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Clouds and aerosols provide a unique insight into the chemical and
physical processes of gas-giant planets. Mapping and characterising
the spectral features indicative of the cloud structure and composi-
tion, enables an understanding of a planet’s energy budget, chemistry
and atmospheric dynamics (e.g. [1, 2, 3, 4]). Current space missions
to solar-system planets produce high-quality data sets, yet the sheer
amount of data obtained often prohibits detailed ‘by hand’ analy-
ses. Current techniques mainly rely on two approaches: 1) identify
the existence of spectral features by dividing fluxes of two or more
spectral channels; 2) perform full radiative transfer calculations for
individual spectra. The first method suffers from accuracy whilst
the second from scalability to the whole planetary surface. Here
we developed a deep learning algorithm, PlanetNet, able to quickly
and accurately map spatial/spectral features across large, heteroge-
neous areas of a planet. We demonstrate PlanetNet on Saturn’s 2008
storm[5], enhancing the scope of the area previously studied. Our
spectral-component maps indicate compositional and cloud variations
of the vast region affected by the storm showing regions of vertical up-
welling, and diminished clouds at the centre of compact storms. This
analysis quickly and accurately delineates the major components of
Saturn’s storm, thereby indicating regions that can be probed deeper
with radiative transfer models.

The Visual and Infrared Mapping Spectrometer (VIMS) on the Cassini
space-craft [6] is a two-channel mapping spectrometer, which obtains spatially
resolved spectra across a 64 x 64 pixel array. In this work we use the near-
infrared channel, which spans 256 contiguously sampled band-passes ranging
from 0.85 to 5.1 pm with constant A= 0.016 pum. Hence each data cube (or
hyperspectral image) contains 4096 individual spectra. The observations of Sat-
urn’s 2008 storm[5] are particularly well suited for this work as they encompass
multiple, adjacent storms, providing a complex atmospheric feature space to be
analysed by PlanetNet. In particular, the data cube V1581233933 contains a
rare ammonia ice feature, detected by [6], which projects a “S” shaped feature
on Saturn’s disk. This data cube, along with two spatially adjacent cubes, has
previously been analysed by the spectral band devision method[5], which allows
comparison to our approach. In this study we re-analyse the three original cubes
along with three additional adjacent data cubes, all of which were obtained on
February 9** 2008.



PlanetNet is capable of non-parametrically identifying faint features in hy-
perspectral images and once trained on a given feature, able to search for it
across highly heterogeneous data sets. The algorithm consists of two parts: 1) a
spectral clustering algorithm to identify an initial feature set; 2) a double-stream
deep convolutional neural network (CNN). Here we provide a brief overview of
the algorithm. Additional details are given in the Method section. Spectral
clustering[7] is a versatile clustering algorithm suited for high-dimensional vec-
tor spaces. Unlike with more traditional clustering algorithms such as k-nearest
neighbours or k-means, spectral clustering is not dependent on the convexity
of the individual cluster sets and can identify highly non-convex clusters. We
compute the number of clusters in the data and assign a cluster label to each
spectrum, as discussed in more detail in the Methods section. Once we ob-
tain our initial clusters, we trim all data within one pixel of a cluster edge to
avoid edge uncertainties and proceed to train the neural network (NN) using
the remaining spectra. The NN contains two branches, a spatial and a spec-
tral channel. The spectral branch takes each remaining spectrum and trains a
two layer CNN using ReLU (rectified linear unit) activation functions and two
pooling layers. Surrounding each spectrum, we compute a 20x20 spatial image
by averaging the spectral cube along the spectral axis. This is the input for
the spatial channel which otherwise follows the same NN architecture as the
spectral channel. By analysing both spectral and spatial information, we can
take into account the morphological and spectral signatures of atmospheric fea-
tures on Saturn. In other words, a dark storm, for example, will have a distinct
spectrum and spatial morphology that correlate together. By including these
spatial-spectral correlations, the neural network will take all possible informa-
tion available into account. Finally, the output of both spectra and spatial
channels is fed into a fully connected layer which links to the cluster labels via
a logistic regression layer. Figure 1 shows a schematic of the full network. Sim-
ilar network designs have been successfully used in aerial image classification of
commercial land-usage (e.g. [8, 9]) for a recent review we refer the reader to
[10].

We verify the classification accuracies using two methods: 1) During training,
30% of the TC are reserved as ‘test data’. The test data is randomly chosen
from the training set and is used to verify the classification accuracy on unseen
data during training. Classification on the test data achieves ~ 90% accuracy.
After training, we further test the trained PlanetNet on a resampled version of
the TC by rotating the spatial data and interpolating spectral data within each
cluster (see Methods for more detail). Here we achieve an accuracy of 93%,
consistent with accuracies obtained from the test data.

We apply PlanetNet to the data cube V1581233933, and hereafter refer to
this data set as the training cube (TC) in which we identify 5 clearly distinguish-
able clusters of spectral/spatial features. We confirm the existence of these clus-
ters by performing a principal component analysis (PCA[25]). Whereas Planet-
Net clusters spatial/spectral data by their similarity (low statistical distance),
PCA decomposes the spectral cube by its variance. Should distinct spectral
regions exist, we expect to see signatures of these clusters also in the variance



of the data. PlanetNet clusters are clearly visible in the principal components
and we refer the reader to the Method section for a more in-depth discussion.

The left of Figure 2 presents the spatial extent of the TC and a map of the
spectra features, while the right hand side shows the spectral characteristics
of the 5 spectral clusters identified. Here, the blue region corresponds to a
large stormy region (SR) surrounding the central dark storm (purple/green) and
label 1 denotes the centre of the “S” feature. Each cluster is distinguished by its
absorption and scattering characteristics, indicative of the cloud structure and
gas composition. Most salient are the spectral differences between the region
surrounding the dark storm features (blue region here-forth referred to as SR)
in contrast to the unperturbed regions (red/orange), and the unique signatures
of the black storms (purple/green). Spectra 1 & 4 in Figure2 are examples of
spectra belong to the SR region. We find that regions unaffected by the storm
(e.g. spectra 2 and 3) display the brightest albedo at 1 - 2 um (Fig. 2). At these
wavelengths, the bands of the well-mixed CH4 are modulated by clouds, the
brightness of which indicates high aerosols. In contrast, the region surrounding
the storm features (blue) is dimmer at 1 - 2 um, suggesting either lower clouds,
or, more likely, given the great extent of the SR region, these are spectrally
darker clouds, as postulated by [5]. This interpretation indicates that the blue
regions encapsulate current and prior storms darkened by the upwelling material
of lower albedo.

These SR features, based on their 1 - 2 um spectra and low 5 ym flux, con-
tain relatively large particles. The brightest of these features (spectrum 1 in
Figure2), forms an “S” feature, which coincides with the position of the elec-
tric discharges measured on February 9, 2008 by Cassini’s Radio and Plasma
Wave Science (RPWS) instrument[5, 12, 13, 14]. We find the “S” feature to
be the proverbial “tip of the iceberg” of a much larger region of upwelling. In
Supplementary Figures 1 & 2, we map the L? distance (i.e. spectral difference,
see equation 7 in Method) between the peak emission of the “S” shaped feature
and the remaining SR region. We find that across the SR region the “S” shaped
feature contains the highest 1 - 2 ym but lowest 5 pm flux suggesting the particle
size to be highest there.

Baines et al.[5] hypothesise that the particles found in the “S” feature
are condensed NHj as indicated by colour maps of the continuum (0.93 pm),
methane (0.90 um) and the NHj ice feature (2.73 um). Our analysis defines the
relative spectrum of the “S” and find that the “S” spectrum displays an absorp-
tion feature at roughly 2.74 pm — 2.85 pm. This is part of a broader continuum
that resembles the NHs ice spectrum characteristic of that observed in Jupiter’s
storms[15]. Similarly, the averaged spectrum of the full SR region indicates a
similar although weak ammonia ice feature.

Saturn’s thermal flux, measured long-ward of ~4.5 ym also differentiates
the ambient from the stormy atmospheres. The SR flux at 5 um exhibits a
comparatively low brightness indicative of higher atmospheric opacity at the
5 pm wavelength due to particles roughly of sizes 5 um and larger. In particular,
the PlanetNet algorithm identifies clusters pertaining to Saturn’s dark storm.
The associated spectra (5 and 6) indicate notable spectral structure. Both



spectra have 1 - 2 um albedos darker than that of the other regions. Relative to
the mean storm region (SR), spectra of the dark storms display absorption at 4.5
- 4.9 ym characteristic of PH3 and consistent with the visibility of this feature as
indicated in radiative transfer (RT) models[16]. PHj is a condensible species, the
abundance of which increases by vertical upwelling at the observable levels. The
enhancement of this species indicates that the storm experiences strong vertical
updrafts. Saturn’s emission, longward of 4.5 um, differentiates the centre of the
storm (Spectrum 5) from its immediate surroundings (Spectrum 6). The storm
centre exhibits a strong flux, indicating the clearest view into the hotter and
deep atmosphere, the clarity of which suggests the eye of a storm. In contrast,
the 5 pum flux surrounding the storm is commensurate with that of the other
clusters.

Supplementary Fig. 1 shows the identified storm region in more detail and
map the statistical distance (equation (7) in Method) between the peak emis-
sion of the “S” shape feature (marked as 1) and all other spectra in the SR
labelled regions. Similar to Figure 2 we plot individual spectra scattered across
the SR region and show the spectral differences to the “S” feature by plotting
their differences. Whereas most spectral bands are invariant, we do find for
all spectra that the 1 - 2 um albedo is suppressed and the thermal emission
increased compared to the “S” shape feature. This furthermore corroborates
the conclusion that the “S” shaped feature is indeed the peak of a larger up-
welling. In Supplementary Fig. 3 we show the same statistical distance map as
in Supplementary Fig. 1 but taking the centre of the dark storm (point 5 in
Figure 2) as the reference point. This figure hence shows the likeness of spectra
compared to the central dark storm signature. The SR region stands out as be-
ing distinct from the dark storm signatures, a feature that is further confirmed
by the principal component analysis in Supplementary Figures 4 - 6 discussed
in the Method section.

Once trained on a hyperspectral cube, PlanetNet allows us to quickly and
accurately map salient spectral regions over multiple heterogeneous data sets,
spanning a large area of the planet. Whereas our analysis focused on the training
cube so far, we now use PlanetNet to map a much larger region by including 5
additional data cubes that encompass the original storm, as well as two smaller
storms eastwards. As shown in Figures 3 & 4 we detect the presence of the SR
feature, significantly beyond the spatial coverage initially reported by [5]. In
addition, we find similar spatial/spectral signatures of the stormy region around
a smaller dark storm to the east (42°W), indicating that areas of upwelling are
common around dark storms on Saturn. We provide individual maps of each
mapped component in the Supplementary material (Supplementary Figures 7-
10) as well as the statistical distance map of the SR region across all five data
sets in Supplementary Fig. 2.

Past and current planetary missions produce a wealth of data, too abundant
to be analysed by “hand”. More traditional data analysis techniques force us
to consider only small volumes of data and a global understanding of spatial
distributions of spectroscopic features (e.g. clouds on gas giants) is often lost.
Maps produced by PlanetNet can give us insight into large-scale dynamics of a



planet, while identifying regions of interest for more traditional radiative transfer
calculations. This technique is significantly more sensitive and robust than
simple spectral band subtraction or division and can reveal previously unseen
dynamics in the atmospheres of giant planets. The ability to identify features
in data sets markedly different to the training data (both in pixel scale and
observed angle) allows this technique to be easily scalable to large, planet-wide
mapping of spectral features. PlanetNet can easily be adapted to other data
sets and missions, making it a potentially invaluable tool in the global analysis
of planetary mission data in the future.

All correspondences should be addressed to I.P.W (ingo@star.ucl.ac.uk).
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Figure 1: Flowchart of the PlanetNet algorithm. The blue dots indicate
the central pixel at which the spectrum is extracted from the Cassini/VIMS
data cube. The red squares indicate the corresponding spatial patches centred
on the central spectral pixels. The spatial and spectral data is fed into two
convolutional neural networks for the spatial (top network) and spectral (bottom
network) information respectively. Both convolutional networks are linked to a
fully connected layer combining spatial and spectral convolutional outputs. The
output of the fully connected layer is mapped to the class labels. Please see the
Method section for more information.
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Figure 2: Spatial and spectral characteristics of the PlanetNet identi-
fied features. A: Map of Cassini/VIMS cube V1581233933, coloured according
to the 5 different clusters described in the main text: SR (blue) , 2 (orange),
3 (red), 4 (green), 5 (purple). B: Atmospheric spectra at locations marked on
the map (A), spectrum 1 corresponds to the “S” feature of NHs ice clouds. The
SR spectrum and label correspond to the mean spectrum of the blue designated
area on the map. C & D: Same as B above but with the map’s mean spectrum
subtracted.
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Figure 3: Cloud distribution as mapped by PlanetNet across six over-
lapping data sets. Colours are identical to Figure 2. It is apparent that the
SR feature (blue) occurs in the vicinity of dark storms.
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Figure 4: Stormy region as mapped by PlanetNet across six overlap-
ping data sets. Same as Figure3 but only showing the ’stormy region’ (SR)
referred to in the main text and Figure 2



Methods Here we outline the architecture and training of PlanetNet shown
in Figure 1. It is a two-stream convolutional neural network (CNN), which
analyses the spatial and spectral data of the VIMS data cube separately before
combining information in a common, fully connected network. Convolutional
Neural Networks, also known as translation invariant networks, have been de-
signed specifically for image analysis. As opposed to fully connected deep belief
architectures, they are are translation invariant, mean that image features can
equally be recognised no matter where they occur in the image. Each CNN
layer contains three separate stages: 1) Convolution, 2) non-linear transform
(ReLU) and 3) down-sampling (pooling). In the convolution stage, the 2D im-
age is convolved with a set of ‘filter functions’ or kernels. These filter functions
are continuously learned from the data during training and provide the decom-
position into spatial features (e.g. edges, blobs, etc.). We now convolve each
filter (computing the dot product) with the input image to obtain the activation
map for each filter. In the second stage, we apply a non-linearity transformation
to the activation maps. It is now standard practice to use rectifier linear units
(ReLUs) or leaky ReLU as CNN non-linearity. We here use the classical ReLU
which is given as f(x) = max(0,z) and effectively removes all negative entries
of the activation map, increasing the non-linearity of the transform. Finally,
we down-sample in size, or ‘pool’, the activation maps. Here we use simple
2 x 2 max-pooling, where the maximum value of a 2 x 2 grid is retained. This
procedure is now repeated for the second CNN layer.

The CNN presented here is classical in all aspects apart from the inclusion
of two separate and simultaneous streams that treat the spatial and spectral
data independently before combining both streams in a fully connected layer.
Due to the intrinsic correlations in the spectral channel, we opt for a 1D CNN
architecture instead of fully connected layers only. We refer the interested reader
to the standard literature on neural networks and CNNs (e.g. [17, 18, 19]). The
neural network has been implemented in Tensorflow[20]. The input data on
which training and subsequent classification is performed is denoted by

e RHOXWOXSO (1)

where x is a three-tensor of dimensions H°, W9 and S°, denoting the height,
width and spectral axes of the data cube. The zero index denotes the input (i.e.
data) layer of the neural network. Here and throughout we define tensors and
matrices by lower and upper-case bold letters respectively. For ease of notation,
we also define the sub-tensors ) = «® and x4 = x*W) denoting the spectral
and spatial information only. As shown in Figure 1, the CNN features two
convolution and pooling layers (I € 1,2,...,L) for each spatial and spectral
channel. These can be defined as follows

lel
y; = poolp Z B(y;‘_l ® wj ; + b)) (2)
J

where y! is the CNN output at layer 1 and the feature map i. For the spatial
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and spectral channels, y! constitutes a 2D and 3D tensor (y} ; € RS'xB' and
!

Yo,i

size. y

€ RH ZXWZXBL) respectively with B denoting the individual training batch

-1
J
kernel of size K, and ® designates linear convolution. We define the biases as bl
and note that y° = x. The activation function, 3, is defined as a linear rectifier
(ReLu) unit and a max-pooling has been used for both layers and channels.

After both convolution layers, the spatial and spectral channels are combined
to form the input of a fully connected network. We define the fully connected
part of the neural network as follows

is the feature map of the previous layer and wﬁ’ ; the corresponding

z=B{WeBW - (yg O yx) + 61 + b (3)

where ® denotes the concatenation of ydf and y¥, the outputs of the final
convolution layers. The fully connected layer indices are given by c € 1,2,...,C
and W and b are the weight matrices and biases respectively. The number of
neurons per layer is defined by the hyperparamter M €. For simplicity, we refer
to the set of free parameters as ¥ = {w', b!, W€ bc}.

Finally, we map z to our binary training labels, 6 ; using a softmax regression
layer. To train, we now minimise the cross-entropy of the system.

-1
Cost = — Z [fIn(a) + (1 — 0)In(1 — a)] (4)
where n is the total number of training data (or batch size), 6 the vector of
training labels and a = ¢(z), where ¢(.) is a sigmoid activation function.

Each Cassini/VIMS data cube consists of two spatial and one spectral axis.
The spatial dimensions of the cube are 64 x64 pixels and 256 wavelength points.
As input to PlanetNet, we require spectra/spatial pairs. These are generated
as follows: For every pixel, the full spectrum is extracted, ie. S° = 256.
Surrounding the central pixel, we also extract the spatial information. The
patch size is defined by H® and W (which we later determined to be 20 pixels
each). Here the spatial patch is the mean average over all wavelengths. We
extract spatial/spectral pairs for all 4096 pixels. Note that spatial patches are
overlapping from adjacent pixels.

In order to train the neural network, we must obtain labeled data. This can
be obtained in two ways: 1) labelling individual pixels by hand to mark predom-
inant features or 2) use a statistical clustering algorithm to obtain estimated
labels on which the network can learn and improve. Here we use spectral clus-
tering on the data cube initially presented by [5] to obtain the NHj signature.
Spectral clustering is a preferable clustering algorithm (compared to for exam-
ple k-means or nearest neighbours) when the structures of clusters are highly
non-convex and simple affinity based discriminators break down. For spectral
clustering, we follow [21, 22] and use the sklearn[23] implementation. We define
the symmetric graph Laplacian,

Loym = D™Y2LD7Y/? (5)
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where L = D — A, A is the affinity matrix and D is the degree matrix. The
elements of the affinity matrix are computed using

1
ai,j = exp (—MdQ[iL‘)\,h(L')\’j]) (6)

where i, j are the spatial indices of the data and d? is the L2 norm or Euclidian
distance given by

di,j = Z (mz - wj)z (7)

The degree matrix is given by

D = diag Zam— . (8)
J

Once the graph Laplacian is calculated, we decompose Ly, into its eigenvalues
and eigenvectors and rank them from smallest to largest eigenvalue. We esti-
mate the likely number of clusters present in the data by using the eigenvalue
heuristic[24]

Nepuster = max(€;41 —€;)  fori=[1,2,...,N. — 1] (9)

We now use k-means clustering on the matrix of eigenvectors to divide the data
into Nepyster labeled partitions. This provides us with training labels for each
spatial coordinate (i, 7).

Since these cluster labels are estimated, some uncertainty in the cluster
edges may persist. To mitigate cluster-edge uncertainties, we prune the edges
and discard any pixel that lie along a cluster boundary. Finally, the remaining
data-label pairs are split into 70% training and 30% validation sets.

The neural network is trained for 2 x 10* iterations with mini-batch sizes of
100 spectral/spatial pairs at a time. We train on the training set only and use
the validation set as unseen data to check the network’s ability to generalise over
new data and to gauge any over-fitting. Over-fitting would generally be observed
in systems with decreasing cross-entropy but static or decreasing validation
accuracy. To mitigate over-fitting, we employ a 30% dropout rate across all
free variables, ¥, and a relatively slow learning rate of 0.001. We find that
convergence in cross-entropy is usually observed around 1.5 x 10* training steps
or less with a monotonically decreasing cross-entropy and increasing validation
set accuracy, indicating good convergence and no over-fitting. Training takes
60 minutes on a 6-core Intel Xeon E5 (3.5Ghz) CPU or ~5 minutes on a Nvidia
Tesla K40 GPU.

In order to optimise the size of the neural network, we ran a grid of 1000
hyperparameter sets. We define the hyperparameters as: the size of the spatial-
patch surrounding the central pixel (red square in Figure 1, Hy and Wy); The
number of feature maps for both spatial and spectral channels (IV, é and NY),

the kernel size (K}, and K} ), the down-sampling pool size (Py and Py) and the

12



layer sized of the fully-connected network (M¢). We define a symmetric square
of 20x20 pixels (H,W?) as input and N! = 15 and N? = 40 feature maps for
both spatial and spectral channels for the first and second layers respectively.
Both layers have kernel sizes of Ké) =4 x4 and Kﬁ\ =4 x 1 for the spatial and
spectral channels respectively. We use a factor 2 down-sampling with pooling
sizes Py = 2 x 2 and Py = 2 x 1. We summarise the hyperparameter values in
Supplementary Table 1.

We investigate the training and prediction accuracies after PlanetNet has
been trained on the training cube (TC). Before training, the TC was sub-divided
into 70% training data and 30% test data. The test data is not shown to the
algorithm during training and is used to independently verify the classification
accuracy and provide a diagnostic against over-training. In the case of over-
training, the classification accuracy of the training set will steadily increase
over the training period, whereas the test set accuracy remains unchanged or
decreases. In this case, the neural network is memorising the training set rather
than learning how to generalise. Supplementary Fig. 11 shows the training
(red) and test (purple) accuracies as function of training duration. Both curves
are monotonically increasing and show no signs of overfitting. The training and
test sets reach ~ 95% and ~ 90% classification accuracies. Furthermore, the
same figure plots the cross-entropy (loss function) of PlanetNet during training.

After PlanetNet has been trained, we further verify the classification accu-
racy by testing the NN on a re-sampled, “synthetic” data set. We refer to this
data set as re-sampled test cube (RTC). The RTC was generated by re-sampling
the training cube in such a way as to preserve the statistical properties of the
data but to appear as a new, unseen data to the NN. First, the TC was divided
according to the labels obtained by the spectral clustering. Following the pre-
vious notation, we refer to the TC data pertaining to a label as xg, where 6
is the index of the label. Within each label subset, we randomised the order
of each element of xy to break any close spatial connections in the data. Then
we re-sample each train set, both in the spatial xg, ¢ and spectral @y, A dimen-
sions. For the spatial dimension, we transpose xg, ¢, which is equivalent to a 90
degree rotation. This rotation preserves the underlying properties of the data
but appears as new, unseen data to the NN. The spectral information of each
element in xy, \ was replaced with the average of the two adjacent spectra in the
RTC. Given that all spectral positions in the RT'C are randomised, the newly
generated spectra will effectively sample from the distribution of the cluster.

We now let PlanetNet detect cluster labels on RT'C using spectral and spatial
information, and additionally with spectral or spatial information only. Sup-
plementary Fig. 12 shows the RTC classification for spatial and spectral data.
The left shows the ‘ground-truth’ labels, middle the predicted labels by Planet-
Net and right is the error matrix of pixels miss-classified. PlanetNet achieves a
93% classification accuracy, which is in agreement with the training/test data
classification accuracies.

We now run the classification for spatial-only and spectra-only cases by
setting @y, A = 0 and xg, ¢ = 0 respectively. This results in very poor cluster
label recognition by PlanetNet (48% and 32%, Supplementary Figures 13 & 14,
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respectively). However we note that this is to be expected for models that are
trained on both, spatial and spectral pairs. Suppressing half of the network’s
information results in erroneous predictions. Hence, if the user wants to use,
say, spectral data only for their classification, PlanetNet should be re-trained
on spectral-only data.

In addition to our analysis using PlanetNet, we have also conducted a clas-
sical principal component analysis[25] of the training cube to further verify the
classification derived by PlanetNet. In a recent analysis, Griffith et al.[26] has
shown that PCA analysis of hyperspectral images of Titan can unveil structural
information that otherwise remains hidden in spectral noise. PCA is comple-
mentary to the main analysis using PlanetNet as principal components probe
a different statistics of the data and can hence verify the veracity of Planet-
Net’s analysis. Whereas the spectral clustering of PlanetNet identifies clusters
of similar spatial/spectral regions, PCA decomposes the data along the axes of
highest variances. In other words, PlanetNet is sensitive to the statistical dis-
tance (equation (7)) between data points and hence clusters the data according
to their ‘likeness’, whereas PCA on the other hand decomposes the data by its
variance, broadly speaking its ‘dissimilarity’. Should distinct spectral classes
exist, they will contribute to the variance of the data cube and should hence be
separable as individual principal components. Both methods should converge
to finding the same regions. We find this to be the case, verifying the validity of
our decomposition of the training cube. In Supplementary Figure 12 we show
the first four principal components of the 0.88 - 1.66 ym spectral region alone.
These regions probe the albedo of the clouds and are hence most sensitive to
the high altitude atmospheric variations. The “S” shaped NHj ice feature[5]
is clearly visible in the second to fourth component. Supplementary Figure 13
shows additional PCA maps of the full wavelength range and the thermal emis-
sion component of the spectrum (>4 pm) is shown in Supplementary Figure 14.
Both maps clearly show the presence of the SR region in their second princi-
pal components. When considering the full wavelength range (Supplementary
Figure 13) we see the dark storm to be most prominent in the 15 component,
whereas Supplementary Figure 14 shows the SR region prominently both in the
first and second components. This suggests that spectral variance in the thermal
emission part of the spectrum is strongly driven by the SR region and indica-
tive of turbulent upwelling. Future work will explore the addition of component
separation methods to further augment feature detection sensitivities.
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Supplementary Information

Euclidean Distance maps

Additional maps showing individual components as recognised by PlanetNet
as well as statistical distance plots. For more information, please refer to the
Method section of the main text.
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Figure 5: Map of spectral differences inside the storm region (SR).
A: Map of the SR as function of Euclidian distance (L? norm) from the peak
emission of the “S” shaped ammonia ice feature, here labelled 1 (orange). The
map shows the statistical similarity of each spectrum compared to (1) with
low values being more similar and high values being less similar. B: Spectra
corresponding to the pixels labelled on the map. C - E: Spectral differences
between spectra (2), (3), (4) and (1) respectively.
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Figure 6: Map of spectral differences inside the storm region (SR)
across all six data sets. A: Same Euclidean distance map to figure 5 but for
the larger area shown in figure 4 of the main text, encompassing the stormy re-
gion of the smaller storm at 42°W. All Euclidian distances measured are relative
to the spectrum marked as (1), with small distances indicating a higher degree
of similarity. B: Spectra pertaining to the pixels marked in the map above. C
& D: Spectral differences between spectra in the middle plot and spectrum (1).
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Figure 7: Map of the Euclidian distance (L? norm) from the centre
of the dark storm (red pixel) for all spectra (independent of cluster
label). Similar to supplementary figures5 & 6 the smaller the distance the
higher the similarity between two spectra. The SR region surrounding the dark
storm stands out as being statistically distant (i.e. dissimilar) from dark storm
signatures.
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Principal Component Maps

Maps showing the results of the Principal Component Analysis (PCA) explained
in the Method section of the main text.
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Figure 8: Spatial map of the principal component analysis of the 0.88
- 1.66 ym spectral region. Shown are the first four strongest principal com-
ponents (PC). PC1 is dominated by the dark storm, providing most variance to
the spectral map. The 27? to 4*" PCs show the ammonia ice S-shape feature.
Each principal component map is normalised to unity for clarity.
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Figure 9: Spatial map of the principal component analysis of the full
wavelength range of the instrument. Clearly visible are the dark storm,
the extended SR feature and the high-altitude CH,4 clouds.
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Figure 10: Spatial map of the principal component analysis of the
4.0 - 5.1 ym wavelength range. This range depicts the thermal emission
component of the spectrum. PCs 1 & 2 show the storm (SR) region surrounding
the dark storm.
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Additional PlanetNet component maps

Additional maps showing individual components as recognised by PlanetNet.
For more information, please refer to the main text.
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Figure 11: Map of the second spectral/spatial feature identified by
PlanetNet. This feature corresponds to the orange shaded region (spectrum
2) in Figure 2 of the main text.
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Figure 12: Map of the third spectral/spatial feature identified by Plan-

etNet. This feature corresponds to the red shaded region (spectrum 3) in Figure
2 of the main text.
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Figure 13: Map of the fourth spectral/spatial feature identified by

PlanetNet. This feature corresponds to the green shaded region (spectrum 5)
in Figure 2 of the main text.
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Figure 14: Map of the fifth spectral/spatial feature identified by Plan-

etNet. This feature corresponds to the purple shaded region (spectrum 6) in
Figure 2 of the main text.
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Training and validation

Additional plots and tables pertaining to the training and validation outlined
in the Method section of the main text.

Table 1: Summary of PlanetNet hyper-parameters and their values.

Hyperparameters | Value
HO, wo 20,20
Nl, N2 15,40
K}, K], 4x1,4x%x4
Py, Py 2x22x1
Ml, M? 1024, 10
= Entropy == Training accuracy = Test accuracy
1.0 1.00
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Figure 15: PlanetNet accuracies as function of training duration. Left
Axis/Blue: Relative cross entropy as function of training duration. Right axis:
Training (red) and Test (purple) set accuracy as function of training duration.
Bold lines present a smoothed average.
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Figure 16: PlanetNet recognition accuracy test on the re-sampled
training cube (RTC). The RTC is shown in the left panel (Original La-
bels) with the PlanetNet predicted labels in the centre and the error-matrix
(Prediction errors) showing the wrongly identified pixels. 94% of all pixels were
correctly identified.
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Figure 17: PlanetNet recognition accuracy test on the re-sampled
training cube (RTC) when only the spectral information was con-
sidered. The layout is identical to supplementary figure 16 but here the spatial
information was artificially set to zero, resulting in a very low recognition accu-
racy of 32%.
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Figure 18: PlanetNet recognition accuracy test on the re-sampled
training cube (RTC) when only the spatial information was consid-
ered. The layout is identical to supplementary figure 16 but here the spectral
information was artificially set to zero, resulting in a very low recognition accu-
racy of 48%.
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