Vascular Medicine

Accuracy of implementing principles of fusion imaging in the follow up and surveillance of complex aneurysm repair

Journal:	Vascular Medicine
Manuscript ID	VMJ-17-2840.R2
Manuscript Type:	Special Issue: Vascular Imaging/Diagnostics
Date Submitted by the Author:	29-Jan-2018
Complete List of Authors:	Martin-Gonzalez, Teresa; Royal Free London NHS Foundation Trust, Vascular Surgery Penney, Graeme; King's College London School of Medical Education, Engineering Chong, Debra; Royal Free London NHS Foundation Trust, Vascular Surgery Davis, Meryl; Royal Free Hospital, Royal Free London NHS Foundation Trust; Mastracci, Tara; Royal Free Hospital, Royal Free London NHS Foundation Trust
Keywords:	Abdominal Aortic Aneurysm (AAA), Endovascular Therapy, Vascular Imaging
Abstract:	Fusion imaging is standard for the endovascular treatment of complex aortic aneurysms, but its role in follow-up has not been explored. A critical issue is renal function deterioration over time. Renal volume has been used as a marker of renal impairment , however it is not reproducible and remains a complex and resource-intensive procedure. The aim of this study is to determine the accuracy of a fusion-based software to automatically calculate the renal volume changes during follow-up. In this study, CT scans of 16 patients who underwent complex aortic endovascular repair were analysed. Preoperative, 1-month and 1-year follow-up CT scans have been analysed using a conventional approach of semiautomatic segmentation, and a second approach with automatic segmentation. For each kidney and at each time point the percentage of change in renal volume was calculated using both techniques. After review, volume assessment was feasible for all CT scans. For the left kidney, Interclass Correlation Coefficient (ICC) was 0.794 and 0.877 at 1-month and 1-year, respectively. For the right side, ICC was 0.817 at 1 month and 0.966 at 1 year. For the >60% scans, the automated technique reliably detected a decrease in renal volume for patients with occluded renal arteries during follow-up. This is the first report of a fusion-based algorithm to detect changes in renal volume during post operative surveillance using an automated process. Using this technique, the standardised assessment of renal volume could be implemented with greater ease and reproducibility and serve as a warning of potential renal impairment.

1 2 3 4 5 6 7 8 9 10 11	SCHOLARONE [™] Manuscripts
12 13 14 15 16 17 18 19 20 21 22 23	
24 25 26 27 28 29 30 31 32 33 34 35	
36 37 38 39 40 41 42 43 44 45 46	
47 48 49 50 51 52 53 54 55 56	
57 58 59 60	http://mc.manuscriptcentral.com/vascular-medicine

1 2		
3 4		
5	1	Accuracy of implementing principles of fusion imaign gin the follow
7 8	2	up and surveillance of complex aneurysm repairFeasibility of
9 10 11	3	implementing principles of Fusion imaging in the Follow-up of
12 13	4	Complex Aneurysm Repair
14 15	5	T Martin-Gonzalez ¹ , G Penney ² , Chong D ¹ , M Davis ¹ , TM Mastracci ¹
16 17 18	6	¹ Royal Free Hospital, London, UK
19 20	7	² CYDAR imaging, Cambridge, UK/Imperial College, London, UK
21 22	8	
23 24 25	9	Word Count: 2727
25 26 27	10	
28 29	11	
30 31	12	Corresponding Author,
32 33	13	TM Mastracci
34 35 36	14	Clinical Lead, Aortic Surgery
37 38	15	Royal Free London
39 40	16	Pond Street
41 42 43	17	London, UK
43 44 45	18 19	NW3 2QG tara.mastracci@nhs.net.
46 47	20	
48 49	20	
50 51 52	22	
53 54	23	
55 56	24	
57 58		
59 60		http://mc.manuscriptcentral.com/vascular-medicine

1 Introduction

The endovascular treatment of complex aneurysm has evolved as an alternative to open repair (1) and it has become standard of care in many jurisdictions. Although outcomes are durable(2)(3)(4)(5), renal impairment during follow up is still a critical issue, and difficult to quantify. Many different markers, such as renal volume, stent angulation₃ and stent stenosis; have been used to predict renal impairment.-(6)(7)(4) Using a combination of these variables is not a reproducible method to assess renal impairment, despite being a complex and resource-intensive process.

Advanced imaging techniques such as 3D fusion significantly reduces radiation exposure and contrast utilization in EVAR as well as in complex endovascular procedures (8). However <u>utilizing</u> the principles of fusion <u>imaigngimaging</u> in followup has not been explored. The aim of this study is to determine the accuracy of fusion-based techniques to automatically calculate the renal volume changes during follow-up with automated segmentation software, and standardise its use.

17 Material and Methods

Study population. We selected CT scans of 16 patients who went under complex aortic endovascular repair in our centre to include in this analysis. This group included 8 patients who underwent FEVAR with no complications throughout follow-up, and 8 patients who sustained at least one renal occlusion during follow-up. We assumed that renal occlusion would be the most dramatic event leading to renal volume change. The patients were drawn from the local experience of cases performed between 2012 and 2016. Inclusion required a renal event with at least one CT scan after the event occurred. Controls were chosen to match patients with renal events. Demographics of both are included in table I.

http://mc.manuscriptcentral.com/vascular-medicine

Vascular Medicine

1	
2	Retrospectively both preoperative, 1-month and 1-year follow-up CT scans were
3	analysed using a conventional approach of semiautomatic segmentation in
4	conventional software, and using a second approach exploring new software with
5	automatic segmentation. The rationale behind analysing serial images is to determine
6	the degree of accuracy this method has in assessing change in renal volume, as it is
7	well established that devascularziationdevascularisation of a kidney leads to
8	progressive shrinkage of the kidney over time. Ethical approval of the local
9	institution was waived as this is a retrospective observational study.
10	
11	Renal function. The eGFR was determined by the abbreviated MDRD study equation
12	$(eGFR [ml x min^{-1} x 1.73 m^{-2}] = 186 x [serum creatinine]^{-1.154} x [age]^{-0.203} x [0.704 if]$
13	female] x [1.210 if African American]). The eGFR was calculated preoperatively, at
14	1 month and at 1-year follow-up.
4 5	
15	
15 16	Imaging analysis. Using the conventional system, CTs were interrogated using a
	Imaging analysis. Using the conventional system, CTs were interrogated using a multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc,
16	
16 17	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc,
16 17 18	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of
16 17 18 19	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of each kidney was calculated with the following method: after selection of an area of
16 17 18 19 20	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of each kidney was calculated with the following method: after selection of an area of interest, a <u>semiautomated_semi automated</u> post_processing algorithm extracted the
16 17 18 19 20 21	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of each kidney was calculated with the following method: after selection of an area of interest, a <u>semiautomated_semi automated</u> post_processing algorithm extracted the renal contour based on pixels of similar attenuation; the pelvicalyceal system, fat and
16 17 18 19 20 21 22	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of each kidney was calculated with the following method: after selection of an area of interest, a <u>semiautomatedsemi automated</u> post_processing algorithm extracted the renal contour based on pixels of similar attenuation; the pelvicalyceal system, fat and vessels in the renal sinus, and renal cysts were excluded by manual correction on
16 17 18 19 20 21 22 23	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of each kidney was calculated with the following method: after selection of an area of interest, a <u>semiautomated_semi automated</u> post_processing algorithm extracted the renal contour based on pixels of similar attenuation; the pelvicalyceal system, fat and vessels in the renal sinus, and renal cysts were excluded by manual correction on multiplanar views (to correct for any confounding automatic inclusion); finally, the
16 17 18 19 20 21 22 23 24	multiplanar three-dimensional workstation (AquariusNet software, TeraRecon Inc, San Mateo, Calif). Renal events were agreed by two investigators. The volume of each kidney was calculated with the following method: after selection of an area of interest, a semiautomatedsemi automated post-processing algorithm extracted the renal contour based on pixels of similar attenuation; the pelvicalyceal system, fat and vessels in the renal sinus, and renal cysts were excluded by manual correction on multiplanar views (to correct for any confounding automatic inclusion); finally, the renal volume was estimated with an algorithm embedded in the software package (in

3	
4 5	
6	
7	
8 9	
9 10	
11	
12 13	
14	
15	
16 17	
18	
19	
20 21	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
32 33	
34	
35	
36 37	
38	
39	
40 41	
42	
43	
44 45	
46	
47	
48 49	
50	
51	
52 53	
55 54	
55	
56 57	
58	
59	
60	

1 2

previous study (9). Predicted postoperative eGFR was calculated by renal volume
change using the equation developed by Shimoyama et al (10): *predicted postoperative eGFR= preoperative eGFR x (postoperative renal volume/preoperative renal volume)*. The correlation between the predicted and the observed postoperative
eGFR has been quantified.

6 An overview of the new fusion-based method is shown in figure 2. The operator used 7 the itksnap image viewer (www.itksnap.org)(11) to manually select 6 points in the 8 preoperative CT and a single point in the postoperative CT. These points were used 9 to provide a starting position and region-of-interest for the automatic fusion 10 algorithm.

11 The algorithm then proceeds automatically and iteratively translates, rotates and 12 scales the postoperative CT and compares it with the preoperative image of the 13 kidney. The images are compared using a statistical measure (correlation coefficient) 14 applied to the underlying voxel intensity values. When an optimum fusion is achieved 15 the postoperative kidney will be positioned and scaled so it closely resembles the 16 preoperative kidney. The amount of scaling applied to fuse the images is a 17 measurement of change in kidney size – the scaling occurs automatically in two 18 dimensions and the degree of change is calculated by the programme. In the example 19 shown the algorithm increased the size of the postoperative kidney by a factor of 1.81 20 to accurately fuse with the preoperative kidney. Alternatively this could be stated as: 21 the postoperative kidney has shrunk to 55% (1/1.81) of its preoperative volume. 22 For each kidney and at each time point the percentage of change in renal volume 23 compared to the preoperative one has been calculated using both techniques and the 24 reliability of ratings has been assessed.

25

I	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
21	
52	
53	
54	
55	
56	
57	
58	
50	

60

1 Statistical analysis. Statistical analysis was performed in SPSS version 20 (Statistical 2 Package Social Sciences Inc., Chicago, IL, USA). Descriptive statistics were 3 generated, and the correlation between predicted and observed eGFR was calculated 4 with the Pearson correlation. The reliability of ratings has been assessed with the 5 interclass correlation coefficient and the Pearson correlation. The test value was 6 defined as p < 0.05.

7

8 **Results**

Table 1 summarizes the demographic characteristics of the 16 patients included in the 9 10 study, divided by group. The median preoperative eGFR was 80.5 ml/min [49.25-11 89.75] in the group without renal occlusion during follow up and 55 ml/min [42.25-12 74.50] in the occlusion group. Renal volume assessment was feasible for all CT scans included in the study. Correlation between predicted eGFR, based on renal volume 13 14 calculated with the semiautomated semi automated process, and observed eGFR was 15 r=0.844 (p < 0.000) is depicted in figure 3. Divided into non-occlusion and occlusion 16 group, the correlation was r=0.899 (p=0.001) and r=0.800 (p=0.031) respectively.

17

We assessed the reliability of both analysis techniques using the Interclass Correlation Coefficient (ICC). For the left kidney, the Interclass Correlation Coefficient (ICC) was 0.794 and 0.877 at 1-month and 1-year follow-up, respectively. For the right side, at 1-month the ICC was 0.817 and 0.966 at 1-year. For each kidney and at each time point, the Pearson correlation coefficient was 0.770, 0.811, 0.710 and 0.942 respectively. Figure 4 shows the correlation for the right kidney at 1 year follow-up. For a small number of kidneys (~5%) differences greater than 30% between

automated and semiautomatic methods were observed. Methods are being tested to improve robustness and automatically detect these outliers. Table 2 describes the ability of the automated technique to reliably detect a decrease in renal volume for patients with occluded renal arteries when preoperative imaging is compared with the moment of detecting renal occlusion. Discussion In this study we demonstrate the accuracy of fusion-based software to automatically detect and calculate renal volume changes during follow-up after aortic endovascular repair. Using the established, reproducible, semi-automated technique to calculate renal volume (9), we have calculated renal volume in a sample of 16 patients. Using a process involving fusion techniques, we were able to assess the automated detection of renal volume and calculation of volume changes in CT images gained throughout the surveillance period. In addition comparing patients with and without any renal changes, the automated detection accurately ascertained the presence of renal volume both with and without contrast, and identified renal artery occlusion accurately. We believe this new technique may provide a robust, timely and reliable method for advanced analysis of postoperative surveillance studies; thereby a more accurate assessment can be performed in routine practice outside of investigational protocols.

As shown in different studies, renal volume is a reproducible and valid marker of renal impairment when decreased blood supply or anatomic causes for renal impairment are present. Renal volume has been assessed in various urologic studies as a predictor of graft function in living donor transplantation (12)(13). Furthermore, other urologic studies have observed a strong correlation between renal volume,

Vascular Medicine

1	calculated with enhanced and <u>unnon</u> enhanced CT, and renal function estimated with
2	nuclear medicine renal scans (14). This methodology to assess the renal volume is a
3	complex and resource-intensive procedure which requires expensive and complex
4	software, an extensive learning curve, and time. These characteristics may render it
5	impractical for use in a busy daily practice outside of investigational applications, and
6	inaccessible in many resource-limited environments. The precision of the method
7	used for renal volume assessment in this manuscript has been evaluated applying the
8	equation developed by Isotani et al(15) et Shomiyama et al(10). These authors
9	developed an equation to predict postoperative renal function after nephrectomy by
10	renal volume change and they found a correlation between predicted and observed
11	eGFR of 0.83. Applying this equation, our correlation between predicted and
12	observed eGFR was $0.844_{\frac{1}{2}}$ (p< 0.000), a result comparable with the already published
13	literature. Thus, we believe that this process may produce a functional method to
14	detect changes in kidney volume, which, if automated, could provide a predictive and
15	automatic notification regarding renal malperfusion to clinicians who are mandated to
16	survey patients following aortic aneurysm repair.
17	
18	
19	The relationship between vascular clinicians and advanced imaging has been evolving
20	over three decades. Isovoxel imaging and post processing software has made 3D
21	manipulation of anatomic images possible, and facilitated the use of complex
22	endovascular stent grafts for the repair of thoracoabdominal and juxtarenal

21 manipulation of anatomic images possible, and facilitated the use of complex 22 endovascular stent grafts for the repair of thoracoabdominal and juxtarenal 23 aneurysms. Advanced imaging techniques such as 3D fusion have been recently 24 introduced to operative procedures the advent of hybrid operating theatres and fixed 25 imaging systems capable of performing cone-beam CT scans in the operative

ו ר
2 3
5 4
4 5
6
7 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 45
45 46
40 47
47
49
50
51
52
53
55 54
55
56
57
58
59
60

1

1	environment. Use of advanced imaging has changed practice where available,
2	because it has been demonstrated to reduce radiation exposure and contrast utilization
3	in both EVAR and complex endovascular procedures (16)(17)(18). The potential
4	postoperative applications remain unexplored in either hardware or software based
5	systems. With the aim of extending fusion techniques during follow-up, we have
6	tested the accuracy of a fusion-based software to automatically calculate renal volume
7	during follow-up. Compared to the previously-tested semi-automated process, the
8	percentage of decrease in renal volume detected by the automatic fusion-based
9	software is reliable with an ICC of 0.877 (p= 0.001) at one year of follow-up for the
10	left kidney and 0.966 (p<0.001) for the right kidney. These data validate fusion-based
11	software as a reliable tool to automatically measure renal volume. In addition, in the
12	vast majority of our cases with renal occlusion the fusion-based automatic software
13	detected at least at 25% decrease in renal volume on the CT scan at moment of
14	detection when compared with the preoperative one.

15

16 If a study of renal event rate in the published literature were understaken, it would be observed that renal artery angulation should play some role in the discussion of renal 17 18 volume loss. Renal artery angulation has been assessed in different studies to 19 determine their impact and correlation with renal function during follow-up (19) and 20 is hypothesized to be the cause of renal impairment after aneurysm repair. However, 21 despite careful analysis, even observed changes of renal artery angulation after 22 implantation of fenestrated and branched devices (4) have not been reliably associated 23 with renal impairment, and are challenging to reproduce. The same results have been 24 published by Ou et al. (6), finding no relation between postoperative renal impairment and the changes in the stent and vessel orientation, even if all the patients suffering 25

Vascular Medicine

3 4 5 6 7 8 9 10 11 21 31 41 51 61 71 81 92 21 22 32 42 52 62 72 82 93 03 32 33 43 53 63 73 83 94 41 42 34 45 46 74 84 95 51 52 53 54 55 56 57 58	1	
4 5 6 7 8 9 101 12 13 14 15 16 7 18 19 20 12 22 32 4 5 26 7 28 9 30 13 23 33 34 5 36 7 38 9 40 14 24 34 45 46 7 48 9 50 15 25 35 45 55 65 7 58	2	
5 6 7 8 9 10 11 2 13 14 15 16 7 18 19 20 12 22 32 42 52 62 72 82 93 31 32 33 43 53 63 73 83 94 14 24 34 45 46 74 84 95 51 52 53 54 55 56 57 58		
6 7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 21 22 22 22 22 22 22 22 22 22 22 22		
7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 21 22 32 4 25 26 7 8 9 31 32 33 45 67 89 0 11 22 22 24 25 26 7 8 9 31 32 33 45 67 89 0 11 22 32 4 25 26 7 89 30 11 22 32 42 56 7 89 31 32 33 45 36 7 89 0 11 22 32 42 56 7 89 31 32 33 45 36 7 89 0 11 22 32 42 56 7 89 31 32 33 45 36 7 89 0 11 22 32 42 56 7 89 31 32 33 45 36 7 89 0 11 22 32 42 56 7 89 31 32 33 45 36 7 89 0 11 22 32 42 56 7 89 31 32 33 45 36 7 89 0 11 22 34 45 67 55 55 55 55 55 55 55 55 55 55 55 55 55		
9 10 11 12 13 14 15 16 7 18 19 20 22 32 4 25 26 27 28 9 30 132 33 34 35 36 7 38 9 40 41 23 44 50 51 22 34 55 55 57 58	6	
9 10 11 12 13 14 15 16 7 18 19 20 22 32 4 25 26 27 28 9 30 132 33 34 35 36 7 38 9 40 41 23 44 50 51 22 34 55 55 57 58	7	
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 03\\ 13\\ 23\\ 34\\ 35\\ 36\\ 37\\ 38\\ 940\\ 41\\ 42\\ 34\\ 45\\ 46\\ 47\\ 48\\ 950\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\end{array}$		
$\begin{array}{c} 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 23 \\ 34 \\ 53 \\ 37 \\ 38 \\ 9 \\ 41 \\ 24 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 51 \\ 52 \\ 54 \\ 55 \\ 57 \\ 58 \end{array}$		
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 33\\ 33\\ 35\\ 36\\ 37\\ 38\\ 9\\ 41\\ 42\\ 43\\ 44\\ 56\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\end{array}$		
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 13\\ 23\\ 34\\ 56\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 56\\ 51\\ 52\\ 53\\ 55\\ 56\\ 7\\ 58\end{array}$		
$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 56\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$		
$\begin{array}{c} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 38 \\ 9 \\ 41 \\ 42 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 51 \\ 52 \\ 53 \\ 55 \\ 57 \\ 58 \end{array}$		
$\begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 37 \\ 38 \\ 9 \\ 41 \\ 42 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 9 \\ 51 \\ 52 \\ 53 \\ 55 \\ 57 \\ 58 \end{array}$		
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 41 42 34 45 46 47 48 9 51 52 53 45 55 57 58		
$\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 1\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 41\\ 42\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 1\\ 52\\ 53\\ 54\\ 55\\ 57\\ 58\end{array}$		
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 41\\ 42\\ 43\\ 44\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\end{array}$		
20 21 22 23 24 25 26 27 28 29 30 31 22 27 28 29 30 31 23 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 55 57 58		
$\begin{array}{c} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 57\\ 58\end{array}$		
$\begin{array}{c} 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 95\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$		
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54 55 55 57 58		
24 25 26 27 28 29 30 31 23 34 35 36 37 38 30 41 42 43 44 50 51 52 53 54 55 57 58		
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 55 57 58		
26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 55 57 58		
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57 58		
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 56 57 58	26	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58		
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 95 51 52 53 54 55 56 57 58		
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 		
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		
45 46 47 48 49 50 51 52 53 54 55 56 57 58		
46 47 48 49 50 51 52 53 54 55 56 57 58		
47 48 49 50 51 52 53 54 55 55 56 57 58		
48 49 50 51 52 53 54 55 56 57 58		
49 50 51 52 53 54 55 56 57 58		
50 51 52 53 54 55 56 57 58		
51 52 53 54 55 56 57 58		
52 53 54 55 56 57 58		
53 54 55 56 57 58		
54 55 56 57 58		
55 56 57 58		
56 57 58		
57 58		
58		
59		
	59	

60

1 stent deformation presented renal impairment. This failure of correlation even 2 remains true when haemodynamichemodynamic outcomes are improved with caudal 3 orientation of renal stents(20). Thus, despite much suspicion that forced anatomic 4 changes may bear some culpability for the deterioration of renal function often seen 5 after aneurysm repair, contemporary imaging techniques have failed to provide proof. 6 We believe a functional indicator, such as renal volume, which links anatomic change 7 to important perfusion-related outcomes provides a surrogate measure of stent 8 performance, and may be a better indicator of the 4-dimensional behavior of the 9 stents. If automated, this could become a powerful and useful tool for clinicians who 10 have a busy aneurysm practice. Furthermore, the ability to detect chance using an 11 imaging technique that does not involve contrast makes it more practical for use in 12 patients who have low grade renal impairment from any cause.

13

14 This study is a retrospective, pilot study to test the feasibility and accuracy of this 15 technique and thus included only a limited number of patients. Another limitation can 16 be consider the reproducibility of the semi-automated method, but it has been tested 17 applying the formula developed by Isotani et al(15). Furthermore, the impact of 18 asymmetric changes in renal volume, as in the scenario where one of two accessories 19 renal arteries is embolized has not been fully assessed. More work is needed to make 20 this process fully automated and applicable to imaging processing platforms in all 21 jurisdictions.

22

23 Conclusion

This is the first report of a fusion-based algorithm to detect changes in renal volumeduring postoperative surveillance using an automated process. Using this technique,

Page 14 of 24

Vascular Medicine

3	
4	
5	
6	
7	
8	
9 10	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
44	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

1

1	the standardised assessment of renal volume could be implemented with greater ease
2	and reproducibility in the current follow-up of endovascular procedures. Renal
3	volume has demonstrated to be a reliable marker of renal impairment.

- 4
- <u>Conflict of Interest Disclosure:</u> TM Mastracci Research/Educational Support from
 Cydar Medical; Consulting of Cook Medical. G Penney Co-funder/Employee of
 Cydar Medical.
- 8

9 BibliographyReferences

- Katsargyris A, Oikonomou K, Klonaris C, Töpel I, Verhoeven ELG. Comparison of outcomes with open, fenestrated, and chimney graft repair of juxtarenal aneurysms: are we ready for a paradigm shift? J Endovasc Ther Off J Int Soc Endovasc Spec. 2013 Apr;20(2):159–69.
- Verhoeven ELG, Katsargyris A, Bekkema F, Oikonomou K, Zeebregts CJ a. M,
 Ritter W, et al. Editor's Choice Ten-year Experience with Endovascular Repair
 of Thoracoabdominal Aortic Aneurysms: Results from 166 Consecutive Patients.
 Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2015 May;49(5):524–31.
- Kristmundsson T, Sonesson B, Dias N, Törnqvist P, Malina M, Resch T.
 Outcomes of fenestrated endovascular repair of juxtarenal aortic aneurysm. J
 Vasc Surg. 2014 Jan;59(1):115–20.
- 4. Martin-Gonzalez T, Pinçon C, Maurel B, Hertault A, Sobocinski J, Spear R, et al.
 Renal Outcomes Following Fenestrated and Branched Endografting. Eur J Vasc
 Endovasc Surg Off J Eur Soc Vasc Surg. 2015 May 25;

Vascular Medicine

1				
2 3	1	5.	Mastracci TM, Eagleton MJ, Kuramochi Y, Bathurst S, Wolski K. Twelve-year	
4				
5 6	2	results of fenestrated endografts for juxtarenal and group IV thoracoabdom		
7	3	aneurysms. J Vasc Surg. 2015 Feb;61(2):355–64.		
8	5		aneuryshis. J vase Surg. 2013 Fe0, $01(2)$.333–04.	
9				
10	4	6.	Ou J, Chan Y-C, Chan CY-T, Cheng SWK. Geometric Alteration of Renal	
11 12				
12	5		Arteries After Fenestrated Grafting and the Impact on Renal Function. Ann Vasc	
14	-			
15	6		Surg. 2017 Feb 24;	
16				
17 19	7	7.	Heneghan RE, Starnes BW, Nathan DP, Zierler RE. Renal duplex ultrasound	
18 19	·	,.		
20	8		findings in fenestrated endovascular aortic repair for juxtarenal aortic aneurysms.	
21				
22	9		J Vasc Surg. 2016 Apr;63(4):915–21.	
23 24				
25	10	8	Hertault A, Maurel B, Pontana F, Martin-Gonzalez T, Spear R, Sobocinski J, et al.	
26	10	0.	Tiertaalt 74, Maarer 15, Tontana 1, Martin-Gonzalez 1, Spear R, Sobbelinski 9, et al.	
27	11		Benefits of Completion 3D Angiography Associated with Contrast Enhanced	
28				
29 30	12		Ultrasound to Assess Technical Success after EVAR. Eur J Vasc Endovasc Surg	
31				
32	13		Off J Eur Soc Vasc Surg. 2015 May;49(5):541–8.	
33				
34 35	14	9	Martin-Gonzalez T, Pinçon C, Hertault A, Maurel B, Labbé D, Spear R, et al.	
36				
37	15		Renal outcomes analysis after endovascular and open aortic aneurysm repair. J	
38				
39	16		Vasc Surg. 2015 Sep;62(3):569–77.	
40 41				
42	17	10	. Shimoyama H, Isotani S, China T, Nagata M, Yokota I, Kitamura K, et al.	
43	17	10	. Sinnoyania 11, Isotani 5, China 1, Nagata W, Tokota 1, Kitaniura K, et al.	
44	18		Automated renal cortical volume measurement for assessment of renal function in	
45	_			
46 47	19		patients undergoing radical nephrectomy. Clin Exp Nephrol. 2017 Apr 10;	
48				
49	20	11	Westlassish DA Disser I. Hashett HC Smith DC Ha C Cas IC at al Harr smith	
50	20	11.	. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided	
51	21		3D active contour segmentation of anatomical structures: significantly improved	
52 53	4 4		se acave contour segmentation of anatomical structures, significantly imployed	
54	22		efficiency and reliability. NeuroImage. 2006 Jul 1;31(3):1116–28.	
55				
56				
57				
58				

3
4
5
6
6 7
8
9
10
11
12
13
14
15 16
10
16 17 18
19
20
21
22
23
24
25
26 27
27
28
29 30
30 31
32
33
34
35
36 37
38
39
40
41
42
43
44 45
45 46
40 47
48
49
50
51
52
53
54
55
56
57
58
59

1 2

1	12. Yano M, Lin MF, Hoffman KA, Vijayan A, Pilgram TK, Narra VR. Renal
2	measurements on CT angiograms: correlation with graft function at living donor
3	renal transplantation. Radiology. 2012 Oct;265(1):151-7.

- 4 13. Herts BR, Sharma N, Lieber M, Freire M, Goldfarb DA, Poggio ED. Estimating
 5 glomerular filtration rate in kidney donors: a model constructed with renal volume
 6 measurements from donor CT scans. Radiology. 2009 Jul;252(1):109–16.
- 7 14. Morrisroe SN, Su RR, Bae KT, Eisner BH, Hong C, Lahey S, et al. Differential
 8 renal function estimation using computerized tomography based renal
 9 parenchymal volume measurement. J Urol. 2010 Jun;183(6):2289–93.
- 15. Isotani S, Shimoyama H, Yokota I, Noma Y, Kitamura K, China T, et al. Novel
 prediction model of renal function after nephrectomy from automated renal
 volumetry with preoperative multidetector computed tomography (MDCT). Clin
 Exp Nephrol. 2015 Oct;19(5):974–81.
- 14 16. Hertault A, Maurel B, Sobocinski J, Martin Gonzalez T, Le Roux M, Azzaoui R,
 et al. Impact of hybrid rooms with image fusion on radiation exposure during
 endovascular aortic repair. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg.
 17 2014 Oct;48(4):382–90.
- 18 17. Dijkstra ML, Eagleton MJ, Greenberg RK, Mastracci T, Hernandez A.
 19 Intraoperative C-arm cone-beam computed tomography in fenestrated/branched
 20 aortic endografting. J Vasc Surg. 2011 Mar;53(3):583–90.
- 18. Tacher V, Lin M, Desgranges P, Deux J-F, Grünhagen T, Becquemin J-P, et al.
 Image guidance for endovascular repair of complex aortic aneurysms: comparison

1		
2 3	1	of two-dimensional and three-dimensional angiography and image fusion. J Vasc
4	1	or two annensional and anoe annensional angiography and mage rasion. 5 vase
5	2	Interv Radiol JVIR. 2013 Nov;24(11):1698-706.
6		
7 8	3	10 Convey PD Greenberg PK Mastroegi TM Hernandez AV Coscos P Penal
9	5	19. Conway BD, Greenberg RK, Mastracci TM, Hernandez AV, Coscas R. Renal
10	4	artery implantation angles in thoracoabdominal aneurysms and their implications
11 12		
12	5	in the era of branched endografts. J Endovasc Ther Off J Int Soc Endovasc Spec.
14	c	2010 Jum(17(2))(280, 7)
15	6	2010 Jun;17(3):380–7.
16 17		
18	7	20. Ou J, Tang AYS, Chiu TL, Chow KW, Chan YC, Cheng SWK. Haemodynamic
19	0	Maintenant C. Fl. (c. David A. (c. in in Carton Mala and Direct David
20 21	8	Variations of Flow to Renal Arteries in Custom-Made and Pivot Branch
22	9	Fenestrated Endografting. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg.
23		
24 25	10	2017 Jan;53(1):133–9.
25		
27	11	
28 29		
29 30	12	
31		2017 Jan;53(1):133–9.
32 33	13	
33 34	14	
35	14	
36 37	15	
37 38		
39	16	
40		
41 42	17	
43	18	
44	10	
45 46		
47		
48		
49 50		
51		
52		
53 54		
55		
56		
57 58		
58 59		
60		http://mc.manuscriptcentral.com/vascular-medicine

FIGURES LEGENDS

Figure 1. Renal volume calculated with the semiautomated software. **a.** 3D VR reconstruction of the kidney selected. **b.** MPR view of the kidney selection. **c.** Renal contour in an axial view. **d.** Estimation renal volume

Figure 2. Renal volume calculated with the new fusion-based automatic software. **a.** Manually <u>selection</u> points in the preoperative CT **b.** Manually <u>pick</u> kidney centre in the postoperative CT scan. <u>The kidneys are then represented in orthogonal views on</u> <u>post processing software so their three dimensional volume can be assessed c.</u> Preoperative kidney volume. **d.** Postoperative kidney positioned and scaled, needing to be enlarged by 81% to accurately fuse with preoperative kidney

Figure 3. Correlation between predicted eGFR, based on renal volume calculated with the semiautomated process, and observed eGFR

Figure 4. Correlation between the semiautomated process and the new fusion based automatic software for the right kidney at 1 year follow up

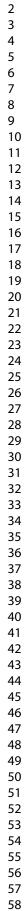

Demographic characteristics	Non occlusion group	Occlusion group
Age at procedure (years) (median, range)	70.50 [65.25-81.50]	71.50 [65.25-78.2
BMI (kg/m ²) (median, range)	29.8 [22.6-35.1]	22.8 [21.5-26.3]
Sex (%)		
Male	87.5 (n=7)	87.5 (n=7)
Female	12.5 (n=1)	12.5 (n=1)
Hypertension (%)	75 (n=6)	83.3 (n=5)
Dyslipidaemia (%)	75 (n=6)	100 (n=6)
COPD (%)	50 (n=4)	100 (n=6)
Smoking (%)		
Yes	0 (n=0)	33.3 (n=2)
No	25 (n=2)	50 (n=3)
Former	75 (n=6)	16.7 (n=1)
Diabetes (%)	25 (n=2)	16.7 (n=1)
Ischaemic heart disease (%)	62.5 (n=5)	50 (n=3)
Chronic kidney disease (eGFR<60 ml/min) (%)	25 (n=2)	66.7 (n=4)
Aneurysm size (mm) (median, range)	61 [56-72]	68 [61-75]
Preoperative renal function (ml/min) (median,	80.5 [49.25-89.75]	55 [42.25-74.50]
range)		
BMI: Body Mass Index; COPD: Chronic Obstructive	Pulmonary Disease; eGFR	: estimated Glomer
Filtration Rate		

Table 1. Demographic characteristics divided by groups.

		R						
Patient number	Renal artery occluded	Time occlusion	% Decrease renal volume					
1	Left	1 year follow up	61					
2	Left	1 month follow up	29					
3	Left	1 year follow up	16					
4	Left	1 month follow up	13					
5	Right	1 year follow up	49					
	Left	1 year follow up	23					
6	Right	1 month follow up	35					
7	Right	1 year follow up	74					
8	Left	1 month follow up	19					

Table 2. % Decrease in renal volume detected by the automatic method at the moment of renal artery occlusion.

59

http://mc.manuscriptcentral.com/vascular-medicine

<image>

Figure 1A 286x280mm (300 x 300 DPI)

Figure 1B 286x278mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/vascular-medicine

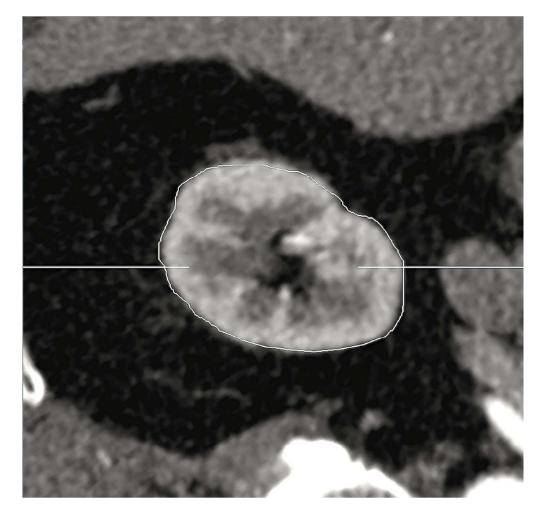
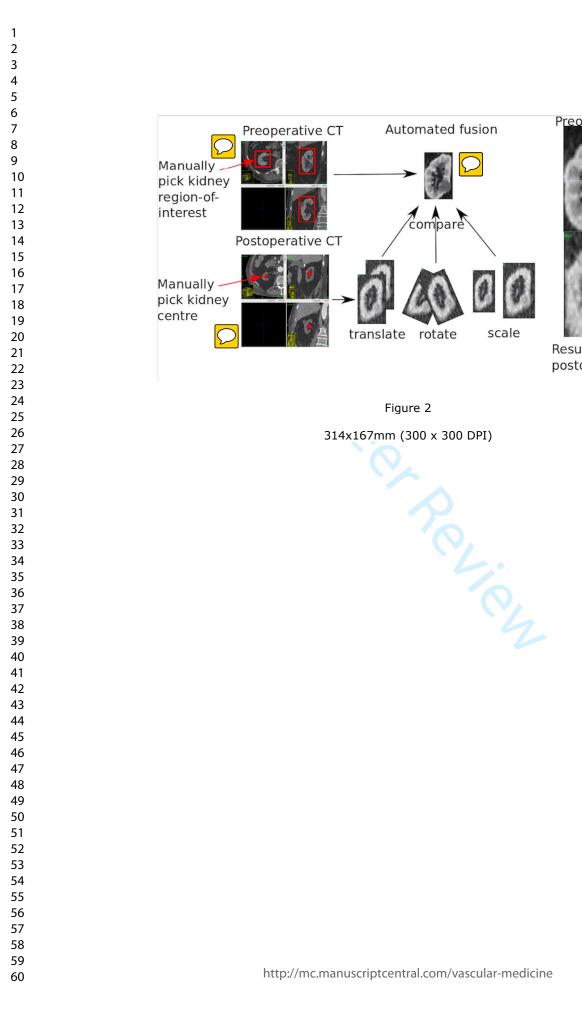


Figure 1C 286x275mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/vascular-medicine


Figure 1D

284x276mm (300 x 300 DPI)

Preop kidney

Result: fused

postop kidney

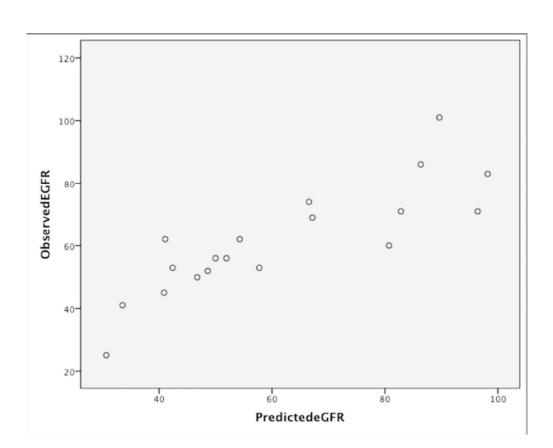


Figure 3

218x175mm (300 x 300 DPI)