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Abstract 
 

In the UK, there has been an increase in the number of loft conversions in properties, driven by 

demands for increased floor areas of dwellings to accommodate more individuals or increase 

property values. While rooms directly underneath roofs are known to have increased overheating 

risks, there is little research available that quantifies this risk, and how to mitigate it cost-effectively. 

This paper seeks to evaluate overheating risks in loft conversions, using Integrated Environmental 

Solutions Virtual Environment to dynamically simulate indoor temperatures in a semi-detached 

dwelling in London, UK, under current and future (2050s and 2080s medium and high emissions) 

climate scenarios. Adaptive overheating risk and energy consumption is calculated with and without 

passive overheating adaptations that reduce solar gains, increase ventilation, or add thermal 

insulation. Marginal Abatement Cost Curves (MACC) are then used to select the most cost-effective 

adaptations based on installation and ongoing energy consumption costs. Results estimate 11,340 – 

12,210 more summertime Category I overheating degree hours for the loft than conventional 

bedrooms in the dwelling under the current climate; total Category I loft overheating degree hours 

may increase to 20,319 by 2080. While external shutters and night purge ventilation were the most 

effective at reducing overheating degree hours (96% and 89%, respectively), the most cost-effective 

solutions considering capital and ongoing costs are ventilation strategies, including nighttime purge 

ventilation, advance ventilation, and cross ventilation. Passive adaptations are not capable of 
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eliminating overheating entirely, and by the 2080s active cooling is likely to be required to maintain 

comfortable indoor conditions in lofts. 

Practical applications 
Converted lofts - present in 5.8% of English and 10.8% of London dwellings - are at significantly 

elevated risk of high indoor temperatures relative to conventional rooms. Passive adaptations such 

as ventilation and shading can effectively mitigate loft overheating until around 2080, after which 

active measures become necessary. When capital and ongoing costs are considered, the most cost-

effective heat mitigating adaptations are night and advance ventilation and internal curtains/blinds. 

Heat mitigating adaptations for converted lofts should become mandatory, and such spaces should 

not be occupied by the vulnerable or elderly during hot weather. 
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1. Introduction 
 

In many parts of the UK, the high cost of housing per square metre and the demand for extra living 

space means that loft conversions are increasingly seen to be a good investment, with estimates 

suggesting that they can add up to 20% to property values (1) . However, evidence suggests that top 

floor flats are at risk of elevated indoor temperatures (2), and converted lofts – typically with low 

thermal mass – may  be particularly vulnerable to high indoor temperatures; indeed occupants of 

lofts  - or rooms directly under roofs -  have been shown to have an increased risk of heat-related 

mortality during heatwaves (3). Climate change is projected to increase average temperatures, as 

well as the frequency and duration of heatwave events in the UK (4), and summers such as 2003 

where 2000 heat-related deaths occurred in England and Wales (5) are expected to become the 

norm by mid-century. Therefore, loft conversions may be particularly vulnerable to overheating in 

future climates. The risk of loft overheating may be further exasperated by the fact that the majority 

of conversions are likely to occur in urban areas, where housing is in greatest demand, but where 

night-time temperatures may be elevated due to Urban Heat Island (UHI) effects. In addition, it is 

thought that the majority of loft conversions are extra bedrooms: occupants typically have stricter 

thermal comfort requirement during sleep (6), while high night-time temperatures are an important 

contributor to heat-related mortality (7,8). 

There is little evidence to indicate the degree to which loft overheating may be an issue in the UK, 

including a lack of published data on the prevalence of loft conversions. Empirical indoor 



temperature data from lofts is currently limited to monitoring data from a single dwelling that 

indicates a high risk of night time overheating (9). Due to their relative infrequency, converted lofts 

are often excluded from large-scale monitoring or stock modelling studies into heat risk, and 

previous research on indoor temperatures in the UK has generally focused on monitoring (10–12) or 

modelling (2,13–16) indoor temperatures in living rooms and primary bedrooms. Results from such 

studies support the conclusion that top-floor flats – or dwellings below a roof - have an elevated 

overheating risk relative to dwellings on the ground or middle floors. Outside of the UK, Skarning, 

Hviid and Svendsen modelled loft overheating and energy consumption for a zero energy loft in 

Copenhagen and Rome (17), however the building characteristics modelled in this study differ 

significantly from the typical converted loft in the UK. There have also been numerous studies that 

seek to examine how energy efficient retrofit, or the provision of heat-mitigating adaptations to 

buildings, may change indoor temperature exposures during hot weather (2,14,18,19). There is, 

however, little data on heat mitigation in lofts other than the aforementioned Skarning study (17). 

This paper aims to evaluate the potential overheating risk in a converted loft in Central London.  First, 

the English Housing Survey is analysed to determine the prevalence of converted lofts across the 

English housing stock. Indoor temperatures are then modelled for a converted loft in a semi-detached 

dwelling using the dynamic thermal simulation tool Integrated Environmental Solutions Virtual 

Environment (IES VE) under current and future climate scenarios. A number of passive heat-mitigating 

adaptations are then modelled and ranked according to their effectiveness and cost. The research 

questions are: 

1) Are converted lofts more likely to overheat than other bedrooms in a house?  

2) What are the most effective passive cooling interventions to reduce loft overheating?  

3) How do these passive cooling interventions rank according to cost-effectiveness?  

 

2. Methods 
 

2.1. Background 
 

The 2015-2016 English Housing Survey (20) was analysed for the presence of a loft conversion and 

the year that the conversion was performed. Results indicate a rapid increase in loft conversions in 

recent years, with the most recent period (2010-2020) on pace to exceed the number of conversions 

during the previous period (2000-2010) (Figure 1). In London in particular, loft conversions nearly 

doubled from 2000-2009 compared to the previous decade (72,590 to 141,524). Overall, loft 



conversions are found in 5.8% of dwellings in England, with the highest rates of conversion found in 

London (10.8%), Yorkshire and the Humber (8.3%), and the North West (6%). The majority of 

converted lofts are found in semi-detached dwellings (34.5%), followed by mid terraces (29.1%), 

detached (18.3%), and end terraces (9.8%). The majority of the dwellings with rooms in the lofts 

have been built pre 1919 (42.7% of all converted lofts), followed by 1919-1944 (26.5%), 1945-1964 

(18.2%), and 1965-1980 (9.2%). The most common household types to have a room in the loft are 

couples with no dependent children (38%), followed by couples with dependent children (36%), and 

other multi-person household (8.1%). The most common ages of the household reference person 

are 45-54 (25%), followed by 35-44 (21%), and 65 or over (20%).  

  

Figure 1. The number of loft conversions by date range conversion occurred, by English regions. 

 

2.2. Building simulation 
 

Based on the analysis of loft conversion in the EHS, we selected the semi-detached dwelling for further 

analysis, as it is the dwelling variant most commonly found with loft conversions. For the purposes of 

this modelling, we assume that the loft is occupied and being used as a bedroom. We modelled the 

dwelling in London due to the high frequency of converted lofts, as well as the additional heat risks 

due to the UHI. Dynamic thermal simulation was performed using IES VE (21).  

2.2.1. Semi-detached built form 
 

The built form for the dwelling was modified from that used by Taylor et al (22) in previous 

modelling of overheating risk across dwelling variants. The loft height was changed to ensure that 
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the loft had a maximum ceiling height of 2.3m,  the minimum requirement for converted lofts 

(23,24). The dimension of loft room is 5.4m long and 4.3m wide, allowing 1.2m minimum head space 

along the perimeter as recommended by Mindham (23). For lofts, optimal daylighting can be 

provided by roof windows with a minimum glazing-to-floor ratio of 6.7% (25). Therefore, two 1.2m 

by 1.2m roof windows are added to each loft roof (north and south-oriented) to provide daylighting 

and natural ventilation. The converted loft is accessed from the first-floor corridor through a 

permanent spiral staircase. English dwellings are predominantly naturally-ventilated and converted 

dwellings are typically older, so a Mechanical Ventillation Heat Recovery (MVHR) system was not 

modelled (26). House floorplans and a crosssection of the archetype are shown in Figure 2. 

 

Figure 2. Semi-detached house floorplans of ground floor, first floor and loft and west-facing crosssection. The thermal 
envelope is indicated with a thick black dotted line. 

 

2.2.2. Building envelope 
 

The building envelope characteristics input into the model can be seen in Table 1. We model the 

dwelling as having been constructed from 1919-1944 with cavity walls, and assume that the building 

has undergone an energy efficient retrofit during the loft conversion, including cavity insulation and 

double glazed windows. 

The model was generated assuming that the converted loft is in compliance with current Building 

Regulations for energy efficiency (27) and ventilation (28), with the design informed by various loft 



conversion guidelines (24,29). We model the roof as being supported by timber rafters underneath, 

covered by concrete tiles which represent the dominant roof covering material for converted lofts 

(20). The roof is assumed to be insulated by 150mm-thick polyurethane (PU) insulating boards  

installed between rafters  and finished internally with 12.5mm plasterboards. There is also a 50mm 

air cavity between the insulation layer and roof tiles to ensure sufficient roof ventilation. The 

modelled U-value of insulated roof is 0.16W/m2K, under the 0.18W/m2K requirement of Building 

Regulations.  

The section of roof sheltering the unoccupied part of the loft remains uninsulated as it is outside the 

thermal envelope. With the exception of the existing party wall, the converted loft room is further 

enclosed by three newly-built walls, forming part of the thermal envelope. These walls are assumed 

to be timber-framed, insulated with 150mm PU boards and internally finished with 12.5mm 

plasterboard, achieving a U-value of 0.25W/m2K. The loft floor of the occupied section in the same 

as the internal ceiling/floor construction mentioned above, while the unoccupied part is insulated at 

floor level with 150mm thick PU insulation boards installed between joists (0.16W/m2K) to create an 

enclosed thermal envelope. The loft is modelled with centre-pivot roof windows, as they are the 

most commonly utilised product for roof windows (30); these are sized in accordance with Approved 

Document F (28), with a maximum openable area of 30o and an openable area percentage of 80%. 

The two roof windows are double glazed with CO2 infill, resulting in 1.39 W/m2K thermal 

transmittance, performing better than the 1.6 W/m2K recommendation by Building Regulations for 

roof windows (27).   

Table 1. Building fabric characteristics of the base case model 

Element Construction detail (external to internal) U-value 

(W/m2K) 

Solar 

absorptivity 

Solar 

emissivity 

Main house     

External walls 105mm brick + 50mm cavity filled with UF foam insulation + 

100mm dense concrete block + 12.5mm plasterboard 

0.60 0.8 0.9 

Party wall 12.5mm plaster + 215mm brick + 12.5mm plaster 1.43 - - 

Internal walls 12.5mm plaster + 105mm brick + 12.5mm plaster 1.91 - - 

Ground floor 125mm concrete slab + timber battens + 20mm timber flooring 1.74 - - 

Internal floor/ceiling 

(uninsulated) 

20mm softwood flooring + 150mm timber joists + 12.5mm 

plasterboard 

1.55 - - 

Windows 6/12/6 double-glazing (argon filled) + PVC frame  1.57 - 0.85 

Doors 40mm plywood 2.06 0.7 0.85 

Converted loft     

Loft roof (insulated) Concrete tiles + 50mm ventilated air space + 150mm PU 

insulating board between and under rafters + 12.5mm 

laminated plasterboard 

0.16 0.7 0.9 

Roof (outside thermal 

envelope) 

Concrete tiles + timber battens + timber rafters 5.71 0.7 0.9 



Loft walls (insulated) Timber frame + 150mm phenolic insulating board + 12.5mm 

plasterboard 

0.25 - - 

Internal floor/ceiling 

(insulated) 

20mm softwood flooring + 150mm PU insulation + 12.5mm 

plasterboard 

0.16 - - 

Roof windows 6/12/6 double-glazing (CO2 filled) + PVC frame (0.55 g-value) 1.39 - 0.85 

 

2.2.3. Operational settings 
 

Operational settings for the model can be seen in Table 2. Air change rates for each room are set based 

on typical values provided in Chartered Institution of Building Service Engineers (CIBSE) Guide B1 (31). 

The unconditioned part of the loft is assumed to have a 5ACH ventilation rate due to the presence of 

vents. It has been assumed that this house is home to a family of four, with each person sleeping in 

one bedroom including the converted loft. Internal gains for residents, appliances and lightings are 

decided based on CIBSE Guide A (32). Except for the corridors, all rooms are heated with radiators 

during occupied hours in winter months (October to April); set points for turning on radiators differ 

with function of the rooms, which are determined according to recommended winter indoor air 

temperatures for dwellings in CIBSE Guide A. The heating system is modelled with a UK-average boiler 

efficiency of 80% (33). 

Window opening in the base case dwelling is modelled to occur above an indoor temperature 

threshold of 22 oC , as per CIBSE TM59 (34), during occupied awake hours; in the loft, this is limited to 

fully opening a single roof window. We acknowledge a great deal of uncertainty in window-opening 

behaviours. A large proportion of London residents prefer to keep windows closed – particularly 

during sleep -  to avoid disturbance from external noise and security hazards (35), while roof windows 

may not be openable in all weather conditions. 

  

Table 2. House operating settings. 

Room Infiltratio

n (ACH) 

Occupied 

hours 

Activity People 

gain (W), 

Sensible 

(Latent) 

Appliances gain 

(W), Sensible 

(Latent) 

Lighting gain 

(lux) 

Heating set point 

(oC) 

Kitchen 1 17:00 – 17:30 Four people 

cooking 

300 (264) Hob: 3000 

Fridge-freezer: 

60 all hours 

300 19 

Dining 

room 

1 17:30 – 18:00 Four people 

eating meal 

328 (216) - 200 19 

Living 

room 

1 18:00 – 22:00 Four people 

seated 

260 (140) TV: 90 during 

occupied hours, 

7 otherwise. 

200 23 



Bedroo

m/loft 

0.5 22:00 – 23:00 One person 

reading 

65 (35) - 100 19 

  23:00 – 07:00 One person 

sleeping 

55 (25) - - 19 

Bathro

om 

2 07:00 – 08:00 One person 

bathing 

75 (66) Hot Shower: 

400 (200) 

150 22 

Corrido

r 

1.5 -  - - - - 

 

2.2.4. Adaptations 
 

Housing adaptations were selected to reduce loft overheating risk by minimising solar gains, 

optimising ventilation strategies or reducing thermal transmittance of the building envelope. Internal 

gains remain unchanged as occupant behaviours are unpredictable and vary with individuals. 

Interventions are summarised in Table 3, and are applied to the base model individually. The 

adaptations are described in further detail, below. 

Table 3. Interventions applied to base case dwelling to mitigate loft overheating. 

Category Intervention Description 

Solar control External shutters External shutters with no solar transmittance operated from 9am to 5pm during 

summer 

 Internal roller blinds Internal roller blinds with 0.61 shading coefficient and 0.3 short-wave radiant fraction 

operated from 9am to 5pm during summer 

 Internal curtains Internal curtains with 0.54 shading coefficient and 0.3 short-wave radiant operated 

from 9am to 5pm during summer 

 Light-colour walls White exterior wall paint, reducing solar absorptivity to 0.3 

 Light-colour roof White coating on roof tiles, reducing solar absorptivity to 0.25 

 Solar control glass film Reflective silver solar control film to the roof window glazing, lowering g-value to 0.27 

Ventilation Night-purge ventilation The loft skylight is opened 1 hour before sleep and kept open at night (22pm to 7am) 

during summer 

 Cross ventilation Reduce opening of roof window 1 from 80% to 40%, and open roof window 2 40% to 

create cross ventilation from 10-11pm. 

 Operating time Open one roof window in advance (1 or 2 hours) during summer 

 Window types Change centre-pivot roof window to side-hinged, top-hinged or bottom-hinged 

window without changing any other ventilation settings 

Insulation External wall insulation 

(EWI) 

Add extra 60mm EPS insulation and 12.5mm dense plaster to exterior wall surface 

resulting in 0.4 solar absorptivity and U-value of 0.30W/m2K 

 Internal wall insulation 

(IWI) 

Add extra 60mm EPS insulation to interior wall surface resulting in U-value of 

0.30W/m2K 



 Ground floor insulation 

(GFI) 

Add 90mm PU insulating boards above concrete slab reducing U-value to 0.25W/m2K 

 

 

Solar control adaptations 

Solar control interventions include shading, house paint and solar control glazing. All shading 

interventions applied to loft roof windows are implemented based on IES shading device settings. 

Shading devices are added to both roof windows, regardless of their orientation. External shutters, 

internal roller blinds and white cotton curtains are chosen from IES database for modelling (21). All 

shading devices are assumed to be fully closed from 9am to 5pm only during summer months, as it is 

not practicable to rely on occupants to adjust shading level according to real-time solar intensity 

because the loft is usually not occupied during daytime. For adaptations to building absorptivity, 

external masonry walls or concrete roof tiles are coated with white paint to achieve surface solar 

absorptivity of 0.30 and 0.25, respectively (36). For the solar control glazing, reflective silver tint is 

applied to the outer window pane to reduce g-value to 0.27 from 0.55.  

Ventilation adaptations 

There are six modelled ventilation adaptations, including three behavioural and three related to 

window type. Night-time purge ventilation is modelled by keeping a single loft roof window open  

between 22:00-07:00, May to September. Cross ventilation is modelled in the loft by reducing the 

opening area of roof window 1 from 80% to 40%, and opening roof window 2 40% between 22:00 and 

23:00, thus allowing for cross ventilation without changing the total openable area of the windows.  

Advance ventilation is modelled by opening a single roof window 1 hour or 2 hours before the 

occupied period. Roof window opening type may also influence the efficiency of ventilation; therefore 

side-hinged, top-hinged and bottom hinged windows are tested as independent interventions (30). 

When modelling the other three window types, the maximum open angle, window proportion, 

openable area and ventilation control profiles are kept consistent with the base case.  

Thermal adaptations 

While the base case dwelling has a roof insulated to high standards and the windows are double-

glazed, the thermal characteristics of external cavity walls and uninsulated ground floor may be 

improved further. Cavity walls are improved using either external or internal insulation with 60mm 

EPS boards. Finally, the solid concrete ground floor is insulated with 90mm PU insulating boards on 

the internal surface.  

 



2.2.5. Weather 
 

Weather files for modelling were obtained from CIBSE (37). A Design Summer Year (DSY) weather file 

for the  London Weather Centre (baseline 2020s, high emissions) is used to analyse current summer 

overheating, and a Test Reference Year (TRY) for the same period to calculate winter heating energy 

consumption. Current weather files are used to create the base case for ranking cooling intervention 

effectiveness and evaluate interventions to eliminate loft overheating. Moreover, predicted future 

weather files (50 percentile probability) for the 2050s and 2080s under medium and high carbon 

emission scenarios are also applied to explore the passive cooling performance of the adapted models 

in future climates. It has been assumed that there is no external shading from either vegetation or 

other buildings. 

 

2.3. Overheating analysis 
 

We quantify night time loft overheating risks throughout the entire summer (May – September 

inclusive) using the adaptive model of thermal comfort described in TM52 (38). This model was 

selected over the TM59 criteria (34) due to its ability to 1) account for occupant adaptation to heat, 

2) to enable different categories of thermal comfort criteria to be considered, and 3) to produce a 

metric which reflected both the frequency and degree of comfort criteria exceedance, which we felt 

would lead to an increased ability to distinguish between mitigation effectiveness. However, TM52 is 

limited by the lack of a night time overheating thresholds – important due to the impacts of high 

temperatures on sleep. We address this in-part here by applying TM52 for both daily and night 

time–only hours, although we acknowledge the advantages of TM59 in this area.  

 

The exponentially-weighted running mean outdoor temperature  (Ὕ ) is calculated using the series: 

Ὕ ρ ‌ Ὕ ‌Ὕ ‌Ὕ Ễ  

Where  Ὕ  is the mean outdoor air (dry-bulb) temperature for ‘yesterday’ and Ὕ  for the day 

before yesterday and so on; and ‌ is a constant smaller than 1, the optimal value for which is 0.8 in 

Europe (38). The indoor thermal comfort temperature for any one day (Ὕ ) is then calculated as: 

Ὕ πȢσσὝ ρψȢψ 

We then apply two categories of thermal comfort criteria: Category I, which is a narrow range of 

comfort for vulnerable individuals (±2 ⁰C) and Category II, a normal range for renovated dwellings (±3 

⁰C). The weighted exceedance (ὡ ) during occupied period is then calculated as: 



ὡ  Ὤ ὡὊ 

Where the weighting factor (WF) is the temperature difference between the hourly indoor operative 

temperature and maximum indoor temperature threshold when the threshold is exceeded, and Ὤ is 

the number of hours that this exceedance was met. In this case, ὡ  is calculated for all hours of the 

day (24-hour), and at night only (22:00 - 07:00). We sum ὡ  for both thermal comfort categories over 

the summer period to estimate total 24-hour and night time overheating degree hours. When a nightly 

ὡ  exceeds 6 degree-hours it is considered an overheating degree night, which we also sum over the 

summer period. 

 

2.4. Cost-effectiveness analysis 
 

Marginal Abatement Cost Curves (MACC) are typically used for determining the implementation order 

of energy efficiency retrofit measures based on cost effectiveness (39). In this case, we apply the same 

method to overheating reduction. Net present cost (NPC) describes the cost of each intervention 

through its entire lifecycle. NPC divided by overheating degree-hour reduction provides a MAC value 

(£/degree-hour), which represents cost-effectiveness; the smaller the value the more cost-effective. 

The costs for the different adaptations were estimated, including capital cost for the product and any 

additional expenses due to increased winter space heating demand, accounting for the boiler 

efficiency. Formulas below are used for calculating MAC and NPC.  

ὓὃὅ
ὔὖὠ

ȿЎὃὈὌȿ
 

ὔὖὅὅ  
Ὁ ὖ

ρ •
 

where ὓὃὅ is the marginal abatement cost (£/degree-hour); ὔὖὅ is the net present cost (£); ЎὃὈὌ 

is the  change in loft overheating degree hours following each intervention; ὅ  is the initial cost 

of each intervention; Ὁ  is the additional energy consumption for winter space heating in loft 

per annum (kWh/year); ὖ  is  current UK natural gas price of 0.03 £/kWh (40); • is a discount rate 

of 2.5% essential to predict long-term cost considering currency inflation; ὸ is the lifespan of each 

intervention; and ὲ is the year.  

 



3. Results 
 

3.1. Base case overheating 
 
A comparison of the overheating risks in converted lofts relative to conventional bedrooms under 

the current climate can be seen in Figure 3. Under current climatic conditions, the converted loft in 

the base dwelling has 10,799 overheating degree hours (Category II) and 13,028 degree hours 

(Category I) from May to September; in contrast the overheating degree hours for the other three 

conventional bedrooms average 624 (Category II) and 1,293 (Category I). Similar results can be seen 

for night overheating hours, with 1,581 Category II and 2,212 Category I overheating degree hours in 

the lofts, compared to an average of 108 Category II and 284 Category I degree-hours for the 

conventional bedrooms. Out of 153 nights in total over 5-month period, 60 nights in the converted 

loft exceeded the TM52 Category II overheating criteria, and 69 nights exceeded the Category I 

criteria.  

 

  

Figure 3. Overheating degree hours for the full day (A) and during night-time (B) for converted lofts compared to 
conventional bedrooms under current climate conditions. 

 

Overheating risks worsen substantially under future climate scenarios (Figure 4). Category II 24-hour 

overheating degree hours in lofts are found increase to 13,113 - 13,822 by the 2050s, and 15,275 – 

17,495 by the 2080s, depending on the emission scenario; similarly, Category I overheating degree 

hours increase to 15,550-16,316 in the 2050s and 17,917 – 20,319 in the 2080s. Night-time 

overheating degree hours are correspondingly smaller, but also show an increase under future 
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climates. Overheating can be seen in conventional bedrooms as well, but such rooms continue to be 

substantially less vulnerable to overheating relative to the lofts.  

 

    

  

 

Figure 4. (A) 24-hour Overheating degree hours (Category I and II) for converted lofts compared to the average for the 
conventional dwellings under future climate scenarios. (B) Night time overheating degree hours (Category I and II)  for 
converted lofts compared to the average for the conventional dwellings under future climate scenarios. 

 

3.2. Passive cooling interventions 
 

Figure 5 shows the ranking of interventions according to the effectiveness in reducing loft night-time 

overheating degree-hours (A) and overheating nights (B) under the current climate. The order of 

ranking using both overheating metrics is the same; here we discuss the results for night time 

degree-hours. Solar control measures are the most effective passive cooling interventions leading to 

an average degree-hour decrease of 54%, with external shutters able to reduce overheating 

problems by 96%, reflective solar film reducing overheating degree-hours by 86%, while internal 

curtains and internal roller blinds are found to be slightly less effective, reducing overheating degree 

hours by 57% and 50%, respectively. A 34% drop in degree hours is observed after applying white 

paint to roof tiles, while only 3% decrease is possible by painting walls. Loft annual heating demand 

increases by 15% after applying reflective solar control film, 3.5% after painting the roof a lighter 

colour, and 0.2% after installation of external shutters. 
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Ventilation interventions are also capable of reducing overheating. Night-purge ventilation 

decreases overheating degree hours dramatically by 89%. Moreover, ventilation in advance reduces 

overheating degree-hours by 44% (1 hour in advance) and up to 64% (2 hours in advance). In 

comparison with the base-case centre-pivot windows, the use of bottom-hinged windows for 

ventilation mitigates overheating by 11%. Change of top-hinged and side-hinged windows are even 

more influential, leading to 19% and 26% reduction individually. Cross ventilation is much less 

influential resulting in only 0.3% overheating mitigation. Ventilation related measures have no 

impact on loft winter heating demand due to only being implemented during the summer.  

 

Insulation interventions may cause a slight decrease in overheating of 0.1% after external wall 

insulation (EWI), or an increase of 3% following internal insulation. Ground floor insulation (GFI) has 

a negative impact on loft overheating, increasing the risk by 5% due to the substantial loss of 

thermal mass. 

 

 

 
 
 



 

  
Figure 5. (A) Passive cooling interventions ranking –night time degree hours of loft overheating (B) and the number of 
overheated nights. 

 

 

3.3. Analysis of cost effectiveness 
 
Cost-effectiveness is quantified by calculating discounted MAC value, which includes initial costs for 

the intervention product as well as ongoing expenses for any increased space heating energy 

consumption in winter. The life expectancy of each intervention is also taken into account as 

interventions need to be replaced at the end of their lifespan. Calculation variables and results of all 

interventions are listed in Table 4. Several interventions conflict with others and cannot be 

implemented simultaneously. Where conflicts occur, the more effective adaptation is selected 

(highlighted in the table in grey), and applied to the base model cumulatively according to ascending 

order of their MAC values. Moreover, external wall insulation was found to increase overheating risk 
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(by a likely insignificant 0.05%) when applied alongside light-coloured walls, so is deemed ineffective 

as an overheating adaptation and is excluded. 

Table 4. Intervention cost-effectiveness. Discounted MAC is calculated individually and ranked; these are then modelled 

cumulatively to identify the most cost-effective adaptations to eliminate overheating. References for capital costs and life 

expectancy are shown in brackets. Grey rows indicate interventions that have been selected instead of alternative, 

conflicting interventions. 

Interventions Degree-hour 

reduction 

(family 

profile) 

Capital cost (£) Annual space 

heating energy 

increment 

(kWh/year) 

Annual 

extra cost 

(£/year) 

Intervention 

lifespan 

(years) 

Discounted 

MAC (£/degree-

hour) 

Night-purge 

ventilation 

1408 - - - 100 0.000 

Pre-ventilation 2hrs 1017 - - - 100 0.000 

Pre-ventilation 1hr 692 - - - 100 0.000 

Cross ventilation 5 - - - 100 0.000 

Internal curtains 907 100 (30) 0.5 0.01 30 (30) 0.005 

Internal blinds 787 100 (30)  0.4 0.01 30 (30) 0.006 

Solar control film 1362 60 (41) 104.1 2.99 10(41) 0.007 

External shutters 1524 400 (30) 1.1 0.03 20 (30) 0.017 

Light-colour roof 533 100 (42)  24.3 0.70 10 (43) 0.023 

Side-hinged window 415 600 (30) 3.5 0.10 20 (30) 0.093 

Top-hinged window 298 760 (30) 2.2 0.06 20 (30) 0.164 

Bottom-hinged 

window 

176 520 (30) 1.1 0.03 20 (30) 0.190 

Light-colour walls 50 410 (44) 2.1 0.06 10 (43) 0.941 

External wall 

insulation 

3 11,800 (45) -8.0 -0.023 100 (46)  124.050 

 

Even under current climate conditions, overheating degree hours cannot be eliminated 

comprehensively for either Category with all nine interventions applied simultaneously. However, for 

Category II, the number of overheating degree hours is reduced to 11 by implementing the first five 

interventions according to Discounted MAC ranking (night-purge ventilation, advance ventilation for 

2 hours, cross ventilation, internal curtains and solar control film), which eliminates overheating nights. 

For Category I, an additional two interventions (external shutters and light-colour roof) can reduce 

overheating degree hours to nine, and eliminate overheating degree nights under the current climate. 

With all nine interventions applied, overheating degree hours can be reduced to 2 for Category II and 

7 for Category I. However, implementing all adaptations led to an increase in the heating demand of 

the whole house of 274 kWh (+3.4%). Among all heated rooms, the loft experienced the largest annual 



heating demand rise by 138 kWh (19.9%), compared to additional energy use for space heating of 

other three bedrooms of 38 kWh/year on average (+3.8%) and living room 20 kWh (+0.5%). 

The number of overheating degree-hours and overheated nights following installation of all nine 

interventions under all climate scenarios are shown in Figure 6A and 6B. While loft overheating cannot 

be completely eliminated even if all nine effective interventions are applied simultaneously, 

overheating can still be dramatically reduced relative to the base case (Figure 4B). The implementation 

of all nine passive cooling interventions will be able to successfully limit loft overheating at acceptable 

levels until the 2080s, after which active cooling interventions may need to be adopted in parallel with 

passive adaptations to reduce high indoor air temperatures.  

 

  

Figure 6. (A) Loft overheating risks under different climate scenarios following all nine adaptation measures; (B) Number of 
loft overheated nights under different climate scenarios following all nine adaptation measures.  

 

4. Discussion 
 

The overheating potential of converted lofts has been an under-researched topic, and there is little 

evidence available in the UK to demonstrate the degree of overheating risk relative to conventional 

rooms, and how to mitigate this risk. The analysis of the EHS shows that dwellings with converted 

lofts make up a small (5.8%) but rapidly increasing minority of the English housing stock – 

particularly in London -  and one which may increase further in the future due to demand for extra 

floor space and high house prices. While the predominantly young residents in houses with loft 

rooms are not typically those that are the most vulnerable to heat-related illnesses and mortality, 
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night-time temperatures will influence the comfort and sleep quality (6), and has been shown to 

impact on mortality rates across all age groups (7,8).  

The results of the modelling described here indicate that converted lofts present a substantial 

increase in heat exposure risk compared to other bedrooms in a dwelling. We estimate that 

converted lofts have 10 times more Category I and 17 times more Category II  overheating degree 

hours (24 hour) during current hot summers compared to the average of conventional bedrooms. 

Future climates increase this risk substantially, adding an additional 2,315 – 3,025 Category I 

overheating degree hours to lofts by the 2050s and 4,889 – 7,291 by the 2080s. These results are 

consistent with previous monitoring and modelling studies that found top floor flats with an attic 

space above are at greater overheating risk than mid or ground floors (2,10,11,15), however the 

results here are more extreme. This is due to the room being directly below the roof, as well as the 

relatively small internal volume and low thermal mass of the surrounding room envelope in 

comparison to more typical English dwelling spaces. We have modelled the dwelling as being well 

insulated, and dwellings with less roof insulation may in fact be at greater overheating risk that we 

have shown here (14). We have also assumed that the occupants are able to ventilate the loft and 

adjacent rooms by opening operable windows; the inability to do so would increase overheating risk 

in the loft even more. Hot weather that coincides with driving rain or wind may mean that roof 

windows cannot be opened. The substantial increase in heat exposure risk supports previous 

epidemiological studies, which show an increased risk to the elderly living in spaces directly under 

the roof (3). It is therefore advisable that the most heat-vulnerable living or sleeping in lofts are 

encouraged to find other locations to stay during hot weather episodes.  

 

There is therefore a need to understand the effectiveness of different overheating interventions for 

converted lofts. The installation of external shutters is the most effective single intervention leading 

to a 96% reduction in overheating degree hours at the cost of 0.2% winter heating demand increase. 

It is unclear, however, how practical external shutters on roof windows would be, as they may be 

difficult to operate and may be damaged by rain, snow, and debris. . The second most effective 

adaption is night-purge ventilation in loft room, which reduces overheating degree hours by 86% 

without impacting annual heating demand; however it may not be a good option for residents living 

in relatively noisy parts of London or in certain weather conditions. The application of reflective solar 

control film is the third most effective single intervention in terms of overheating mitigation, 

however such an intervention can cause winter heating demand to increase by 15% for the room. 

This is consistent with the findings of Porritt et al. (18) and Taylor et al (47) in similar modelling 

studies of UK dwellings - solar control interventions prevent solar gains from penetrating into the 



dwelling and being absorbed by building fabric during daytime which is why additional space heating 

is required to maintain indoor temperatures during winter. Furthermore, ventilation two-hours prior 

to bedtime and internal curtains are found to be the fourth and fifth most effective intervention, 

reducing overheating by 64% and 57%, respectively. Various window types have great influence on 

loft overheating levels due to the differences in maximum ventilation rates between them. Side-

hinged window are shown to be the most effective intervention among the three window variants, 

with maximum air volume flow rate increased from 31.5 L/s to 38.8 L/s, reducing loft overheating by 

26%. Internal insulation is found to increase loft overheating risks, in agreement with other findings 

that internally insulated walls may cause higher dwelling indoor temperatures than external 

insulated ones due to the loss in thermal mass (2,13,14,48). Similarly overheating degree hours will 

increase by 5% if the ground floor is internally insulated. Interventions that are effective for average 

people may not be as effective for vulnerable residents, who may lack mobility or the ability to 

operate windows, blinds or shutters easily. Therefore, thermal comfort for vulnerable occupants 

should be considered when designing for sensitive occupants or buildings such as nursing homes.  

 

This study also examines the cost effectiveness of heat mitigating adaptations, through the novel 

application on MAC values which account for the initial cost, additional expense for space heating, 

and adaption lifespan. Results indicate the most cost-effective interventions are night purge 

ventilation, ventilation two hours in advance, cross ventilation and internal curtains. Under both 

current and future climates, loft overheating cannot be eliminated comprehensively even with all 

alternative passive cooling interventions applied simultaneously, however risk can still be 

successfully maintained at acceptable level until the 2080s, beyond which point widely adoption of 

air-conditioning systems may be inevitable. Overheating can be further reduced by adjusting 

behavioural interventions to adapt to warmer future climates in manners which have not been 

modelled here. These could include fullyopening both roof windows, opening loft roof windows 3 to 

4 hours in advance of occupied hours, changes to the opening angle of the corridor windows, 

changes to the hours that shading devices are in operation, and reduction of internal gains. 

 
This modelling study is among the first to focus on overheating and overheating mitigation in 

converted lofts in England. We model a typical semi-detached house, which represents the most 

commonly converted dwelling and which may also be generalised to similar dwellings such as end 

terraces and possibly converted flats, assuming the dwelling is well-insulated. Further research is 

required to model additional dwelling variants and insulation levels.  We also assume static 

occupancy behaviours, however these are likely to vary from one household to another. We model 

occupancy based on the profile of a family of four that are out during the day, and estimate 



overheating degree hours for both Category I and Category II criteria during both 24 hour periods 

and night hours only. However, as the loft is most likely to be used as a bedroom, we estimate the 

effectiveness of adaptation on night time overheating degree hours only. Vulnerable individuals are 

more likely to spend daytime hours at home and – in extreme cases – potentially the loft room. The 

risk to occupants of heat exposure in such as case would be very high. Furthermore, we have not 

considered the practicability of some adaptations - for instance, painting walls or the roof in light 

colours may not be permitted by Building Regulations in conservation areas, while external shutters 

and some curtain types may not work on roofs of certain pitches. The optimum overheating 

adaptation scenario may differ depending on dwelling types, individual household properties, and 

occupants’ behaviours. Despite the limitations of this initial investigation, it is clear that lofts are at 

risk of significant summertime overheating. Consequently, passive cooling measures for lofts should 

be mandated through building regulations, and vulnerable occupants should be provided alternative 

sleeping accommodation during periods of hot weather. 

 

5. Conclusions 
 

Dynamic thermal simulation results of a converted loft in a typical semi-detached house found a 

significantly increased risk of overheating relative to conventional bedrooms, with 11,340 – 12,210 

more summertime Category I overheating degree hours under the current climate. Results indicate 

that the most effective passive cooling intervention for the loft is external shutters, which can lead 

to a 96% reduction in overheating under the current climate. Other effective interventions include 

night purge ventilation (89%), solar control film (86%), ventilation two-hours in advance (64%), and 

internal shading devices (50-57%). When considering capital and ongoing costs, the most cost-

effective interventions are night ventilation, advance ventilation, and cross ventilation. The current 

optimal solution for both cost and heat mitigation is therefore to employ night ventilation, ventilate 

in advance, and enable cross ventilation, with internal curtains used to limit solar heat gains. It is 

estimated that such passive cooling strategies alone would be inadequate until the 2080s, after 

which active cooling systems may become necessary in lofts. This paper recommends that the risks 

of loft overheating and relevant passive cooling interventions are introduced in Approved Document 

L1B of the UK Building Regulations. 
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Figure 1. The number of loft conversions by date range conversion occurred, by English regions. 

Figure 2. Semi-detached house floorplans of ground floor, first floor and loft and west-facing 

crosssection. The thermal envelope is indicated with a thick black dotted line. 

Figure 3. Overheating degree hours for the full day (A) and during night-time (B) for converted lofts 

compared to conventional bedrooms under current climate conditions. 

Figure 4. (A) 24-hour Overheating degree hours (Category I and II) for converted lofts compared to 

the average for the conventional dwellings under future climate scenarios. (B) Night time 

overheating degree hours (Category I and II)  for converted lofts compared to the average for the 

conventional dwellings under future climate scenarios. 

Figure 5. (A) Passive cooling interventions ranking –night time degree hours of loft overheating (B) 

and the number of overheated nights. 

Figure 6. (A) Loft overheating risks under different climate scenarios following all nine adaptation 

measures; (B) Number of loft overheated nights under different climate scenarios following all nine 

adaptation measures.  

 


