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Abstract Quantitative Structure-Activity Relationship (QSAR)
models have been successfully applied to lead optimisation,
virtual screening and other areas of drug discovery over the
years. Recent studies, however, have focused on the develop-
ment of models that are predictive but often not interpretable.
In this article, we propose the application of a piecewise linear
regression algorithm, OPLRAreg, to develop both predictive and
interpretable QSAR models. The algorithm determines a fea-
ture to best separate the data into regions and identifies linear
equations to predict the outcome variable in each region. A reg-
ularisation term is introduced to prevent overfitting problems and
implicitly selects the most informative features. As OPLRAreg is
based on mathematical programming, a flexible and transpar-
ent representation for optimisation problems, the algorithm also
permits customised constraints to be easily added to the model.
The proposed algorithm is presented as a more interpretable
alternative to other commonly used machine learning algorithms
and has shown comparable predictive accuracy to Random For-
est, Support Vector Machine and Random Generalised Linear
Model on tests with five QSAR data sets compiled from the
ChEMBL database.
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1. Introduction

Quantitative Structure-Activity Relationships (QSAR) are
mathematical models that aim to predict biological activity
of chemical compounds based on their molecular struc-
ture [1]. These models are particularly useful for drug dis-
covery as they can be used to draw hypotheses from the data.
QSAR models are often used in virtual screening to help
identify new potent compounds for a target of interest [2] or
to re-purpose existing medicines to different treatments [3].
The technique can also indicate optimisation strategies to
develop potent new drugs from a series of promising com-
pounds [4].

The first QSAR models were built for small series of sim-
ilar compounds using only a few quantitative features and
aimed to discover a transparent relationship, preferably lin-
ear, between molecular structure and biological activity [5].
Although this approach is still employed to design new
drugs [6,7], most recent studies propose models that consist
of hundreds or thousands of molecular descriptors calcu-
lated from the 2D or 3D representations of molecules [8–11]

and are often built with non-linear algorithms such as Neural
Networks, Support Vector Machines with Gaussian kernels
and Random Forests [12]. These techniques usually predict
the biological activity of compounds with better accuracy
than linear methods, but they are often described as “black
box”, i.e. the relation between chemical features and biolog-
ical activity can not be obtained directly from the outcome
of the algorithm [13]. Even when it is possible to obtain
a ranking or importance of features, as is the case with
Random Forest and its out-of-bag feature importance esti-
mation, it is hard to identify a clear relationship between
the properties of a molecule and its biological activity. Re-
cent studies have been proposed to reverse engineer the
predictions made by “black box” algorithms [14–17] but in
this study we argue that it is possible to produce accurate
yet interpretable QSAR models directly, without the need
of a post-processing step in the form of equations linking
features to outcome.

The selection of a subset of features that is most relevant
to the prediction problem is an important strategy towards
more interpretable QSAR models. A modeller can select
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Table 1: Data sets used in this study

Data Set Biological Endpoint Source Samples Descriptors

hDHFR human dihydrofolate reductase CHEMBL202 542 76

rDHFR rat dihydrofolate reductase CHEMBL2363 875 80

CHRM3 human muscarinic acetylcholine receptor M3 CHEMBL245 588 87

NPYR1 human neuropeptide Y receptor type 1 CHEMBL4777 354 70

NPYR2 human neuropeptide Y receptor type 2 CHEMBL4018 374 67

these features empirically, according to existing hypothe-
ses or known properties about the compounds in a dataset.
However, such an approach does not work well in practice,
particularly when mining data in public repositories that
have been collected from multiple sources, or where the
relevant features might not be known beforehand. In these
cases, the selection of most important features is often dele-
gated to the algorithm [13, 18]. A common technique that
has been used for feature selection is Principal Component
Analysis (PCA) [19–21] however, as dimensionality reduc-
tion is achieved through transformation of the original data,
a post-processing step is required in order to express the
effects of each individual feature to the prediction outcome.
Algorithms exist that do not rely on data transformation (e.g.
based on genetic algorithms [7], particle swarm optimisa-
tion [22] and regularisation strategies [23]) and can perform
feature selection prior to QSAR modelling itself. We note
that an algorithm performing feature selection simultane-
ously to QSAR modelling is desirable. Finally, feature selec-
tion by itself is not sufficient to otain an interpretable model.
It is also important to use an algorithm that can transparently
relate the chemical properties of a compound to biological
activity, while also being able to account for non-linearities
inherent to the data.

In this article, we propose a novel computational strat-
egy for activity prediction, incorporating feature selection
and employing a mathematically descriptive basis. Our pro-
posed algorithm, Optimal Piecewise Linear Regression Al-
gorithm with Regularisation (OPLRAreg), identifies differ-
ent regions in the data and linear equations to describe each
of these segments while incorporating an explicit feature
selection with regularisation. OPLRAreg models QSAR
problems using mathematical programming, a standard rep-
resentation of optimisation problems that can be solved
using exact algorithms and can be easily adjusted by the
addition of custom constraints [24–26].

The OPLRAreg algorithm was implemented to predict
the inhibitory concentration (logIC50) of compounds in
data sets compiled from ChEMBL [27]. Best practices in
QSAR modelling were followed for data cleaning, prepro-
cessing and rigorous validation [1, 28]. Below, we demon-
strate the effect of regularisation in prediction accuracy and
dimensionality reduction, illustrate how the proposed al-
gorithm could be easily modified to accommodate custom
constraints of a QSAR project and compare the results with

other machine learning algorithms in R package caret [29]
version 6.0-76 (2017).

2. Methods

2.1. Data Sets

We have obtained five data sets from ChEMBL database
(version 22 1) [27]. Each data set contains a list of chemical
compounds with their respective binding activity to a pro-
tein target, measured by pIC50 =−log10(IC50). The same
data sets were used to benchmark algorithms in [12]; here
we obtained an updated list from ChEMBL and performed
a preprocessing step to remove invalid and duplicated com-
pounds. First, we selected the entries with IC50 measure-
ments and filtered out compounds with dubious measure-
ments, indicated by column DATA VALIDITY COMMENT.
For groups of duplicated records, if the standard deviation
of activity was above 1 log unit, sd > 1, these compound
samples were removed from the data set; otherwise, a single
entry with the median of the activity was kept.

Java Chemistry Development Kit (CDK) (version
1.5.13) [30] was used to calculate 1D and 2D molecular
descriptors, totalling more than 200 numerical descriptors
for the chemical compounds in each data set. These features
were cleaned and normalized following practice described
in Tsiliki et al 2015 [28]. Data were normalized and molecu-
lar descriptors with near zero variance and highly correlated
features were removed using the R package caret [29]. De-
tails for data sets after this preprocessing step are given in
Table 1.

2.2. New mixed integer programming model

A piecewise linear regression algorithm based on mathemati-
cal programming was introduced in [31]. Optimal Piecewise
Linear Regression Algorithm (OPLRA) solves Mixed In-
teger Programming (MIP) models to find partitions in the
data where the outcome of samples is predicted by unique
linear equations identified for each disjoint region. The al-
gorithm contains a loop defined over all features in the data
set where MIPs are solved for two regions (R = 2), and the
feature leading to the smallest error in prediction across all
samples is taken as the partition feature ( f ∗) for subsequent

Copyright line will be provided by the publisher



3

iterations. The number of regions is then increased at each
iteration until the improvement in prediction error is smaller
than a user-defined paramater between iterations.

Although OPLRA has been successfully applied to UCI
benchmark data sets [31], it did not perform well when
applied to QSAR models. The regression coefficients iden-
tified by the algorithm fit samples in the training set well,
but had poor performance on the test set, indicating the
effect of overfitting. To mitigate these problems, the objec-
tive function in OPLRA was modified to include two terms;
mean absolute error (MAE), a well established metric for
regression analysis in QSAR [32], and a `1 regularisation
term (REG), calculated as the sum of all absolute regression
coefficients. The regularisation term reduces the risk of gen-
erating linear equations that are too specific to the training
set. The new objective function accounts for both accuracy
and complexity of the models generated and is shown in
Equation 1 below.

z = MAE + λ REG, (1)

where λ is a positive user-defined parameter that controls
the influence of regularisation.

Variables MAE and REG are defined by the set of equa-
tions below:

MAE =
∑s Es

|s|
, (2)

REG = ∑
f

W+
r f , (3)

W+
r f ≥ Wr f ∀r, f (4)

W+
r f ≥−Wr f ∀r, f (5)

where Es indicates the absolute error for each sample s and
|s| is the number of samples in the training set. Positive
variables W+

r f are introduced to indicate the absolute value
of regression coefficients Wr f and are defined by the two
auxiliary constraints above.

At every iteration, the number of regions R and the par-
tition feature f ∗ used to identify breakpoints are fixed. The
allocation of sample s to regions r ∈ {1,2, . . . ,R} is mod-
elled with binary variables Fsr while the breakpoints are
represented by the free variables Xr, f , where f always corre-
sponds to the partition feature f ∗ of the current iteration.

Equation 6 guarantees that a sample can belong to only
one region:

∑
r

Fsr = 1 ∀s, (6)

while Equation 7 below ensures that breakpoints are consis-
tent:

Xr, f ∗ ≥ Xr−1, f ∗ , ∀r = 2,3, . . . ,R−1. (7)

Equations 8 and 9 assign samples to the correct regions
according to the breakpoints.

As f ∗ ≥ Xr−1, f ∗ −U (1−Fsr) ∀s,r = 2,3, . . . ,R, (8)
As f ∗ ≤ Xr, f ∗ −U (1−Fsr) ∀s,r = 1,2, . . . ,R−1, (9)

The predicted value Psr for sample s in region r is given
by Equation 10, according to regression coefficients Wr f
and the intercept Br for each region. Equations 11 and 12
compute the absolute error in prediction Es for each sample.
Os are the observed values for sample s and U is a large
number that will force these constraints to consider only the
predicted values Psr, where sample s belongs to region r,
Fsr = 1.

Psr =

(
∑

f
Wr f As f

)
+Br ∀s,r, (10)

Es ≥ Os−Psr−U (1−Fsr), ∀s,r, (11)

Es ≥ Psr−Os−U(1−Fsr), ∀s,r, (12)

The full MIP model, OPLRAreg, is given by:

minimise z

subject to

Equations (1)− (12)

2.2.1. Regularisation and implicit feature selection

Besides reducing the risk of overfitting the data, regularisa-
tion has an important role in the selection of features for the
model. Without regularisation (λ = 0.00), regression coeffi-
cients can assume any numerical value, so in cases where
regression coefficients are large, even minor deviations from
the data seen during training can lead to large prediction
error. This effect creates models that are too specialised to
the training data and can predict samples in the external val-
idation set poorly. On the other hand, when regularisation
is enforced (λ > 0.00), regression coefficients are forced to
assume smaller values and deviations from training will not
have a large impact on the accuracy of predictions.

As an additional effect of regularisation, the coefficients
of many features are set to zero, indicating that these descrip-
tors are not important to prediction. This implicit feature
selection step also reduces the number of loops to identify
the partition feature of OPLRAareg and reduces the size of
MIP models in the remaining iterations. The effect of regu-
larisation in the accuracy of OPLRAreg is also discussed on
Section 3.1 and illustrated on results shown in Table 2.

2.3. Proposed algorithm

Algorithm 1 summarises the iterative process of the pro-
posed OPLRAreg method with the modifications described
above. First, a simple linear regression is fit to the training
data (number of regions R = 1) and z is recorded. The reg-
ularisation will ensure that the coefficient of less relevant
features are set to zero and only descriptors that have been
effectively used in the linear equation are kept in the next
iterations. Note that constraints related to breakpoints and
assignment of samples to regions (Equations 7, 8, 9) are not
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Algorithm 1 OPLRA with proposed modifications
1: Solve OPLRAreg for R = 1 . Simple linear regression
2: ERRORcurrent← z
3: ERRORold← ∞

4: ERRORtmp← ∞

5: fbest←{}
6: F ←{ f ∈ f |Wr1, f 6= 0} . Implicit feature selection
7: R← 2
8: for i← 1; i← i+1; i≤ F do . Selects best partition feature in 2 regions
9: Solve OPLRAreg with 2 regions and partition feature fi

10: if z < ERRORtmp then
11: ERRORtmp← z
12: fbest← fi
13: end if
14: end for
15: ERRORold← ERRORcurrent
16: ERRORcurrent← ERRORtmp
17: f ∗← fbest
18: while ERRORcurrent < (1−β )ERRORold do . Number of regions increases
19: R← R+1
20: Solve OPLRAreg with R regions and partition feature f ∗

21: ERRORold← ERRORcurrent
22: ERRORcurrent← z
23: end while
24: return partition feature f ∗, breakpoints Xr f , regression coefficients for each region Wr f

Inside each fold

Start

Data

Data Cleaning

Data Split
Model

building

External
set

10-fold
split

Training

Testing

Algorithm

Validate

Select best
across

all folds

External
Validation

Report
Metrics

End
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Figure 1: Validation scheme adopted in this study.
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Table 2: Comparison of OPLRA performance for different regularisation parameters

rDHFR hDHFR CHRM3 NPYR1 NPYR2

MAE
λ = 0.000 54.76±70.31 28.56±29.51 103.15±118.52 124.28±105.66 153.32±147.09

λ = 0.005 0.74± 0.07 0.79± 0.06 0.78± 0.06 0.70± 0.09 0.57± 0.12

λ = 0.010 0.84± 0.06 0.84± 0.08 0.78± 0.07 0.76± 0.09 0.63± 0.09

λ = 0.020 0.90± 0.07 0.85± 0.05 0.83± 0.10 0.73± 0.11 0.61± 0.08

Time (min)
λ = 0.000 90.84±3.98 44.93±3.23 60.44±1.57 24.82±3.84 24.59±4.30

λ = 0.005 9.73±0.83 4.64±0.73 7.40±0.60 4.70±0.78 5.38±0.62

λ = 0.010 5.41±0.93 1.86±0.36 5.15±0.71 3.69±1.59 2.82±0.39

λ = 0.020 2.17±0.78 0.62±0.14 2.48±0.21 2.31±0.23 1.55±1.59

Features
λ = 0.000 80.0±0.00 75.9±0.32 86.2±0.42 69.2±0.42 67.0±0.00

λ = 0.005 21.9±1.60 19.9±1.80 23.7±1.57 22.4±2.80 25.1±3.41

λ = 0.010 13.4±1.43 8.9±2.69 16.8±1.81 16.4±2.12 14.7±1.83

λ = 0.020 5.0±0.67 2.6±0.52 12.0±2.26 9.4±0.97 7.3±0.48

Regions
λ = 0.000 4.3±0.82 4.4±0.97 4.0±0.47 4.8±1.03 4.8±1.87

λ = 0.005 2.0±0.00 2.0±0.00 2.0±0.00 2.3±0.48 2.0±0.00

λ = 0.010 2.1±0.32 2.0±0.00 2.0±0.00 2.3±0.95 2.0±0.00

λ = 0.020 2.1±0.32 2.0±0.00 2.0±0.00 2.0±0.00 2.3±0.95

used while solving the first MIP model and all samples are
assigned to a single region, Fsr1 = 1 according to Equation
6. Then, an MIP with two regions (R = 2) is solved for each
selected feature and the feature that corresponds to the best
model in this iteration is determined as the partition feature
f ∗ for the remaining iterations.

The number of regions increases until the improvement
of absolute error in consecutive iterations is no more than
a user-defined parameter β . In this study, the value of β

did not affect results significantly (see sensitivity analysis
in Section 3.1 and supplementary data), therefore a small,
non-zero value is suggested.

2.4. Implementation and Validation scheme

The validation scheme used in this study is illustrated in
Figure 1 and is aligned with state-of-the art QSAR model
validation procedures [1, 28]. Data sets are initially split
at random, 75% of samples were used for model building
and 25% for the external validation set. Samples in the
model building set were further split in internal training and
testing sets using stratified sampling techniques available
in caret for 10 repeated 10-fold cross-validation. Samples
in external set are only used to assess the final models. All
algorithms used in this study were tested across samples in
each fold and, after cross-validation, the best model for each
algorithm was selected and used to predict the outcome of

samples in the external validation set. This data split and
model selection procedure was repeated 5 times and the
average accuracy is reported.

3. Results and Discussion

In this section, results of the piecewise linear regression
are presented and compared to other machine learning algo-
rithms. We also illustrate the flexibiliy of the mathematical
programming methodology and show how the division of
regions can help elucidate the properties of QSAR data sets.

3.1. Parameter optimisation

Initial tests were run with a single round of 10-fold cross-
validation to understand the impact of the regularisation
parameter in the new mathematical programming model. For
these tests, we varied the regularisation parameter using the
following values: λ ∈ [0.000,0.005,0.010,0.200] with β =
0.03. Table 2 shows the effect of regularisation in terms of
mean and standard deviations of MAE, CPU time required
to run each test case and average number of features and
regions detected by the algorithm.

These results clearly show an improvement in the perfor-
mance of OPLRA with the introduction of the regularisation
term in OPLRAreg. Prediction variable pIC50 in most data
sets ranged from 4 to 11, but the mean absolute error of
tests with no regularisation (λ = 0) was far beyond this
range. The best regularisation parameter value was found to
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be λ = 0.005, where prediction accuracy was consistently
better on all data sets when compared to tests with nonzero
λ . OPLRAreg was also 4 to 10 times faster with the optimal
regularisation parameter and the average number of features
selected was around 20.

Sensitivity analysis with regards to β was also un-
dertaken, where the regularisation parameter was fixed at
λ = 0.005 and all five data sets were run with the follow-
ing values for β : [0.01, 0.03, 0.05, 0.10, 0.15, 0.20]. Re-
sults showed that MAE did not change substantially in any
test case (supplementary data). Therefore, parameters for
OPLRAreg were set at λ = 0.005 and β = 0.03.

3.2. Algorithm results

On average, OPLRAreg detects 3 regions and selects 20 to
25 features for the QSAR data sets used in this study, as
shown in Table 3. Illustrative examples of QSAR models
generated by the algorithm for data sets hDHFR and NPYR1
can be seen in Figures 2 and 3, respectively. The distribution
of scaled descriptor values for the partition feature is shown
against biological activity (pIC50), as well as breakpoints
and equations detected for each region.

In the first example, shown in Figure 2, the partition
feature is MDEN-11, a descriptor related to the distance
between all primary nitrogen atoms in the molecular graph.
Most samples in this data set have either MDEN-11 = 0
(23.4%) or MDEN-11 = 0.43 (71.96%) and OPLRAreg
captures different equations for those cases. The algorithm
assigns molecules without nitrogen atoms or with small
distance between these atoms to region 1, another multi-
ple linear relationship encompassing samples in 0.17 ≤
MDEN-11 < 0.72 and it estimates that pIC50 = 5.04 for the
few cases where MDEN-11 is large. Most selected features
are related to topological characteristics of the molecules
and are either related to connectivity of atoms (topoShape,
MDEN-22, MDEC-23, C1SP3, C3SP3, SC-5, SCH-5) or
to the number of specific groups found in the molecules, as
is the case of nE (number of glutamic acid) and fragments
identified as Kier-Hall SMART descriptors (khs-) [19].

Similarly, we can interpret the breakpoints and equations
for NPYR1 shown in Figure 3. C1SP3 is the partition feature
and it represents the number of singly bound carbon atoms
bound to one other carbon. Descriptors are scaled during
preprocessing of the data and the interval [0,1] represents
the original range [0,41]. Therefore, molecules with at most
4 such types of carbon (C1SP3 ≤ 0.11) are predicted by
equation in region 1 while those ranging from 4 to 11 atoms
belong to region 2. Region 3 captures rare cases (only 8%
of the samples) where molecules have more than 11 carbons
with the defined connectivity.

3.3. Overall Variable Importance

In order to express the importance of molecular descrip-
tors in the QSAR models by OPLRAreg, a simple metric
would be to rank each feature according to the number of

times it appears in equations across all regions. In order to
also account for the number of samples that are represented
in each region, another option for the variable importance
measure may be the percentage of samples predicted by
equations containing a specific feature. We have computed
this percentage for each feature in the best OPLRAreg mod-
els selected after cross-validation and averaged across the
five external validation sets to generate an overall impor-
tance score for these tests. Table 4 shows the top 15 features
ranked according to this score per data set. The types of
descriptors more frequently selected are briefly described
below.

Fragment count: Descriptors that represent the number
of specific fragments or substructures. Of these, Kier-Hall
descriptors [19, 33], identified by the prefix khs, were se-
lected more often and had a high score of importance in
OPLRAreg models.

–khs-* descriptors
–nRings6
–nBase

–nAtomLAC
–Aminoacids count (nG,

nF)

MDE descriptors: Molecular Distance Edge descrip-
tors represent the distance edge between specific atom types
in the molecular graph. MDEO.11 and MDEO.22, for ex-
ample, calculate the distance between all primary oxygen
and all secondary oxygen, respectively.

–MDEN.11
–MDEN.13
–MDEN.22
–MDEN.33
–MDEC.12

–MDEC.13
–MDEC.22
–MDEC.33
–MDEO.11

Carbon connectivity: Descriptors describing carbon
types.

–C1SP3 –C3SP2 –C3SP3

Log P descriptors: Descriptors related to the lipophilic-
ity of molecules, an important property determinant of the
absorption, transport and excretion of a drug. The logarithm
of the partition coefficient, log P, measures the affinity of
a molecule for a lipid over an aqueous medium and can be
approximated by various numerical methods:

–ALogP
–ALogP2

–XLogP
–MLogP

BCUT descriptors: Descriptors based on eigenvalues
of a matrix representation of the molecular graph where di-
agonal weights contain either atomic weight, partial charge
or polarizability properties of molecules.

–BCUTc.1l
–BCUTc.1h

–BCUTw.1l
–BCUTp.1h

BCUT descriptors condense a great deal of informa-
tion and are more difficult to interpret. It is harder to relate
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Table 3: Average number of regions and selected features found by OPLRAreg during cross-validation

rDHFR hDHFR P20309 NPYR1 NPYR2

Regions
3.10 3.00 3.00 3.46 3.04

(±0.31) (±0.00) (±0.06) (±0.58) (±0.19)

Features
22.30 18.93 25.53 22.66 24.95

(±2.24) (±2.13) (±2.50) (±2.58) (±2.89)

pIC50 = + 0.05 khs.ssS + 0.61 khs.aaS

− 1.78 khs.tsC + 0.56 nAtomLAC

− 0.06 MDEN.22 + 0.64 MDEC.23

+ 1.57 khs.dssC − 0.53 topoShape

+ 0.24 nE + 5.38 

pIC50 = − 1.77 SCH.5 − 0.94 khs.ssS

+ 2.02 SC.5 − 0.79 C3SP3

− 0.81 khs.ssO + 0.54 C3SP2

− 0.35 khs.tsC + 0.94 khs.ssssC

+ 0.18 MDEN.22 − 1.26 MDEC.11

− 0.02 XLogP − 0.68 C1SP3

− 0.37 topoShape + 6.86 

pIC50 = + 5.37 
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Figure 2: Breakpoints, regions and equations found by OPLRAreg for data set hDHFR
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Figure 3: Breakpoints, regions and equations found by OPLRAreg for data set NPYR1
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Table 4: Top 15 features and their importance score for each data set

Rank
rDHFR hDHFR P20309 NPYR1 NPYR2

Descriptor Score Descriptor Score Descriptor Score Descriptor Score Descriptor Score

1 VC.5 98.86 khs.aaNH 99.45 MDEC.33 98.21 SC.6 99.15 SC.4 99.73

2 ALogP 95.94 VP.7 99.45 BCUTc.1h 98.19 BCUTw.1l 91.71 MDEO.11 99.47

3 MDEN.13 93.90 khs.ssS 94.60 BCUTw.1l 98.13 C3SP2 77.01 khs.ddssS 96.47

4 MDEC.22 91.77 topoShape 93.95 nG 98.13 khs.aaO 74.01 C3SP3 92.35

5 SCH.6 85.03 ALogp2 87.55 VCH.6 98.13 khs.aaS 71.98 LipinskiFailures 91.71

6 MDEC.33 84.80 khs.aaN 87.55 ATSm1 97.45 C3SP3 70.90 BCUTp.1h 91.51

7 MDEC.13 82.26 MDEN.22 84.19 khs.aaaC 97.45 MDEC.12 70.20 C3SP2 91.44

8 khs.ssNH 81.01 XLogP 78.93 nF 96.77 nAtomLAC 64.27 khs.aaO 91.44

9 ALogp2 80.11 MDEC.22 78.78 nRings6 94.39 LipinskiFailures 64.24 HybRatio 91.31

10 C1SP3 76.80 MDEN.11 78.78 MDEN.33 92.86 nRings6 62.29 khs.sF 91.31

11 nRings6 75.82 nBase 78.78 LipinskiFailures 91.84 SC.4 62.15 khs.ssO 86.36

12 tpsaEfficiency 73.66 LipinskiFailures 77.21 khs.dsCH 91.04 khs.aaaC 61.58 tpsaEfficiency 86.36

13 BCUTc.1l 72.69 MDEO.22 76.66 khs.dssC 90.22 MDEO.11 61.30 BCUTc.1l 83.69

14 khs.aaaC 72.39 C3SP2 75.89 khs.ssNH 89.56 khs.aasN 60.85 MDEN.22 83.69

15 khs.dssC 72.39 C1SP3 75.83 ALogp2 89.20 khs.sCl 60.34 ATSc3 82.80

pIC50 = + 1.37 C3SP2 − 0.63 C1SP3

− 0.61 C3SP3 − 0.69 SCH.5

+ 0.25 SC.5 − 0.90 tpsaEfficiency

− 0.29 khs.tsC + 0.71 khs.dssC

+ 1.07 khs.ssssC − 0.57 khs.ssO

− 0.27 khs.ssS + 0.26 nAtomLAC

− 0.20 MDEC.11 + 1.52 MDEN.11

+ 0.16 MDEN.12 + 0.92 MDEN.22

− 0.33 topoShape − 0.72 XLogP

+ 0.09 nE + 6.35 

pIC50 = + 1.03 khs.aaS + 1.57 nAtomLAC

− 0.03 topoShape + 4.80 
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Figure 4: Piecewise model for hDHFR inhibitors with khs.aaNH as the partition feature

the values of these descriptors to properties in the molec-
ular graph in the same way as descriptors describing frag-
ments, atom types or distances. However, BCUT descriptors
have been proven useful in QSAR models as representa-
tive features of ligand-receptor interactions [34]. A possible
workaround to interpret QSAR models where these features
have been deemed important is to complement the analysis
of BCUT values with other correlated descriptors and visual
data exploration [35].

3.4. Custom constraints to the model

In the previous sections, we showed how OPLRAreg auto-
matically finds a feature to split the data into regions. Now,

suppose that we want to discover the possible structure-
activity relationships of inhibitors for a particular attribute
of interest and we have reasons to believe that the data can
be split into a known number of regions. The proposed
method is flexible enough to accommodate this requirement,
i.e. it allows the user to specify which descriptor to use to
partition the data and, if necessary, the exact number of
regions.

To provide an illustrative example, OPLRAreg identifies
the alternative optimal piecewise model shown in Figure 4
for hDHFR inhibitors when we use f ∗ = khs.aaNH as the
partition feature. The fragment captured by khs.aaNH is an
aromatic nitrogen connected to a single hydrogen atom and
the value calculated by the descriptor is simply the number
of occurrences of this fragment in a molecule. In this dataset,

Copyright line will be provided by the publisher



9

there are only three distinct values of khs.aaNH: [0,1,2],
scaled to [0.0,0.5,1.0], as shown in the graph. Examples of
compounds with the distinct khs.aaNH values are shown in
Figure 5.

The model identified by OPLRAreg splits the data in
two regions by the breakpoint khs.aaNH = 0.49, which
in practice separates the compounds containing the frag-
ment (khs.aaNH > 0) from those without the fragment
(khs.aaNH = 0). Examples of compounds with distinct
khs.aaNH values are shown in Figure 5. One possible expla-
nation is that the hydrogen atoms in the fragment could form
H-bonds with hDHFR, affecting the binding to the protein
thus leading to the two distinct rules of potency, as identified
by the algorithm. This hypothesis would have to be proven
by computational or experimental means, i.e. docking or
appropriate assay at the right pH and bioactive conforma-
tion. The accuracy of the new model (MAE = 0.74) is very
similar to the one identified by the standard workflow in
Figure 2 (MAE = 0.72) and the selection of one over the
other would depend on the practical applications of this
QSAR model.

It is worth noting that in cases where known structure-
activity relationships exist, custom constraints discussed
above represent valid and even encouraged modifications to
the standard procedure presented in Algorithm 1. In such
cases of additional, user-specific constraints being specified,
the algorithm requires fewer iterations and OPLRAreg will
run faster than the original workflow since the loop for 2
regions will not be executed. It can run faster still, if the
number of regions is small and also specified beforehand,
as only one MIP model will need to be solved.

3.5. Comparison with other algorithms

Results obtained with OPLRAreg were compared to other
machine learning algorithms available through the R pack-
age caret, following the validation scheme shown in Figure
1. Five nonlinear algorithms (Support Vector Machine Ra-
dial [36, 37], Random Forest [38], Neural Networks [39],
Generalised Linear Model, Random Generalised Linear
Model [40]) and four linear algorithms (Lasso, Linear Re-
gression, Partial Least Square and Elastic Net) in caret were
used. OPLRAreg parameters were set to λ = 0.005 and
β = 0.03. Default parameters were used for Random GLM
(nBags = 100 and default settings for nFeaturesInBag). Pa-
rameters for other algorithms in caret package were defined
by grid search, as used in [28].

All algorithms were trained on the same training/testing
data splits for 10-fold cross-validation, repeated 10 times.
For each algorithm, the best model corresponding to the
smallest MAE in the internal test set was used to predict
the activity of samples in the external validation set.This
process was repeated five times and the performance of each
algorithm in the external validation set is shown in Figure
6 for NPYR1, NYPR2, CHRM3 and hDHFR datasets and
Figure 7 for dataset rDHFR. The box plots represent the
distribution of prediction error and dots outside the boxes
represent outlier predictions for each algorithm.

In tests illustrated in Figure 6, performance of OPLRAreg
was similar to state-of-the-art algorithms such as Random
Forest, SVM Radial and Neural Networks. The average er-
ror of these algorithms was below 1 log unit and close to
MAE = ±0.60, which is the expected error for biological
activity reported in ChEMBL [12].

Compared to OPLRAreg, these algorithms produce less
interpretable or mathematically explicit models. In Random
Forest models, for example, a randomly selected subset of
features is used to navigate feature space and reach a numeri-
cal outcome in the form of a decision tree. Such a regression
tree in itself is somewhat easy to interpret, in terms of link-
ing molecular descriptors to an activity prediction. However,
as the final prediction of Random Forest involves averaging
across hundreds of decision trees, the resulting model be-
comes a convoluted means of modelling structure-activity
relationships, so clarity in how molecular descriptors con-
tribute to drug activity becomes hard to interpret. Similar
effects are also noted with respect to models produced by
SVM and Neural Networks. OPLRAreg, however, offers an
optimal means of separating the data set into appropriate
regions, with each region specifying a clear, mathemati-
cal relation of molecular descriptors to predicted activity.
Furthermore, as illustrated above, OPLRAreg can also be
customised through user-specified mathematical constraints.

Apart from average prediction performance, results for
each algorithm show the number of outlier predictions (Fig-
ure 6). The existence of such outliers can be attributed to the
heterogeneity of data sets, as well as the presence of activity
cliffs, both inherent limitations of QSAR models [41–43].
However, we note that models built with Linear Regression,
Lasso and in some test cases Random GLM, appeared to
have produced more outliers. The error in some individual
predictions have reached more than ten orders of magni-
tude in CHRM3 and hDHFR data sets, indicating poorer
performance of tests through these algorithms.

The case of rDHFR proved a more variable case, in
terms of comparative tests. The performance of OPLRAreg
was once again similar to Random Forest, SVM Radial
and Neural Networks, as shown in Figure 7. On the other
hand, the error distribution of Linear Regression, Lasso and
Random GLM was much worse than in the previous data
sets and have exceeded hundreds and even thousands of
orders of magnitude. These algorithms are shown in their
own separate box and scale to allow comparison, and such
variability in results suggests that they are more prone to
overfitting.

4. Conclusions

In this study, we report the development and application
of a piecewise linear regression algorithm based on mixed
integer programming models for predictive QSAR tasks.
We have illustrated how such a combinatorial optimisation
framework under a robust validation scheme can be used to
predict biological activity of chemical compounds against
a common target and showed that this approach offers in-
terpretable, customisable models with acceptable accuracy

Copyright line will be provided by the publisher
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(a) CHEMBL7492 (khs.aaNH = 0) (b) CHEMBL35222 (khs.aaNH = 0)

(c) CHEMBL477789 (khs.aaNH = 1) (d) CHEMBL595497 (khs.aaNH = 1)

(e) CHEMBL225072 (khs.aaNH = 2) (f) CHEMBL225180 (khs.aaNH = 2)

Figure 5: Example of compounds with different khs.aaNH values. The fragments counted by the molecular descriptor are
highlighted in the relevant figures.

of prediction. The datasets and source code are available at
https://github.com/KISysBio/qsar-models.

Interpretability is one of the major drawbacks of black-
box machine learning and deep learning algorithms and
the method presented here contributes towards more inter-
pretable QSAR models. OPLRAreg not olny determines
optimal splits of the data into different subgroups (regions)
using one of the molecular descriptors in the data set, but
also identifies a suitable equation to predict the biological
activity of samples that fall in each of these regions. The de-
scriptor used to split the data as well as the linear equations
in each region are output by the algorithm in a transparent
manner. A modeller can then use such information and com-
pare the features that are more relevant in activity prediction
across different subgroups of compounds.

The proposed method has a comparable prediction ac-
curacy compared to other non-linear and less interpretable
algorithms. In addition, it offers unique benefits that stem
from the properties of mathematical programming. In addi-
tion to its interpretable capabilities, OPLRAreg allows for
customisation of the model. Where possible, the method al-
lows that the modeller specifies the exact number of regions
and the molecular descriptor to be used in order to partition

the data. This flexibility also allows the user to compare
different grouping of molecules according to the specific
needs of a QSAR project.

We intend to improve the algorithm by introducing auto-
matic variable transformations in the model and alternative
definition of the regions in the future. The algorithm can
potentially cope better with the non-linearities of this type
of data, while retaining the transparent and interpretable
capabilities of the mathematical model. In the future, we
would also like to develop an optimisation model akin to the
inverse QSAR problem to design new potent compounds
on the basis of selected molecular descriptors identified by
OPLRAreg in each sub-group of molecules.
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Figure 6: Performance of OPLRAreg compared to other machine learning algorithms. The box plots show the distribution
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