU pulse with Pelect of 200 W (P+ = 85.4 MPa, P- =  – 15.6 MPa) and 150 W (P+ = 71.5 MPa, P- =  – 

13.4 MPa). For the case of Pelect of 200 W, a boiling bubble forms at the HIFU focus at 3.6 ms, followed 

by the cavitation clouds progressing toward the HIFU transducer at 5.2 ms. The generation of more 

boiling bubbles within localised heated region can be seen at t = 5.7 ms. The corresponding PCD results 

plotted in figure 4 also indicate the presence of a boiling bubble which manifested as a significant 

increase in the PCD voltage with the sudden appearance of higher order multiple harmonic components 

of the fundamental frequency (2 MHz) in the spectrogram. These significant changes are likely to be 

due to the formation of a boiling bubble because of the reflection of an incident shocked wave from this 

large boiling bubble (i.e., acoustic impedance mismatch) [8]. In addition, broadband emissions appear 

in the spectrogram after 3.6 ms, which is an indication of the presence of cavitation clouds (i.e., inertial 

cavitation) during the course of boiling histotripsy exposure [11]. Similar experimental trends are also 

observed in the case of Pelect of 150 W (P+ = 71.5 MPa, P- = – 13.4 MPa), where a boiling bubble appears 
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at the HIFU focus (7.1 ms) with the subsequent formation of cavitation clouds at 8 ms, as shown in 

figure 5. In both HIFU exposure conditions (Pelect of 200 W and 150 W), the onset time of the boiling 

bubble closely matched the computed time to reach a boiling temperature of 100oC in the tissue phantom. 

This is summarised in table 2.   

 

 
 

Figure 3. A sequence of high speed camera images (a)-(f) obtained in the tissue phantom during the 10 

ms HIFU exposure with Pelect of 200 W (P+ = 85.4 MPa, P- = – 15.6 MPa). The HIFU beam propagates 

from left to right. The time at 0 ms indicates the start of the HIFU insonation. The corresponding PCD 

results are plotted in figure 4. 

 

 

 
Figure 4. Acoustic emissions from the HIFU focus during the 10 ms HIFU pulse with Pelect = 200 W 

(P+ = 85.4 MPa, P- = – 15.6 MPa). (a) The PCD voltage results. (b) The corresponding spectrogram of 

(a).  
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Figure 5. High speed camera images (a)-(f) obtained in the tissue phantom during the 10 ms HIFU 

exposure with Pelect of 150 W (P+ = 71.5 MPa, P- = – 13.4 MPa). The HIFU beam propagates from left 

to right. The time at 0 ms indicates the start of the HIFU insonation. The corresponding PCD results are 

plotted in figure 6. 

 

 
Figure 6. Acoustic signals emitted from the HIFU focus in the phantom during the 10 ms HIFU pulse 

with Pelect = 150 W (P+ = 71.5 MPa, P- = – 13.4 MPa). (a) The PCD voltage results. (b) The 

corresponding spectrogram. 
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Table 2. A comparison of the experimentally measured onset time of a boiling bubble and the 

temperature simulation of the time to reach 100oC. 

Electrical power 

supplied to the 

HIFU 

transducer (W) 

Simulated in 

situ acoustic 

peak pressures 

at focus (MPa) 

Number of 

tissue 

phantom 

used 

PCD measurements 

of the onset time of 

the boiling bubble 

Temperature 

simulation of the 

time to reach 

100oC 

Differences 

between the 

experiment 

and the 

simulation 

200  P+ = 85.4 

P- = – 15.6  

17 *3.78 ± 0.67 ms  3.66 ms 0.12 ms 

150  P+ = 71.5  

P- = – 13.4  

6 *7.32 ± 0.81 ms 6.97 ms 0.35 ms 

*mean ± standard deviation (SD) with n of 23 tissue phantoms 

 

In our previous study, we hypothesised that the change of the dimension of a boiling histotripsy-

induced lesion is primarily dependent on the extent of a localised heated region and the pressure 

amplitude of backscattered HIFU fields [11]. Although the effects of the formation and dynamic 

behaviour of a boiling bubble on acoustic and temperature fields were not accounted for in the 

simulations performed in this work, the numerical and experimental results shown in figure 7 can 

possibly support our hypothesis. In the case of Pelect of 200 W (P+ = 85.4 MPa, P- = – 15.6 MPa) exposure 

condition, a larger region is heated over a 10 ms of exposure time (see figures 7(a) and (b)), resulting in 

the formation of a larger boiling bubble within the heated volume (see figure 7(c)) compared to those 

with 150 W (P+ = 71.5 MPa, P- = – 13.4 MPa). This larger boiling bubble with a larger surface area can 

then lead to the generation of a wider backscattered acoustic field, thereby creating a wider cavitation 

cluster toward the HIFU source (see figure 7(d)). As a result the size of a lesion produced with higher 

acoustic peak pressures is larger than that with lower acoustic pressures at a given sonication time (see 

figures 7(e) and (f)). In addition, the onset time of a boiling bubble with respect to a HIFU pulse length 

is also of importance for lesion production in boiling histotripsy, because the process of a mechanical 

tissue fractionation starts after the formation of a boiling bubble at the focus. 
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Figure 7. Computed contour plots of heated regions in the tissue phantom (a) with Pelect of 200 W (P+ 

= 85.4 MPa, P- = – 15.6 MPa) and (b) 150 W (P+ = 71.5 MPa, P- = – 13.4 MPa) over a 10 ms exposure 

period. The lateral widths of the heated regions above 100oC are 220 μm and 110 μm for 200 W and 

150 W, respectively. (c) Size measurement of a boiling bubble at the end of the HIFU pulse (mean ± 

standard deviation SD). (d) Width along the lateral direction of cavitation clouds at the end of the HIFU 

exposure. Each measurement was repeated three times. The inset images in (c) and (d) respectively show 

examples of the measurements of the maximum boiling bubble formed in the heated region and of the 

lateral width of cavitation clouds induced (24 μm/pixel). (e) and (f) are images showing the shape of a 

tadpole-like mechanical damages induced at the HIFU focus in the tissue phantom 80 ms after the end 

of the 10 ms HIFU exposure. 
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4.  Conclusions 

In this work, the effects of the size of a boiling bubble formed at the HIFU focus on lesion production 

in boiling histotripsy were investigated both experimentally and numerically. The results presented 

clearly demonstrated a positive relationship between the size of a boiling bubble and the degree of 

mechanical damage induced. In order to predict the lesion size at a given HIFU exposure condition, an 

accurate and reliable numerical model capable of dealing with scattering by localised heterogeneities 

(i.e. the presence of a boiling bubble at the HIFU focus) for simulating acoustic and temperature fields, 

would be required, which warrants further investigation in the near future.  
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