
Proceedings of Machine Learning Research vol 75:1–24, 2018 31st Annual Conference on Learning Theory

Empirical bounds for functions with weak interactions

Andreas Maurer AM@ANDREAS-MAURER.EU
Adalbertstrasse 55
D-80799 Mnchen, Germany

Massimiliano Pontil MASSIMILIANO.PONTIL@IIT.IT

Istituto Italiano di Tecnologia, 16163 Genoa, Italy
and
University College London, London WC1E 6BT, UK
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Abstract
We provide sharp empirical estimates of expectation, variance and normal approximation for a class
of statistics whose variation in any argument does not change too much when another argument is
modified. Examples of such weak interactions are furnished by U- and V-statistics, Lipschitz L-
statistics and various error functionals of `2-regularized algorithms and Gibbs algorithms.
Keywords: List of keywords

1. Introduction

A central problem of learning is to relate a finite number of observations to some underlying law.
If the law is not deterministic, the appropriate model is a sequence of random variables Xi taking
values in some space X . Under the idealizing assumption of noninterfering observations of iden-
tically prepared systems, we assume these variables to be independent and identically distributed
according to some probability measure µ on X .

Any quantitative model of the law based on the observations X = (X1, ..., Xn) involves the
computation of functions f : X n → R. For example f (x) could be a bit computed by a machine-
learning program based on the training sample x, or a statistic to estimate some parameter like a
moment, quantile or correlation underlying the observed phenomenon. Here we will only consider
bounded real valued functions f .

What can we say about the expectation E [f ] of f (X)? What about its variance, and how can
we describe the distribution of f (X)?

Without any assumptions on µ, the answer depends on the class of functions under considera-
tion. Many well known and satisfactory answers exist for the sample mean f : [0, 1]n → R given
by

f (x) =
1

n

n∑
i=1

xi. (1)

The Chernov and Hoeffding inequalities (McDiarmid, 1998; Boucheron et al., 2013) give high-
probability estimates of E [f ]. Bernstein’s inequality is often stronger, but contains the variance as
a parameter of the distribution, which requires a separate estimate. Another highlight is the Berry-
Esseen theorem (Berry, 1941) giving rates for the approximation of f (X) by an appropriately scaled
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normal variable, but again both expressions for the limiting distribution and for the approximation
error contain the variance.

The variance of Xi can be estimated by the sample variance vn : [0, 1]n → R

vn (x) =
1

2n (n− 1)

∑
i,j∈{1,...,n}:i 6=j

(xi − xj)2 , (2)

and it is shown by Maurer and Pontil (2009) (see also Audibert et al., 2009) that, for any δ > 0,

with probability at least 1 − δ we have
∣∣∣σ (Xi)−

√
vn (X)

∣∣∣ ≤ √
2

n−1 ln (2/δ). This estimate
can be combined with Bernstein’s inequality to give a purely empirical estimate of expectation,
an empirical Bernstein bound, which is superior to Hoeffding’s inequality for functions of small
variance (Audibert et al., 2009; Maurer and Pontil, 2009). Similarly the variance estimate can also
be used in results about normal approximation.

In this paper we extend these results to general, not necessarily additive functions of independent
random variables. Clearly the same quantitative results cannot be expected in great generality, but
there is a class of functions whose statistical properties are in many ways very similar to those of
the sample mean, even though some of these functions may look highly nonlinear at first glance.

To describe this class we introduce some notation which will be used throughout. For k ∈
{1, ..., n} and y, y′ ∈ X we define the partial difference operator Dk

y,y′ acting on bounded functions
f : X n → R by

Dk
y,y′f (x) = f (x1, ..., xk−1, y, xk+1, ..., xn)− f

(
x1, ..., xk−1, y

′, xk+1, ..., xn
)

.

Note that Dk
y,y′f (x) depends on y and y′, but not on xk.

Definition 1 For f : X n → R we define the seminorms

M (f) = max
k∈{1,...,n}

sup
x∈Xn,y,y′∈X

Dk
y,y′f (x)

J (f) = n max
l,k:l 6=k

sup
x∈Xn,z,z′,y,y′∈X

Dl
z,z′D

k
y,y′f (x) .

For a, b > 0 we say that a function f : X n → R has (a, b)-weak interactions, if M (f) ≤ a/n and
J (f) ≤ b/n.

A sequence (fn)n≥2 of functions fn : X n → R has (a, b)-weak interactions if every fn has
(a, b)-weak interactions.

The seminorm M vanishes on constant functions, the seminorm J vanishes on additive func-
tions. They can be interpreted as distribution-independent distance measures to the linear sub-
spaces of constant and additive functions respectively. Notice the factor n in the definition of J , so
Dl
z,z′D

k
y,y′f (x) ≤ J (f) /n.

M appears in the well known concentration inequality (McDiarmid, 1998; Boucheron et al.,
2013)

Pr {f (X)− E [f ] > t} ≤ exp

(
−2t2

nM (f)2

)
, (3)
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often called Bounded-Difference- or McDiarmid’s inequality. This inequality generalizes Hoeffd-
ing’s inequality to general non-additive functions. Both seminorms M and J appear in the recent
inequality (Maurer, 2017)

Pr {f (X)− E [f ] > t} ≤ exp

(
−2t2

2σ2 (f) + J (f)2 /2 + (2M (f) /3 + J (f)) t

)
, (4)

which generalizes Bernstein’s inequality to non-additive functions.
In this work we give an estimator vf for the variance σ2 (f), also in terms ofM and J (Theorem

2 below), which can be combined with inequality (4) to a purely empirical bound, so as to improve
over McDiarmid’s inequality for functions of small variance, just as the empirical Bernstein bound
for additive functions mentioned above. We also give a result for normal approximation of gen-
eral non-additive functions, also in terms of M and J (Theorem 4), which can be converted to an
empirical result using our variance estimate.

If M and J cannot be appropriately controlled these results are useless. But if a sequence
of functions (fn) has weak interactions, in the sense of above definition, then M (fn) and J (fn)
have linear or sublinear decay, and statistical properties resemble that of the sample mean. This is
intuitively understandable, because (fn) approaches additivity (the mixed second partial differences
go to zero), n times as fast as it becomes a constant (the first partial differences go to zero). Section
2 contains our statistical results for general functions and their specialization to functions with weak
interactions.

The class of functions with weak interactions contains U- and M-statistics of any order and
Lipschitz L-statistics. It also contains some more exotic specimen, as error functionals for `2-
regularization or the KL-divergence between the Gibbs-measures of true and empirical error for
Gibbs algorithms. Section 3 describes examples of weak interactions, all of which obey the results
given in Section 2. An appendix contains proofs, other technical material, and a glossary of notation
in tabular form.

2. Bounds for functions with weak interactions

In this section, we give some statistical properties of the random variable f (X) and specialize them
to functions with weak interactions (a, b), so as to make them directly applicable to the examples in
Section 3.

2.1. Notation, the Efron-Stein and Bernstein inequalities

In the sequel, X will be a measurable space and (µk)k≥1 a sequence of probability measures on
X . The random variables distributed as µk are independent and denoted Xk or Xk ∼ µk or
(X1, ..., Xn) ∼

∏n
1 µk. They are not necessarily identically distributed (µk = µ) unless explicitely

mentioned. With x we denote a vector of the form (x1, ..., xn) ∈ X n and with X a random vector of
the form (X1, ..., Xn) ∼

∏n
k=1 µk. The algebra of bounded measurable functions g : X n → R will

be denoted by An. If g ∈ An and if x has at least n components, then g (x) is the function value
g (x1, ..., xn), and if X has at least n components then g (X) is the random variable g (X1, ..., Xn).
For g ∈ An expectation and variance of g (X) will be abbreviated by E [g] and σ2 (g). A function
g ∈ An is called additive if f (x) =

∑n
i=1 hi (xi) for some real valued hi : X → R.

3



SHORT TITLE

For f ∈ An the k-th conditional variance σ2
k (f) and the sum of conditional variances Σ2 (f)

are the members of An defined by

σ2
k (f) (x) =

1

2
E(Y,Y ′)∼µk×µk

[(
Dk
Y,Y ′f (x)

)2
]

Σ2 (f) (x) =

n∑
k=1

σ2
k (f) (x) .

Note that σ2
k (f) does not depend on xk, that σ2

k (f) (x) ≤ M (f)2 /4 (because the variance of
a bounded random variable is always bounded by a quarter of the square of its range) and that
Σ2 (f) (x) ≤ nM (f)2 /4. For additive functions Σ2 (f) (x) is independent of x and equals σ2 (f).
For non-additive functions this does not hold any more, instead one has the Efron-Stein inequality
(Efron and Stein, 1981; Steele, 1986)

σ2 (f) ≤ E
[
Σ2 (f)

]
, (5)

which gives the general bound σ2 (f) ≤ nM (f)2 /4 on the variance. For functions with M (f) ≤
a/n (in particular for weak interactions) we get

σ2 (f) ≤ a2

4n
. (6)

The Efron-Stein inequality is very sharp for functions with weak interactions. We have

E
[
Σ2 (f)

]
≤ σ2 (f) +

1

4

∑
k,l:k 6=l

EX,Z,Z′,Y,Y ′

[(
Dl
ZZ′Dk

Y Y ′f (X)
)2
]

≤ σ2 (f) +
J (f)2

4
. (7)

The first inequality is due to Houdre (1997) (see also Maurer, 2017), the second is an elementary
estimate. For weak interactions we get

E
[
Σ2 (f)

]
− b2

4n2
≤ σ2 (f) ≤ E

[
Σ2 (f)

]
. (8)

In Maurer (2017) the following Bernstein-type inequality is shown to hold for every f in An and
δ > 0

Pr
{
f − E [f ] >

√
2E [Σ2 (f)] ln (1/δ) + (2M (f) /3 + J (f)) ln (1/δ)

}
< δ. (9)

Using (8) and some elementary estimates for functions with (a, b)-weak interactions we obtain for
δ ≤ 1/e

Pr

{
f − E [f ] >

√
2σ2 (f) ln (1/δ) + (2a/3 + 3b/2)

ln (1/δ)

n

}
< δ.

Since σ (f) decays at least as quickly as a/
√

4n because of (6), this achieves, for large n, at least
the rate of McDiarmid’s inequality (3), but it is potentially much better if σ (f) is very small. This
motivates the search for efficient estimators of σ (f).
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2.2. Variance estimation

We show that for f ∈ An having (a, b)-weak interactions σ (f) can be estimated with high proba-
bility up to order 1/n by an estimator using only n+ 1 observations. This is one of the main results
of this work.

For any m ∈ N, m > 1, 1 ≤ k ≤ m, x ∈ Xm and y ∈ X define the replacement operator
Sky : Xm → Xm and the deletion operator Sk : Xm → Xm−1 by

Skyx = (x1, ..., xk−1, y, xk+1, ..., xn) ∈ Xm

and Sk−x = (x1, ..., xk−1, xk+1, ..., xn) ∈ Xm−1.

Our variance estimator is the function vf ∈ An+1 given by

vf (x) =
1

2 (n+ 1)

n+1∑
j=1

∑
i:i 6=j

(
f
(
Sj−x

)
− f

(
Sj−S

i
xjx
))2

. (10)

Sj−x has the j-th component deleted and Sj−S
i
xjx has the i-th component replaced by the j-th

component and then the j-th component deleted. So both vectors differ only in one component,
which is xi in Sj−x and xj in Sj−S

i
xjx. Also both vectors do not contain any repeated components.

It is obvious how the estimator is to be implemented in a computer program. Computation
requires (n+ 1)2 computations of f , but only a sample of size n + 1. The latter may be a great
advantage, because computing may be cheap, while collecting a sample can be very expensive
(think of surveys or the results of histological examinations in medical applications). We first give
the result in terms of the seminorms.

Theorem 2 Let δ ∈ (0, 1). If f ∈ An and the Xi are identically distributed, then with probability
at least 1− δ in X = (X1, ..., Xn+1)∣∣∣∣√E [Σ2 (f)]−

√
vf (X)

∣∣∣∣ ≤√(2M (f)2 + 8J (f)2
)

ln (2/δ).

For one-sided bounds 2/δ can be replaced by 1/δ.

The proof is given in appendix A. It first establishes that vf is an unbiased estimator for E
[
Σ2 (f)

]
and then uses a concentration inequality for self-bounded functions.

The result requires identical distribution of the Xi, in contrast to the Efron-Stein and Bern-
stein inequalities, but it does not require f to be symmetric. It is important to observe that our
estimator requires one additional observation, as the the variance of f (X1, ..., Xn) is estimated by
vf (X1, ..., Xn, Xn+1).

Because of (7) and (5) we have E
[
Σ2 (f)

]
− J (f)2 /4 ≤ σ2 (f) ≤ E

[
Σ2 (f)

]
. Thus

Pr

{√
vf (X)− J (f) /2−

√(
2M (f)2 + 8J (f)2

)
ln (2/δ) < σ (f)

}
< δ/2,

which together with Theorem 2 immediately gives the following corollary (using δ < 1 =⇒
1/2 ≤

√
ln (2/δ)).
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Corollary 3 Let δ ∈ (0, 1). If f ∈ An has (a, b)-weak interactions and the Xi are identically
distributed, then with probability at least 1− δ in X = (X1, ..., Xn+1)√

vf (X)− K− (a, b)

n

√
ln (2/δ) ≤ σ (f) ≤

√
vf (X) +

K+ (a, b)

n

√
ln (2/δ),

where

K− (a, b) = b/2 +
√

2a2 + 8b2

K+ (a, b) =
√

2a2 + 8b2.

For one-sided bounds 2/δ can be replaced by 1/δ.

The bounds on the variance are of order 1/n. Since the Efron-Stein inequality implies only σ (f) ≤
a/
√

4n, there is a significant estimation benefit for larger values of n.
If f is the sample mean (1), then

f
(
Sj−x

)
− f

(
Sj−S

i
xjx
)

=
1

n

{
xi − xj if i < j

xi−1 − xj−1 if j < i
,

so substitution in (10) shows that the estimator vf = (1/n) vn+1, where vn+1 is the sample variance
(2). Since b = 0 for the sample mean we get the bound∣∣∣∣√vf (X)− σ (f)

∣∣∣∣ ≤ 1

n

√
2 ln (2/δ),

so for the sample mean Corollary 3 gives the same rate as (Maurer and Pontil, 2009).

2.3. Normal approximation

Modulo a lower bound on the variance, we give a finite sample bound on normal approximation for
functions with weak interactions. To formulate the result we use the following distance to normality
of a real random variable W.

dN (W ) = sup

{∣∣∣∣E [h(W − E [W ]

σ (W )

)]
− E [h (Z)]

∣∣∣∣ : h a real Lipschitz-1 function
}
,

where Z ∼ N (0, 1). Thus dN (W ), which has also been used in Chatterjee (2008), is the Wasser-
stein distance between a standardized clone of W and a standard normal variable. We then have the
following general result.

Theorem 4 For f ∈ An let W be the random variable W = f (X). Then

dN (W ) ≤
√
nM (f) (J (f) +M (f))

σ2 (f)
+
nM (f)3

2σ3 (f)
.

The proof is given in appendix B. It relies on an inequality of Chatterjee (2008), which uses
a variant of Stein’s method (Chen et al., 2010) for normal approximation. To apply the result we
need a lower bound on the variance. In the next section we use an empirical estimate, but here we
simply assume a bound of the form σ (f) ≥ Cn−p for some constants C and p. By (6) we must
have p ≥ 1/2. Specializing to weak interactions we obtain with some algebra
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Corollary 5 For f ∈ An let W be the random variable W = f (X). If f has (a, b)-weak interac-
tions and σ (f) ≥ Cn−p then

dN (W ) ≤ Ca (a+ b) + a3

C3n2−3p
.

So if a sequence fn has (a, b)-weak interactions, σ (fn) ≥ Cn−p and 1/2 ≤ p < 2/3, then
the sequence (fn (X)− E [fn]) /σ (fn) converges to a standard normal variable in the Wasserstein
metric. For p ≥ 2/3 the result says nothing about the asymptotic distribution. In the simplest case
p = 1/2 (as with non-degenerate U-statistics) the rate of approach to normality is n−1/2.

2.4. Empirical bounds for weak interactions

Now we will cast the Bernstein inequality (9) and the normal approximation inequality of the pre-
vious section into an empirical form by using the results on variance estimation of Section 2.2. In
this case we will need identical distribution of the variables Xi.

To combine Bernstein’s inequality (9) and the upper bound on the variance of Corollary 3 ele-
mentary estimates give

Theorem 6 (Empirical Bernstein Inequality) If f ∈ An has (a, b)-weak interactions and the Xi

are iid, then for δ > 0 with probability at least 1− δ

f (X) ≤ E [f ] +
√

2vf (X) ln (2/δ) +
(8a/3 + 5b) ln (2/δ)

n
.

While for Bernstein’s inequality we want the variance to be small, for our normal approximation
result, Theorem 4, we want it to be big. The situation is also more complicated, because the variance
now appears in the denominator of the bound, so the estimate may fail. In fact it may even fail for
all members of a sequence, because asymptotic normality needn’t hold. We therefore precede the
empirical bound by a test to verify its applicability.

Theorem 7 Suppose that f ∈ An has (a, b)-weak interactions and the Xi are iid. Let W be the
random variable W = f (X). For δ > 0 let A (δ) and B be the events

A (δ) =

{√
vf (X)

2
≥
K− (a, b)

√
ln (1/δ)

n

}
,

B =

{
dN (W ) ≤

4
(
a2 + ab

)
vf (X)n3/2

+
4a3

vf (X)3/2 n2

}
.

Then Pr (A (δ) =⇒ B) ≥ 1− δ.

The conclusion can also be read as Pr {A (δ) and not B} < δ or Pr {B or not A (δ)} ≥ 1 − δ
or Pr {B|A (δ)}PrA (δ) ≥ PrA (δ)− δ.
Proof Let C (δ) be the event

C (δ) =

{√
vf (X)−

K− (a, b)
√

ln (1/δ)

n
≤ σ (f)

}
.
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Then by Corollary 3 PrC (δ) ≥ 1− δ. But under C (δ) the event A implies√
vf (X)

2
≤
√
vf (X)−

K− (a, b)
√

ln (1/δ)

n
≤ σ (f)

which implies B by Theorem 4 and (a, b)-weak interactions of f .

On a sequence of functions fn this result could be put to work as follows. First fix δ and n and
observe Xn+1

1 . Then compute the variance estimator and check if A (δ) holds. If it doesn’t hold
then n may be to small and we may try a larger n. If we don’t get it too work then the variances
decay too fast and fn may simply not be asymptotically normal, so we give up. If A (δ) holds on
the other hand, we have an empirical bound on normal approximation, which can tell us a lot about
the distribution of f (X).

In the regime where Corollary 5 guarantees asymptotic normality, that is σ (fn) ≥ Cn−p and
1/2 ≤ p < 2/3, Corollary 3 guarantees that the test A (δ) succeeds with high probability for
sufficiently large n.

3. Examples of functions with weak interactions

We give examples of functions having weak interactions and identify the parameters (a, b), so as to
make the results of the previous section applicable. Some obvious closure relations for functions
with weak interactions follow from the fact thatM and J are seminorms. If f1 and f2 have (a1, b1)-
and (a2, b2)-weak interactions respectively and c ∈ R, then f1 + f2 has (a1 + a2, b1 + b2)-weak
interactions, f1 + c has (a1, b1)-weak interactions and cf1 has (|c|a, |c|b)-weak interactions. The
last fact allows to rescale the conveniently scaled examples we choose below.

3.1. The sample mean, V- and U-statistics

Let X = [0, 1]. The sample mean

f (x) =
1

n

n∑
i=1

xi

has seminorm values M (f) = 1/n and J (f) = 0, and therefore (1, 0)-weak interactions. f (X) is
an unbiased estimator of the expectation of a [0, 1]-valued random variable.

V- and U-statistics are generalizations of the sample mean. Fix 1 ≤ m < n, and for any
multi-index j = (j1, ..., jm) ∈ {1, ..., n}m let κj : Xm → [−1, 1] and define V,U : Xm → R,

V (x) = n−m
∑

j∈{1,...,n}m
κj (xj1 , ..., xjm)

U (x) =

(
n

m

)−1 ∑
1≤j1<...<jm≤n

κj (xj1 , ..., xjm) .

V-statistics have their name from Richard von Mises, who studied their asymptotic distributions
(Von Mises, 1947). V (x) receives contributions from multi-indices with multiple occurrences of
individual indices. But in the expression for Dk

y,y′V (x) only those multi-indices j survive, which
contain k, with the corresponding contribution being at most 2n−m. There is a first position where

8



SHORT TITLE

k appears in j, for which there are m possibilities, and the remaining indices ji can assume all
values in {1, ..., n}. It follows that there are at most mnm−1 surviving multi-indices with maximal
contribution 2n−m, whence

M (V ) = max
k

sup
x,y,y′

Dk
y,y′V (x) ≤ 2mnm−1

nm
=

2m

n
.

ForDl
z,z′D

k
y,y′V (x) with k 6= l each contributing index must contain both k and l. For the positions

of k and l there are m (m− 1) possibilities. The remaining m− 2 indices being arbitrary, there is a
total of at mostm (m− 1)nm−2 contributing indices, each making a contribution of at most 4n−m.
Therefore Dl

z,z′D
k
y,y′V (x) ≤ 4m (m− 1) /n2 and

J (V ) = n max
k 6=l

sup
x,z,z′,y,y′

Dl
z,z′D

k
y,y′V (x) ≤ 4m (m− 1) /n.

We conclude that V has (2m, 4m (m− 1))-weak interactions.
U-statistics avoid multi-indices with multiple occurrences of indices. If all the κj are equal to

some permutation symmetric function κ, and the Xi are iid, then U (X) is an unbiased estimator
for E (X1, ..., Xm), which accounts for their name (Hoeffding, 1948). U-statistics are relevant to
metric learning (Cao et al., 2016) and ranking (Clemencon et al., 2008). Similar to V -statistics it is
not difficult to show that U has

(
2m, 4m2

)
-weak interactions (see Maurer, 2017).

U-statistics have been extensively studied. There are normal approximation results for nonde-
generate U-statistics in Chen et al. (2010), which use the Kolmogorov distance and seem to slightly
improve over what we get from substituting

(
2m, 4m2

)
in Corollary 5. These results also contain

variances, which would make them amenable to variance estimation as in Theorem 7.
Peel and Ralaivola (2010) use the fact that the variance of a U-statistic is itself a U-statistic and

use either Hoeffding (1948) or Arcones (1995) versions of Bernstein’s inequality for U-statistics to
estimate the variance. These bounds are however inferior to the Bernstein inequality (9), because
the first does not use the correct variance proxy and the second has a scale proxy which increases
exponentially in the order m. The same problem besets the empirical Bernstein bounds given in
(Peel and Ralaivola, 2010), which is inferior to the general result we get from Theorem 6 except
for the first version of Peel and Ralaivola (2010) in a regime of large m/n and a kernel κ far from
degeneracy.

3.2. Lipschitz L-statistics

Let X = [0, 1] and use
(
x(1), ..., x(n)

)
to denote the order statistic of x ∈X n. Let F : [0, 1] → R

have supremum norm ‖F‖∞ and Lipschitz-constant ‖F‖Lip and consider the function

f (x) =
1

n

n∑
i=1

F (i/n)x(i). (11)

In appendix C we show that f has
(
‖F‖∞ , ‖F‖Lip

)
-weak interactions.

Such statistics also generalize the sample mean, which is obtained by choosing F identically 1.
Appropriate choices of F lead to smoothly trimmed means or smoothened quantiles. For example
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with ζ ∈ (0, 1/2) the choice

F (t) =


0 if t ∈ [0, ζ]
t−ζ

(1/2−ζ)2 if t ∈ [ζ, 1/2]
1−t−ζ

(1/2−ζ)2 if t ∈ [1/2, 1− ζ]

0 if t ∈ [1− ζ]

effects a smoothened median where F has the Lipschitz constant ‖F‖Lip = (1/2− ζ)−2. The case
ζ = 0 has the best guaranteed estimation properties, but its expectation is the coarsest substitute of
the median. As ζ → 1/2 estimation deteriorates, but the expectation becomes closer to a median.

Normal approximation results for these statistics in terms of the Kolmogorov distance are also
given in Chen et al. (2010), similar to what we obtain by substituting

(
‖F‖∞ , ‖F‖Lip

)
in Corollary

5. We are not aware of any results giving Bernstein-type inequalities or tight variance estimation in
this case.

3.3. `2-regularization

While the previous examples had a certain kinship to the sample mean, the following looks quite
different. Let (H, 〈·, ·〉 , ‖·‖) be a real Hilbert space with unit ball B1 = X and define g : X n → H
by

g (x) = arg min
w∈H

1

n

n∑
i=1

` (〈xi, w〉) + λ ‖w‖2 , (12)

where the non-negative real loss function ` is assumed to be convex, three times differentiable and
satisfies ` (0) = 1, and the regularization parameter λ satisfies 0 < λ < 1. Then g is a well-known
regularized algorithm which upon thresholding can be used for linear classification.

Define the empirical and the true losses L̂ and L : X n → R by

L̂ (x) =
1

n

∑
i

` (〈xi, g (x)〉) and L (x) = Ex∼µ [` (〈x, g (x)〉)] ,

where µ is some probability measure on B1. Let

∆ (x) = L (x)− L̂ (x) ,

which measures how much the true and empirical loss of the algorithm differ. It has been shown in
(Proposition 5 Maurer, 2017a), that ∆ has

(
c1λ
−3/2, c2λ

−4
)
-weak interactions, where the constants

ci depend on the derivatives of the loss-function `. In (Maurer, 2017a) this is used to apply the
Bernstein inequality (9) to the random variable ∆ (X). Here we complement this result by simply
substituting the weak interaction parameters in Corollary 3 and Corollary 5 so as to obtain bounds
to estimate the variance of ∆ (X) and to give bounds on normal approximation.

3.4. A chain rule

We interrupt the presentation of examples, to show how new interesting examples of functions with
weak interactions can be generated from given ones, in addition to the obvious closure relations

10
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which follow from M and J being seminorms. First we extend the definitions of M and J to
Banach-space valued functions f : X n → B in an obvious way by setting

M (f) = max
k

sup
x,y,y′

∥∥∥Dk
yy′f (x)

∥∥∥ and J (f) = n max
k 6=l

sup
x,y,y′,z,z′

∥∥∥Dl
zz′D

k
yy′f (x)

∥∥∥ ,
and we say that f has (a, b)-weak interactions if M (f) ≤ a/n and J (f) ≤ b/n. Then we have the
following chain rule, whose proof will be given in appendix D.

Lemma 8 Let B be a Banach space, U ⊆ B convex, f : X n → U , and assume that the function
F : U → R is twice Fréchet-differentiable. Then

M (F ◦ f) ≤ sup
v∈U

∥∥F ′ (v)
∥∥M (f) and

J (F ◦ f) ≤ n sup
v∈U

∥∥F ′′ (v)
∥∥M (f)2 + sup

v∈U

∥∥F ′ (v)
∥∥ J (f) ,

where ‖F ′ (v)‖ and ‖F ′′ (v)‖ are the norms of the linear respectively bilinear functionals F ′ (v)
and F ′′ (v).∥∥F ′ (v)

∥∥ = sup
w∈B,‖w‖≤1

∥∥F ′ (v) (w)
∥∥ and

∥∥F ′′ (v)
∥∥ = sup

w1,w2∈B,‖wi‖≤1

∥∥F ′′ (v) (w1, w2)
∥∥ .

The lemma shows that if f has (a, b)-weak interactions and ‖F ′′ (v)‖ and ‖F ′ (v)‖ are bounded
on U , then F ◦ f has (a′, b′)-weak interactions, where

a′ = a sup
v∈U

∥∥F ′ (v)
∥∥ and b′ = a2 sup

v∈U

∥∥F ′′ (v)
∥∥+ b sup

v∈U

∥∥F ′ (v)
∥∥ .

It also shows our definition of weak interactions with its 1/n-scaling is the only definition of a
class of functions such that M and J are of the same order in n, and the class is invariant under
compositions with C2 functions with bounded derivatives.

3.5. The Gibbs algorithm

We use the chain rule, Lemma 8, to show that several quantities related to the Gibbs algorithm have
weak interactions and thus satisfy the conditions for the results in Section 2.

Let Ω be some space of “models” endowed with some positive a-priori measure ρ and suppose
that ` : (ω, x) ∈ Ω × X 7→ ` (ω, x) ∈ [0, 1] is the loss of the model ω on the datum x ∈ X . The
function H : Ω× X n → [0, 1] defined by H (ω,x) = (1/n)

∑n
i=1 ` (ω, xi) is then just the sample

average, or empirical error of ω on x. Let β be some positive constant, or “inverse temperature”.
The Gibbs algorithm returns the distribution

dπx (ω) = Z−1 (x) e−βH(ω,x)dρ (ω) where Z (x) =

∫
Ω
e−βH(ω,x)dρ (ω) .

Typically this distribution is the stationary distribution of some sample-controlled stochastic process
characterizing the algorithm. The Gibbs algorithm plays a role in the simulation of the equilibrium
state in statistical mechanics (Binder, 1997) or in non-convex optimization such as simulated an-
nealing (Kirkpatrick, 1983). There is also some recent attention because dπx can be the limiting
distribution of randomized algorithms in the training of deep neural networks (Rakhlin et al., 2017).

11
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To analyze the Gibbs algorithm we define the function

f : x ∈ X n 7→ H (·,x) ∈ L∞ (Ω) . (13)

It is easy to verify that this function, which is just a Banach space-valued sample average, has
(1, 0)-weak interactions. Its range is contained in the unit ball of L∞ (Ω).

Related to the Gibbs algorithm is the free energy

Λ (x) = lnZ (x) = ln

∫
Ω
e−βH(ω,x)dρ (ω) ,

which is interesting, because it generates the sample error averaged under the Gibbs distribution

d

dβ
Λ (x) = −

∫
Ω
H (ω,x) dπx (ω) .

Then Λ (x) = Ξ ◦ f (x) where Ξ is defined as

Ξ : G (.) ∈ L∞ (Ω) 7→ ln

∫
Ω
e−βG(ω)dρ (ω) .

It is easy to show that ‖Ξ′ (G)‖ ≤ β and ‖Ξ′′ (G)‖ ≤ 2β2 (see appendix E). The chain rule Lemma 8
then shows that Λ has

(
β, 2β2

)
-weak interactions, with corresponding consequences for a Bernstein

inequality, normal approximation and estimation of variance for the random free energy Λ (X).
Let X be a random variable with values in X . Then the “true” error is given by the function

H0 : ω 7→ EX [H (ω,X)] and the corresponding Gibbs measure is

dπ (ω) = Z−1e−βH0(ω)dρ (ω) .

A question of generalization is how much the measures dπx and dπ differ. We might measure this
difference by the Kullback-Leibler divergence KL (dπx, dπ) of the two measures. A mechanical
computation using the chain rule (see appendix E) shows that the function x 7→ KL (dπx, dπ) has(
4β2 + 2β, 12β3 + 6β2

)
-weak interactions, which again gives useful information about the random

variable KL (dπX, dπ).
There is an intuitive parallel to the case of `2-regularization of Section 3.3. In both cases the

weak interaction parameters increase, with a corresponding deterioration of estimation, as we tune
more closely to the sample, which for `2-regularization means decreasing λ and for the Gibbs algo-
rithm increasing β, or lowering the “temperature”. This fits with the general paradigm of regular-
ization.

4. Summary and some open questions

We have shown that functions with weak interactions have tractable statistical properties, and that
the class of such functions is quite rich, containing a number of well known statistics and other
functions relevant to machine learning and statistics.

Our preliminary survey provides a small probabilistic toolbox which could be used in statistical
learning theory. Apart from the application to `2-regularized classification, and the analysis of Gibbs
algorithms, are there other applications to supervised learning? What is the benefit of finite-sample
bounds for normal approximation? Can the empirical Bernstein bound for non-additive functions
be used in the analysis of reinforcement learning algorithms, just as its additive counterpart? On
the theoretical side, is there a general large deviation principle for weak interactions, in the spirit of
Cramer’s theorem?

12



SHORT TITLE

References

M. A. Arcones. A Bernstein-type inequality for U-statistics and U-processes. Statistics and Proba-
bility Letters, 22(3):239-247, 1995.
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The appendix contains technical material and a table of notations.

Appendix A. Proof of the variance estimation theorem

Define an operator D2 on An by

D2f (x) =
∑
k

(
f (x)− inf

y∈X
Skyf (x)

)2

.

The proof of Theorem 2 uses the following concentration inequality which can be found in (Maurer,
2006, Theorem 13) or Boucheron et al. (2013).

Theorem 9 Suppose f : X n → R satisfies for some a > 0

D2f (x) ≤ af (x) ,∀x ∈ X n, (14)

and let X = (X1, ..., Xn) be a vector of independent variables. Then for all t > 0

Pr {f (X)− E [f ] > t} ≤ exp

(
−t2

2aE [f (X)] + at

)
.

If in addition f (x)− infy∈X S
k
yf (x) ≤ 1 for all k ∈ {1, ..., n} and all x ∈ X n then

Pr {E [f ]− f (X) > t} ≤ exp

(
−t2

2 max {a, 1}E [f (X)]

)
.

Corollary 10 If f ∈ An satisfies (14) and for some b > 0 f (x) − infy∈X S
k
yf (x) ≤ b for all

k ∈ {1, ..., n} and all x ∈ X n then for all δ > 0 with probability at least 1− δ√
f (X)−

√
2a ln (2/δ) ≤

√
E [f ] ≤

√
f (X) +

√
2 max {a, b} ln (2/δ).

For a one-sided bound 2/δ can be replaced by 1/δ.
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Proof If f (x)− infy∈X S
k
yf (x) ≤ b then (f (x) /b)− infy∈X S

k
y (f (x) /b) ≤ 1 and (14) implies

D2 (f (x) /b) ≤ (a/b) (f (x) /b), so by the second conclusion of Theorem 9

Pr {E [f ]− f (X) > t} = Pr {E [f/b]− f (X) /b > t/b}

≤ exp

(
− (t/b)2

2 max {a/b, 1}E [f/b]

)
= exp

(
−t2

2 max {a, b}E [f ]

)
(this is really an alternative formulation of the second conclusion of Theorem 9). Equating the
R.H.S. to δ solving for t and elementary algebra then give with probability at least 1− δ that√

E [f ] ≤
√
f (X) +

√
2 max {a, b} ln (1/δ).

In a similar way the first conclusion of Theorem 9 gives with probability at least 1− δ that√
f (X)−

√
2a ln (1/δ) ≤

√
E [f ].

A union bound concludes the proof.

Proof of Theorem 2 First we show that vf is an unbiased estimator for the Efron-Stein upper bound
E
[
Σ2 (f)

]
. Observe that for 1 ≤ i < j ≤ n+ 1

E

[(
f
(
Sj−X

)
− f

(
Sj−S

i
Xj

X
))2

]
= 2E

[
σ2
i (f)

]
,

while for 1 ≤ j < i ≤ n+ 1

E

[(
f
(
Sj−X

)
− f

(
Sj−S

i
Xj

X
))2

]
= 2E

[
σ2
i−1 (f)

]
.

Thus

E [vf ] =
1

2 (n+ 1)

n+1∑
i=1

∑
j:j 6=i

E

[(
f
(
Sj−X

)
− f

(
Sj−S

i
xjX

))2
]

=
1

n+ 1

n+1∑
i=2

i−1∑
j=1

E
[
σ2
i−1 (f)

]
+

n∑
i=1

n+1∑
j=i+1

E
[
σ2
i (f)

]
=

1

n+ 1

n∑
i=1

(n+ 1)E
[
σ2
i (f)

]
= E

[
Σ2 (f)

]
.

We then apply Corollary 10 to the function vf . Fix x ∈ X n+1, and for each k ∈ {1, ..., n+ 1} let
yk := arg miny∈X S

k
yvf (x). For i, j, k ∈ {1, ...n+ 1} let

aij := f
(
Sj−x

)
− f

(
Sj−S

i
xjx
)

and aijk := f
(
Sj−S

k
yk
x
)
− f

(
Sj−S

i
xjS

k
yk
x
)
.

Then
vf (x) =

1

2 (n+ 1)

∑
i

∑
j:j 6=i

a2
ij . (15)
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Observe that |aij | , |aijk| ≤M (f) and that J(f ◦ Sj−) = J(f) so for j 6= i 6= k 6= j |aij − aijk| ≤
J (f) /n. Also the replacement of a component, which is then deleted, has no effect, so

aikk = f
(
Sk−S

k
yk
x
)
− f

(
Sk−S

i
xk
Skykx

)
= f

(
Sk−x

)
− f

(
Sk−S

i
xk
x
)

= aik.

With reference to a fixed index k ∈ {1, ..., n+ 1} we can write

vf (x) =
1

2 (n+ 1)

∑
j:j 6=k

a2
kj +

∑
i:i 6=k

a2
ik +

∑
i,j:i 6=j∧k/∈{i,j}

a2
ij

 .

In the expression for vf (x)− Skykvf (x) the second sum in the last expression cancels, so

0 ≤ vf (x)− Skykvf (x)

≤ 1

2 (n+ 1)

∑
j:j 6=k

a2
kj +

∑
i,j:i 6=j∧k/∈{i,j}

(
a2
ij − a2

ijk

)
=

1

2 (n+ 1)

∑
j:j 6=k

a2
kj +

∑
i,j:i 6=j∧k/∈{i,j}

(aij − aijk) (aij + aijk)


≤ M (f)2 /2 +M (f) J (f) . (16)

We square and sum over k, and use (s+ t)2 ≤ 2s2 +2t2 for real s, t, and Cauchy-Schwarz to obtain

D2vf (x) =
∑
k

(
vf (x)− Skykvf (x)

)2

≤ 1

2 (n+ 1)2

∑
k

∑
j:j 6=k

a2
kj

2

+

+
1

2 (n+ 1)2

∑
k

∑
i,j:i 6=j∧k/∈{i,j}

(aij − aijk)2
∑

i,j:i 6=j∧k/∈{i,j}

(aij + aijk)
2

= : A+B.

We treat the two terms in turn. For A we get

A =
1

2 (n+ 1)2

∑
k

∑
j:j 6=k

a2
kj

2

≤ M (f)2

2 (n+ 1)

∑
k

∑
j:j 6=k

a2
kj = M (f)2 vf (x) .

For B we again use aij − aijk ≤ J (f) /n and (s+ t)2 ≤ 2s2 + 2t2 to get

B =
1

2 (n+ 1)2

∑
k

∑
i,j:i 6=j∧k/∈{i,j}

(aij − aijk)2
∑

i,j:i 6=j∧k/∈{i,j}

(aij + aijk)
2

≤ 2J (f)2

n+ 1

∑
k

 1

2 (n+ 1)

∑
i,j:i 6=j∧k/∈{i,j}

a2
ij +

1

2 (n+ 1)

∑
i,j:i 6=j∧k/∈{i,j}

a2
ijk
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But by (15) for every k ∈ {1, ..., n+ 1}

1

2 (n+ 1)

∑
i,j:i 6=j∧k/∈{i,j}

a2
ij ≤ vf (x)

and also, by the definition of yk,

1

2 (n+ 1)

∑
i,j:i 6=j∧k/∈{i,j}

a2
ijk ≤ Skykvf (x) ≤ vf (x) .

It follows that B ≤ 4J (f)2 vf (x) and

D2vf (x) ≤
(
M (f)2 + 4J (f)2

)
vf (x) .

Together with (16) this can be used in Corollary 10. Since

M (f)2 /2 +M (f) J (f) ≤ 1

2
(M (f) + J (f))2 ≤M (f)2 + J (f)2 ≤M (f)2 + 4J (f)2 ,

the corollary gives us for any δ > 0 with probability at least 1− δ∣∣∣∣√E [Σ2 (f)]−
√
vf (X)

∣∣∣∣ ≤√(2M (f)2 + 8J (f)2
)

ln (2/δ).

Appendix B. Proof of the normal approximation theorem

To prove Theorem 4 we use a result of Chatterjee (Chatterjee (2008), Theorem 2.2), for which we
need extra notation. Let X′ = (X ′1, ..., X

′
n) be an independent copy of X = (X1, ..., Xn). For a

proper subset A $ {1, ..., n} define the vector XA = XA (X,X′) to be

XA
i =

{
X ′i if i ∈ A
Xi if i /∈ A .

For A $ {1, ..., n} define the random variables

TA = TA
(
X,X′

)
=
∑
j /∈A

(
Dj
Xj ,X′

j
f (X)

)(
Dj
Xj ,X′

j
f
(
XA
))

and T = T
(
X,X′

)
=

1

2

∑
A${1,...,n}

TA(
n
|A|
)

(n− |A|)
.

Theorem 11 (Chatterjee) Let f : X n → R and suppose E [f ] = 0 and σ2 (f) <∞. Then

dN (f (X)) ≤
√
σ2 (E [T |X])

σ2 (f)
+

1

2σ3 (f)

n∑
j=1

E

[∣∣∣Dj
Xj ,X′

j
f (X)

∣∣∣3] . (17)
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Proof of Theorem 4 Both sides of the inequality we wish to prove do not change when a constant
is added to f . We can therefore assume E [f ] = 0 and use Chatterjee’s theorem. We can bound
the second term in (17) immediately by nM (f)3 /

(
2σ3 (f)

)
, so the main work is in bounding√

σ2 (E [T |X]). By the L2-triangle inequality (Minkovsky-inequality) we have

√
σ2 (E [T |X]) ≤ 1

2

∑
A⊂{1,...,n}

√
σ2 (E [TA|X])(
n
|A|
)

(n− |A|)

≤ 1

2

∑
A⊂{1,...,n}

√
E [σ2 (TA|X′)](
n
|A|
)

(n− |A|)
,

where we used Lemma 4.4 in Chatterjee (2008) for the second inequality. So we first need to bound
E
[
σ2 (TA|X′)

]
for fixed A $ {1, ..., n}. This is done with the Efron Stein inequality Efron and

Stein (1981), which gives

E
[
σ2
(
TA|X′

)]
≤ 1

2
E

[
n∑
i=1

(
TA
(
X,X′

)
− S′′i TA

(
X,X′

))2 |X′] ,
where X′′ is yet another independent copy of X, and the operator S′′i acts on functions of 2n
variables and substitutes every occurence of Xi by X ′′i(

S′′i F
) (

X,X′
)

= F
(
X1, ..., Xi−1, X

′′
i , Xi+1, ..., Xn,X

′) .
Now let Vj := Dj

Xj ,X′
j
f (X), Wj := Dj

Xj ,X′
j
f
(
XA
)
, Vij := S′′i Vj = S

′′
i D

j
Xj ,X′

j
f (X) and Wij :=

S′′iWj = S′′i D
j
Xj ,X′

j
f
(
XA
)
. Observe that all of Vj , Wj , Vij and Wij have absolute value bounded

by M (f), and that for i 6= j

|Vj − Vij | ≤ J (f) /n and |Wj −Wij | ≤ J (f) /n.

Then
n∑
i=1

(
TA
(
X,X′

)
− S′′i TA

(
X,X′

))2
=

n∑
i=1

∑
j /∈A

VjWj − VijWij

2

=
n∑
i=1

 ∑
j /∈A,j 6=i

(VjWj − VijWij) + 1{i/∈A} (ViWi − ViiWii)

2

≤ 2
n∑
i=1

 ∑
j /∈A,j 6=i

VjWj − VijWij

2

+ 2
∑
i/∈A

(ViWi − ViiWii)
2

≤ 2

n∑
i=1

 ∑
j /∈A,j 6=i

VjWj − VijWij

2

+ 8nM (f)4 .
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Now, using Cauchy Schwarz,

2

n∑
i=1

 ∑
j /∈A,j 6=i

VjWj − VijWij

2

= 2
n∑
i=1

 ∑
j /∈A,j 6=i

(Vj − Vij)Wj + Vij (Wj −Wij)

2

≤ 4
n∑
i=1

 ∑
j /∈A,j 6=i

(Vj − Vij)Wj

2

+ 4
n∑
i=1

 ∑
j /∈A,j 6=i

Vij (Wj −Wij)

2

≤ 4
n∑
i=1

∑
j /∈A,j 6=i

(Vj − Vij)2
∑

j /∈A,j 6=i

W 2
j + 4

n∑
i=1

∑
j /∈A,j 6=i

V 2
ij

∑
j /∈A,j 6=i

(Wj −Wij)
2

≤ 8

n∑
i=1

∑
j /∈A,j 6=i

J (f)2

n2

∑
j /∈A,j 6=i

M (f)2

≤ 8nM (f)2 J (f)2 .

Putting the chains of inequalities together and using
√
s+ t ≤

√
s+
√
t we conclude that√

E [σ2 (TA|X′)] ≤ 2
√
nM (f) (M (f) + J (f)) .

Thus √
σ2 (E [T |X]) ≤ 1

2

∑
A${1,...,n}

√
E [σ2 (TA|X ′)](
n
|A|
)

(n− |A|)

≤
√
nM (f) (J (f) +M (f))

n−1∑
k=1

∑
A:|A|=k

(
n−1
k

)(
n
k

)
(n− k)

=
√
nM (f) (J (f) +M (f))

By Theorem 11 and the bound on the last term of (17)

dN (f (X)) ≤
√
nM (f) (J (f) +M (f))

σ2 (f)
+
nM (f)3

2σ3 (f)
.

Appendix C. Lipschitz L-statistics revisited

We show that the Lipschitz L-statistics of Section 3.2 have
(
‖F‖∞ , ‖F‖Lip

)
-weak interactions.

For α, β ∈ R let [[α, β]] be the interval [min {α, β} ,max {α, β}]. That f as defined in equation
(11) has

(
‖F‖∞ , ‖F‖Lip

)
-weak interactions is clearly implied by
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Theorem 12 With f as (11) we have∣∣∣Dk
y,y′f (x)

∣∣∣ ≤ ‖F‖∞ diam ([[y, y′]])

n
(18)∣∣∣Dl

z,z′D
k
y,y′f (x)

∣∣∣ ≤ ‖F‖Lip diam ([[z, z′]] ∩ [[y, y′]])

n2
(19)

for any x ∈ [0, 1]n , all k 6= l and all y, y′, z, z′ ∈ [0, 1].

Proof Suppose we can prove the inequalities (18) and (19) for all x ∈ [0, 1]n and all k 6= l and in
the three cases

a z′ ≤ z < y′ ≤ y [[z, z′]] ∩ [[y, y′]] = ∅, non-intersection
b z′ ≤ y′ ≤ y ≤ z [[y, y′]] ⊆ [[z, z′]], inclusion
c z′ ≤ y′ ≤ z ≤ y partial intersection.

The right collumn above enumerates all possible relationships between [[z, z′]] and [[y, y′]].
Then, as (18) and (19) are invariant under the exchanges of k ↔ l, z ↔ z′ and y ↔ y′, we have
proven these inequalities for all possible orderings of z, z′, y and y′. It therefore suffices to prove
the above inequality in the three cases a, b and c.

To further simplify the problem we introduce the vector x̂ ∈ [0, 1]n defined by

x̂i =
(
Slz′S

k
y′x
)

(i)
.

Then x̂ is already ordered, and there are l̂ and k̂ in {1, ..., n} such that l̂ 6= k̂ and x̂l̂ = z′ and
x̂k̂ = y′. Write Fi = F (i/n), so that |Fi| ≤ ‖F‖∞ and |Fi − Fi−1| ≤ ‖F‖Lip /n. Transcribing
to the new variables and omitting the ”ˆ”-symbols, it becomes appearant that we have to prove the
inequalities

A : =

∣∣∣∣∣
n∑
i=1

Fi

(
x(i)−

(
Skyx

)
(i)

)∣∣∣∣∣ ≤ ‖F‖∞ diam
([[
y, y′

]])
and

B : =

∣∣∣∣∣
n∑
i=1

Fi

(
x(i)−

(
Skyx

)
(i)
−
((

Slzx
)

(i)
−
(
SlzS

k
yx
)

(i)

))∣∣∣∣∣
≤
‖F‖Lip diam ([[z, z′]] ∩ [[y, y′]])

n

for all x ∈ [0, 1]n, which are already ordered with xi ≤ xi+1, and all k 6= l and in the three cases
a xl ≤ z < xk ≤ y
b xl ≤ xk ≤ y ≤ z
c xl ≤ xk ≤ z ≤ y

.

We let p, q ∈ {1, ..., n} be such that(
Skyx

)
(p)

= y and
(
Slzx

)
(q)

= z.

The effect which modifying an argument has on the order statistic is a shift and the replacement of
a boundary term. For xk ≤ y we have

(
Skyx

)
(i)

=


xi if i /∈ {k, ..., p}
xi+1 if i ∈ {k, ..., p− 1}
y if i = p

.
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It follows that in all cases a, b and c

A =

∣∣∣∣∣
p−2∑
i=k

Fi (xi − xi+1) + Fp−1 (xp−1 − y)

∣∣∣∣∣
≤ ‖F‖∞

(
p−2∑
i=k

|xi − xi+1|+ |xp−1 − y|

)
≤ ‖F‖∞ (y − xk) ,

which gives the bound on A and therefore (18).
For the second inequality it is easy to see that B = 0 whenever [[xk, y]] and [[xl, z]] don’t

intersect, as in Case a, so we consider only the cases b and c.
Case b (inclusion, xl ≤ xk ≤ y ≤ z). By partial summation we get

B =

∣∣∣∣∣
p−1∑
i=k

(Fi − Fi−1) (xi − xi+1) + (Fp − Fp−1) (xp − y)

∣∣∣∣∣
≤
‖F‖Lip
n

p−1∑
i=k

|xi − xi+1|+
‖F‖Lip
n

|xp − y|

=
‖F‖Lip
n

(y − xk) .

The general principle here is partial summation and the fact that the sum of absolute differences
always collapses to the diameter of an interval because of the ordering.

Case c, (partial intersection, xl ≤ xk ≤ z ≤ y).

B =

∣∣∣∣∣
q−1∑
i=k

(Fi − Fi−1) (xi − xi+1) + (Fq − Fq−1) (xq − z)

∣∣∣∣∣
≤
‖F‖Lip
n

q−1∑
i=k

|xi − xi+1|+
‖F‖Lip
n

|xq − z|

=
‖F‖Lip
n

(z − xk) .

Appendix D. Proof of the chain rule

Proof of Lemma 8 Take arbitrary x ∈ X n, y, y′, z, z′ ∈ X and any k, l, k 6= l. Define a linear
function h : [0, 1]→ U by

h (t) = tf
(
Skyx

)
+ (1− t) f

(
Sky′x

)
.

Then h′ (t) = Dk
y,y′f (x) and

Dk
y,y′F ◦ f (x) = F (h (1))− F (h (0)) =

∫ 1

0
F ′ (h (t))h′ (t) dt

≤
∫ 1

0

∥∥F ′ (h (t))
∥∥∥∥∥Dk

y,y′f (x)
∥∥∥ dt ≤ sup

v∈U

∥∥F ′ (v)
∥∥M (f) .
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This proves the first inequality. For the bound on J define a bilinear function g : [0, 1]× [0, 1]→ U
by

g (s, t) = stf
(
SlzS

k
yx
)

+s (1− t) f
(
SlzS

k
y′x
)

+t (1− s) f
(
Slz′S

k
yx
)

+(1− s) (1− t) f
(
Slz′S

k
y′x
)
.

Then
∥∥ ∂
∂tg (s, t)

∥∥ =
∥∥∥sDk

y,y′f
(
Slzx

)
+ (1− s)Dk

y,y′f
(
Slz′x

)∥∥∥ ≤M (f) and similarly
∥∥ ∂
∂tg (s, t)

∥∥ ≤
M (f) and also

∥∥∥ ∂2

∂s∂tg (s, t)
∥∥∥ =

∥∥∥Dl
zz′D

k
yy′

∥∥∥ ≤ J (f) /n. Thus∣∣∣∣ ∂2

∂s∂t
F (g (s, t))

∣∣∣∣ =

∣∣∣∣F ′′ (g (s, t))
∂

∂t
g (s, t)

∂

∂s
g (s, t) + F ′ (g (s, t))

∂2

∂s∂t
g (s, t)

∣∣∣∣
≤

∥∥F ′′ (g (s, t))
∥∥∥∥∥∥ ∂∂tg (s, t)

∥∥∥∥∥∥∥∥ ∂∂sg (s, t)

∥∥∥∥+
∥∥F ′ (g (s, t))

∥∥∥∥∥∥ ∂2

∂s∂t
g (s, t)

∥∥∥∥
≤

∥∥F ′′ (g (s, t))
∥∥M (f)2 +

∥∥F ′ (g (s, t))
∥∥ J (f) /n

So that

Dl
zz′D

k
yy′F ◦ f (x) = F (g (1, 1))− F (g (1, 0))− (F (g (0, 1))− F (g (0, 0)))

=

∫ 1

0

∫ 1

0

∂2

∂s∂t
F (g (s, t)) ds dt

≤
∥∥F ′′ (g (s, t))

∥∥M (f)2 +
∥∥F ′ (g (s, t))

∥∥ J (f) /n.

The second inequality follows.

Appendix E. The Gibbs algorithm

We substantiate the claims in Section 3.5. For G ∈ L∞ (Ω) define

Z (G) =

∫
Ω
e−βG(ω)dρ (ω)

and an expectation functional

EG [h] := Z (G)−1
∫

Ω
h (ω) e−βG(ω)dρ (ω) for h ∈ L∞ (Ω) .

Then

KL (dπx, dπ) = EH(·,x)

[
ln

(
Z−1 (x) e−βH(ω,x)

Z−1
0 e−βH0(ω)

)]
= F ◦ f (x) ,

where f is defined in equation (13) and F the real function defined on the unit ball B1 of L∞ (Ω)
by

F (G) := EG

[
ln

(
Z (G)−1 e−βG

Z−1
0 e−βH0

)]
= βEG [H0 −G]− lnZ (G) + lnZ0.
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To apply the chain rule we have to bound the derivatives of F = β (Ψ− Φ) − Ξ + lnZ0, where
Ψ,Φ,Ξ : B1 → R are the functions

Ξ (G) = lnZ (G) , Φ (G) = EG [G] andΨ (G) = EG [H0] .

Differentiating we find

Ξ′ (G) [u] = −βEG [u]

Ξ′′ (G) [u] [v] = β2 (EG [uv]− EG [u]EG [v])

so that ‖Ξ′‖ ≤ β and ‖Ξ′′‖ ≤ 2β2. We also have

Φ′ (G) [u] = βEG [G]EG [u]− βEG [Gu] + EG [u]

Ψ′ (G) [u] = βEG [H0]EG [u]− βEG [H0u] .

Since ‖H0‖ , ‖G‖ ∈ B1 we have ‖Φ′‖ ≤ 2β + 1 and ‖Ψ′‖ ≤ 2β. By a somewhat tedious computa-
tion

Φ′′ [u] [v] = 2β2EG [G]EG [v]EG [u]− β2EG [G]EG [vu] + β2EG [Guv]

−β2EG [Gv]EG [u]− β2EG [Gu]EG [v]− 2βEG [uv] + 2βEG [u]EG [v] ,

which gives ‖Φ′′‖ ≤ 6β2 + 4β. Similarly, and a bit simpler, one obtains ‖Ψ′′‖ ≤ 6β2. Adding
these estimates we get

F = β (Ψ− Φ)− Ξ + lnZ0∥∥F ′∥∥ ≤ 4β2 + 2β∥∥F ′′∥∥ ≤ 12β3 + 6β2.

The chain rule then gives

M (F ◦ f) ≤
(
4β2 + 2β

)
M (f) ≤ 4β2 + 2β

n

J (F ◦ f) ≤ n
(
12β3 + 6β2

)
M (f)2 + 0 ≤ 12β3 + 6β2

n
.
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Appendix F. Table of notation

Symbol Quick description Section
X space of observarions 1
Xi independent random variables in X 1
µi distribution of Xi 1
X random vector composed of the Xi 2.1
An bounded measurable functions f : X n → R 2.1
x vector in X n 2.1
E [f ] E [f ] = E [f (X)] = E [f (X1, ..., Xn)] for f ∈ An 2.1
σ2 (f) Variance of f (X1, ..., Xn) for f ∈ An 2.1
Dk
y,y′ partial difference operator 1

Sky substitution operator 2.2
Sk− deletion operator 2.2
M (f) distance to constant functions 1
J (f) distance to additive functions 1
σ2
k (f) k-th conditional variance 2.1

Σ2 (f) sum of conditional variances 2.1
vn sample variance 1
vf variance estimator for f ∈ An. Note vf ∈ An+1 2.2
K−,K+ estimation error coefficients for vf 2.2
dN distance to normality 2.3
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