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ABSTRACT 
 

Apigenin is a naturally occurring plant flavone with prominent 

antioxidant and anti-inflammatory properties. Although apigenin has the 

potential to be a promising molecule also for cancer treatment, its 

delivery to the body requires suitable dosage form design due to 

physicochemical characteristics that lead to poor bioavailability. It is 

classified as a BCS (Biopharmaceutical Classification System) II drug 

with low water solubility and high lipophilicity. 

Improving the solubility of apigenin is crucial, various formulation 

approaches have recently been employed e.g. nanocrystals have increased 
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dissolution rate and antioxidant activity, while polymeric micelles 

increased the solubility to 148 times higher than that crude apigenin and 

showed enhanced cytotoxicity on hepatoma cells. PLGA encapsulated 

apigenin nanoparticles cause mitochondrial apoptosis and even DNA 

targeting could be achieved in skin cancer. 

The chapter reviews current approaches to the formulation of drug 

delivery systems containing apigenin. 

 

 

NATURAL SOURCES, INTAKE AND PHARMACOLOGY 
 

Apigenin is a 4',5,7-trihydroxyflavone (Figure 1) belonging to a vast 

group of polyphenolic compounds called flavonoids. Flavonoids occur 

ubiquitously in the plant kingdom as secondary metabolites. They have a role 

in plant physiology, especially in pigmentation and flavor and also provide 

resistance against pathogens and insects. Six subclasses of flavonoids are 

distinguished - namely flavones, flavonols, flavanones, catechins, 

anthocyanidins and isoflavones - that have hydroxyl and phenolic groups 

variously attached to the common diphenylpropane structure (C6-C3-C6) 

(Ross and Kasum 2002). Generally one or more sugar components are linked 

to the aglycon molecule with O- or C-glycosidic bond in plants. Thus 

flavonoids are presented widely as glucosides in food but they are known to 

demonstrate incomplete absorption. They are abundantly distributed in fruits, 

vegetables and beverages with plant origin such as wine and tea. The average 

daily intake of flavonoids in a normal diet is approximately 1-2 g (Havsteen 

2002). In the Hungarian population the total flavonoid intake was estimated to 

be 18.80 mg with only 0.58 mg apigenin (Lugasi, Hóvári et al 2003). Many 

mechanisms of action have been identified for flavonoids, including 

antioxidant activity (Prochazkova, Bousova et al. 2011), changes in cellular 

signaling, apoptosis induction, anti-proliferation and anti-inflammation (Birt, 

Hendrich et al. 2001), thus suggesting their potential in cancer prevention. The 

use of pure flavonoids as a treatment in many common diseases such as 

cardiovascular and gastrointestinal disorders is increasing. Researchers have a 

growing interest in natural active ingredients to prevent or treat cancer, since 

most drugs currently available in the market have several disadvantages, being 

very toxic, highly inefficient or highly expensive. Unfortunately, the 

apparently effective concentrations of polyphenols in vitro are often higher 

than the absorbed amount measured in vivo. 

Apigenin can be found in a variety of fruits and vegetables (Peterson and 

Dwyer 1998). 
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Figure 1. Chemical structure of apigenin and its glycosides. 

The main sources of apigenin are celery, parsley, onion and chamomile, 

and it is present mainly in glycosides (Database 2014, May). However it 

occurs in a very low amount in the human diet (Meyer, Bolarinwa et al. 2006). 

It is recognized that apigenin has many pharmacological activities like free 

radical scavenging (Horvathova, Novotny et al. 2003, Škerget, Kotnik et al. 

2005) and anti-inflammatory activities (Funakoshi-Tago, Nakamura et al. 

2011, Choi, Islam et al. 2014). Furthermore, it has anticancer effects via 

modifying cell signaling pathways (Patel, Shukla et al. 2007, Shukla and 

Gupta 2010) in several tumor cell lines including skin (Wei, Tye et al. 1990, 

Tong, Van Dross et al. 2007, Abu-Yousif, Smith et al. 2008), breast (Yin, 

Giuliano et al. 2001), colon (Wang, Heideman et al. 2000, Chunhua, Donglan 

et al. 2013) and pancreas (Lefort and Blay 2013, Wu, Yu et al. 2014). Recent 

clinical studies suggest that a diet high in apigenin could potentially reduce the 

incidence of ovarian cancer in women (Gates, Vitonis et al. 2009). 

All of these findings indicate that apigenin is a very promising drug 

candidate against cancer and several other diseases. However, the 

physicochemical and biopharmaceutical properties reveal limited clinical use 

highlighting a need to develop new drug delivery systems. 

 

 

PHYSICOCHEMICAL PROPERTIES AND BIOAVAILABILITY 
 

Apigenin was classified as a drug belonging to BCS II. group 

(Biopharmaceutical Classification System) in a recent study (Zhang, Liu et al. 
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2012). This indicates high permeability but low solubility: the log P value is 

2.87 (Li, Robinson et al. 1997), but the aqueous solubility is very poor either 

in water (1.35 µg/mL) (Li, Robinson et al. 1997) or in buffers. The highest 

solubility value was at pH=7.5 (2.16 µg/mL) (Zhang, Liu et al. 2012) leading 

to poor intestinal absorption. Several studies have reported that the solubility 

of flavonoids depends on temperature, nature of solvents, pH conditions, as 

well as the thermodynamic properties of the compounds which allow 

formation of hydrogen bonds with the surrounding solvent (Saidman, 

Yurquina et al. 2002, Tommasini, Raneri et al. 2004, Xiao, Shao et al. 2011). 

The bioavailability of these molecules has been shown to be influenced by 

their chemical form in foods, the food matrix, and the consumer’s microbial 

flora (Birt, Hendrich et al. 2001). Apigenin could be detected in human plasma 

following ingestion of apigenin-rich food, but in a very low amount. The first 

pass metabolism in the small intestine and the liver in conjunction with 

enterohepatic recycling may play an important role in the poor systemic 

bioavailability observed (Chen, Lin et al. 2003). Several other factors can 

cause low bioavailability, including low solubility and dissolution rate, poor 

membrane permeation, rapid metabolism and elimination. Very less is known 

about the fate of apigenin in the body. 

Gastrointestinal tract is the main absorption site with both active and 

passive transport mechanism. This was confirmed with an intestinal transport 

study where apigenin could be detected in the whole intestine, with the main 

absorption site is probably being the duodenum. The mechanism might be 

passive transport in the ileum and colon segments with a concentration-

independent permeability, while in both the duodenum and jejunum segments 

an active carrier-mediated transport is involved with concentration-dependent 

permeability behavior (Zhang, Liu et al. 2012). It seems likely that apigenin in 

natural form bound to β-glycosides (apiin, apigetrin) provides better 

bioavailability, as the absorption of other flavonoid glycosides is generally 

more efficient than the absorption of aglycones. (Hollman P C 1996). This 

result is more likely because glycosides are water soluble forms of the aglycon 

and more stable, (e.g. against heating such as cooking), thus more glycosides 

can get to the body (Nielsen, Young et al. 1999). However, the sugar group 

makes the molecule quite polar (log P < 0), and therefore hindering cellular 

uptake and passage through the cell membrane (Walle and Walle 2002, Walle, 

Hsieh et al. 2004). It was thought that flavonoids could not absorb through the 

small intestine because glycosides can only be hydrolyzed by a β-glucosidase 

enzyme of microbial flora in the colon (Pekić, Zeković et al. 1994). However, 

recently three types of human β-glucosidase enzymes were discovered; one of 



Drug Delivery Approaches for Apigenin 5 

them capable of breaking the glycosidic bond and is located in the cells of the 

small intestine, liver and kidney (Asim 1993, Robert, Venkatakrishnan et al. 

1993, Berrin, Czjzek et al. 2003). In blood circulation, apigenin binds to the 

main carrier protein – human serum albumin (HSA) – with hydrophobic and 

electrostatic forces. It is noteworthy that there are several type of binding 

mode between apigenin and HSA, but most of them are very instable (Yuan, lv 

et al. 2007). 

 

 

DRUG DELIVERY APPROACHES 
 

In the last few decades the use of nutraceuticals to prevent chronic 

illnesses like diabetes, cardiovascular diseases and cancer has been rapidly 

emerging. These naturally occurring molecules possess antioxidant activity 

therefore can be effective against oxidative damage induced diseases. Various 

bioactive compounds from nutraceuticals and herbal medicines like flavonoids 

and other polyphenols have proven to be effective and have been applied with 

safe outcomes. Nevertheless, the exact dose and the complex mode of action 

are still unfolding areas (Nijveldt, van Nood et al. 2001). There is a need to 

investigate the influential factors on e.g. antioxidant activity during 

formulation development. 

In a recent study the antioxidant activity influenced by extraction process 

was measured. It was concluded that temperature and grinding have negative 

effect on antioxidant activity and flavonoid content, moreover the glucosides 

have lower antioxidant activity than aglycone (Pápay and Antal 2014). 

However, their low bioavailability in vivo limits their usage in medical therapy 

(Nijveldt, van Nood et al. 2001). Researcher’s attention has been drawn by 

nanotechnology which can change the pharmacokinetics and biodistribution 

thus improving the bioavailability and effectiveness (Huang, Yu et al. 2010). 

Controlled drug delivery systems makes targeted drug delivery possible thus 

leaving the healthy tissues unharmed and decrease the potential of side effects. 

This is extremely important in case of systematically administered 

chemotherapeutic agents that can cause severe side effects (Ferrari 2005, 

Merisko-Liversidge and Liversidge 2008). On the contrary, phytochemicals 

with anticancer properties have mild or negligible side effects. Several 

flavonoids including quercetin, luteolin and rutin were loaded into 

nanoparticles and have been found to be useful as nanomedicine (Nair, Sung et 

al. 2010). Solubility improvement of apigenin is crucial in order to achieve 

therapeutic effect as observed previously, and the delivery of apigenin requires 
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appropriate pharmaceutical formulation to provide protection of the 

therapeutically active molecular form until delivery to the target tissue. In the 

last decades a number of drug delivery approaches for apigenin have been 

developed, including the use of nanotechnology. 

 

 

Encapsulation into Inclusion Complexes and Colloidal Carriers 
 

Encapsulation into inclusion complexes or colloidal carriers may serve as 

technologies for enhancement of solubility and bioavailability. 

The molecular inclusion complexation can be achieved by using well 

known pharmaceutical solubilizers, namely cyclodextrins (CD). Natural CDs 

are consist of 6 (α), 7 (β), 8 (γ) glucopyranose units. These molecules are 

cyclic oligosaccharides made from starch by bacterial enzymatic conversion. 

They have truncated cone shape with hydrophobic cavity and hydrophilic rim 

due to the chair conformation of the units. They have the ability to form non-

covalent dynamic inclusion complexes with poorly water soluble drugs thus 

increasing their aqueous solubility, stability and bioavailability, especially for 

BCS II. and IV. drugs (Loftsson and Brewster 1996), (Szente and Szejtli 

1999). A number of data have been reported in the last years about the 

inclusion of plant materials (Pinho, Grootveld et al. 2014), but only one about 

the complexation of apigenin. Kim et al. investigated the aqueous solubility of 

apigenin with natural β-CD, its methylated (heptakis-(2,6-di-O-methyl)-β-

cyclodextrin, DM-β-CD) and hydroxylated (2-hydroxypropyl-β-cyclodextrin, 

HP-β-CD) derivates. The possible structure of complexation can be seen on 

Figure 2. The highest solubilization efficiency could be achieved with HP-β-

CD: 11.5 fold increase with 2 mM HP-β-CD compare to water. They also 

conducted phase solubility studies, where 1:1 stoichiometric flavonoid/CD 

complexation can be assumed from the plotted phase solubility diagrams. 

Stability constant (KC) values were the following: 827.6 with β-CD, 1038.6 

with DM-β-CD and 4511.5 with HP-β-CD. The strongest complexation occur 

with HP-β-CD, possibly due to hydrogen bonds between apigenin and 

hydroxyl groups (Kim H 2008). The degree of hydroxylation affects the 

hydrogen bonding capacity, and thus interactions with membrane (Ollila, 

Halling et al. 2002). 

For improving biological activity, apigenin can be encapsulated into 

liposomes or micelles, too (Figure 3). 

Lipid nanocapsules are patented biomimetric carriers which have 

characteristic hybrid structure of polymer nanocapsules and liposomes. 
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Figure 2. Scheme for the molecular inclusion complexation of apigenin with 

cyclodextrin. 

 

 

Figure 3. Encapsulation of apigenin into colloidal carriers. 

Lipid nanocapsules (LNC) were applied to encapsulate apigenin with 

phase inversion method. Generally medium-chain triglycerides build up the 

oily core which is surrounded by mixture of lecithin and pegylated surfactant 
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as a membrane. One of their advantages compared to liposomes the solvent 

free preparation process and longer stability, up to 18 months (Huynh, 

Passirani et al. 2009). The experiment was optimized by simplex lattice design 

experiment, for indexes drug loading and encapsulation efficiency was used. 

The optimal formulation resulted 1.26 ± 0.05% drug loading and 95.86 ± 

0.38% encapsulation efficiency. The total apigenin concentration was 5.88 

mg/mL with well dispersed, spherical in shape nanocapsules with average 

particle size 46.1 nm and -28.18 mV zeta potential. The in vitro release 

behavior showed two phase dynamics process and in vivo MTT assay showed 

enhanced antiproliferative activity. The study concluded that lipid 

nanocapsules are potential carrier for apigenin to improve its solubility and 

biological activity (Ding, Chen et al. 2013). 

 

 

Topical Delivery 
 

One of the studies was to investigate the influence of vehicle, distant 

topical delivery and biotransformation on chemopreventive activity of 

apigenin in mouse skin. Dorsal and abdomen skin of female SENCAR mice 

were treated and compared with apigenin in different model vehicles: DMSO, 

acetone/DMSO (4:1) and propylene glycol/DMSO (4:1). Apigenin showed to 

be effective in the order of DMSO> acetone/DMSO > propylene 

glycol/DMSO. Although most of these vehicles may not be suitable for human 

use, one of the goals of the study was to investigate whether apigenin can get 

into the blood circulation through the skin. The results suggested that apigenin 

permeate only locally to the skin tissues, with no transdermal permeation 

observed. The biotransformation experiments concluded that sulfate and 

glucuronide metabolites are not involved in the chemopreventive activity of 

apigenin (Li, Pinch et al. 1996). 

Incorporation of apigenin into a topical liposomal formulation showed 

success as substitutes for corticosteroid therapy in a clinical study. The 

apigenin-enriched, standardized chamomile extract were encapsulated into 

Natipide®II, a semi solid liposome gel, containing 20% of purified 

phospholipid fraction. The effectiveness of this formulation was compared to a 

non-liposomal oil-in-water cream, containing 5% Eumulgin® VL 75 as 

emulsifier. In vitro dissolution studies showed superior characteristics for 

liposomal creams. In vivo both were well tolerated and reduced inflammation, 

however, the liposomal formulation had slightly better therapeutic effect 

despite the same drug concentration. These results indicate that liposomes can 
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enhance the penetration into the skin and the formulation strategy has a great 

importance in therapeutic efficiency. Based on this clinical study, apigenin-

enriched formulations showed a great promise as a substitutes of corticosteroid 

therapy for e.g. eczema without severe side-effects (Arsic, Tadic et al. 2011). 

Drug delivery of apigenin into the skin is not only as an alternative but as 

a first choice treatment showed promising results against skin cancer. This 

disease is becoming resistant to conventional chemotherapy therefore 

improved drug delivery like mitochondria and DNA targeting is needed. In a 

recent study the efficacy of apigenin-loaded PLGA nanoparticles for 

mitochondrial targeting was tested (Das, Das et al. 2013). PLGA (poly (lactic-

co-glycolid acid) is a biodegradable, biocompatible and non-toxic material, 

one of the most successfully developed polymer. Its hydrolysis leads to two 

non-toxic metabolites: lactic acid and glycolic acid thus minimal toxicity is 

associated with the use of PLGA. It is approved by the FDA and European 

Medicine Agency for parenteral administration. Several formulations and 

methods of production for various drugs are well described. It is also able to 

protect the encapsulated drugs from degradation. Furthermore, sustained 

release and even specific organ or cell targeting can be achieved (Danhier, 

Ansorena et al. 2012). PLGA nanocarriers have the advantage of improving 

the permeability of the drug and showed enhanced delivery through mice skin. 

Thus, the aim of the study was to determine whether nano-encapsulated 

apigenin have greater anti-proliferative effect on UV-B and benzo(a)pyrene 

induced skin cancer in mice. Encapsulation was prepared using a one-step 

procedure of nanoprecipitation. Atomic force microscopy image showed that 

the majority of the particles are uniform and have spherical shape. The mean 

diameter was 101 nm with 87.2% encapsulation efficiency. Controlled release 

up to 72 h could be observed with a biphasic release profile characteristics, the 

initial burst release lasted for 16 hours. In order to determine the efficacy of 

nano-encapsulated apigenin histopathological sections and chromosomal 

aberrations were studied. Results showed that encapsulation improved the 

effectiveness due to small size and faster mobility; it reduced tissue damage 

and frequency of chromosomal aberrations. Moreover mitochondrial-apoptosis 

in cancerous tissues could be observed therefore nano-encapsulated apigenin 

appears to be promising in the skin cancer therapy (Das, Das et al. 2013). The 

same group found that PLGA nano-encapsulated apigenin had the ability to 

enter the nucleus thus directly target DNA. This suggests that PLGA 

nanoparticles can generate greater apoptotic effect and faster action and can 

prospectively be a new anti-cancer strategy in drug delivery to the skin (Das, 

Das et al. 2013). 
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Recently, a novel topical delivery system was developed for apigenin 

using ethosomes. This novel type of liposomes can enhance absorption and 

solubility due to 20-25 % (v/v) of lower alcohol content such as ethanol or 

propylene glycol. Their high deformability helps to transport the drug into the 

deeper layer of the skin more effectively than conventional liposomes. The 

optimal formulation was identified by uniform design experiment. Binary 

ethosomes were prepared to increase the stability and reduce aggregation using 

ethanol and propylene glycol. Lipoid S 75 (phosphatidylcholine containing 68-

73% of soybean lecithin) was chosen as lipid phase. To compare the 

effectiveness of ethosomes, empty ethosomes with external apigenin, 

conventional liposomes and deformable liposomes (containing Tween 80) 

were prepared with mechanical dispersion method. All formulations were 

loaded with 0.02% (w/v) apigenin. The volume ratio of the lower alcohols 

significantly affected the mean ethosome size. With increasing amount of 

propylene glycol the size increases or decreases with the total amount of 

alcohols. The particle size of the formulations ranged between 36.61 ± 1.78 

nm and 698.33 ± 124.30 nm, with zeta potentials between 10.14 ± 2.04 mV 

and 27.67 ± 3.23 mV. The optimum formulation had particle size distribution 

of 67.09 ± 4.10 nm with 19.30 ± 0.89 mV zeta potential. Entrapment 

efficiency of the optimum ethosomes was 91.22 ± 6.38 %, significantly higher 

than the other formulations 89.55 ± 1.57 % for liposomes and 81.93 ± 0.63 % 

for deformable liposomes. Increased level of Lipoid S 75 increased the 

entrapment efficiency of apigenin and the stability at room temperature for 30 

days. Skin deposition and transdermal efflux experiments were also 

conducted. Skin deposition measurement revealed that increasing amount of 

propylene glycol decreased the skin deposition of apigenin, however, this 

increased with higher amount of Lipoid S 75 and lower alcohol concentration 

in the formulation. High concentration of lower alcohols can positively 

influence the flexibility and fluidity of the ethosomes therefore increased 

deformability can enhance the penetration of the drug through stratum 

corneum. Considering these findings, the optimum formulation should consists 

of 5% Lipoid S 75 and a mixture of lower alcohols in the ratio of 1:10 (v/v) 

propylene glycol to ethanol. Transdermal efflux experiments showed similar 

result regarding the increased propylene glycol ratio to ethanol. Ethanol is a 

one of the most used penetration enhancer and co-solvent but it often causes 

excessive transdermal drug flux. Propylene glycol was therefore added to 

increase the viscosity, hygroscopicity and stability thus enhancing the 

accumulation into deep skin layers. Superior skin targeting could be achieved 

in vitro with these optimized ethosomes. This improved permeability of 
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apigenin into the skin is mostly related to the vesicle deformability and smaller 

particle size of ethosomes than conventional and deformable liposomes. 

Conventional liposomes did not penetrate deeply into the skin and in case of 

deformable liposomes the deposition of apigenin was even slower. However, 

there were number of differences between in vivo and in vitro skin deposition 

profiles, with ethosomes having the strongest effect on reducing inflammation 

induced by ultraviolet B (UVB) light. Ethosomes therefore can be a promising 

tool for superior topical delivery and targeting (Shen, Zhang et al. 2014). 

Apigenin nanocrystals were prepared also as a skin protective formulation 

against UVB. Nanosuspension or so-called nanocrystals - when the drug 

particles are in crystalline state - are nanosized and carrier free colloidal 

dispersions consisting of drug particles with only a small amount of stabilizer 

e.g. Plantacare 2000 UP® (alkyl polyglycoside). The main advantages of 

nanocystals are increased dissolution velocity and saturation solubility which 

results in increased concentration gradient between the formulation and the 

skin and therefore prolonged contact with the skin due to their adhesiveness 

(Müller and Peters 1998). Nanocrystals can be produced with “top-down” 

(reduce particle size) or “bottom-up” (growth of particles from molecules) 

technologies. The “top-down” technology e.g. wet milling or high pressure 

homogenization is widely used in pharmaceutical research because of the 

easier scale up for the industry. Since 2001, smartCrystals® technology has 

been used. Nanocrystals prepared with this combination technology (pre-

treatment step followed by high pressure homogenization step) show better 

characteristics e.g. physical stability. In this study the combination technology 

- bead milling and high pressure homogenization - was used to prepare 

apigenin smartCrystals. Significant reduction in size was observed after each 

bead milling process until the 5th passage therefore it was terminated after 7 

cycles, followed by low pressure (300 bar) homogenization step. Generally 

low pressure (100-500 bar) yields smaller and more homogenous nanocrystals. 

The photon correlation spectroscopy (PCS) diameter of the prepared 

nanocrystals was 396 ± 12 nm with 0.205 PdI ± 0.007. Low PdI indicates 

better physical stability. Light microscopy measurement showed uniform 

crystal distribution and no large crystals (>1µm) or aggregates could be 

detected. 1% of Plantacare 2000 UP® stabilizer provide optimal stability. Zeta 

potential measurements indicated well charged surface stability (-38 mV). X-

ray diffraction (XRD) revealed no amorphous stage which would reduce the 

stability and shelf life of the product. The developed smartCrystals can be 

easily utilized for further use as gel or cream where possibly a faster 

dissolution rate and increased permeation would be achieved. Furthermore, the 
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in vitro antioxidant capacity of the nanosuspension is doubled compared to the 

original suspension (Al Shaal, Shegokar et al. 2011). 

 

 

Oral Delivery 
 

Orally administered apigenin has also a great potential in anticancer 

therapy but the extensive metabolism and poor aqueous solubility make it 

challenging. Nanocrystals can be further used to improve the oral 

bioavailability and also produce reproducible oral absorption. A new 

preparation method, SAS (supercritical antisolvent process) has been 

developed recently. This “bottom-up” process (recrystallization technology) 

requires no surfactant or other excipients and based on one kind of 

supercritical fluid technology. Briefly, the organic solution of the drug is 

injected into the supercritical fluid (generally CO2) and the drug precipitates as 

fine particles as the solvent get extracted and the drug solution gets 

supersaturated. 

The improved dissolution rate of the nanocrystals might be the key factor 

to increase the bioavailability and an effective formulation strategy for oral 

drug delivery (Zhang, Huang et al. 2013). Zhang et al measured the 

physicochemical and pharmacokinetic properties of the coarse powder and the 

prepared apigenin nanocrystals by SAS process. Morphological evaluation of 

the nanocrystals by scanning electron microscopy revealed regular shape and 

smooth surface with particle size of 400-800 nm. The mean particle size was 

determined to be 562.5 ± 56 nm with 0.92 ± 0.21 PdI according to PCS 

measurements. The crystals were mainly unaltered considering XRPD (X-ray 

powder diffractometry) and DSC (differential scanning calorimetry) analysis 

which means beneficial physicochemical stability. Moreover, FT-IR analysis 

showed that apigenin remained chemically stable during the process. 

Conducting in vitro dissolution studies, nanocrystals have higher dissolution 

platform (more rapid and higher cumulative amount) which can be attributed 

to the enhanced saturated solubility due to the reduced particle size. Only 40% 

of the coarse powder was dissolved in a 120 min study under sink conditions 

(0.1 M PBS 6.8 with 0.5% Polysorbate). In contrast more than 90% dissolved 

within 20 min, as apigenin nanocrystals, demonstrating good in vitro 

dissolution behavior. The plasma concentration of apigenin following 

intravenous administration in vivo decreased rapidly with time and followed a 

biphasic pattern due to the initial distribution and metabolism in the tissues. 

The formulation administered orally resulted much lower serum concentration, 
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but still higher than the coarse powder. The Cmax and AUC0-12 h were enhanced 

by 3.6 and 3.4 fold compared to apigenin coarse powder. The absolute 

bioavailability was enhanced from 2% up to 6.9%. It was concluded that 

nanocrystals with much smaller size and larger surface area can significantly 

improve the dissolution rate which contributes to higher Cmax and AUC0-12 h 

after oral administration. Furthermore, increased muco-adhesion and 

gastrointestinal transit time can be assumed. 

In another paper mixed TPGS (D-α-tocopherol acid polyethylene glycol 

succinate) modified phospholipid micelles were designed to increase the oral 

bioavailability of apigenin. The vesicular structure of the phospholipid 

complexes have limited stability therefore TPGS - a water soluble derivate of 

natural Vitamin E - was added. It is formed by the esterification of Vitamin E 

succinate with polyethylene glycol (PEG) and therefore contains a hydrophilic 

head (PEG) and a lipophilic tail (Vitamin E) like other surface active 

molecules. The relatively low CMC (0.02% w/w) makes it an ideal molecular 

biomaterial for developing liposomes and nanoparticles. It has been used as a 

solubilizer, stabilizer and absorption enhancer. It can prolong the half-life of 

the drug in the plasma and enhance cellular uptake but most importantly 

inhibits P-glycoprotein increasing oral delivery (Zhang, Tan et al. 2012). The 

apigenin-phospholipid-TPGS micelles were prepared with thin film hydration 

method. The 3D molecular modeling showed that apigenin was positioned in 

the hydrophobic chains of lecithin, directed to the glycerol moiety and 

similarly in the hydrophilic PEG chains of TPGS where intramolecular 

hydrogen bonds and electrostatic forces possibly play a role in the interaction. 

The 3D structures is shown on Figure 4. The computer model prediction - that 

PEG chains are directed to the surface of the micelle – is confirmed by the 

negative zeta potential data (-12.94 mV). The complexation with 

phospholipids was verified by FT-IR and NMR spectroscopy measurements 

while the interaction with TPGS was studied with surface tensiometry. The 

encapsulation efficiency was 87.35%, drug loading was 12.6% with 137.1±3.4 

nm particle size. In vitro release experiments showed an initial controlled 

release for 2 hours and the plateau was reached after 15 hours. Increased 

intestinal absorption up to 2.4 fold and higher cellular uptake with significant 

cytotoxicity effect on A549 cancer cell lines could be achieved. 

In vivo 72.9% inhibition in S180 carcinoma mice were observed. These 

results suggest that TPGS micelles combined with phospholipid complex 

technology can be a novel way for oral drug delivery (Munyendo, Zhang et al. 

2013). 
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Figure 4. TPGS (D-α-tocopherol acid polyethylene glycol succinate) modified 

phospholipid micelles to increase the oral bioavailability of apigenin. 

Oral liquid dosage forms are therefore usually preferred; self-

microemulsifying systems (SMEDDS) – a novel and promising technology for 

enhancing oral absorption has gained attention recently. SMEDDS contains 

oil, surfactant, co-surfactant and the drug. The drug can be solubilized in the 

oil phase and/or on the surface of the surfactant and co-surfactant in the 

microemulsion. Therefore the surfactant and co-surfactant play an important 

role in the solubilization of the drug. Mixing with water can produce 

thermodynamically stable oil-in-water microemulsion. The drug is dissolved 

in small droplets (size <100 nm) therefore the large surface area can enhance 

drug absorption (Pouton 2000). This system shows high drug entrapment and 

fast dissolution but the increase in the oral bioavailability is still needs to be 

estimated (Narang, Delmarre et al. 2007). 

Zhao et al investigated a self microemulsifying delivery system for 

apigenin, optimized by a simplex lattice experiment design. Ternary phase 

diagrams were also constructed from the excipients with high solubility of 

apigenin to obtain the most efficient concentration ranges for microemulsions. 

The apigenin exhibited the highest solubility in CapryolTM 90 oil (1.39 ± 0.03 

mg/mL), in Tween 80 surfactant (26.59 ± 1.16 mg/mL) and in Transcutol®HP 

co-surfactant (18.16 ± 0.43 mg/mL). The drug loading depends largely on drug 

solubility in the oil phase. The surfactant should be relatively hydrophobic 

(hydrophilic-lipophilic balance, HLB < 12) to obtain high self-

microemulsifying ability (immediate formation of o/w droplets) and forms 

stable microemulsion when diluted with aqueous media (Kohli, Chopra et al. 
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2010). Although Tween 80 exhibited the highest apigenin solubility, it could 

not form SMEDDS with Transcutol®HP and CapryolTM 90. PEG 400 was 

selected for the co-surfactant screening along with Transcutol®HP, however, 

its higher hydrophilic property could destroy the emulsion system. Finally, the 

optimal formulation consisted of 60% Cremophor®EL, 30% Transcutol®HP 

and 10% CapryolTM 90. 7500-fold increase in water solubility of apigenin 

could be achieved with 17.1 nm average particle size and zeta potential -5.18 

mV. The concentration of apigenin was selected to maximum 7 mg/g since at 

levels exceeding this apigenin precipitated during dilution with water. 

Transmission electron microscopy (TEM) images showed spherical droplets 

without agglomeration. 30 s was enough for the formation of microemulsion 

after dilution with distilled water and it did not precipitate after 8 hours (1 g of 

SMEDDS to 100 mL distilled water). The droplet size can be influenced by 

many factors and it plays an important role in the absorption. Interestingly, the 

size of this formulation was not affected by pH and ionic strength (diluted with 

distilled water, 0.9% NaCl, pH 6.8 PBS, 0.1 M HCl) and various mixing ways 

(vortex, magnetic stirring) but influenced by amount of apigenin. In vitro 

dissolution study demonstrated fast dissolution: 95 % of apigenin was released 

within 10 minutes. All of the results confirmed that SMEDDS could enhance 

the solubility of apigenin as a potential carrier for oral absorption (Zhao, 

Zhang et al. 2013). 

Nanosized polymeric micelles with particle size ranging from 10-100 nm 

have been recognized as a potential drug delivery systems for anticancer 

drugs. Their small size allows accumulation in cancerous tissues and 

prolonged circulation time without being recognized by reticuloendothelial 

system (RES). Conventionally, biocompatible and self-assembly amphiphilic 

block copolymers can form core-shell structure in aqueous media. The 

hydrophobic fraction is able to incorporate poorly water soluble drugs as a 

core while the hydrophilic chains crosslinking outside and form a shell (Croy 

and Kwon 2006). In a recent study apigenin was successfully loaded into 

polymeric micelles composed of Pluronic P123 and Solutol HS15, to improve 

its water solubility with a thin-film dispersion method (Zhai, Guo et al. 2013). 

Pluronic P123 is one of the most widely used triblock copolymer with a 

structure PEO-PPO-PEO. The hydrophobic PPO group comprises 70%, thus 

providing suitable microenvironment for hydrophobic drug while 30% PEO 

can form a relatively thin shell with reduced stability, necessitating further 

modifications (Schillen, Jansson et al. 2008). Solutol HS15 (polyethylene 

glycol-660 hydroxystearate) is recorded in the European Pharmacopoeia as a 

non-ionic solubilizing agent containing 30% of free polyethylene glycol 
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(PEG). In general, PEG used innanoformulations can increase stability and 

systemic circulation time (Vonarbourg, Passirani et al. 2006). The micelle 

formulations were optimized by central composite design. The solubility of 

apigenin was increased 148 times higher (320.8 µg/mL) than of crude apigenin 

(2.16 µg/mL) with low CMC concentration (4.23 x 10-5 mol/L) the following 

formulation: apigenin 1.68 mg, P123 92 mg and Solutol HS15 29 mg. The 

encapsulation efficiency and drug loading were 96.36% and 1.32 %. Under 

transmission electron microscope (TEM) the formulation had homogenous 

morphology. The size was 16.9 nm, smaller than blank micelles (18.9 nm), 

probably due to hydrogen bonds between phenolic hydroxyl group of apigenin 

and the carboxyl of the PEG chains. Moreover, in vitro drug dissolution study 

showed sustained release behavior and cytotoxicity studies on HepG2 and 

MCF-7 hepatoma cells demonstrated enhanced tumor inhibition (Zhai, Guo et 

al. 2013). 

The solubility behavior of an active ingredient is the most challenging 

aspect, therefore there is a constant demand for new type of drug carriers in 

oral formulation development. Although solid dispersions (SDs) are known 

since 1961, their application is still increasing with new types of dispersing 

carriers e.g. silica nanopowder. In these dispersions the drug is incorporated in 

an inert carrier in solid state. Sugar was used as a carrier in the first generation 

SD. Second generation SD utilized amorphous polymeric carriers e.g. PEG in 

the late sixties, and more recently self-emulsifying and high surface active 

carriers belong to third generation SD. These carriers are able to improve 

dissolution rate significantly by reducing particle size, amorphous drug state 

and enhanced wettability and porosity can be achieved avoiding drug 

crystallization. Optimized manufacturing techniques make easier scale-up 

possible for industrial research (Chiou and Riegelman 1971, Leuner and 

Dressman 2000, Vasconcelos, Sarmento et al. 2007). One new type of 

dispersing carrier is carbon nanopowder (CNP). This nanomaterial is built up 

from carbon with diameter of less than 100 nm. It has many unique features 

like large surface area, chemical inertness and high dispersibility which helps 

to improve drug dispersion, and are thus widely used in targeted drug therapy. 

CNP-Apigenin was prepared by solvent evaporation. Briefly, apigenin and 

CNP were dissolved in ethanol and evaporated in rotary evaporator at 40°C 

until a clear powder mixture was formed. In comparison a homogenous 

physical mixture was prepared by grinding using a mortar and pestle. In vitro 

drug release and in vivo performance were also evaluated from the solid 

dispersions of apigenin prepared with CNP. All of the CNP-Apigenin had 

better dissolution profiles than apigenin powder alone (only 38% was 
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dissolved). Approximately 92% of apigenin was released from the formulation 

with weight ratio 6:1 and the drug release dissolution profile was improved by 

275% within 60 minutes compared to crude apigenin powder. DSC 

thermogram did not show the peak of apigenin suggesting it is molecularly 

dispersed and may be in amorphous form, which facilitated the dissolution. 

Scanning electron microscopy confirmed that apigenin is dispersed in CNP 

while XRD patterns show amorphous state. Oral bioavailability was tested in 

rats. The pharmacokinetic analysis showed 1.83 times increase in the AUC0-t 

for CNP-Apigenin indicating improved bioavailability. The CNP-Apigenin 

enhanced the relative oral bioavailability by 183%. The in vivo tests were in 

accordance with in vitro data suggesting that the poor bioavailability can be 

attributed to poor dissolution and reduced absorption. Preliminary intestinal 

toxicity test was carried out on jejunum mucosa of rats and did not show any 

degeneration, necrosis, edema or inflammation. Therefore, it can be assumed 

that CNP are safe and effective vehicles to enhance bioavailability for poor 

water soluble drugs. Moreover, CNP-Apigenin did not agglomerate and 

flowed freely, making it possible to formulate on a large scale. It was 

concluded that CNP is a promising SD carrier for clinical application (Ding, 

Zhang et al. 2014). 

 

 

Dendrimers for Apigenin Delivery 
 

Dendrimers are polymeric macromolecules with hyperbranched three 

dimensional structures (Figure 5). Controlled, globular structure and a large 

number of functionalities yet single molecular weight are significantly 

advantageous over traditional linear polymers. These attracted researcher’s 

attention from the mid-1980s because of their unique shape and potential 

applications in drug delivery. Since then, a large number of dendrimers have 

been synthetized with various architectures. Two well documented synthetic 

strategies are used to prepare dendrimers, with the main difference being 

polymer growth (Hawker and Frechet 1990, Tomalia, Naylor et al. 1990). 

Basically, the polymer branches grow divergently or convergently start from a 

polyfunctional core (Liu and Fréchet 1999). A number of application are 

known for dendrimers. In the past decades biocompatible dendrimers were 

synthetized for drug delivery of e.g.vaccines and immunology. Recently, 

attempts have been made for cancer treatment and photodynamic therapy. 

Dendrimers can be useful tools as multifunction nanoparticulate systems for 

imaging, diagnostic and targeting in the therapy (Gillies and Fréchet 2005). 
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Figure 5. Internal cavities of the dendrimeric structure. 

They are a technological breakthrough and their use in nanotechnology is 

progressively emerging. Although accurate selection of dendrimers is a key 

factor in drug delivery they have a great potential as an optimal drug delivery 

system for numerous drugs including DNA, proteins, gene therapy as well as 

diagnostic and solubilizing agent (Kesharwani, Jain et al. 2014). Apigenin was 

chosen as a flourophore core of benzylic dendrimers in a recent study. 

Fluorescent dendrimers have an advantage as analytical tools or organic light 

emitting devices (OLEDs). Apigenin possess weak blue light emission and 

three phenol groups therefore ideal for synthetizing dendrimer according to 

Fréchet method (Hawker and Frechet 1990, Liu and Fréchet 1999). Size and 

branching effects were studied with molecular dynamics simulation. Data 

suggest that larger asphericities can occur at the third and fourth generations of 

dendrimers. Aggregation phenomena can be suggested for nonspheric 

dendrimers from the fluorescent spectras (Vinš, Vermachová et al. 2013). 

 

 

Further Prospects 
 

Phytosome technology is a promising concept for enhancement of oral 

bioavailabilty. In water, phytosomes form liposome-like structure, however, 

there are significant differences (Kidd 2009, Semalty, Semalty et al. 2010). 
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The phytosome is a molecular complex consisting of the drug and 

phosphatidylcoline which later is compatible with biological membranes. The 

phospholipids are amphiphilic molecules and easily incorporate polar or non-

polar compounds, thus enhance the absorption through lipid-rich biological 

membranes. Since they can improve the bioavailability of both water soluble 

and insoluble materials, phytosomes may offer oral delivery for apigenin in the 

near future. 

 

 

CONCLUSION 
 

In the last few decades the use of nutraceuticals to prevent chronic 

illnesses like diabetes, cardiovascular diseases and cancer has been rapidly 

emerging. However, their low bioavailability in vivo limits their usage for 

medical therapy. Researchers are drawn towards nanotechnology which can 

change the pharmacokinetics and biodistribution thus improving the 

bioavailability and efficacy. Solubility improvement of apigenin is crucial in 

order to achieve therapeutic effect as discussed in the above section. The 

delivery of apigenin requires pharmaceutical formulation to provide protection 

of the therapeutically active molecular form until it reaches the target tissue. A 

few drug delivery approaches for apigenin have been developed in the past 

decades to address this issue, including novel techniques in the field of 

nanotechnology. The solubility behavior of an active ingredient – like apigenin 

– is still the most challenging part therefore there is a constant demand for new 

type of drug carriers in formulation development. 
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