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Abstract 

As a result of the advances in autonomous navigation technology, ocean based operations with 

increasing levels of complexity can be undertaken using unmanned surface vehicles (USVs). 

Presently, the trend of developing USVs is to use multiple USVs as a fleet to carry out single 

or multiple tasks in a cooperative and coordinated manner. To further support such a 

deployment, a new intelligent multi-task allocation and path planning algorithm has been 

proposed in this paper based upon the self-organising map (SOM) and the fast marching 

method (FMM). To specifically address the two critical issues of energy consumption and 

communication range, a novel energy coordination scheme as well as a task prioritising method 

have been proposed to efficiently assign tasks to a multi-USV system. The algorithm has been 

verified and validated through a number of computer-based simulations and has been proven 

to work effectively in both simulated and practical maritime environments. 
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1. Introduction 

The research into autonomous vehicles has attracted increasing interest in the recent decade. 

Such vehicles have been widely utilised in different domains including air, ground and sea 

depending upon the specific vehicle’s mode of operation. Through exploitation of autonomous 

vehicles, benefits such as minimised personal risks and increased operation efficiency can be 

realised, especially when deployed on high risk and challenging tasks. However, despite the 

similarity in being capable of autonomously executing challenging tasks in the environment of 

interest, different levels of autonomy exist across these platforms with Unmanned Aerial 

Vehicles (UAV) and Unmanned Ground Vehicles (UGV) being equipped with relatively higher 

degrees of autonomy than Unmanned Surface Vehicles (USV) which are mainly operated in 

the maritime domain to support complex marine tasks. Various reasons, including the lack of 

technology development and market support, have contributed to this circumstance; however, 

with increasing importance being attached to the need for more extensive exploration and 

managed exploitation of the oceans, it is imperative that more research needs to be conducted 

towards the development of USV control autonomy. 

In order to increase the degree of autonomy of USVs, apart from the improvement of an 

individual vehicle’s capability by updating either or both the hardware and software, another 

promising and cost effective approach is to develop and exploit the concept of shared autonomy, 

for when multiple USVs are being simultaneously deployed. By working in cooperation, 

compared with single USV operation, multiple USVs are able to service a wider mission area, 

provide improved operational efficiency and increase fault tolerance capability. Because of 

these benefits, the strategy of deploying multiple USVs in a coordinated manner has been 
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welcomed by many researchers with one of the most famous examples being NASA Jet 

Propulsion Laboratory’s (JPL) attempt to employ a swam of USVs for undertaking challenging 

maritime missions. By using an advanced multi-vehicle control architecture, experiments were 

carried out to demonstrate the superior capability of a swarm of USVs in supporting a 

demanding harbour patrol mission, which requires the USVs to collaboratively monitor and 

track hostile vessels, inspect vessels to infer intent and trailing suspect vessels [25]. Similarly, 

Raboin et al. [21] investigated using the multi-USV system for patrolling and guarding an asset 

in an environment with hostile boats and civilian traffic. The cooperative behaviour of different 

USVs was achieved by using a contract-based task allocation strategy so that by iteratively 

predicting the behaviours of both the USVs and the other vessels only the most appropriate 

task can be assigned to the corresponding USV. 

It also should be noted that the cooperation and coordination behaviour of multiple USVs can 

be enhanced with the support from other types of vehicle, such as autonomous underwater 

vehicles (AUVs), to further improve the autonomy level of marine vehicles and consequently 

better assist with the execution of maritime missions. For instance, in Matos et al. [20], the 

concept of deploying an AUV and a USV in a coordinated manner has been first proposed, 

where the AUV was used to collect ocean data at subsurface level with the USV being used to 

provide the position information in real-time.  Such an AUV-USV fleet has also been adopted 

by Zolich et al. [33] to support ocean sampling missions. The core of this research was to use 

the USV as a communication relay to handle the communication between the AUV and a 

control centre through Wi-Fi channels such that a real-time data collection (at AUV level) and 

data processing (at control centre level) can be achieved. A larger coordination of unmanned 

vehicles for maritime data acquisition missions was also studied in Vasilijević et al. [24], where 

manned vessels, AUVs, USVs and UAVs were simultaneously deployed. In order to ensure 

the robust communication between different types of vehicles, a common network system 

architecture was proposed to allow the seamless data transmission and a situation awareness 

platform was also used to monitor the mission progress and react to any environmental changes. 

With the clear advantages of deploying USVs in a multi-vehicle manner, to utilise such a 

strategy in a more efficient way a general autonomous navigation structure has been proposed 

in Liu et al. [18]. Within such a structure, three different layers including a task allocation layer 

(TAL), path planning layer (PPL) and task execution layer (TEL) work coherently with the aim 

of the TAL solving the multi-task allocation problem for a multi-USV system, in essence the 

allocation of specific tasks to each of the multiple USVs in conjunction with each particular 

vehicle’s capability. It is worth noting that in Liu et al. [18], only the PPL and TEL layers were 

successfully achieved, and to complete this multi-USV autonomous navigation structure, the 

design of the TAL layer has been specifically addressed in this paper by developing a series of 

intelligent algorithms for multi-task allocation. 

In general, the task allocation problem can be regarded as synonymous with the Travelling 

Salesman Problem (TSP) and similarly, the multi-task allocation for multi-USV can be 

summarised as the Multiple TSP (MTSP). The TSP has the feature of NP-hardness, and it could 

be solved using both exact and heuristic algorithms. As mentioned in Liu et al. [19], even 

though the exact algorithm is capable of providing accurate solutions, the extensive 

computational time required to execute such algorithms has prevented it from being used in 

high dimension. In contrast, the heuristic based algorithm can give a solution for any dimension 

with comparatively slight compromise within the results but greatly improved computational 

efficiency. This has promoted increased research effort towards applying various heuristic 

algorithms (the genetic algorithm, ant colony algorithm, and the neural network algorithm) in 

solving TSP and MTSP problems.  

It should be noted that due to advances in artificial intelligence technology, especially in the 

neural network research, an increasing number of studies have cast light on the application of 
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neural networks for solving complex problems such as MTSP. Among them, the self-

organising map (SOM) is of special interest due to its features of intuitive appeal, relative 

simplicity and promising performance [27]. SOM has not only been applied in solving TSP 

from a purely mathematical standpoint but has also been adopted to effectively provide an 

optimal task allocation strategy for autonomous vehicles in support of complicated missions. 

Such an adoption has brought sounding effects for UAV [11], AUV [12] and mobile robots [3] 

in achieving mission scheduling and coordination. However, very limited research has taken 

place into the investigation of using SOM to solve the task allocation problem for individual 

USVs, let alone the multi-task allocation for multi-USV systems.  

To fill this gap and assist with the wider application of multi-USV systems in support of future 

coordinated operation within the marine environment, this paper has proposed a new intelligent 

multi-task allocation algorithm based upon SOM. This algorithm is able to optimally schedule 

multiple tasks for USVs in a practical ocean environment, within which the existence of non-

traversable areas (such as islands), the dimensions of the area and the impaired communication 

channels have been largely mitigated by novel solutions, which consist of the main 

contributions of this paper. The tasks are then allocated to each USV, which use path planning 

algorithms to generate feasible trajectories for each vehicle to follow and subsequently execute 

tasks. The path planning algorithm used in this paper is based upon the fast marching method 

(FMM), and the performance of the proposed algorithm has been validated in several different 

computer-based simulations.  

The reminder of this paper is organised as follows. Section 2 provides a literature review on 

using SOM to solve TSP/MTSP. Section 3 then specifically describes the proposed multi-task 

allocation algorithm of multi-USV system with Section 4 explaining how to use the FMM 

algorithm to generate trajectories and execute tasks. Section 5 provides a series of simulation 

results to validate and evaluate the proposed algorithm and Section 6 concludes the paper and 

discusses future work. 

 

2. Related work 

In this section, the fundamentals of the SOM will be introduced (in Section 2.1) then work in 

the field of using the SOM to solve multi-task allocation will be comprehensively reviewed (in 

Section 2.2). To give a thorough overview, rather than limiting the review to marine 

applications, autonomous vehicles in other domains have also been researched. Also, not only 

the TSP/MTSP based but some other interpretation of multi-task allocation problems has been 

reviewed as long as the SOM is applied as the main method. Finally, the fast marching method 

(FMM) will be briefly introduced in Section 2.3 with the details of the application of FMM on 

path planning problem being discussed in Section 4.1. 

 

2.1. Self-organising map (SOM) 

The self-organising map (SOM) proposed by Kohonen [16] is a type of artificial neural network 

that uses unsupervised learning to produce a low dimensional representation of an input space. 

The basic structure of the SOM is a two-layered network comprising an output layer and an 

input layer as represented in Figure 1(a). Neurons that need to be trained are contained in the 

output layer, and the training is achieved via the connections between the output and input 

layers. In general, the nodes on the input layer are randomly located while the output layer uses 

a two-dimensional regular topology such as a rectangular or hexagonal grid. Such a topology 

is largely maintained throughout the training process. 
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(a) (b) 

Figure 1. Illustration of the self-organising map (SOM). (a) Basic structure of the SOM. A two-

layered neural network including input layer and output layer is used. (b) In the application of the 

SOM for TSP, a circular topology for the output layer is used. 

 

When applying the SOM to the TSP, each node in the input layer represents a city (or a task in 

a task-allocation problem) with a Cartesian coordinate (cx, cy) representing its location. The 

weights associated with the output layer neurons are in the same dimension and indicates the 

locations of neurons. Since the fundamental requirement of the TSP is to visit all the cities and 

eventually return to the start point, a circular topology (shown in Figure 1(b)) is thus used in 

the output layer. After forming such a topology, neurons then compete to become the winner 

throughout the training process, which adopts an unsupervised strategy consisting of two 

different procedures: 

• Winner selection: a city (Ci) is first selected from the input space. The Euclidean 

distances between this city and all the neurons in the output layer are then calculated 

by: 

𝑑𝐶𝑊 = |𝐶𝑖 −𝑊𝑗| = √(𝐶𝑥𝑖 − 𝑤𝑥𝑗)2 + (𝐶𝑦𝑖 − 𝑤𝑦𝑗)2 
(1) 

            where Wj represents the location of the jth neuron, and the winner neuron is selected as 

the one having the minimum distance value: 

𝑊𝑤𝑖𝑛 = argmin𝑊𝑑𝐶𝑊 (2) 

• Neighbourhood updating: after determination of the winner neuron, the 

neighbourhood updating process will move the winner neuron, as well as its neighbour 

points towards new positions according to: 

𝑊𝑗 = 𝑊𝑗 + 𝜇 ∗ 𝑓(𝑑, 𝐺) ∗ (𝐶𝑖 −𝑊𝑗) (3) 

where 𝜇 is the learning rate, which determines the computation time. 𝑓(𝑑, 𝐺) is the 

neighbourhood function identifying the neighbourhood size of the winner neuron. The 

function can be viewed as a smoothing kernel which has the central influence on the 

winner neuron, and various forms can be used to define such a function with the most 

commonly used being: 

𝑓(𝑑, 𝐺) = 𝑒−𝑑
2/𝐺2 (4) 

where d is the lattice distance on the topology and G is the gain parameter, which 

defines the width of the kernel (or the size of the neighbourhood). It should be noted 

that 𝐺 should be a monotonically decreasing function of time. The rationale for this is 

during the initial stages, neurons are relatively far away from the cities, a large 𝐺 the 

initial stages neurons are positioned relatively far away from the cities and a large G is 
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preferred to cause the neurons to move more quickly towards their corresponding city; 

whereas, at the latter stages, a stable situation has been formed and neurons become less 

competitive, therefore allowing a smaller value of G to be used. 

 

2.2.  Review of multi-task allocation using SOM 

SOM was first used to solve the multi-task allocation problem for mobile robots in Zhu et al. 

[29]. By referring to the structure of SOM, input and output layers were redefined in a novel 

way so that the input layer represents the locations of different tasks and the output layer 

denotes the positions of robots. During each iteration of SOM, the updating process of the 

neural network is regarded as a combination of both task allocation and motion planning for 

the multi-robot system.  

Based upon the work of Zhu et al. [29], work has continued to improve the algorithm and 

subsequently explore its application to other mobile platforms. Huang et al. [15] and Zhu et al. 

[30] employed the SOM method for dynamic task assignment and path planning for multi-

AUV systems. To balance the equipped energy and the assigned workload, modification was 

made to the winner selection function (Equation (1)) in the conventional SOM so that only the 

tasks assessed to have the highest and realistic chances of achievement (tasks that can be 

executed by the AUV based upon available energy) will be assigned to an AUV. In addition, 

to better solve the problems that are normally encountered in actual maritime environments, 

such as the influence caused by variable ocean currents, a velocity synthesis approach was used 

to navigate the vehicle in favour of currents and consequently optimise the energy consumption. 

Zhu et al. [32] and Zhang et al. [27] further investigated the problem of obstacle avoidance and 

speed jumps (unrealistic speed change) of AUVs during the task allocation and path planning 

process when the SOM was used. The problems were resolved by integrating a new 

biologically inspired neural network, namely the Glasius bio-inspired neural network (GBNN), 

to represent the underwater environment such that tasks in the environment are assigned with 

attractive forces to attract the according AUV smoothly towards it while repulsive forces are 

applied for obstacles to help avoid collisions with such obstacles.  

It should be noted that all of these works focused on solving a non-TSP based task allocation 

problem, i.e. vehicles are not required to start from a particular location and return to the same 

location on completion of the mission (a closed loop visit). This might be plausible for AUVs 

as an AUV can be launched and recovered from a mobile mother ship at any place, which 

makes the closed loop visit trivial. However, for the USV applications, the TSP like task 

allocation is important, as the vehicle is normally sent out from a fixed based station and needs 

to return to it when the mission is completed. Therefore, it becomes important to provide an 

insight on how the TSP based task allocation is solved using SOM in literature.  

To solve the TSP based task allocation problem for autonomous vehicles, a series of works 

carried out by Faigl [5], Faigl et al. [6], Faigl [7] and Faigl [8] are representative. The main 

contribution derived from these studies is the adapting of a distance measurement metric that 

is used within the SOM updating process to make the SOM more suitable for autonomous 

vehicle applications, especially for solving the collision avoidance problem during navigation. 

It has been proposed that instead of using the Euclidean metric, a new metric that is an 

approximation of the shortest collision-free path between each neuron and the city will be used 

to find out the winner neuron. From the simulation results it is evident that all neurons can be 

kept outside the obstacle areas. Using such a new metric in the winner selection process for 

SOM, improvement works have also been done to solve the issues encountered in real 

applications. For example, Dubin’s curve has been successfully integrated into the SOM to 

account for the vehicle’s dynamic constraints [10]. An improved version of SOM, described as 

the growing SOM, was proposed in Faigl et al. [9] to provide a solution for autonomous data 
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collection from multiple sensors using an AUV. Specifically, to consider the cases where a 

large number of tasks have to be visited by an AUV within a certain time, tasks were prioritised 

according to sensors’ capabilities and the proposed SOM was able to adaptively and optimally 

generate the neurons according to priority. Similarly, another sensor associated data collection 

problem was investigated in Best et al. [2] for a multiple robot system. The data collection 

problem was reformulated as to find a sensor visits sequencing problem, where each sensor 

was associated with several viewpoints that were determined by sensing ranges and self-

occlusions. As each viewpoint has a unique but fixed reward value for each visit, the TSP 

problem was converted to a prize-collecting TSP, which could be efficiently resolved by 

employing the SOM algorithm. 

Based upon the aforementioned works, studies of using SOM to specifically solve USV related 

problems were conducted by Liu et al. [19] and Song et al. [22]. In Liu et al. [19], a new 

collision avoidance approach was proposed by integrating an adaptive repulsive force field into 

the SOM. This has been mainly established upon the fact that when deploying USVs in the 

marine environment, the dimensions of obstacles can often vary with tides. Therefore, to take 

this into consideration and provide an effective collision avoidance strategy, the proposed 

adaptive repulsive force field is able to change in conjunction with the obstacle dimensions and 

consequently makes the new SOM applicable to different scenarios. Song et al. [22] used this 

new SOM algorithm on a practical USV for undertaking missions at the highlands of Peru. The 

on-board battery limit problem was specifically investigated by developing a new mission 

prioritising scheme.  

Note that apart from using SOM in solving the multi-task allocation problem, evolutionary 

algorithms, such as the genetic algorithm (GA), ant colony optimisation algorithm (ACO) and 

particle swarm optimisation (PSO) algorithm, have also gained popularity and been 

successfully applied on different types of platforms including AUVs, USVs and UAVs. For 

example, Cai et al. [4] proposed to use the genetic algorithm to solve the multi-task allocation 

problem for a swarm of AUVs in a three dimensional (3D) underwater environment. The 

nonholonomic motion constraints of AUVs were specifically addressed by using interpolated 

3D Dubin’s curves that were compliant with vehicles’ dynamic characteristics. Zadeh et al. [26] 

investigated AUV’s task allocation and path planning by using a two-layered control 

architecture that consists of a global route planner based upon genetic algorithm and a local 

path planner using particle swarm optimisation algorithm. The change of the environmental 

factors, such as the change of the ocean currents, has been considered and addressed to promote 

the robustness and reactive ability of the proposed control architecture. Zhen et al. [28] 

proposed to an ant colony optimisation (ACO) algorithm based method for the search-attack 

mission planning for a multi-UAV platform. To solve the issue of maximum flight range that 

is constrained by the UAV’s onboard battery limit, a state transition rule was incorporated into 

the algorithm to ensure that UAVs were able to fly back to their starting point when the 

assigned tasks were out of the reachable range. Although these research works can successfully 

resolve the problem of task allocation and path planning, the tasks are normally assessed and 

assigned based upon preliminary criteria such as the minimum travelling distance, and some 

sophisticated constraints, in particular the communication capability, have been ignored. 

Furthermore, if additional planning constraints are included, more optimisation costs have to 

be considered making the computational burden increase, which to some extent can reduce the 

computational speed of the evolutionary algorithms. However, such a problem would not 

prevent the application of SOM based algorithms as one of the main benefits of SOM is its 

capability of addressing multiple subproblems together and provide the solution 

simultaneously using the unsupervised learning [12]. 

In addition, by analysing and comparing these studies, it can be found that although a large 

number of studies have investigated the multi-task allocation problem on both single and 
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multiple vehicle platforms, there has been limited work on USV applications, not mention the 

multi-task allocation for multi-USV systems. The aim of this paper is therefore to investigate 

this area by using the SOM with particular interest in solving the issues that have mainly 

prevented USVs from being deployed in practical applications, including: 

a) energy constraint multi-task allocation for the multi-USV system; 

b) continued safe operation during periods of compromised communication capability 

between USV and the base station in marine environments; 

c) collision avoidance in a confined environment with multiple obstacles; 

 

2.3. Fast marching method (FMM) 

The fast marching method (FMM) was first proposed by J. Sethian in 1996 as a numerical way 

to iteratively solve the Eikonal equation to simulate the propagation of an interface [23]. The 

Eikonal equation has the form: 
|∇𝑇(𝒙)|𝑉(𝒙) = 1 (5) 

where 𝑇(𝒙) is the interface arrival time at point 𝒙 and 𝑉(𝒙) is the interface propagating speed. 

Equation (5) belongs to the partial deferential equation (PDE) and its numerical solution can 

be obtained via the upwind deferential method when using the FMM. The solving process of 

the FMM is similar to Dijkstra's method but in a continuous way. Suppose (x,y) is the point 

that T(x,y) needs to be solved. The neighbour of (x,y) is a point set containing four elements 

(𝑥 + ∆𝑥, 𝑦), (𝑥 − ∆𝑥, 𝑦), (𝑥, 𝑦 + ∆𝑦),( 𝑥, 𝑦 − ∆𝑦). T(x,y) can be obtained  by: 

 
𝑇1 = min (𝑇(𝑥−∆𝑥,𝑦), 𝑇(𝑥+∆𝑥,𝑦)) (6) 

𝑇2 = min (𝑇(𝑥,𝑦−∆𝑦), 𝑇(𝑥,𝑦+∆𝑦)) (7) 

|∇𝑇(𝑥,𝑦)| = √(
𝑇(𝑥,𝑦) − 𝑇1

∆𝑥
)
2

+ (
𝑇(𝑥,𝑦) − 𝑇2

∆𝑦
)
2

 

(8) 

(
𝑇(𝑥,𝑦) − 𝑇1

∆𝑥
)
2

+ (
𝑇(𝑥,𝑦) − 𝑇2

∆𝑦
)
2

=
1

(𝑉(𝑥,𝑦))
2 

(9) 

  

where ∆𝑥 and ∆𝑦 are the grid spacing in the 𝑥 and y directions. The solution of Equation 9 is 

given by: 

 

𝑇(𝑥,𝑦) =

{
 
 

 
 𝑇1 +

1

𝑉(𝑥,𝑦)
,             𝑖𝑓 𝑇2 ≥ 𝑇 ≥ 𝑇1

𝑇2 +
1

𝑉(𝑥,𝑦)
,             𝑖𝑓 𝑇1 ≥ 𝑇 ≥ 𝑇2

𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (9)  𝑖𝑓 𝑇 > max (𝑇1, 𝑇2)

 

(10) 

 

The pseudocode of FMM is described in Algorithm 1 by using an example of simulating an 

interface propagation process over a grid map. In the initialisation process, the algorithm first 

assigns all the grid points with the arrival time of infinity. The grid points are then grouped into 

three different categories, i.e. the Far, Known and Trial point sets. Such a categorisation 

method is similar to Dijisktra's and the specific meanings of each group are as follows: 

• Far: contains grid points with undecided arrival time value (T). In the first-time step 

when running the FMM, all grid points except the start points belong to Far; 
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• Known: contains grid points with decided arrival time values (T). Such values will not 

be changed when the algorithm is executed; 

• Trial: contains grid points with calculated arrival time values (T); however, values may 

be changed when the algorithm is running. 

During each iteration of the algorithm, the point with the smallest T will be selected from the 

Trial set and added into the Known set. Then, for the selected point, all the neighbour points 

will be updated by using Equation (10) to have new arrival time values, and neighbour points 

located in the Far point set will then be moved into the Trial point set for the next iteration. 

The algorithm will be terminated when the Trial point set is empty. 

 

Algorithm 1 Fast Marching Method algorithm 

Require: configuration space (𝜒), start point (𝑝𝑠𝑡𝑎𝑟𝑡) 

1:   assign all the grid points in 𝜒 with the cost of Infinity                   ⊳ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 
2:  𝑇(𝑝𝑠𝑡𝑎𝑟𝑡) ← 0 

3:  𝐹𝑎𝑟 ← 𝑎𝑙𝑙 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝜒 

4:  Known ← 𝑎𝑙𝑙 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑘𝑛𝑜𝑤𝑛 𝑐𝑜𝑠𝑡 
5:  for each adjacent point a of Known point do 

6:       𝑇𝑟𝑖𝑎𝑙 ← 𝑎 ∪ 𝑇𝑟𝑖𝑎𝑙 
7:       𝑇(𝑎) = 𝑐𝑜𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑎)                                                                   ⊳ 𝑈𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10) 
8:  end for 

9:  while Trial is not empty do                                                         ⊳ 𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 
10:    𝑝 ←  𝑝𝑜𝑖𝑛𝑡 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑠𝑡 𝑐𝑜𝑠𝑡 𝑖𝑛 𝑇𝑟𝑖𝑎𝑙 
11:    remove p from Trial 

12:    𝐾𝑛𝑜𝑤𝑛 ← 𝑝 ∪ 𝐾𝑛𝑜𝑤𝑛 

13:    for each neighbour point a of p do 

14:        𝑇̃(𝑎) = 𝑐𝑜𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑎)                                                      ⊳ 𝑈𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (10) 
15:        if 𝑇̃(𝑎) < 𝑇(𝑎) then 

16:            𝑇(𝑎) ← 𝑇̃(𝑎) 
17:        end if 

18:        if 𝑎 ∈ 𝐹𝑎𝑟 then 

19:            remove a from Far 

20:            𝑇𝑟𝑖𝑎𝑙 ← 𝑎 ∪ 𝑇𝑟𝑖𝑎𝑙 
21:        end if 

22:     end for 

23:  end while 

24:  return 𝑇 

 

 

3. Multi-task allocation for multi-USV systems 

 

3.1.  Improved SOM with collision avoidance capability 

The Euclidean, distance based, winner selection process allows the SOM to determine the 

closest neuron to the city and subsequently update the winner neuron together with its 

neighbourhood points. However, such an updating process will produce compromised results, 

especially in a constrained environment, where a number of obstacles exist. To overcome this 

limitation, an improved SOM with collision avoidance capability has been proposed in Liu et 

al. [19].  
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In fact, the Euclidean metric based, neuron update process in conventional SOM can be 

explained from the potential field perspective. By analysing Equation (3), it can be shown that 

the second term on the right-hand side of the equation is acting as an attractive force, which 

attracts the neurons towards the selected city. Therefore, following this logic, Liu et al. [19] 

added a repulsive force and the neuron updating process will follow a new equation: 

              𝑊𝑗 = {

𝑊𝑗 + 𝜇 ∗ 𝑓(𝑑, 𝐺) ∗ (
(𝐶𝑖−𝑊𝑗)

‖(𝐶𝑖−𝑊𝑗)‖
+
𝑓𝑟𝑒𝑝
→  ), 𝑖𝑓𝑑𝑜𝑏𝑠(𝑊𝑗) ≤ 𝑑𝑚𝑖𝑛

𝑊𝑗 + 𝛼𝑠𝑝𝑒𝑒𝑑 ∗ 𝜇 ∗ 𝑓(𝑑, 𝐺) ∗
(𝐶𝑖−𝑊𝑗)

‖(𝐶𝑖−𝑊𝑗)‖
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                     (11) 

and 
𝑓𝑟𝑒𝑝
→   is calculated from: 

𝑓𝑟𝑒𝑝
→  = 𝑭𝑟𝑒𝑝(𝑤𝑥𝑗, 𝑤𝑦𝑗) (12) 

where 𝑑𝑜𝑏𝑠(𝑊𝑗) calculates the minimum distance to the obstacles from the position of 𝑊𝑗  . 

𝑑𝑚𝑖𝑛 is a predefined minimum distance. 𝑭𝒓𝒆𝒑 (•) is the function returning the local repulsive 

force at 𝑊𝑗 ’s position (𝑤𝑥𝑗, 𝑤𝑦𝑗 ) by referring to the repulsive force vector field 𝑭𝒓𝒆𝒑. The 

repulsive force vector field has been generated in a process consisting of two steps: 1) creating 

a repulsive potential field capable of implicitly reflecting the risk of obstacles. and 2) 

calculating the gradients of the potential field to get the corresponding force vector field. The 

details of the repulsive force vector field generating process can be referred to in Liu et al. [19].  

From Equation (11), it shows that when 𝑑𝑜𝑏𝑠(𝑊𝑗) ≤ 𝑑𝑚𝑖𝑛, neurons are deemed to be too close 

to obstacles and the obstacle avoidance is thus triggered by updating neurons based upon both 

attractive and repulsive forces; whereas, if neurons stay in the safe areas, the conventional 

updating is applied but a new parameter (𝛼𝑠𝑝𝑒𝑒𝑑 > 1) introduced to achieve a fast convergence 

speed.  

The improved SOM algorithm inherits the key structure of the conventional SOM with the 

main change being the adoption of a new updating equation to find the winner neuro when the 

network is being updated. As a consequence, the computational complexity of the improved 

SOM algorithm is the same to the conventional one, which in general is 𝛰(𝑡𝑓(𝑑𝑛 + 𝑞𝑛
2)), 

where 𝑛 is the number of neurons in a SOM, and each neuro is 𝑞-dimensional, the input data 

are d-dimensional and 𝑡𝑓 is the learning steps [16]. Note that in this research because multi-

USV systems are assumed to be operating in a two-dimensional (2D) environment, q and d 

both equal to 2, and 𝑡𝑓 should be configured according specific application and in this paper, it 

is set up to be 1000 to give an optimised convergence rate. 

 

3.2. Multi-task allocation for multiple USVs based upon improved SOM 

Based upon the improved SOM, an algorithm can now be designed to solve the multi-task 

allocation problem for multi-USV systems. As mentioned earlier, issues of energy 

consumption and communication range are the two main fundamental constraints that restrict 

the operation of USVs in wide range deployments. To effectively tackle these problems, two 

additional novel improvements have been designed and implemented in the algorithm with the 

pseudocode shown at Algorithm 2. 

First, when dealing with the communication range problem, as shown in Lines 2 to 4 of 

Algorithm 2, the issue is resolved by prioritising each city within an environment. The 

development of this solution was based upon Faigl et al. [9] and the pseudocode for assigning 

the priorities is shown in Algorithm 3. It is assumed that each USV will only have one base 

station to which it transmits the data it collects in real-time, and such a transmission is confined 

within a certain range, which is denoted as 𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒. A priority list (𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑙𝑖𝑠𝑡) will first be 

initialised of a size equal to the number of cities. Then, for each city, if the distance between 
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the city and base station is less than the communication range, it is considered that a successful 

transmission can be established and retained and a maximum priority value (𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥) will 

therefore be assigned to the denoted city. However, if such a distance is greater than the 

communication range, a minimum priority value (𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛) is given to the city indicating that 

the USV is too far away to successfully broadcast the information to the base station. Such a 

priority list will be used in the task allocation algorithm (Algorithm 2) to ensure that only the 

tasks within the communication range will be regarded as valid and therefore be taken into 

account when updating the SOM as shown in Line 8 of Algorithm 2. It should be noted that 

although the priority has only been quantified in terms of distance at this juncture, Algorithm 

3 provides a general structure for resolving the communication problem for multi-USV systems. 

Additional factors that influence the communication capability can be integrated into the 

algorithm making it more suitable for implementation in practical applications. 

As regards optimising energy consumption of multi-USV systems when allocating multiple 

tasks, this has been achieved by implementing a new coordinate updating scheme as shown in 

Line 7 in Algorithm 1. A new winner selection scheme is proposed using the equation: 

𝑊𝑤𝑖𝑛 = argmin𝑊𝑑𝐶𝑊_𝐸𝑛𝑔𝑒𝑟𝑔𝑦 (13) 

  

where 𝑑𝐶𝑊_𝐸𝑛𝑔𝑒𝑟𝑔𝑦 is a new term measuring the distance between the city and neuron with the 

available energy storage been considered. 𝑑𝐶𝑊_𝐸𝑛𝑔𝑒𝑟𝑔𝑦 is calculated for each ring as: 

𝑑𝐶𝑊_𝐸𝑛𝑔𝑒𝑟𝑔𝑦 = 𝑑𝐶𝑊 ∙ (1 +
𝜎𝑒𝑛𝑒𝑟𝑔𝑦 ∙ 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑖𝑛𝑔

𝑖 − 𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒

𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒
) 

(14) 

where 𝑑𝐶𝑊 is the Euclidean distance between the city and the neuron on 𝑖𝑡ℎ ring. 𝑙𝑒𝑛𝑔𝑡ℎ𝑟𝑖𝑛𝑔
𝑖  

is the length of the 𝑖𝑡ℎ ring, and 𝑙𝑒𝑛𝑔𝑡ℎ𝑎𝑣𝑒 is the average length of all the rings. 𝜎𝑒𝑛𝑒𝑟𝑔𝑦 is the 

energy adjustment parameter, which is used to ensure that winning neuron will be selected 

from the longest ring. Such a scheme has been established based upon the fact that if the USV 

is fuelled with sufficient energy, the vessel will be able to navigate a longer route and execute 

more tasks. Therefore, when updating the SOM, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦 is determined inversely proportional 

to the equipped energy storage onboard. For example, a smaller 𝜎𝑒𝑛𝑒𝑟𝑔𝑦 value will be assigned 

to the ring that belongs to the USV having larger energy storage such that winner neuron can 

be more frequently selected from this ring and subsequently the updating process for other 

rings will be restricted.  

The proposed multi-task allocation algorithm can specifically address the issues of limited 

energy consumption and constrained communication range, which are two main constraints for 

USVs operation in maritime environment and have not been properly considered in other works 

such as Faigl [8] and Best et al. [2]. Also, because of the implementation of the improved SOM 

as the base algorithm, compared with the algorithm in Faigl [8], the proposed algorithm has 

the feature of fast computational time, which makes the algorithm more suitable in large scale 

application where a USV swarm is deployed to conduct a large number of missions [19]. 
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Algorithm 2 SOM based multi-task allocation for multi-USV algorithm 

Require: set of input cities (χ) in two dimensional space, parameters of the improved SOM 

(𝑑, 𝐺, 𝜇, 𝛼𝑠𝑝𝑒𝑒𝑑, 𝑑𝑚𝑖𝑛), the maximum number of iterations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥), number of 

USVs (𝑘), locations of base station (𝑝𝑏𝑎𝑠𝑒), communication ranges (𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒), 

maximum value of priority (𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥), maximum value of priority (𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛) 

1: 𝑅 ← {𝑟1, 𝑟2, … , 𝑟𝑘}        // Initialise k SOMs of N neurons with a ring topology for 𝑘 USVs  

2: for each base station do 

3: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 ← 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐷𝑒𝑓𝑖𝑛𝑒(𝜒, 𝑝𝑏𝑎𝑠𝑒(𝑖), 𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒(𝑖), 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 , 𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛) 

4: end for 

5: while iter ≠ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do  

6:      randomly select a city (𝐶𝑖) from χ 
7：   𝑊𝑖 ← select the winning neuron of the city (𝐶𝑖) from ring 𝑟𝑗 (𝑗 < 𝑘) using Equation (7) 

8:           if dis(𝑊𝑖, 𝐶𝑖) < 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑗(𝐶𝑖) then 

9:                 for each neighbourhood point (𝑊𝑖) of the winning neuron  𝑊𝑖 do  

10:                      update 𝑊𝑖 using Equation () 

11:               end for 

12:         end if 

13:    iter ← iter + 1 

14: end while 

 

Algorithm 3 Priority set-up algorithm (priorityDefine function) 

Require: set of input cities (χ) in two dimensional space, the location of base station (𝑝𝑏𝑎𝑠𝑒), 
communication range (𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒), maximum value of priority (𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥), maximum value 

of priority (𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛) 

1:  𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑙𝑖𝑠𝑡 ←  priority list for each city in the space with regard to the base station 

2:  for each city in the space do 

3:        𝑑𝑖𝑠 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑗𝑡ℎ𝑐𝑖𝑡𝑦 (𝐶𝑗) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

4:               if 𝑑𝑖𝑠 < 𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒 then 

5:                   𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑙𝑖𝑠𝑡(𝐶𝑗) ←  𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥 

6:               else 

7:                   𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑙𝑖𝑠𝑡(𝐶𝑗) ←  𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛 

8:               end if 

9:   end for  

10: return 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑙𝑖𝑠𝑡 
 

4. Multi-goal path planning for multi-USV system 

After each USV has been allocated its own set of tasks based upon the particular vessel’s energy 

storage and communication capability, the next step is to make sure that each USV is able to 

execute these tasks by visiting them in sequence and to the most extent, appreciate the 

navigational safety and avoid any potential collision en route. To achieve this, path planning 

functionality will be called to generate feasible trajectory for each USV. Similar to work in Liu 

et al. [19], the trajectory has been calculated on the basis that the minimum distance cost should 

be maintained, i.e. the straight line between two points should be considered as an ideal 

candidate if the line does not violate any obstacle area. With the existence of obstacles, the 

ideal path (the straight line) should be accordingly and appropriately modified such that 

collision risks can be eliminated.  

To implement such a concept, a two-step path planning strategy has been adopted in this paper 

for the multi-USV system. In the first step, for each USV off-line path planning is first used to 
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find the shortest path between each task by connecting each pair of mission points with a 

straight line. However, it should be noted that even though each task (mission point) can have 

one-to-one mapping to a neuron from a SOM after the updating process, redundant neurons 

still exist making the simple connecting of neurons with a straight line unfeasible in certain 

cases. As illustrated in Figure 2, it can be seen that in Area A, two neurons sitting on the straight 

line between two cities become unnecessary allowing them to be deleted and still retain the 

original path; whereas in Area B, as shown by the dashed line circled, neurons can not only be 

removed, but a new route can be generated by connecting two cities with a straight line. 

Therefore, by implementing the neuron deletion algorithm proposed in Angeniol et al. [1], each 

SOM ring can be reduced to a minim um number of neurons with each pair of neurons been 

connected by a straight line as the optimal path.  

 

 
Figure 2. Node deletion process. Area A and B contain nodes that need to be removed. 

 

Paths provided by the first step can be used as the off-line trajectories for the multi-USV system, 

and while each USV starts to track its individual path, some obstacles still require further path 

refinement to reduce collision risks. These collision risks could be the result of either already 

known obstacles where the connection between two missions may still pass through, or by 

some newly emerged obstacles that are detected by the vessel during the navigation. Therefore, 

to properly address these issues, a sophisticated on-line path planning algorithm should be used 

to regenerate the path in real-time. As there is a requirement that the path should be recalculated 

in an efficient way to ensure navigation performance will not be compromised, a path planning 

algorithm with fast computational time has to be selected. Among the most commonly used 

path planning algorithms, A* can provide the path with shortest distance but cannot guarantee 

the smoothness of the path. RRT related algorithms search for the path using the sampling 

based scheme but is more suitable in high-dimension space and returns the path relatively close 

to obstacles. The fast marching method (FMM) based algorithm can overcome these issues 

encountered by A* and RRT and therefore is used in this paper. In the following section, details 

of the FMM and its path planning algorithm will be provided. 
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4.1.  Fast marching method based path planning 

The FMM based path planning algorithm is described in Algorithm 3. Consider the planning 

space (M), to which the algorithm is to be applied, has a representation of a binary map and is 

perfectly rasterised. The algorithm first reads in M and calculates its according speed matrix 

(V). The speed matrix (V) has the same size as M and defines the interface propagation speed 

at each point in M. Based on V, the FMM is executed to calculate an arrival time matrix TFMM, 

and upon the time matrix TFMM, the optimal path is finally searched by applying the gradient 

descent method from the end point to the start point. Further explanation of FMM based path 

planning can be referred to in Garrido et al. [14]. 

 

Algorithm 4 FMM path planning algorithm 

Require: planning space (M), start point (𝑝𝑠𝑡𝑎𝑟𝑡), end point (𝑝𝑒𝑛𝑑) 

1:  Calculate speed matrix V from M 

2:  𝑻𝐹𝑀𝑀 ← 𝐹𝑀𝑀(𝑽, 𝑝𝑠𝑡𝑎𝑟𝑡) 
3:  𝑝𝑎𝑡ℎ ← 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑡(𝑻𝐹𝑀𝑀, 𝑝𝑠𝑡𝑎𝑟𝑡, 𝑝𝑒𝑛𝑑) 
4:  return 𝑝𝑎𝑡ℎ 

 

To demonstrate the effectiveness of the FMM based path planning algorithm, a comparison 

showing the difference between FMM and the other two classical approaches including A* and 

rapidly random tree (RRT) is shown in Figure 3. The comparison test was taken in a map with 

three randomly located obstacles. The dimension of the map is 700 pixels * 700 pixels and the 

start and end points were located at (100, 100) and (600, 600), respectively. 

By observing the results in Figure 3, it can be summarised that paths generated by conventional 

algorithms such as RRT and A* (in Figure 3(c) and 3(d)) normally consist of several segments 

making them non-continuous. Hence, additional path smoothers are necessary to be applied to 

increase the continuity. In contrast, the FMM algorithm is able to provide the path with 

improved continuity and smoothness (in Figure 3(a)). In addition, as stated in Garrido et al. 

[14], two more additional benefits can be provided by FMM based path planning algorithm: 

• Completeness: some path planning algorithms developed using the evolutionary 

searching algorithm (genetic algorithm, ant colony algorithm and etc.) suffer from the 

problem of searching incompleteness, which means the algorithm may fail to find a 

path in a complex environment. The algorithm developed based upon the FMM adopts 

a deterministic searching scheme ensuring a path can always be found as long as it 

exists. 

• Fast computation time: the FMM algorithm is fast in dealing with the searching 

problem due to its low computation complexity. For a grid map having total grid 

number of N, the time complexity is O(Nlog(N)) [14]. Such a feature is especially useful 

for practical path planning, where a fast decision making process is preferred. 
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(a) (b) 

  
(c) (d) 

Figure 3. Comparison of FMM based path planning, A* and RRT algorithms in a congested 

environment including multiple obstacles. (a) Generated potential field when using the FMM 

algorithms. (b) Path generated using FMM based path planning algorithm. (c) Path generated using 

A* algorithm. (d) Path generated using the RRT algorithm. 

 

5. Simulation results 

To validate the effectiveness and performance of the proposed algorithm, a set of different 

computer-based simulations have been carried out. Tests can be generally categorised into two 

groups with the first (two simulations included) aimed at evaluating the task allocation 

capability for multi-USV system and the second (one simulation included) primarily 

demonstrating the algorithm performance in resolving both task allocation and path planning. 

In order to test the adaptability and robustness of the proposed algorithms, within the 

simulations, algorithm parameters are assigned different values according to specific mission 

requirements. Also, to facilitate the understanding of the simulation results and the 

effectiveness of the proposed algorithms, an overview of upcoming simulations can be briefly 

summarised as: 

 

a) Task allocation without regard to energy and communication constraints: in this 

simulation, the core is to demonstrate how the SOM based task allocation algorithm 

can successfully allocate different tasks to a multi-USV system with the assumption 

been made that no energy or communication constraints will influence the multi-USV 

system. The updating process (or the training process) of the SOM neural network will 

be explicitly presented to reveal how the tasks are allocated in a balanced way. 
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b) Task allocation under energy and communication constraints: in this simulation, 

the primary aim is to test the algorithm’s capability in dealing with energy and 

communication constraints using the proposed coordinating scheme as well as the task 

prioritising strategy. Different energy and communication constraints will be adopted 

to demonstrate that the proposed algorithm is robust enough to provide an optimised 

solution under all conditions.   

c) Multi-task allocation and path planning for multi-USV system: in this simulation, 

multi-task allocation (SOM based) and path planning (FMM based) algorithms are 

integrated together and tested to validate that multiple tasks can be effectively assigned 

to USVs teams consisting of different number of vessels and a safe trajectory can 

always be efficiently generated while each vessel is executing tasks.  

Algorithms have been coded in Matlab and simulations are run on the computer with a Pentium 

i7 3.4 GHz processor and 8 GB of RAM. A practical area, shown in Figure 4, has been used as 

the simulation environment, and has been converted to a 500 pixels * 500 pixels binary map 

that can be read and further processed by the algorithm. Within the environment, 70 water 

monitoring stations (shown as the yellow dots) are located in a random pattern and the water 

samples contained in the stations are due to be collected by a multi-USV system consisting of 

three USVs. These vehicles are required to establish a real-time communication channel to 

their corresponding base stations (marked as a star in green, magenta and red respectively). It 

should be noted that to maintain communication and data security, the communication channels 

here implement a one-to-one communication strategy where interfacing between channels is 

prohibited. 

 
Figure 4. The simulation environment. Three base stations are shown in star shape and water 

monitoring stations are shown in yellow dots. 
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5.1.  Simulation of multi-task allocation for multi-USV system  

In this simulation, the main aim is to test the capability of the algorithm to assign 70 different 

tasks to three USVs subject to their amount of fuel on board (endurance) as well as the 

communication range.  

 

5.1.1. Task allocation without regard to energy and communication constraints 

First, the simulation has been carried out with the assumption that the three USVs have the 

same endurance, and because of this, the energy adjustment parameter (𝜎𝑒𝑛𝑒𝑟𝑔𝑦) is set to the 

same value for each USV (𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 1, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 1, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1). In addition, it is also 

assumed that the communication range between each USV and its associated base station is 

greater than the largest dimension of the environment, so the communication range parameter 

(𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒) in Algorithm 2 is assigned to be 750 pixels for each USV. 

Simulation results are presented in Figure 5. The USV paths are planned such that they are 

each configured in a loop created by the SOM algorithm. Each path is initiated by a single 

neuron first being generated at the location close to the base station. Three rings are visually 

displayed in the colour of red, green and magenta representing the assigned tasks for USV 1, 2 

and 3, respectively. When observing the updating process, each ring appears to be updated by 

the SOM in a way that after an equilibrium point is first reached, the ring will stay at this 

location and expand itself to reach as many tasks as possible. For example, the ring in green is 

first generated close to base station 2 (shown in Figure 5(a)). However, because this station is 

located at a position that is relatively distant from the tasks (shown as yellow dots), the ring 

will first move towards the bottom right area that is the site of more densely situated tasks, as 

shown in Figures 4(b)-(d). Once a state of equilibrium has been attained (as shown in Figure 

5(d)), the algorithm will then seek to find the best matching task for each of the existing ring’s 

neurons. The same process occurs to generate the other two rings (shown in red and magenta). 

However, as these two rings are initialised at base stations (1 and 3 respectively) that are in 

locations populated by a substantial number of tasks, it is not necessary for these two rings to 

be generated across a substantial distance to locate the nearest site that is best populated with 

tasks as the ring in green does in in its early stages of formation, and they can directly start the 

expanding process (shown in Figure 5(a)) and successfully find the matching task for all the 

neurons (shown in Figure 5(f)). 

The process of determining the state of equilibrium during the SOM updating process can also 

be revealed when looking into the number of neurons generated. As stated earlier, an on-line 

neuron generation and deletion process is used to expand the SOM ring to make sure that an 

optimal number of neurons can be accessed when one-to-one mapping is formed between each 

neuron and its allocated task. This process can be observed when the number of neurons in 

each ring is recorded during each iteration. As seen from Figure 6, during initial stages, each 

ring has a relatively large number of neurons. However, after a transient period with variations 

of number of neurons exists for each ring, an equilibrium (or stable state) can be reached (at 

iteration around 275) for each ring with ring 1, ring 2 and ring 3 being assigned 23, 23 and 24 

tasks respectively.  

Another important aspect that should be noted is the algorithm’s capability to assign the tasks 

based upon each USV’s available energy. In this simulation, it is assumed that the three USVs 

each have an equal amount of energy and the energy adjustment parameter (𝜎𝑒𝑛𝑒𝑟𝑔𝑦 ) is 

configured with the same value for each SOM ring. The result presented in Figure 5(f) clearly 

shows that the number of tasks assigned for each ring (USV) is roughly the same, which means 

the workload has been apportioned as equally as possible by using the proposed SOM 

algorithm. This is further supported by comparing the total distance covered by each USV 
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when executing these tasks. As can be seen from the 1st row in Table 1 that three USVs almost 

have the same distance cost with USV 1 required to cover 918 pixels, USV 2 for 849 pixels 

and USV 3 for 876 pixels. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. Simulation results of multi-task allocation for multi-USV system with equal amount of 

energy and no communication range constraints. 
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Figure 6. Number of neurons in each ring during each iteration. 

 
Table 1. Comparison of total distance and number of tasks for each ring under different energy 

constraints. 

 Ring 1 Ring 2 Ring 3 

 Total 

distance 

(pixels) 

No. of 

tasks 

Total 

distance 

(pixels) 

No. of 

tasks 

Total 

distance 

(pixels) 

No. of 

tasks 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 1 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 1 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1 

918 23 849 23 876 24 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 3 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1 

588 14 682 17 1610 39 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 1 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 5 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1 

1192 28 255 7 1300 35 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 8 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1 

207 6 584 15 1986 49 
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5.1.2. Task allocation under energy and communication constraints 

The algorithm is further tested to assess the functioning of the energy adjustment parameter 

(𝜎𝑒𝑛𝑒𝑟𝑔𝑦). The main aim now is to validate the algorithm’s capability of determining the task 

loading of each USV while considering each USV's energy availability.  

In this simulation, using the same environment, USV 3 (magenta) is first assumed to have the 

highest amount of energy while USV 1 (red) has been allocated the lowest. The energy 

adjustment parameters have therefore been assigned as 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 3 , 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2 , 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1 to make sure that during the SOM updating process USV 3 is able to maximise 

its energy consumption to explore the most tasks; whereas USV 1 has to reduce its number of 

tasks to save the energy. As the results in Figure 7(a) show the algorithm has registered the 

differences and has assigned 14, 17 and 39 tasks to USVs 1, 2 and 3 respectively. The total 

distance travelled by each USV further proves the effectiveness of the proposed algorithm. As 

shown in the second row of Table 1, the distances covered by USVs 1, 2 and 3 are 588 pixels, 

682 pixels and 1610 pixels respectively, which stay well in accordance with the energy 

constraints applied to each USV.   

When the energy constraints are changed to allocate USV with the lowest amount of available 

energy and USVs 1 and 3 with higher but nearly equal amounts of available energy, the task-

allocation result is shown in Figure 7(b). It can be seen that the algorithm is also able to 

accordingly assign the tasks so that USV 2 will visit the least number of the tasks (7 tasks are 

assigned for the ring in green) to limit energy demand. To ensure the overall tasking can be 

completed, USVs 1 and 3 are allocated the remaining workload with USV 1 being assigned 

with 28 tasks and USV 3 with 35 tasks. 

The algorithm’s performance was also tested with more diverse boundary conditions. In this 

scenario, USV 1 has been designated as having very low reserves of energy compared to the 

other two, and the energy adjustment parameter (𝜎𝑒𝑛𝑒𝑟𝑔𝑦) has been configured as 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 =

8, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1. From Figure 7(c) and the 4th row in Table 1, USV 1 has been 

assigned 6 tasks with the least distance of 207 pixels to cover. However, when the 

communication range constraint between a USV and its corresponding base station is applied, 

such a task-allocation result may become unfeasible. As shown in Figure 7(d) when a 

maximum 100 pixels communication range is imposed for USVs 1 and 2 (shown as the green 

and red circles respectively), it is clear that some tasks may not be attainable by USVs as they 

are outside the communication range making the vehicles incapable of transmitting the real-

time information back to the base station.  

 The communication constraints are finally included by setting the communication range 

(𝑑𝑖𝑠𝑟𝑎𝑛𝑔𝑒) parameter to be 100 pixels in the proposed algorithm and the corresponding results 

are shown in Figure 8(a).  As can be seen base stations 1 and 2 both have a 100 pixels 

communication range marked by the red and green circles respectively, a different task 

allocation strategy has been generated compared to that shown in Figure 7(d). For USV 2, all 

the tasks located within the communication range (tasks included within the green circle) can 

be allocated by fully mapping the neurons in the SOM to the tasks. Whereas for USV 1, most 

of the tasks (tasks included in the red circle) have been allocated expect one on the top left 

corner which is determined by the algorithm to be executed by USV 3. The reason for such a 

result is the algorithm now is not only subject to communication range constraints but also 

energy constraints, and as a result of USV 3 having the highest amount of energy and USV 1 

having the lowest in this case, the algorithm intelligently allocates the workload between these 

two vehicles making USV 3 to handle more of the tasks. However, it also should be noted that 

as the equipped amount of energy is not able to provide enough endurance for USV 3 to cover 
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the remaining range of the tasking area, there are some tasks that are left unexplored 

uncompleted as shown in Figure 8(a). Another test result shown in Figure 8(b) can further 

demonstrate the capability of the proposed algorithm. In this case, all three base stations are 

subject to 100 pixels communication range constraints and the tasks allocated to the three USVs 

are retained within this range. 

 

  
(a) (b) 

 

 

 

  
(c) (d) 

Figure 7. Simulation results of multi-task allocation for multi-USV system with different amount of 

energy. (a) 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 3, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1. (b) 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 1, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 5, 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1. (c) 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 8, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1. (d) 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_1 = 3, 𝜎𝑒𝑛𝑒𝑟𝑔𝑦_2 = 2, 

𝜎𝑒𝑛𝑒𝑟𝑔𝑦_3 = 1. USV 1 and 2 have a 100 pixels communication range constraint.  
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(a) (b) 

Figure 8. Simulation results of multi-task allocation for multi-USV system with equal amount of 

energy and different communication range constraints. (a) USV 1 and 2 have 100 pixels 

communication range and USV 3 has no communication constraint. (b) USV 1, 2 and 3 have 100 

pixels communication range. 

 

5.2. Simulation of multi-task allocation and path planning for multi-USV system 

In this section, simulations have been undertaken to validate the proposed algorithm’s 

capability of allocating multiple tasks to a multi-USV system and planning paths to execute 

said tasks.  In order to rigorously test the collision avoidance capability, simulations have been 

carried out in an environment with multiple static obstacles (shown in Figure 9). The obstacles 

have irregular shapes and are randomly placed within the environment. A total number of 70 

water monitoring stations are included and are scheduled to be visited by a multi-USV system. 

Within this test, in order to provide a thorough evaluation of the algorithm performance, multi-

USV systems including 2, 3 and 4 vessels have been used. In addition, as the main purpose of 

these simulations is to demonstrate the effectiveness of the integration of task allocation and 

path planning as well as the collision avoidance capability, the energy and communication 

constraints  are minor and the energy adjustment parameter (𝜎𝑒𝑛𝑒𝑟𝑔𝑦) has therefore been set up 

with value of 1 for all USVs with no communication range constraints.  

Simulation results are shown in Figure 9. In Figure 9(a) and (b), a case where the multi-USV 

system consists of three USVs has been tested. It clearly shows that the 70 tasks have been 

appropriately allocated to the three USVs, and most of the straight lines connecting the task 

pairs maintain a safe distance away from obstacles, which ensures that the USVs can safely 

follow these paths to execute tasks. However, as pointed out in Figure 9(a), some paths may 

violate the obstacle area making path refinement necessary. In Figure 9(b), the path 

recalculation process using the FMM algorithm has been presented. The recalculated paths 

shown as dashed lines provide a sound solution to ensure that any potential collision risks can 

be minimised. It also should be noted that because the main feature of the FMM algorithm is 

to provide a collision free path with the least distance cost, the total distance cost of the refined 

paths can be maintained to be minimum. Cases with different numbers of USVs are tested with 

Figure 9(c)-(d) and Figure 9(e)-(f) showing the results where 4 and 2 USVs are deployed, 

respectively. Clearly, any path that may lead to USV collision with an obstacle can be identified 
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by the algorithm, and its corresponding refined trajectory is provided as shown as the dash lines 

in Figure 9(d) and Figure 9(f). 

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 9. Simulation of multi-task allocation and path planning for multi-USV system. (a) Multi-task 

allocation for a multi-USV system with 3 vessels. (b) Path refinement for a multi-USV system with 3 

vessels. (c) Multi-task allocation for a multi-USV system with 4 vessels. (d) Path refinement for a 

multi-USV system with 4 vessels. (a) Multi-task allocation for a multi-USV system with 2 vessels. (b) 

Path refinement for a multi-USV system with 2 vessels. 

 

6. Conclusion and future work 

In this paper, a new algorithm based upon the self-organising map (SOM) has been proposed 

to solve the problem of multi-task allocation for multi-USV systems. As the energy 

consumption is one of the main bottlenecks limiting the deployment of USVs for complex 

ocean tasks, a novel energy coordination scheme has been developed within the algorithm to 

balance the reserves of energy of each USV among the multi-USV system and proportionately 

assign tasks. In the meantime, a task prioritising algorithm has also been proposed to 

specifically take the communication range into account. By using such an algorithm, tasks can 

be allocated to make sure that the communication between each USV and its corresponding 

base station can be retained. After tasks are successfully allocated, a FMM based path planning 

algorithm is integrated to generate feasible paths for USVs for collision avoidance, which is 

the most important requirement in maritime navigation. 

To further develop the algorithm, the energy coordination scheme can be improved with a more 

specified scheme revealing the relationship between actual energy consumption and the energy 

adjustment parameter (𝜎𝑒𝑛𝑒𝑟𝑔𝑦) to be imposed. In the meantime, the communication constraint 

is currently only considered to be affected by distance. However, in reality, the strength of the 

communication channel could be influenced by other factors such as signal transmission power, 

signal noise power and signal-to-noise ratio [17]. Therefore, a more practical mathematical 

model of communication channel is worth investigation. 
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