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Abstract 

Genome architecture plays a critical role in regulating the expression of genes that are essential for 

nervous system development. During neuronal differentiation, spatially and temporally regulated 

transcription allows neuronal migration, the growth of dendrites and axons, and at later stages, 

synaptic formation and the establishment of neuronal circuitry. Genome topology and relocation 

of gene loci within the nucleus are now regarded as key factors that contribute to transcriptional 

regulation. Here, we review recent work supporting the hypothesis that the dynamic organization 

of chromatin within the nucleus impacts gene activation in response to extrinsic signalling and 

during neuronal differentiation. The consequences of disruption of the genome architecture on 

neuronal health will be also discussed.  

 

Highlights  

• Nuclear architecture is essential for transcriptional activation in neurons  

• Changes in chromosome contacts occur during neuronal differentiation 

• Proteins that organise genome loops include cell type specific transcription factors  

• Alteration of genome topology is associated with neurological disorders 
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Introduction 

Development and function of the mammalian central nervous system (CNS) poses a great 

challenge for gene regulation. A fairly homogenous population of neuronal precursors gives rise to 

a dazzling array of cell types that include neurons, oligodendrocytes, astrocytes, microglia and 

endothelial cells [1]. Moreover, single cell sequencing experiments have revealed an increasing 

number of neuronal types with molecularly distinct features [2]. This multitude of neuronal and 

non-neuronal cell types is generated through careful control of cell proliferation, migration, and 

terminal differentiation. The CNS largely retains plasticity throughout the life of the organism and 

this ability to adapt to the external environment is necessary for learning, and ultimately survival.  

In all eukaryotic cells, the genome is heavily compacted to fit inside the nucleus. Despite this 

compression, genes must remain accessible for transcription, DNA replication and other nuclear 

processes. In the nucleus, chromatin is highly organised within the three-dimensional (3D) space, 

allowing tight control of gene expression. Genome conformation is regulated at multiple levels, 

from the wrapping of DNA around histones to form nucleosomes, to epigenetic modifications of 

DNA and histones, and ATP-dependent histone sliding and exchange. In addition, a key role is played 

by the formation of higher order domains, and by the movement of genomic regions in relation to 

nuclear landmarks. Interplay within and between these levels of regulation allows precise gene 

regulation. 

In this review, we will describe recent work demonstrating how genome topology and nuclear 

positioning influence gene transcription in neurons. We will illustrate the unforgiving nature of 

nuclear structure deregulation by describing neurological diseases resulting from mutations 

affecting genome architecture. 

 

The nuclear lamina is a repressive compartment for transcription 

The radial arrangement of the genome within the nucleus is highly ordered. The nuclear 

periphery is enriched in heterochromatin and is generally associated with gene-poor or 

transcriptionally silent regions of the genome; it is therefore considered a compartment that 

represses transcription. During neuronal development, certain genes move away from the lamina 

towards the nuclear interior, and this event is concomitant with transcriptional activation [3-5] 

(Figure 1A). Similarly, in the adult brain, Bdnf activation by kainate-induced seizures is accompanied 

by movement of the Bdnf gene away from the nuclear periphery [6]. Such movement may relocate 

genes away from a repressive environment, or towards sites rich in transcriptional apparatus. In 
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embryonic cortical neurons for example, activity-dependent genes such as cFos and Gadd45b 

relocate to RNA polymerase II (RNAPII) foci in response to depolarization [7,8] 

Lamina-associated domains (LADs) are large genomic regions that localize at the nuclear lamina 

and guide the spatial organization of the interphase nucleus [9]. LADs are predominantly gene-poor 

and contain silent genes bearing repressive histone modifications. Detailed mapping of LADs in 

mouse embryonic stem cells (ESCs), neuronal progenitor cells (NPCs) and astrocytes revealed that 

in most cases, dissociation from the nuclear lamina protein LaminB1 resulted in the transcription of 

genes involved in neuronal and astrocyte specification [5]. Some LADs are constitutive, but 

hundreds of genes change their lamina interaction during differentiation. Importantly, not only 

have correlations between radial location and gene expression been observed in a variety of cell 

types but tethering of genes to the lamina was found to induce gene silencing [10]. Conversely, 

forced activation of endogenous genes within a LAD was sufficient to relocate the region to the 

nuclear interior [11]. Interestingly, during the early stages of neuronal differentiation, a substantial 

group of genes detached from the lamina but remained inactive [5]. These findings suggest that 

while movement away from the lamina is often necessary for triggering transcription, it is not 

capable of inducing gene activation per se (Figure 1A). Nonetheless, these genes were more prone 

to transcriptional activation at later differentiation stages [5], indicating that release from the 

lamina may prime them for rapid expression when additional extrinsic signals come into play. This 

is in accordance with data showing that decondensation of endogenous genes within a LAD was 

sufficient to relocate the region to the nuclear interior, without affecting transcription [11]. 

A striking example of how nuclear geometry can be regulated in the nervous system is provided 

by the dramatic folding of the nuclear membrane observed in hippocampal neurons [12]. The 

nuclear infoldings were dynamic, and increased in number following synaptic activation, leading to 

an increase in surface area of the transcriptionally repressive lamina. These nuclear membrane 

invaginations may facilitate the relay of calcium signals to the nucleus by generating smaller 

functional compartments and may affect transcriptional regulation. Quiescent neural stem cells 

also develop nuclear envelope invaginations, which may contain telomeres and other 

heterochromatin domains [13]. Although it is unclear whether these invaginations are functionally 

related to the infoldings described in neurons, they also affect the surface area of a transcriptionally 

repressive compartment and may lead to the existence of signaling microdomains.  

 

Role of the nuclear lamina in the pathogenesis of neurological disorders 
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The protein components of the lamina are critical for its regulatory function (Box 1), and 

disruption of them may cause neurological diseases. LaminB1 is required for brain development 

[14,15], for dendritogenesis in cortical neurons [16], and for the regulation of gene expression 

during olfactory neuron differentiation [17]. Mice lacking the LaminB1 paralog, LaminB2, exhibit 

cortical development defects [14,15]. Importantly, loss of function mutations of LMNB1 in humans 

result in neural tube defects [18], whereas mutations of the LMNA gene gives rise to a group of 

disorders known as the laminopathies [19]. In addition to the well-known premature ageing disease 

Hutchinson-Gilford progeria syndrome, laminopathies include more than 15 distinct diseases 

characterised by muscular, metabolic and neurological symptoms. Although the mechanisms are 

undoubtedly complex and remain to be fully elucidated, genes and indeed entire chromosomes 

have been shown to change radial nuclear position, implying that transcriptional regulation is likely 

an important facet of the disease (Figure 3A).  

 

Chromosomes are organised into topologically associating domains (TADs) 

The genome is arranged in self-interacting genomic regions known as topologically associating 

domains (TADs) [20,21]. DNA sequences within a TAD interact more frequently with each other than 

with regions located outside. TAD boundaries function as transcriptional insulators. Chromosome 

conformation capture technologies, which use ligation to link regions that are close together in 3D 

space, have allowed identification of genomic contacts on a large scale. Importantly, the existence 

of TADs was recently confirmed genome-wide using a ligation-independent method that relies 

instead on genome amplification and DNA sequencing from nuclei dissected into ultrathin sections 

[22]. TADs have been identified in all cell types studied, including mouse and human brain 

[23••,24•]. TAD organisation is generally stable, and some TAD boundaries are conserved across 

differentiation stages, cell types and even between species [21]. Multiple lines of evidence indicate 

that TADs are formed by loading of cohesin onto the genome, which uses energy derived from ATP 

hydrolysis to spool the DNA through its ring-like structure, forming a TAD [25] (Figure 2). Extrusion 

stops when cohesin encounters CTCF (CCCTC-binding factor) bound to the DNA, resulting in the 

majority of TAD boundaries containing both CTCF and cohesin. 

A recent study performed ultradeep mapping of genome interactions in mouse ESCs, NPCs and 

cortical neurons (CNs) differentiated in vitro, as well as NPCs and CNs purified from embryonic 

cortex [23••]. The authors found that during neuronal differentiation, a global reorganization of 

chromatin takes place (Figure 1B). Although many TAD boundaries remain unchanged, in general 

TADs become fewer and larger, average intra-TAD contacts become stronger and average inter-TAD 
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contacts are depleted. Importantly, formation of new TAD boundaries was observed close to 

developmentally regulated genes as they became transcriptionally activated during neuronal 

differentiation. However, forced activation of a silent genomic region was insufficient to create a 

TAD boundary. This suggests that transcription alone is not sufficient to induce the structural 

changes associated with boundary formation, but rather the formation of new TAD boundaries 

during neuronal development may be permissive or instructive for the expression of specific genes.  

 

Regulation of TAD organisation during neuronal development 

Bonev et al., showed three distinct classes of TAD boundaries in NPCs and CNs: first, boundaries 

characterized by the presence of CCCTC-binding factor (CTCF) and cohesin; second, CTCF-negative, 

cohesin-positive boundaries that are close to active gene promoters; and finally, boundaries 

without active marks of transcription that are enriched for repeat elements [23••]. Below we will 

discuss the major players in TAD regulation and their role in neuronal gene regulation. 

1. CTCF. CTCF is a DNA-binding protein that plays a critical role in determining looping 

interactions at various levels of the architectural hierarchy [26]. CTCF can regulate both inter- and 

intra-chromosomal interactions and is integral in establishing TAD boundaries and sub-TAD looping. 

A recent study used an acute depletion system to remove CTCF from murine ESCs, NPCs and 

astrocytes [27••]. Dramatic loss of looping and insulation at TAD boundaries was observed upon 

CTCF depletion, which caused the merging of neighboring TADs and the formation of ectopic 

contacts across the original TAD borders. These changes were coincident with transcriptional 

dysregulation, although the defects were less severe in astrocytes than ESCs or NPCs, suggesting a 

less prominent role for CTCF in terminally differentiated cells. This is in keeping with an increasing 

proportion of CTCF-negative borders during neuronal differentiation [23••]. Interestingly, TAD 

insulation was re-established upon restoration of CTCF levels in ESCs and NPCs, but not in resting 

astrocytes, indicating that passage through the cell cycle may be indispensable for restoring TAD 

boundaries [27••]. 

In mice, increasing evidence indicates that CTCF influences the expression of neuronal genes [28-

30], including the protocadherin genes, whose stochastic variation in expression levels generates 

neuronal diversity [28,29•]. In the developing cortex, CTCF regulates NPC differentiation and 

survival [31], and at later stages, dendritic arborization and spine development [28]. In cortical 

interneurons, CTCF regulates the expression of genes involved in fate determination, and mutations 

of the CTCF gene lead to defects in cell identity and neuronal migration [30]. Loss of CTCF in the 

hippocampus is associated with impaired long-term potentiation, reduced dendritic spine density, 



 6 

and defects in spatial and fear memory [29•]. As well as finding many deregulated genes in the 

hippocampus of CTCF-knockout mice, including protocadherin and learning-related genes, the 

authors found a significant lack of upregulation of Bdnf and Arc genes in response to fear 

conditioning. The absence of induced Bdnf and Arc expression was associated with disruption of 

the genome architecture surrounding the gene loci. This suggests that stimuli-responsive gene 

expression is affected by CTCF-regulated genome architecture, as well as developmentally-

regulated gene programs. 

2. Cohesin. Cohesin is a ring-like multiprotein complex initially described as part of the complex 

that holds sister chromatids together during anaphase and was later found to have an additional 

role in genome architecture [32]. Cohesin is critical for genome looping in neural stem cells 

differentiated into astrocytes in vitro [33]. Loss of cohesin causes loss of TAD insulation, increasing 

inter-TAD interactions and resulting in widespread transcriptional dysregulation [33]. The 

transcriptional changes resulting from loss of cohesin may cause a number of downstream effects, 

depending on the cell type. The nervous system may be particularly sensitive to cohesin-mediated 

transcription changes as mutation of cohesin in mice induces behavioral defects, possibly due to 

transcriptional dysregulation of genes necessary for dendrite and synapse development [34,35]. 

Importantly, mutations of the cohesin pathway in humans cause Cornelia de Lange syndrome, a 

severe developmental disorder that manifests with neurological symptoms, including psychomotor 

delay and intellectual disability [36].  

3. Topoisomerase IIß (TOP2B). TOP2B is a member of the DNA topoisomerase family 

responsible for relaxing the DNA supercoils that change DNA topology, and often co-occupies TAD 

boundaries with CTCF and cohesin [37]. An early study indicated that TOP2B plays an essential role 

in neuronal development, as deletion of the gene in mice induced profound defects in motor and 

sensory neuron innervation [38]. In cortical neurons, TOP2B and CTCF are found in a complex bound 

to many neuronal genes, in keeping with the idea that TOP2B may regulate genome structure in 

the brain [39] and that this may explain some of the effects of TOP2B loss on neuronal development. 

An intriguing finding of this study is that TOP2B promotes expression of activity regulated genes, at 

least in part, by causing DNA double strand breaks in response to neuronal activity, suggesting that 

relieving topological constraint may be critical for gene expression.  

 

Diseases caused by mutations in TAD boundaries 

TAD boundaries insulate genomic regions from each other, and therefore perturbation of TAD 

boundaries leads to inappropriate interactions between chromatin regions, including aberrant 
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enhancer-promoter looping (Figure 3B). Recent technological advances have allowed sequencing 

of patient samples to go beyond exome sequencing and identify more variants in the non-coding 

portion of the genome. As a result, it is increasingly recognized that mutations in TAD borders 

contribute significantly to both Mendelian heritable disorders and complex multifactorial diseases.  

One example is provided by Fragile X syndrome, a disease marked by severe cognitive defects 

that is caused by a repeat expansion in the FMR1 gene. FMR1 encodes Fragile X Mental Retardation 

Protein (FMRP), a translational repressor essential for normal cognitive development [40]. An 

interesting recent study indicated that the repeat expansion within FMR1 interferes with CTCF 

binding sites, disrupting a TAD border and inhibiting FMR1 expression [41•]. The authors 

hypothesize that TAD disruption alters looping of the FMR1 promoter to enhancers. Importantly, 

this disease mechanism may extend to other neurological disorders, as the authors found a striking 

correlation between disease-associated DNA repeats and TAD boundaries, at boundaries with high 

CpG island density [41•]. A case study of the rare neurological disorder Autosomal Dominant adult-

onset demyelinating LeukoDystrophy (ADLD) provides another example of how nuclear 

architecture may influence gene regulation [42]. The deletion observed in ADLD patients eliminates 

a TAD boundary, allowing an enhancer to contact the LMNB1 gene, amplifying its expression. 

LMNB1 encodes the LaminB1 protein that is an integral part of the nuclear lamina, itself a repressive 

compartment for transcription (Box 1). Therefore, this example highlights two points at which gene 

regulation through nuclear architecture can be manipulated in disease. LMNB1 overexpression 

causes progressive CNS demyelination, autonomic dysfunction, ataxia and cognitive impairment. 

A survey of 922 deletion sites found in the DECIPHER clinical genome database further revealed 

that many disease-associated deletions overlap TAD boundaries [43]. Analysis of enhancer usage 

and gene functions suggested that part of the disease phenotypes could be attributed to the 

adoption of new enhancers following boundary disruption, and consequent transcriptional 

changes. The phenotype of the disorders in this survey is complex and often involves several organs, 

however intellectual disability, along with congenital abnormalities, is one of the most common 

symptoms [43]. This suggests that the developing brain may be more sensitive to epigenetic insults, 

compared to other tissues. In one interesting example from this study, deletion of a boundary brings 

an ectopic foetal brain enhancer into the regulatory domain of FOXG1 [43]. FOXG1 encodes a 

transcription factor that is expressed in the developing nervous system from the earliest stages and 

is critical for regulating multiple important processes including dorso-ventral patterning, neural 

precursor proliferation, neuronal differentiation, and neuronal cell fate [44]. Patients with the 

boundary deletion exhibit neurodevelopmental defects, with intellectual disability, developmental 
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delay, and postnatal microcephaly [43], similar to that caused by mutations in FOXG1 itself [45]. 

However, a recent study suggests that the deletion causes loss of FOXG1 regulatory elements that 

are of more significance in the patient phenotype than the TAD boundary deletion [46]. 

 

Dynamic looping generates sub-TADs  

Within the TADs themselves, highly variable restructuring of the chromatin architecture creates 

sub-TAD loops, which may link genes to their enhancers or to other co-regulated genes (Figure 2). 

Sub-TAD looping is tightly controlled to ensure correct spatiotemporal gene regulation, and varies 

markedly between cell types and developmental stages. Although CTCF is implicated in the 

formation and maintenance of sub-TADs, other mechanisms are also involved.  

During neuronal differentiation, average intra-TAD contacts become stronger [23••]. 

Interactions independent of CTCF binding were detected between promoters of active genes at all 

developmental stages and correlated with gene expression. Surprisingly, the authors identified very 

long-range (>30 MB) looping events between activated genes in ESCs, NPCs and CNs. These 

interactions span TADs, and even occur between genes on different chromosomes. Contact 

enrichment correlated with the number of exons, RNA splicing events and gene transcription levels. 

Contacts between transcribed genes have also been described in astrocytes, where the astrocyte-

specific gene Gfap has been found to associate with a number of other expressed genes [47]. One 

recent exciting discovery was that during olfactory neuron differentiation, olfactory receptor genes 

aggregate with each other and with their enhancers [48••]. In progenitor cells this cluster seems to 

be repressive for transcription. However, in mature olfactory sensory neurons, the transcribed 

olfactory receptor gene separates from the repressive cluster and forms a separate hub together 

with its enhancers. Thus, long range trans interactions create both an activating structure for a 

single gene, and a repressive structure to prevent expression of more than one olfactory receptor 

gene per cell [48••]. 

At a finer level, interactions were observed between the promoter and the entire transcribed 

region of expressed genes, as well as the termination site [23••] (Figure 2). Such intra-gene contacts 

may be required for RNA splicing and RNAPII recycling. Looping events that allowed the 

establishment of enhancer-promoter contacts were primarily identified within TADs and, as for 

contacts between promoters, were predominantly independent of CTCF binding. As perhaps 

expected, enhancer-promoter contacts correlated with transcriptional activation, further indicating 

the impact of highly dynamic changes of chromatin architecture on gene expression during 

neuronal differentiation.   
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Regulation of sub-TAD looping during neuronal development 

Proteins implicated in establishing or stabilizing enhancer-promoter loops include CTCF, YY1 

[49,50•], RNAPII [51], HNRNPU [52], the chromatin remodeler SMARCA4 [53,54], and the Mediator 

complex [55]. Neural-specific transcription factors have also recently been implicated in organizing 

genome topology [23••, 48••]. Although CTCF does regulate sub-TAD looping, its role diminishes 

during neuronal differentiation, concomitant with a decrease in the number of CTCF binding sites 

across the genome [50•].  Similarly, in the adult cortex, cerebellum and olfactory bulb, fewer CTCF 

binding sites were found when compared to the embryonic brain. Decreased CTCF binding 

correlated with lower levels of CTCF expression [29•,50•], which also varied between cell types 

within the CNS [29•]. Interestingly, the developmental decrease of global CTCF and of CTCF binding 

was uniquely observed in the neural lineage [50•]. ESCs and NPCs showed a similar number of 

looping events despite reduced CTCF occupancy in NPCs, demonstrating that a higher percentage 

of NPC-only loops were not anchored by CTCF [50•]. This indicates that other proteins contribute 

to maintaining chromatin architecture in differentiated neurons.  

Ying Yang 1 (YY1) is a zinc finger protein that is strongly enriched at interaction sites between 

NPC-specific genes and enhancers [50•]. YY1 is critical for neuronal differentiation [56] and in 

humans, haploinsufficiency of YY1 results in loss of H3K27ac at enhancers, transcriptional 

dysregulation and intellectual disability [57]. Knockdown of YY1 in NPCs reduced the interaction 

frequency between the YY1-bound genes Sox2, Klf4 and Zfp462 and their enhancers, concomitantly 

inhibiting their expression levels [50•]. Interestingly, another study has suggested that YY1 

regulates enhancer-promoter looping not only in NPCs but also in pluripotent cells and in other 

differentiated cell types [49].   

The lineage-specific factors that help to organize genome structure also undergo substantial 

changes during neuronal differentiation (Figure 1C). In ESCs, contacts occur between sites bound 

by Polycomb, and sites bound by pluripotency-specific transcription factors, such as Nanog. During 

neuronal differentiation, expression levels, chromatin occupancy and the contacts mediated by 

these factors all decrease. In NPCs, contacts occur between regions bound by the transcription 

factor Pax6 [23••], which is a master regulator of the NPC state. NeuroD2 and Tbr1 were also found 

at contact sites during neuronal development, with interactions increasing during differentiation to 

peak in mature CNs. Taken together, these findings indicate that dynamic organization of chromatin 

contacts around developmental-stage specific transcription factors within TAD boundaries 

significantly affects gene expression. Similarly, in olfactory neurons, the transcription factor Lhx2 
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and its cofactor Ldb1 were necessary for the interaction of olfactory receptor genes with each other 

and with enhancers [48••]. 

 

Consequences of alterations in enhancer-promoter looping  

Disruption of enhancer-promoter loops (Figure 3C) has been linked to a number of neurological 

diseases. For example, single nucleotide polymorphisms (SNPs) have been found at sites that 

physically interact with genes implicated in schizophrenia [24•,58]. SNPs that may disrupt 

chromatin looping have been identified at contact sites of the risk locus CACNA1C [58], the anti-

psychotic drug target gene DRD2, several acetylcholine receptors, and genes involved in excitatory 

synaptic transmission [24•]. Although it is not clear whether all of these mutations interfere with 

expression of their partnered schizophrenia-related gene, at least in the case of FOXG1 a mutation 

in a region found to loop to the promoter abrogated FOXG1 expression [24•]. Similarly, SNPs 

associated with four neurodegenerative disorders (Frontotemporal lobar degeneration, 

Alzheimer’s disease, Parkinson’s disease and Amyotrophic lateral sclerosis) significantly overlap 

with CTCF binding sites [59]. SNPs at interaction sites can stimulate inappropriate expression as well 

as abrogate expression. One SNP associated with Frontotemporal lobar degeneration was found to 

promote CTCF-mediated looping from cis-regulatory elements to the TMEM106B promoter, 

increasing its expression [59]. Disrupted looping in the absence of specific mutations has also been 

found in neurological disease, for example at the GAD1 locus, which encodes the enzyme that 

synthesises the neurotransmitter GABA, in schizophrenia [60].  

Finally, it is tempting to speculate that changes in genomic architecture could represent an early 

pathogenic event associated with predisposition for neurological diseases, thereby implicating that 

neuropsychological disorders that manifest later in life may be rooted into genome conformational 

changes that occurred at earlier developmental stages. 

 

Conclusions  

It is becoming increasingly clear that genome topology and radial nuclear location affect genome 

organization and spatiotemporal activation of gene expression in the nervous system. There are 

many factors that can influence transcription, including epigenetic modifications of DNA and 

histones, nucleosome remodeling, non-coding RNAs and region relocation to specific nuclear 

compartments. Many of these mechanisms intercalate with genome topology and exert changes 

through it. Folding of the genome into TAD and sub-TAD compartments plays a key role in the 

regulation of gene expression as this, among other events, limits the contacts between genes and 
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their enhancers and co-regulated genes. Of note, genome ‘contacts’ are highly dynamic events that 

indicate proximity of sequences in 3D space and frequency of interaction, rather than fixed 

structures. Importantly, radial location of genes within the nuclear space affects both the chromatin 

environment and promoter accessibility to other genes and regulatory regions. Many neurological 

disorders can arise as a direct result of dysregulation of genome architecture, both through 

mutations of genes encoding proteins that have a crucial role in establishing or maintaining 

appropriate chromatin structure, or through mutations in the DNA sequences at critical contact 

points (Figure 3). Importantly, changes in genome topology may confer transcriptional priming, 

rather than activation, and potentially provide the biological basis for predisposition to 

neuropsychiatric disorders. Although the contribution of genome architecture to the pathogenesis 

of neurodevelopmental disorders awaits further investigation, technologies aimed at modifying 

chromatin structure may help restore appropriate gene expression in diseased neurons. 
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Box 1 – Constituents of the lamina 

The major structural components of the nuclear lamina are the A-type lamins A and C that are 

alternatively spliced from the LMNA gene, and the B-type lamins B1 and B2. Expression of LaminB1 

and the laminB receptor (LBR) decreases during neuronal development [23••]. Interestingly, lamins 

are not required for the interaction of LADs with the nuclear envelope but are necessary for 

tethering heterochromatin at the periphery [61]. The lamina is punctuated by nuclear pore 

complexes, large structures that mediate molecular trafficking between the nucleus and cytoplasm 

[62]. Although lamina association is generally negative for transcription, this is not always the case 

for nuclear pores. In NPCs, the transcription factor Sox2 and Nucleoporin153 (Nup153) bind to 

shared target genes [63], providing a striking example of how interaction of a lineage-specific 

transcription factor with the nuclear pore complex may regulate gene expression. The interaction 

between Nup153 and Sox2 is essential for the maintenance of NPCs, and Nup153 expression 

declined when NPCs differentiated into neurons and astrocytes. Interestingly, while the interaction 

of Nup153 with gene promoters correlated with transcriptional activation, binding at gene ends 
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resulted in repression, suggesting that nuclear pores play a complex role in regulating 

transcriptional output. 

 

Figure legends 

Figure 1. Neuronal differentiation is marked by genome architecture changes 

There are marked differences at all hierarchical levels of genome architecture between pluripotent 

embryonic stem cells (ESCs), multipotent neural progenitor cells (NPCs) and terminally 

differentiated cortical neurons (CNs). A. Following activation, many neuronal genes move radially 

toward the centre and away from the repressive nuclear periphery. It should be noted that 

dissociation from the lamina often reflects the acquisition of transcriptional competence rather 

than gene activation. B. At TAD level, changes in the boundaries of some TADs, depicted as triangles, 

lead to the formation of neural specific boundaries. Increasing colour intensity represents regions 

that show more frequent interaction. C. At the finest level, dynamic changes in sub-TAD looping 

and cell type specific factors induce local loop formation.  

 

Figure 2. Sub-TAD looping events 

Intra-TAD contacts are dynamic and cell type specific. Active genes show intra-gene interactions 

between promoter, coding region and 3’ end, which may regulate splicing or RNAPII recycling. Loops 

are also formed between active promoters and their cell type-specific enhancers. Finally, 

interactions may occur between different active, but not inactive, genes, and correlate with the 

levels of gene expression.  

 

Figure 3. Mechanisms of disease caused by alteration of genome topology  

Disruption of chromosome organization is associated with the transcriptional dysregulation 

observed in many neurological disorders. A. ‘Organiser’ genes encode proteins with roles in 

configuring the genome within the 3D nucleus. Mutation in ‘organiser’ genes causes loss of these 

important proteins, and thereby dramatic downstream effects on gene expression. Examples 

include mutations in cohesin, YY1, CTCF, and Lamins A and B1. B. Mutations in TAD boundaries can 

cause neighbouring TADs to merge, creating ectopic contacts such as enhancer-promoter (E-P) 

loops that induce inappropriate gene activation. Examples include TAD border deletion leading to 

aberrant activation of LMNB1 and FOXG1. C. Mutations can prevent sub-TAD interactions such as 

E-P or active gene looping, abrogating gene activation.  
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