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Cerebral mitochondrial electron 
transport chain dysfunction in 
multiple system atrophy and 
parkinson’s disease
sandrine C. Foti1,2, Iain Hargreaves3,4, Stephanie Carrington3, Aoife P. Kiely1, Henry Houlden  3 
& Janice L. Holton1

Multiple system atrophy (MSA) is a neurodegenerative disease characterised by glial cytoplasmic 
inclusions (GCIs), containing α-synuclein. Mutated COQ2, encoding an enzyme essential for co-
enzyme Q10 (CoQ10) biosynthesis, has been associated with MSA. CoQ10 is an electron carrier in the 
mitochondrial electron transport chain (ETC) and antioxidant. It has been shown to be deficient in 
MSA brain tissue, thus implicating mitochondrial dysfunction in MSA. To investigate mitochondrial 
dysfunction in MSA further we examined ETC activity in MSA and control brain tissue, compared with 
Parkinson’s disease (PD) where mitochondrial dysfunction is known to be important. Using cerebellar 
and occipital white matter ETC complex I, II/III and IV activities were measured spectrophotometrically, 
selected individual components of the ETC were assessed by immunoblotting and cellular complex 
IV activity was analysed by enzyme histochemistry. We show decreased complex II/III activity with 
increased complex I and IV activity in MSA cerebellar white matter. This corresponds with the deficit 
in CoQ10 previously described in MSA and reflects the high regional pathological burden of GCIs. This 
study highlights mitochondrial dysfunction in MSA pathogenesis, suggests an influence on selective 
regional vulnerability to disease and points to shared disease mechanisms in α-synucleinopathies.

Multiple system atrophy (MSA) is a progressive and debilitating neurodegenerative disease presenting with com-
binations of clinical features including cerebellar ataxia (MSA-C), parkinsonism (MSA-P), autonomic dysfunc-
tion and pyramidal signs1. Neuropathological examination shows neurodegeneration in different brain regions 
resulting in neuropathological MSA subtypes of olivopontocerebellar atrophy (OPCA), striatonigral degenera-
tion (SND) or a combination of these two (SND = OPCA or mixed)2,3. MSA is an α-synucleinopathy, a group 
of disorders which also includes Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). In contrast 
with the neuronal Lewy body inclusions featured in PD and DLB, the neuropathological hallmark of MSA is the 
widespread presence of glial cytoplasmic inclusions (GCIs) composed of aggregated α-synuclein in oligodendro-
cytes4–7. This feature has led to MSA being considered as an oligodendrogliopathy8.

Although MSA is regarded as a sporadic disease, genetic factors have been implicated in the aetiology of this 
disorder. These include: copy number loss of C-terminal Src homology 2 Adapter Protein 2 (SHC2)9, SNCA gene 
(synuclein alpha) single-nucleotide polymorphisms10,11 and mutation in the CoQ2 gene which encodes for 4 
hydroxbenzoate polyprenyltransferase (CoQ2), an enzyme involved in coenzyme Q10 (CoQ10) biosynthesis12,13. 
Interestingly, a genome-wide association study (GWAS) in MSA identified single nucleotide polymorphisms 
(SNPs) in four genes which did not include SNCA or CoQ214.

The candidate genes potentially predisposing individuals to developing MSA15 have mainly been linked to 
neuroinflammation. Although, this appears to be additionally influenced by the geographical distribution of 
patients16–18. Differentially expressed genes in MSA have been shown to be involved in mitochondrial function19. 
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Furthermore, a Japanese study revealed that there is an increased risk of MSA in multiplex families when they 
have a functionally impaired variant of CoQ212. CoQ2 is important for the synthesis of CoQ10 which is a power-
ful cellular antioxidant and an electron carrier, transporting electrons derived from complex I and II to complex 
III in the mitochondrial electron transport chain (ETC). CoQ10 levels were measured in MSA patients who 
were homozygous for a particular CoQ2 variant (M128V-V393A) and found to be significantly reduced when 
compared to controls12. Deficiencies in CoQ10 levels were also identified in post-mortem pathological confirmed 
MSA cases with no CoQ2 variants20,21. Studies in PD patients have also reported a reduction in CoQ10 levels in 
mitochondria in the blood and platelets when compared to age/gender matched control subjects22,23. In addition, 
a deficit in CoQ10 status has also been reported in cerebral cortex of PD patients24.

The function of the mitochondrial ETC can be influenced by many biological processes, including oxidative 
stress which occurs when there is an inbalance between reactive oxygen species (ROS) generation and cellular 
antioxidant status25. In the presence of high levels of ROS, oxidative stress can be induced, leading to deleterious 
changes in mitochondrial function26 as well as inducing an innate immune response27 and causing a diminution 
in cellular antioxidant defences. The observed decrease in cerebellar CoQ10 in MSA suggests that the function of 
the ETC may be disturbed in this disease12,20,21.

The ETC defects observed in Alzheimer’s disease (AD), PD and MSA have been attributed to somatic mito-
chondrial (mt) DNA mutations28,29 where high levels of mtDNA deletion or depletion affect the activity as well 
as the subunit expression of mtDNA encoded ETC complex subunits (complex I, III, IV and V)30. Complex II is 
encoded entirely by nuclear DNA and therefore is spared in conditions associated with mtDNA mutations. The 
most prominent mechanism of mtDNA impairment is via ROS generated by the ETC31. ROS are produced by the 
ETC, principally at complex I and III but there is evidence that complex II also contributes to the ROS pool32–34.

The aim of this study was to investigate whether the changes in CoQ10 levels previously described in MSA are 
associated with ETC dysfunction. To do this we used spectrophotometric enzyme assays to measure the activities 
of ETC complexes I, II/III and IV, immunoblotting to determine the protein expression of selected individual 
components of these complexes and enzyme histochemistry to determine complex IV activity at the cellular level. 
The white matter from cerebellum and occipital lobe were used to represent brain regions respectively highly or 
mildly affected in MSA. Both regions may show minimal α-synuclein pathology in the form of Lewy neurites in 
PD (Supplementary Fig. 1). To minimise any possible influence of neuropathological subtype in MSA we selected 
a cohort of mixed MSA cases and compared these with PD as an α-synculeinopathy disease control and neuro-
logically normal controls using frozen post-mortem brain tissue.

Results
Electron transport chain complex activity. The activity of ETC complexes I, II/III and IV was measured 
in the cerebellar white matter, a region with large numbers of α-synuclein positive GCIs4,35 and compared with 
the occipital white matter, where GCIs are sparse in MSA (Supplementary Fig. 1)36,37. Cases of MSA and PD, cho-
sen as an α-synucleinopathy disease control in which there is minimal α-synuclein pathology in the white matter 
in these regions, were compared with normal controls. All values are presented as the ratio between enzyme activ-
ity and citrate synthase (CS) activity to control for mitochondrial mass (Fig. 1). The levels of complex I activity 
revealed a small but significant increase between MSA and controls in the cerebellar white matter (p = 0.041). 
Increased complex I activity was also observed in the occipital white matter in PD cases (p = 0.0001) when com-
pared to control cases (Fig. 1a). Complex II/III activity was reduced in both brain regions compared with control 
and this was significant in the cerebellar white matter in MSA cases (p = 0.0242) and in the occipital white matter 
in PD (p = 0.0002) (Fig. 1b). Complex IV activity showed changes in the cerebellar white matter where a small 
augmentation in the activity was measured in MSA when compared to controls (p = 0.0404). No significant dif-
ference was observed in the complex IV activity in PD compared with controls (Fig. 1c).

Mitochondrial ETC complex protein subunit expression. In order to address whether the changes 
observed in ETC activity may be related to changes in protein expression of components of the ETC complexes, 
immunoblotting was carried on whole homogenate from cerebellar and occipital white matter from control, 
MSA and PD cases. The expression of the mitochondrial biomass marker, CS was normalised to the house keep-
ing protein, β-actin, and showed no significant changes in MSA or PD compared with control in either region 
(Fig. 2a). Selected individual components of complexes I–IV of the ETC were quantitated by normalising to 
CS. The nuclear encoded subunit NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8 (NDUFB8) 
of complex I expression levels remained unchanged in PD and MSA in each brain region (Fig. 2b). A com-
plex I accessory subunit known as GRIM19 (Genes associated with Retinoid–IFN-induced Mortality-19), or 
NDUFA13, showed an increase in expression in cerebellar and occipital white matter in MSA as well as in the 
PD occipital matter (Fig. 2c; p = 0.0256, 0.0418, 0.001 respectively). The two subunits A and B from complex II, 
succinate dehydrogenase complex flavoprotein subunit A (SDHA/B) were measured and an increase in SDHA 
protein expression was found in the cerebellar white matter in MSA cases when compared to controls (Fig. 2d 
and e; p = 0.0164).

To investigate complex III, which is composed of 11 protein subunits we measured the level of the nuclear 
encoded subunit ubiquinol-cytochrome c reductase core protein 2 (UQCRC2), a core structural component38,39. 
The cerebellar white matter showed no significant changes in protein expression in either MSA or PD. An 
increase in total UQCRC2 expression was observed in the PD occipital cortex when compared to control (Fig. 3a; 
p = 0.0159). The mitochondrial-encoded cytochrome b complex III subunit showed significant increases in MSA 
cerebellar white matter as well as PD occipital white matter (Fig. 3b; p = 0.036, 0.01). Complex IV has 14 subu-
nits called cytochrome c oxidase (COX) where the large core catalytic subunits COX 1, COX 2 and COX 3 (also 
known as MT-CO1, MT-CO2 and MT-CO3 respectively) are encoded by mitochondrial DNA40,41. We measured 
the protein levels of COX 1 and COX 2. COX 1 subunit showed elevated levels of expression in MSA cerebellar 
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white matter when compared to control (Fig. 3c; p = 0.02). When examining the COX 2 subunit of complex IV 
there was a trend towards increased protein expression in the cerebellar white matter in PD and MSA but this was 
not statistically significant (Fig. 3d).

Histochemical analysis of cytochrome c oxidase (complex IV) activity. Sequential histochemical 
staining of frozen tissue sections for ETC cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) 
permits the demonstration of cells with reduced complex IV activity42. In this assay, the individual cells which are 
COX-deficient are stained blue, reflecting SDH activity in the absence of COX activity while those with normal 
COX activity will be stained brown (Fig. 4a). We found an increased proportion of COX negative cells in the cer-
ebellar white matter in MSA compared with controls (Fig. 4b; p < 0.0001). No difference was observed between 
the groups in the occipital white matter.

Table 1 summarises the results obtained throughout this study, including ETC activity and protein expression 
levels as well as COX/SDH immunohistochemical analysis.

Discussion
Altered mitochondrial function secondary to alterations in CoQ2 and CoQ10 has been proposed to play a role in 
the pathogenesis of MSA12,20,21. In view of the reduction in CoQ10 levels shown previously, we tested the hypothe-
sis that this would result in disturbed mitochondrial function, manifesting as alterations in the ETC. We observed 
a significant reduction in ETC complex II/III activity in the cerebellar white matter of MSA cases (Fig. 1b). We 
also found an increase in both complex I and complex IV activities (Fig. 1a and c). These changes were restricted 
to the cerebellar white matter while the occipital cortex was unaffected reflecting the relative vulnerabilities of 
these regions to pathological change in MSA (Supplementary Fig. 1). Furthermore, these alterations in the activity 

Figure 1. Activity of elements of the ETC in MSA and PD. Measuring ETC activity in post-mortem tissue from 
MSA and PD cases revealed dysregulation of activity when compared to controls in cerebellar and occipital 
white matter. Complex I activity increased in MSA cerebellar white matter and PD occipital white matter when 
compared to control cases (a). However downstream to complex I, complex II/III activity was significantly 
reduced in both MSA cerebellar white matter and PD occipital white matter (b). Significant changes in complex 
IV activity were found only in the cerebellar white matter where activity in MSA was increased compared to 
control (c). Significance was set at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
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Figure 2. Citrate synthase and complex I and II subunit expression in MSA and PD. The protein expression 
levels of CS, a mitochondrial biomass marker as well as specific complex I and complex II subunits were 
measured using western blotting in control, MSA and PD cases. Representative western blots are shown under 
each bar graph. Each band chosen originates from the same gel. The mitochondrial biomass of all groups 
remained indistinguishable which was reflected by the unchanged CS protein levels after normalisation to 
the house keeping protein, β actin (a). Western blotting for complex I, NDUFB8 subunit showed no changes 
across all groups and brain regions (b). Complex I subunit GRIM19 showed an increase in MSA cerebellar and 
occipital white matter, as well as an increase in PD occipital white matter (c). The complex II subunit SDHA 
showed a significant increase in expression in MSA cerebellar white matter when compared to controls (d). The 
SDHB subunit remained consistent between all groups (e). Immunoblot abbreviations (C = control, M = MSA, 
P = PD, + = positive control, human heart lysate). Significance was set at p < 0.05 (*), p < 0.01 (**) and 
p < 0.001 (***). Full length gels are demonstrated in the Supplementary Figs 2, 3, 5 and 6.
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of components of the ETC were not due to a reduction in mitochondrial mass, as illustrated by the unchanged cit-
rate synthase protein levels (Fig. 2a). Changes in ETC activity did not consistently correlate with protein expres-
sion levels of individual components of the protein complexes of the ETC (Figs 2 and 3).

Understanding the relationship between the alterations observed in the ETC complex activities in MSA cere-
bellar white matter is important. The increase in complex I activity that we observed in this region could indicate 
a compensatory mechanism in response to the downstream reduction in complex II/III activity (Fig. 1a and b)43. 
Complexes I and III are the major source for ROS production, and when certain sites in these complexes are par-
tially or fully impaired an increase in ROS production occurs32. A reduction in the ROS scavenger CoQ10, can 
lead to further increase in ROS levels which will expose cells to oxidative stress. As a consequence of this, condi-
tions associated with CoQ10 deficiency, as has been observed in MSA, tend to have reduced activity of complex 
II/III as we have now demonstrated in MSA20,21,44.

Complex IV activity was also found to be elevated in MSA cerebellar white matter (Fig. 1c). Upregulation of 
complex IV activity has been observed in a range of physiological conditions. Complex IV mRNA and protein 
levels are increased by the free radical nitric oxide (NO)45. NO can be cytotoxic under certain conditions but 

Figure 3. Complex III and IV subunit expression in MSA and PD. Western blotting of two subunits from 
complex III and from complex IV were performed in all groups. A representative western blot is shown 
below each bar graph. Each band chosen originates from the same gel. The only significant change seen in the 
UQCRC2 subunit of complex III was in PD occipital white matter (a). Whereas cytochrome c, another complex 
III subunit not only showed an increase in PD occipital white matter but also in MSA white matter (b). When 
the two core subunits of cytochrome c oxidase (complex IV) were visualised, only COX 1 showed significant 
changes. An upregulation in protein expression was observed in the cerebellar white matter of MSA cases 
(c). The protein levels of COX 2 subunit remained uniform in all groups and brain regions (d). Immunoblot 
abbreviations (C = control, M = MSA, P = PD, + = positive control, human heart lysate). Significance was set at 
p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***). Full length gels are demonstrated in the Supplementary Figs 2, 4 
and 7.
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may also act as an intracellular messenger and can induce the transcription of complex IV. In this context, sepsis 
leads to excess levels of reactive oxygen and nitrogen species and is associated with an increase in complex IV 
activity46,47. In addition to biochemical evaluation of ETC activity we also assessed this at the cellular level using 
the sequential COX/SDH histochemical assay. At a cellular level we found an increase in COX-deficient cells, rep-
resenting glia, in MSA cerebellar white matter (Fig. 4). This demonstrates a complex situation in which individual 

Figure 4. Complex IV activity measured using immunohistochemical technique in MSA and PD. COX/SDH  
histochemistry revealed differences in the number of COX deficient (blue) cells in MSA cerebellar white matter 
when compared to controls. The cytoplasm of a small number of glial cells in the cerebellar white matter was 
stained blue (arrow) reflecting intact SDH activity in the absence of COX activity (a). Quantitation of the 
percentage of COX deficient cells revealed that these are more numerous in the cerebellar white matter in MSA 
than in controls (p < 0.0001) (b). No differences were observed in the occipital white matter. Bar in A represents 
20 µm. [n = 3 cases, 2 sections per case, 8 regions of interest per section analysed]. Significance was set at 
p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

Cerebellar white matter Occipital white matter

MSA PD MSA PD

Activity of components of the mitochondrial ETC

Complex I Increased
p = 0.041* Unchanged Unchanged Increased

P = 0.0001***

Complex II/III Decreased
P = 0.0242* Unchanged Unchanged Decreased

P = 0.0002***

Complex IV Increased
P = 0.0404* Unchanged Unchanged Unchanged

Mitochondrial mass

Citrate synthase protein expression Unchanged Unchanged Unchanged Unchanged

Protein expression of selected subunits of components of the mitochondrial ETC

Complex I NDUFB8 Unchanged Unchanged Unchanged Unchanged

Complex I GRIM19 Increased 
p = 0.0164* Unchanged Increased 

p = 0.0418*
Increased 
p = 0.001***

Complex II SDHA Increased
P = 0.0164** Unchanged Unchanged Unchanged

Complex II SDHB Unchanged Unchanged Unchanged unchanged

Complex III UQCRC2 Unchanged Unchanged Unchanged Increased
P = 0.0159**

Complex III Cytochrome b Increased p = 0.01** Unchanged Unchanged Increased p = 0.036*

Complex IV COX1 Increased
P = 0.02* Unchanged Unchanged Unchanged

Complex IV COX2 Unchanged Unchanged Unchanged Unchanged

Cytochrome oxidase deficient cells identified by enzyme histochemistry

% COX negative cells Increased
p < 0.0001*** Unchanged Unchanged Unchanged

Table 1. Summary of results.
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cells may show decreased complex IV activity, while at the bulk tissue level there is an overall increase in activity 
which is likely to be related to oxidative stress. This situation is similar to that described in muscle disease where, 
despite the presence of individual cytochrome oxidase deficient muscle fibres identified by enzyme histochemis-
try, altered enzyme activity in muscle homogenate may not be detected48. It is also analogous to the finding that 
individual neurons show variable expression of components of the ETC complexes at the immunohistochemical 
level but this may not always be reflected in the enzyme activity assessed in tissue homogenates49. A previous 
study investigating ETC complex activity in cerebellar tissue from MSA cases did not demonstrate any changes 
in complex I + III, complex II + III or complex IV21. These results may differ from those in our study for reasons 
of case selection and tissue preparation. The MSA cohort studied by Barca et al.21, contained a combination of 
different MSA subtypes without apparent dissection of white matter, while in contrast, we restricted our study 
to mixed MSA cases with tissue enriched for white matter. Using mixed MSA only minimises any influence of 
neuropathological subtype. The use of post-mortem tissue to measure activity of the ETC and to determine loss 
of complex IV activity at the cellular level may be questioned in view of the potential for this to be influenced by 
post-mortem delay. However, it has previously been shown that ETC activity in the brain is not influenced by  
post-mortem delay47. Furthermore, these techniques have been employed in a number of studies21,50–52.

To probe the mechanisms underlying the observed alterations in ETC activity we investigated the protein 
expression of citrate synthase and selected components of the ETC complexes using immunoblotting. First we 
showed that there were no changes in the protein level of citrate synthase indicating that any changes were not 
secondary to alterations in the mitochondrial biomass (Fig. 2a). We had found that complex IV activity in MSA 
cerebellar white matter was elevated and measurement of COX 1 and COX 2 proteins showed a corresponding 
increase although, this was only significant for COX 1 (Fig. 3c and d). As discussed above, complex IV activity 
and protein levels may be elevated by oxidative stress45,46. Correlation between complex activity and the expres-
sion levels of protein components did not extend to the other ETC complexes investigated as has been shown 
by other investigators52,53. Despite the observed increase in complex I activity in MSA cerebellar white matter 
NDUFB8, a nuclear encoded supernumerary subunit located on the inner mitochondrial membrane, showed 
no changes in protein level (Fig. 2b). This may reflect the observation that this subunit does not influence the 
complex activity as it does not contain an active domain54. Interestingly, the GRIM19/NDUFA13 subunit showed 
an increase in expression in the MSA cerebellar white matter and PD occipital white matter which correlates with 
the increased complex I activity (Fig. 2c). This subunit is required for electron transfer activity of complex I and 
is thought to be involved in the interferon/retinoic acid-mediated cell death55–57. Furthermore, this subunit has 
been used as a marker for complex activity in a study looking at complex I deficient patients58. A slight increase in 
GRIM19 expression was observed in MSA occipital white matter which does follow the upward trend in enzyme 
activity (Figs 2c and 1a). This could indicate early impairment of mitochondrial function in this brain region 
which is minimally affected by MSA pathology as visualised by cellular inclusions of aggregated α-synuclein. To 
assess complex II we measured levels of the subunits SDHA and SDHB. SDHA showed an increase in expression 
in MSA cerebellum compared with controls despite the decrease in activity of complex II/III (Fig. 2d). UQCRC2, 
a component of complex III showed no change in expression in MSA (Fig. 3a). Interestingly the mitochondrial 
encoded complex III subunit, cytochrome b (cyto b) demonstrated increased levels in MSA cerebellar white 
matter and PD occipital white matter (Fig. 3b). Although complex II/III showed reduced activity in both these 
areas, the increase in cytochrome b expression could be a reflection of its anti-oxidant activation59,60. In addition 
to the influence of CoQ10 reduction in MSA a number of other mechanisms may influence protein function 
and may be important in regulation of activity of ETC complexes. For example, complex II activity is modulated 
by post-translational phosphorylation and acetylation61. SDHA is phosphorylated in mammalian cells and, like 
acetylation, this post-translational modification can attenuate complex activity62. Moreover, SDH catalytic activ-
ity can also be controlled by Krebs cycle intermediates including oxaloacetate, which is a potent inhibitor. The 
enzymatic status of complex II thus appears to be influenced by factors which are independent of protein expres-
sion providing an explanation for the discrepancies in protein expression and activity we observed. Determining 
the acetylation and phosphorylation status of complex II components would be of interest, however, specific 
antibodies suitable for immunoblotting are not currently available. Investigation of protein levels of additional 
mitochondrial ETC complex components may also be informative.

Mitochondrial dysfunction is well described in PD, the most frequent α-synucleinopathy, and PD cases with 
Braak stage 6 α-synuclein pathology were therefore used as a disease control for this study63–65. α-Synuclein 
pathology in PD is largely restricted to the grey matter and each of the regions we examined in this study typi-
cally show little pathology, although, the occipital lobe may be affected in Braak stage 6 disease (Supplementary 
Fig. 1)66. In keeping with this, we found no changes in ETC complex activity or in protein expression of the 
components examined in the cerebellar white matter in PD compared with control. In the occipital lobe we 
observed increased complex I and decreased complex II/III activity in PD, mirroring the changes in the cere-
bellum of MSA and suggesting a common mechanism of tissue damage in these two diseases (Fig. 1a and b). In 
contrast to our findings, previous studies have demonstrated reduced complex I activity in PD but these have not 
included analysis of the occipital lobe or enrichment for white matter49,52,53,67. In one study of PD in which neu-
ronal depletion of complex I in several brain regions was implicated from immunohistochemical analysis of the 
component NDUFB8, the immunohistochemical result in the cerebellum was not replicated in immunoblotting 
or when complex I activity was measured. This concurs with our finding that complex I activity in the cerebel-
lum is unchanged in PD. It also emphasises that results may vary when different methods are compared in brain 
tissue49. Other studies have shown conflicting results when measuring ETC complex activities in PD platelets, 
lymphocytes, substantia nigra, frontal cortex and muscle68. Some report a reduction in activity and others found 
no changes in both complex II50,69 and complex III independently70–72. Decreased complex II/III activity has been 
observed in cortical regions in PD with dementia52. It has been shown using proton Magnetic Resonance (MR) 
spectroscopy that there are increased levels of lactate in the occipital lobe of PD patients compared to controls 
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implicating altered mitochondrial function in this region in addition to nigrostriatal pathways and supporting 
our finding of impaired mitochondrial function in the occipital lobe in PD73.

In conclusion, the results of this study support the hypothesis that ETC dysfunction may be important in 
the pathogenesis of MSA. The decrease in the cerebellar ETC complex II/III activity may result from the deficit 
in CoQ10 levels previously described20,21. Research into MSA has primarily focused on oligodendroglial and 
neuronal dysfunction secondary to accumulation of aggregated α-synuclein, leading to microglial activation, 
neuroinflammation and oxidative stress2,74,75. Altered activity of the ETC complexes in the cerebellar white matter 
with preservation in the occipital lobe strongly supports a role for oligodendroglial mitochondrial dysfunction in 
the pathogenesis of MSA and the parallels with PD suggest a common disease mechanism in α-synucleinopathies. 
Whether mitochondrial dysfunction is a primary driver of disease in MSA or is secondary to other pathological 
processes remains to be determined.

Materials and Methods
samples. The brains were donated to the Queen Square Brain Bank for Neurological Disorders, UCL Institute 
of Neurology using ethically approved protocols and stored for research under a licence issued by the Human 
Tissue Authority. The brain was routinely hemi-dissected in the sagital plane and half was sliced and flash frozen. 
Samples of cerebellar and occipital white matter were dissected from the frozen brain tissue and then homog-
enised for the mitochondrial assays, as well as western blotting. These samples are enriched for white matter 
as this study was designed to characterise changes in this tissue which is affected by GCI pathology in MSA. 
Corresponding brain regions from flash frozen tissue were also cut to provide 8 µm thick sections for the COX/
SDH histochemistry. The cerebellar white matter, a region with large numbers of α-synuclein positive GCIs4,35 
was compared with the occipital white matter where GCIs are sparse in MSA36,37. Both regions are minimally 
affected in PD in which they may contain sparse Lewy neurites (Supplementary Fig. 1).

Mixed MSA cases with short post-mortem delay were selected in order to minimise the potential biological 
changes after death. Neurologically normal cases were used as controls in addition to PD cases with advanced, 
Braak stage 6, pathology which acted as an α-synucleinopathy disease control. The groups were matched as 
closely as possible for age at death and gender, details are provided in Table 2.

Determination of ETC enzyme activities. Both the cerebellar white matter and occipital white matter 
were sampled from 10 flash frozen neurologically normal controls, mixed MSA and PD cases (Table 2). Each 
brain region was homogenised and the activities of ETC complex I (NADH: ubiquinone reductase), II/III (suc-
cinate: cytochrome c reductase) and IV (cytochrome c oxidase) together with CS were assayed spectrophoto-
metrically at 30 °C as previously described76. CS is routinely used as a marker of mitochondrial biomass. It is 
the rate- limiting step in the tricarboxylic acid cycle (TCA) cycle and its activity is therefore not dependent on 
mitochondrial-encoded proteins77. The CS activity was measured and normalised to total protein content which 
was calculated using bicinchoninic acid (BCA) assay (Thermo Scientific, Massachusetts, US)78.

Protein homogenisation and western blotting. Flash frozen tissue weighing ~0.5 g was homogenised 
in high- salt lysis buffer (50 mM Tris HCL pH 7.4, 175 mM NaCL, 1% Triton X with protease and phosphatase 
inhibitor tablets (Roche, Basel, Switzerland), 1 tablet per 50 ml). The tissue was homogenised in a volume 5 
times of its weight using a glass dounce. The lysate was centrifuged at 1000 × g for 5 minutes at 4 °C to remove 
cell debris. The supernatant was removed and stored at −80 °C. A protein determination assay (BCA, Thermo 
Scientific Massachusetts, US) was carried out where the lysate was diluted in reducing agent (Invitrogen) and 
in lithium dodecyl sulfate (LDS) sample buffer (Invitrogen, California, US). For mitochondrial complexes it is 
recommended not to boil the samples as this will reduce the signal of several bands. For the SDS/PAGE elec-
trophoresis, 10 µg of each sample was loaded into a 4–12% Bis/Tris 1.0 mm gel and run in MES SDS running 
buffer (Invitrogen, California, US) containing antioxidant (Invitrogen, California, US) at 120 V. The gels were 
then transferred to nitrocellulose membrane (GE Healthcare, Illinois, US) using XCell blot Invitrogen equipment 
in transfer buffer containing 10% methanol for 1 hour and 30 minutes. The membrane was then blocked in 5% 
semi-dry powdered milk/PBS for 1 hour at RT on a shaker. The membranes were incubated with in a primary 
antibody diluted in 2% BSA/PBS- 0.1%Tween (PBS-T) over night at 4 °C on the shaker (See Table 3 for antibody 
information). The following day, the membrane was washed in PBS-T and incubated with a LiCOR 680/880 
secondary antibody for an hour on the shaker at 4 °C. The membranes were then washed three times with PBS-T, 
followed by a fourth wash in PBS before developing the blots on the LiCOR Odyssey machine. Two loading con-
trols were used, β-actin and citrate synthase. For technical quality reasons case numbers analysed varied between 
proteins and regions examined (n = 3–10). Each sample was run in triplicate over different gels, each containing 
control, MSA and PD samples within one gel. For the analysis, each band intensity was analysed using Fiji Image 
J software79 across the triplicates. Each complex subunit was normalised to citrate synthase and then the triplicate 

Case group Number Age (years) ± s.e.m. Gender (Male/Female)
Post-mortem delay 
(hours: minutes ± s.e.m.) Brain regions

Control 10 86 ± 2 5/5 67:34 ± 10

Cerebellar white matter 
and occipital white matter

MSA 10 64 ± 2 6/7 38:28 ± 5

PD
(Braak stage 6) 10 80 ± 2 5/5 25:20 ± 5

Table 2. Demographics of the case cohort [s.e.m.; Standard error of the mean].
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values were averaged. These values are represented as bar graphs. Each gel is presented in full for each western 
blot in Supplementary Figs 2–7.

COX/SDH assay. Frozen sections (8 µm) from the cerebellar and occipital white matter of control, PD and 
MSA cases (n = 3 for each group, 2 sections per case) were cut and mounted on glass slides. For the succinic 
dehydrogenase (SDH) assay, the solutions and methods were validated and performed according to the method 
described by Nachlas et al. (1957)80. For the COX assay, the solutions and methods were validated according 
to published methods81. Finally the sequential COX/SDH used both, COX incubating medium and the SDH 
staining solution. The sections were removed from −80 °C to acclimatise to RT and then incubated with COX 
incubating medium at 37 °C for 2 hours. Following this, the sections were drained and rinsed in deionized water 
before applying SDH staining solution and incubating at 37 °C for 2 hours. The sections were washed in distilled 
water and mounted using warmed glycerine jelly (Sigma, Missouri, US).

Stained sections were imaged on the Olympus Virtual Slide Microscope VS120 at a 40x magnification. Four 
regions of white matter were randomly selected for each case (2 sections per case) using the Image analysis 
Olympus software, by an observer blind to the diagnostic category of the cases. In these regions the number of 
blue stained cells, representing the COX deficient cells was counted. The brown, COX positive cells, were also 
counted to establish a total cell count. The mean count was calculated for each case and the percentage of COX 
deficient cells was established.

equipment and settings. Western blot images were acquired using LI-COR Odyssey Infrared Imaging 
System Model 9120 which involves a 2 colour detection method using IRDye 800CW or 680RD secondary anti-
bodies. The membranes are imaged at an intensity of 5 ± 2 depending on the antibody using both channels. These 
images are then converted to a black/white image using Grayscale tool in LI-COR imaging software. This image 
is converted to a TIFF file so it can be analysed in Fiji Image J software package. A rectangle box is drawn around 
the band where the pixel intensity is calculated. The pixel intensity of the protein of interest is then divided by the 
corresponding citrate synthase band intensity so to normalise for protein concentration.

Graphs and statistics. All figures with bar graphs were generated in Graphpad and represent the average 
value ± standard error of mean (s.e.m.). For all figures, an unpaired t test using Mann-Whitney post hoc compar-
ing MSA and PD to control was carried out. Significance was set at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***). 
Individual p values are specified in Table 1.

Ethics Approval and Consent to Participate
Written informed consent was obtained from all participants. Tissue stored in the QSBB is under license 12198 
from the Human Tissue Authority and has been donated for research according to protocols approved by the 
NRES Committee London- Central.

Data Availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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