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A B S T R A C T

Background: Neuroinflammation is recognized as part of the pathological progression of Alzheimer's disease
(AD), but the molecular mechanisms are still not entirely clear. Systemically, physical exercise has shown to
have a positive modulating effect on markers of inflammation. It is not known if this general effect also takes
place in the central nervous system in AD. The aim of this study was to investigate the effect of 16weeks of
moderate to high-intensity physical exercise on selected biomarkers of inflammation both systemically and in the
CNS, in patients with AD.
Methods: Plasma and cerebrospinal fluid (CSF) from 198 patients with Alzheimer's disease participating in the
Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of
Physical Exercise (ADEX) study were analyzed for concentrations of 8‑isoprostane, soluble trigger receptor ex-
pressed on myeloid cells 2 (sTREM2), and the MSD v-plex proinflammation panel 1 human containing interferon
gamma (IFNγ), Interleukin-10 (IL10), IL12p70, IL13, IL1β, IL2, IL4, IL6, IL8, and tumor necrosis factor alpha
(TNFα), before and after a 16-week intervention with physical exercise, and we studied whether changes were
modulated by the patients' APOE genotype.
Results: Most inflammatory markers remained unchanged after exercise. We found an increasing effect of 16weeks of
physical exercise on sTREM2 measured in CSF. Further, IL6 in plasma increased in the exercise group after physical
exercise (mean relative change 41.03, SD 76.7), compared to controls (−0.97, SD 49.4). In a sub-analysis according to
APOE genotype, we found that in ε4 carriers, exercise had a stabilizing effect on IFNγ concentration with a mean
relative change of 7.84 (SD 42.6), as compared to controls (114.7 (SD 188.3), p=0.038.
Conclusion: Our findings indicate an effect of physical exercise on markers of neuroinflammation in CSF mea-
sured by an increase in sTREM2 in patients with AD. Further, there may be a small inflammatory systemic effect
related to physical exercise in patients with AD.
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1. Background

Physical activity (PA) has been shown to have a positive modulatory
effect on systemic inflammation by reducing pro-inflammatory cyto-
kines, increasing anti-inflammatory cytokines (Petersen and Pedersen,
2005; Pedersen, 2000), and modulating reactive oxygen species (ROS)
both in young and older adults (Kohut et al., 2006; Woods et al., 2012;
Pedersen and Bruunsgaard, 2003; Wärnberg et al., 2010; Radak et al.,
2016). Inflammation is an important part of the pathophysiology of
Alzheimer's disease (AD) (Cameron and Landreth, 2010; Calsolaro and
Edison, 2016), however, the precise pathological mechanism behind
the contribution of inflammation to the pathological progression of the
disease is largely unknown. It is thought that prolonged stress activa-
tion of microglia due to amyloid β (Aβ) plaque formation, can result in
the development of a harmful (inflammation-promoting) increase in
cytokines, chemokines and ROS (Tozzi et al., 2018). Whereas long-
itudinal cohort studies show an association between higher levels of PA
and a reduced risk of cognitive decline and dementia (Blondell et al.,
2014), there is limited evidence for an effect of PA on AD biomarkers
(Jensen et al., 2015; Steen Frederiksen et al., 2018). However, PA has
been shown to slow down hippocampal atrophy in healthy elderly
(Erickson et al., 2011), change specific AD biomarkers in a favorable
way in healthy subjects at risk of AD (Law et al., 2018), and improve
cognition in older adults with mild cognitive impairment (Baker et al.,
2010). It is therefore likely that PA may slow down the clinical pro-
gression of AD by reducing harmful inflammation, promoting beneficial
myokines and reducing systemic metabolic risk factors of AD, e.g., in-
sulin resistance and hypercholesterolemia (Chakrabarti et al., 2015)

In this study, we wished to analyze the effect of 4months of mod-
erate to high-intensity physical exercise in patients with AD, on markers

of different inflammatory processes in cerebrospinal fluid (CSF) and
plasma. We employed a general pro-inflammatory cytokine panel,
which also includes anti-inflammatory cytokines and growth factors.
Furthermore, we chose a marker of microglia activation due to cellular
stress, which has been linked to AD risk, soluble trigger receptor ex-
pressed on myeloid cells 2 (sTREM2) (Suárez-Calvet et al., 2016;
Colonna and Wang, 2016; Cantoni et al., 2015) and 8-isoprostane, a
marker of oxidative stress and lipid peroxidation (Praticò, 2010; Praticó
et al., 2000). In addition, we determined the single nucleotide poly-
morphism (SNP) rs75932628-T, which has been linked to genetic
higher levels of sTREM2 in CSF and higher risk of developing AD (Ruiz
et al., 2014; Piccio et al., 2016).

We hypothesized that PA would have an upregulating effect on anti-
inflammatory cytokines, and down-regulating effect on pro-in-
flammatory cytokines. Further, we analyzed whether PA exhibited
modulating effects on markers of microglia activation and ROS, mea-
sured via sTREM2 and 8-isoprostane respectively. Finally, we analyzed
whether the apolipoprotein E (APOE) genotype influenced the impact of
PA on inflammation.

2. Material and methods

2.1. Study population

One hundred and nighty eight home-dwelling patients with clini-
cally diagnosed mild AD according to NINCDS-ADRDA criteria
(McKhann et al., 1984) and an MMSE>19 were enrolled in the mul-
ticenter ´Preserving Cognition, Quality of Life, Physical Health and
Functional Ability in Alzheimer's Disease: The Effect of Physical Ex-
ercise’ or in short, the ADEX study. For a detailed description of the

Table 1
Baseline characteristics of the study cohort. A) All patients. B) CSF sub-group. ¥ Given as mean ± (standard deviation), #independent t-test, ¤ Chi-squared test, €

controls versus exercise, $ controls versus high exercise. From the exercise group, participants who participated> 80% of the session and had a mean intensity of
70% or high, was further analyzed as a ‘high exercise group’.

A) Whole group Controls (n=92) Exercise (n=106) p-Value€ High exercise sub-group (n=66) p-Value$

Age, years¥ 71.4 (7.3) 69.9 (7.5) 0.14# 70.2 (7.5) 0.31#

Gender, n 0.13¤ 0.41¤

Males 57 56 34
Females 35 50 32

Characteristics
Disease duration, years from diagnosis¥ 1.3 (1.0) 1.0 (1.0) 0.1# 0.94 (0.9) 0.05#

MMSE¥ 24.2 (3.9) 23.8 (3.4) 0.54# 24.1 (3.3) 0.96#

Education, years¥ 11.8 (2.8) 11.9 (2.7) 0.84# 12.2 (2.7) 0.42#

Weight, kg¥ 71.4 (12.1) 73.0 (13.5) 0.36# 72.5 (13.8) 0.18#

Height, cm¥ 172.0 (8.9) 170.2 (9.1) 0.15# 170.1 (9.2) 0.18#

BMI¥ 24.1 (3.6) 25.2 (4.0) 0.04# 23.0 (4.0) 0.12#

APOE ε4 alleles, n 0.35¤ 0.22¤

0 21 34 19
1 45 45 26
2 26 27 21

B) CSF subgroup (n=29) (n=29) (n=19)

Age, years¥ 68.8 (8.0) 68.83 (6.7) 0.83# 68.6 (7.0) 0.91#

Gender, n 0.17¤ 0.36¤

Males 21 16 11
Females 8 13 8

Characteristics
Disease duration, years from diagnosis¥ 1.5 (1.1) 1.0 (0.9) 0.07# 1.2 (1.0) 0.25#

MMSE¥ 25.1 (3.9) 25.4 (2.8) 0.70# 25.1 (2.6) 0.99#

Education, years¥ 13.0 (2.9) 12.7 (2.8) 0.62# 12.5 (2.5) 0.54#

Weight, kg¥ 73.3 (2.4) 73.3 (13.0) 0.51# 75.4 (16.5) 0.63#

Height, cm¥ 174.8 (8.8) 172.5 (9.0) 0.33# 172.8 (9.3) 0.45#

BMI¥ 23.9 (3.5) 25.4 (4.2) 0.15# 25.1 (4.1) 0.28#

APOE ε4 alleles, n 0.25¤ 0.21¤

0 13 7 3
1 10 14 9
2 6 8 7
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study, please see (Hoffmann et al., 2013). In short, patients with mild to
moderate AD were randomized to either a control group with treatment
as usual or a 16-week 60min three times per week moderate-to-high
intensity aerobic physical exercise (treadmill, stationary bike, cross
trainer) group. Subjects were tested at baseline and at 16-week follow-
up with a comprehensive battery of tests of cognitive function, Activ-
ities of Daily Function, Quality of Life, physical activity and neu-
ropsychiatric symptoms.

Primary and secondary clinical outcomes have previously been
published showing an effect of physical exercise on neuropsychiatric
symptoms as well as on cognitive and physical function (Hoffmann
et al., 2015; Sobol et al., 2016). Before and after the intervention, blood
samples were collected from all subjects, and CSF was collected from a
subgroup of patients. The baseline characteristics of the whole study
population and the CSF subgroup are shown in Table 1.

2.2. Samples

A total of 198 patients participated in the study, all gave blood
samples, and 58 patients donated CSF samples. Due to technical rea-
sons, not all analytes were measured in all the patients. CSF sTREM2
was measured in 55 samples (27 controls and 28 exercises). Paired
plasma and CSF cytokine profile was measured in 51 samples (27
controls and 24 exercises) with the MSD v-plex proinflammation panel
1 human. CSF 8-isoprostane was measured in 55 samples (28 controls
and 27 exercises) and in 187 plasma samples (87 controls and 100
exercises). All samples were collected and processed according to in-
ternational guidelines (Teunissen et al., 2014).

2.3. Assays

Commercially available kits were used for measuring the con-
centrations of plasma and CSF cytokines containing interferon gamma
(IFNγ), Interleukin-10 (IL10), IL12p70, IL13, IL1β, IL-2, IL4, IL6, IL8,
tumor necrosis factor alpha (TNFα) (MSD v-plex proinflammation panel
1 human, Meso Scale Discovery, MA, USA), and plasma and CSF
8‑isoprostane (8‑isoprostane ELISA kit, Cayman Chemicals, MI, USA) by

following the manufacturers' enclosed procedure, in technical dupli-
cates.

CSF sTREM2 was measured with an in-house MSD assay. In short, to
streptavidin-coated 96-well plates (Meso-Scale discovery (MSD) a bio-
tinylated polyclonal goat anti-human TREM2 capture antibody
(0.25 μg/ml R&D Systems BAF1828) was bound, and subsequently in-
cubated with the CSF or a standard protein solution constructed from
recombinant human TREM2 protein (4000–62.5 pg/ml Sino Biological
Inc. 11084-H08H). Further, a detector antibody, monoclonal mouse
anti-human TREM2 antibody (1 μg/ml Santa Cruz Biotechnology; B-3,
sc373828), was added, and thereafter incubated with a secondary an-
tibody (SULFO-TAG–labeled anti-mouse secondary antibody, MSD).
Lastly, the plates were developed by adding MSD Read buffer and the
light emission measured using the MSD SECTOR Imager 6000. The
concentration of sTREM2 was calculated using a five-parameter logistic
curve fitting method with the MSD Workbench software package. Intra-
assay coefficients of variation (CVs) were<10%, and all samples were
measured on the same day using the same reagents. TREM2 genotype
for SNP rs75932628-T was analyzed using TaqMan assay (TaqMan SNP
assay MTO human SMC_100657057_10, Life Technologies, CA, USA).

2.4. Concentration change calculations

The changes in concentration of the biomarkers measures, were
presented as relative change from baseline and calculated as

=Follow up Baseline
Baseline

relative change from baseline[ ] [ ]
[ ]

100

This calculation was used to take into account marginal levels at
baseline (very low or very high levels). Further, it gives more emphasis
on small changes in individuals with smaller baseline levels, than small
changes in individuals with higher baseline levels. As a result, relative
change from baseline< 0, equals lower concentration at follow up.
Relative change from baseline= 0, equals no difference concentration
at follow up compared to baseline. Relative change from baseline> 0,
equals higher concentration at follow up.

Table 2
Changes in plasma and CSF biomarkers after 16weeks of intervention. Baseline and follow-up values of sTREM2, INFγ, IL10, IL6, IL8, IL13, IL2, TNFα, and
8‑isoprostane. In addition, analysis of between group difference in mean change from baseline exercise versus controls and per-protocol high-exercise versus controls.
¥ Given as mean ± (standard deviation). # A positive value means greater positive mean change from baseline in the exercise group.

Baseline¥ 16 week follow up¥ Mean relative change from baseline, ((16week follow up – baseline) /
baseline) ∗ 100, ¥,#

pg/mL Controls Exercise Controls Exercise Controls Exercise p-Value High exercise p-Value

(n=27) (n=28) (n=24) (n=23) (n=22) (n=22) (n=16)
sTREM2, CSF 8172.51

(2656.2)
8193.32
(2992.5)

7717.16
(2488.7)

8596.5
(3267.5)

−2.4 (13.8) 5.0 (12.9) 0.075 6.9 (14.0) 0.05

(n=27) (n=24) (n=27) (n=19) (n=26) (n=19) (n=14)
IFNγ, CSF 0.6 (0.2) 0.5 (0.2) 0.6 (0.1) 0.5 (0.2) 9.0 (34.0) 1.6 (52.8) 0.57 −4.1 (51.9) 0.34
IL10, CSF 0.1 (0.0) 0.1 (0.1) 0.1 (0.1) 0.1 (0.6) 13.5 (52.4) 18.0 (67.5) 0.80 15.2 (70.8) 0.93
Il13, CSF 0.7 (0.5) 0.7 (0.3) 0.7 (0.3) 0.8 (0.5) 7.9 (68.7) 55.8 (115.4) 0.09 48.1 (107.2) 0.16
IL2, CSF 0.2 (0.2) 0.2 (0.12) 0.1 (0.1) 0.1 (0.1) 11.7 (96.1) 4.6 (69.3) 0.79 −0.1 (78.4) 0.70
IL6, CSF 1.2 (0.4) 1.1 (0.3) 1.3 (0.6) 1.1 (0.3) 21.7 (50.1) 1.9 (28.2) 0.13 3.5 (29.5) 0.22
IL8, CSF 44.8 (13.0) 42.4 (9.2) 45.1 (15.4) 40.7 (10.5) 2.7 (24.7) −5.0 (16.6) 0.25 −2.5 (15.9) 0.48
TNFα, CSF 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 0.2 (0.1) 4.5 (31.9) −4.7 (38.8) 0.39 −6.8 (41.5) 0.34

(n=23) (n=24) (n=23) (n=21) (n=19) (n=21) (n=14)
IFNγ, plasma 5.1 (3.4) 4.9 (2.2) 5.0 (3.2) 5.2 (2.2) 61.4 (144.6) 22.1 (63.7) 0.27 11.6 (44.2) 0.22
IL10, plasma 0.3 (0.2) 0.3 (0.2) 0.5 (0.8) 0.3 (0.2) 6.2 (58.6) 31.2 (95.6) 0.33 35.2 (109.8) 0.33
IL6, plasma 2.9 (7.4) 0.7 (0.3) 3.3 (8.6) 0.8 (0.3) −1.0 (49.4) 41.0 (76.7) 0.049 48.0 (85.8) 0.047
IL8, plasma 4.8 (1.6) 4.8 (1.4) 5.6 (2.3) 5.4 (1.5) 27.9 (65.5) 20.7 (38.9) 0.67 25.4 (41.7) 0.90
TNFα, plasma 1.6 (0.6) 1.7 (0.4) 1.8 (0.6) 1.7 (0.4) 33.2 (83.1) 1.2 (39.6) 0.12 −3.7 (41.9) 0.14

(n=28) (n=27) (n=23) (n=22) (n=20) (n=22) (n=15)
8‑Isoprostane, CSF 8.7 (4.0) 9.93 (5.4) 8.97 (3.6) 16.28 (4.1) 33.2 (99.8) 80.1 (192.4) 0.33 95.4 (225.9) 0.28

(n=87) (n=100) (n=80) (n=90) (n=75) (n=86) (n=55)
8‑Isoprostane, plasma 70.2 (94.0) 68.4 (86.8) 70.8 (88.9) 60.3 (75.8) 213.9 (582.7) 109.9 (354.2) 0.17 98.8 (296.7) 0.18
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2.5. Statistics

The baseline characteristics were compared between the two groups
using t-tests. The baseline and follow up concentrations were analyzed
using paired t-test within each group respectively, and the mean re-
lative change from baseline in biomarker concentrations was analyzed
by Student's t-test. These analyses were done both as an intention to
treat (ITT) analysis where all participants were analyzed, and as a per-
protocol analysis where only the subjects that exercised with a mean
intensity of> 70% of maximal heart rate (HR) and attended> 80% of
the sessions, were included, this sub-group is called high exercise
group, and consists of 66 subjects from the exercise group (Hoffmann
et al., 2013; Hoffmann et al., 2015). Additionally, linear regression
between BMI at follow up and change from baseline was performed for
the cytokine panel. Furthermore, the APOE genotype contribution to
the effect on the biomarkers was analyzed in non-carries versus carriers
of the AD risk relevant ε4 allele. The significance level was set to 0.05
and outlier analysis was performed.

3. Results

Baseline characteristics in the control group, exercise group, and
high exercise sub-group were comparable, as shown in Table 1. Body
Mass Index (BMI) was slightly, but significantly higher in controls
versus exercise group, and disease duration in the high exercise sub-
group was slightly shorter as compared to the control group. Table 1B
displays the baseline characteristics of the groups and high exercise
sub-group with CSF samples and in these sub-groups, no differences
were found between controls and exercise subjects. Further, there was
no difference in baseline levels of any of the analytes when comparing
controls to exercise, and controls to the high exercise group (data not
shown).

Over all, most of the analyzed biomarkers were not affected by PA,
and remained stable over the intervention period, see Table 2. How-
ever, when analyzing relative change from baseline, the IL6 plasma
concentration increased significantly in the exercise group compared to
the control group with a mean change from baseline at 41.03 (SD 76.7)
compared to −0.97 (SD 49.4) in the control group (p=0.049). When
analyzing the high exercise group vs controls, the same outcome was
found with a mean change of 48.01 (SD 85.8) and –0.97 (SD 49.4),
respectively (p=0.047). Similar results with borderline significance
were found for sTREM2 in CSF. Here, sTREM2 mean relative change
from baseline was 6.9 (SD 14.0) in the high exercise group compared to
−2.4 (SD 13.8) in controls, (p=0.05). TREM2 SNP assay showed no
genotype that corresponds with genetically altered sTREM2 levels.

Furthermore, analysis whether BMI at follow up and relative change
from baseline were correlated showed significant correlations between
BMI and relative change in IFNγ in CSF and in TNFα in plasma. Further
analysis with exercise as a groups variable showed that in CSF IFNγ the
correlation was due to BMI and independent of randomization group
(p=0.017). The same result was in plasma TNFα (p=0.03). In plasma
IL6 there was not an overall correlation between BMI and relative
change in IL6 however, analysis with groups variable showed a sig-
nificant effect of exercise and not BMI (p=0.04) on the relative change
from baseline, see Fig. 1.

In addition, when stratifying for APOE genotype in carriers and non-
carriers of the ε4 allele, we found that plasma IFNγ concentration in-
creased more in controls who were ε4 carriers (114.7 [SD 188.3]
compared to 7.8 (SD 42.8) in the ε4-positive exercise group, p=0.038).
The opposite was observed when analyzing sTREM2 based on APOE
genotype. Here, there was an increase in exercising APOE ε4 carriers,
5.7 (14.4), compared to a decrease in the controls −6.4 (15.5),
p=0.037, see Table 3.

Difference in patient numbers in the reported results, and in follow
up versus mean relative change from baseline, is due to samples falling
below limit of detection in either baseline or follow up measurements,
or due to technical reasons e.g. lysis of the sample.

4. Discussion

In this explorative sub-study, we investigated the effect of an in-
tervention of 16 weeks of moderate-to-high intensity exercise in pa-
tients with AD on selected biomarkers of inflammation measured in
plasma and CSF, to attempt to elucidate the biochemical effect of PA, as
several large population-based studies have shown that greater physical
exercise is associated with lower levels of inflammation (Beavers et al.,
2010). We have previously published the effect on cognition (Hoffmann
et al., 2015) and physical measures (Sobol et al., 2016). Here, we have
measured a variety of known biomarkers of inflammation to investigate
molecular underpinnings of the previously reported beneficial effect on
cognition and physical parameters in this population. The approach
resulted in many negative results, but we did find some moderate
modulating effects of our intervention on a number of inflammatory
proteins. Besides this study we have published our results on cognition,
neuropsychiatric (Hoffmann et al., 2015), physical parameters (Sobol

Fig. 1. correlation between BMI at follow up and relative change in biomarkers,
with randomization groups as a covariate A) relative change in CSF IFNγ, B)
relative change in plasma IL6, and C) relative change in plasma TNFα.
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et al., 2016; Sobol et al., 2015), and other relevant biomarkers (Jensen
et al., 2017; Steen Jensen et al., 2016)

We found PA to increase the levels of sTREM2 in CSF and IL6 in
plasma. In a subgroup analysis of APOE ε4 carriers, plasma IFNγ in-
creased in the control group whereas it remained unchanged in the
exercise group. Additionally, in APOE ε4 carriers, sTREM2 increased in
the exercise group, while decreased in the control group. Furthermore,
analysis of BMI correlated with relative change from baseline with
randomization groups as a covariate showed, that some of the relative
change from baseline detected was due to increased BMI. Both nega-
tively and positively. However only a very small percentage (ranging
from 13 to 18%) of the relative change from baseline in the biomarkers
could be explained by BMI.

Inflammation has been established as an important contributor to
AD pathology (Ransohoff, 2016). It is however not clear if inflammation
is the cause or the outcome of pathological Aβ plaque accumulation, in
other words, whether Aβ plaques cause inflammation or whether neu-
roinflammation increases Aβ buildup (Bagyinszky et al., 2017). None-
theless, markers of inflammation that can be measured in CSF and even
plasma have the potential to aid in diagnosis, monitor disease pro-
gression and help to understand the beneficial effects of treatment
strategies (Galasko and Montine, 2010; Thambisetty and Lovestone,
2010).

Many previous studies have found altered cytokine levels in patients
with AD. IL1 has been investigated in brains from AD patients and in
blood, where increased levels in brain and blood have been linked to Aβ
formation (Griffin et al., 1989; Licastro et al., 2000). Furthermore, in-
creased levels of other members of the IL1 family, IL18, IL33, and IL12
have been linked to increased AD risk (Su et al., 2016). In addition to
findings of increased pro-inflammatory cytokines, treatments with the
anti-inflammatory cytokine IL4 have shown reduced Aβ accumulation
in AD mice models (Kawahara et al., 2012).

The cytokine IL6 has historically been viewed as a pro-inflammatory
molecule, released in the acute phase of an infection. However, IL6 is
increasingly being recognized to exhibit both pro-inflammatory as well
as anti-inflammatory abilities, supported by the lack of induction of
among others nitric oxide with IL6 release, as seen with the release of

the pro-inflammatory cytokines IL1 and TNFα (Pedersen, 2000;
Scheller et al., 2011). AD research has focused on IL6 both systemically
and in the CNS. Blood levels of IL6 have been found to be increased in
AD as compared to cognitively healthy controls, and brain tissues from
AD patients stained for IL6 showed increased levels of IL6 adhesive to
senile plaque inclusion (Licastro et al., 2000; Eriksson et al., 2011;
Strauss et al., 1992). In relation to exercise and physical activity, studies
have shown that exercise induces an acute phase response, similar to
sepsis and trauma (Pedersen, 2000). Especially, IL6 is produced in high
amounts in response to exercise in healthy subjects, with a rapid decline
after end of the exercise (Petersen and Pedersen, 2005; Pedersen,
2000). In addition, IL6 is also produced locally in the muscles ex-
hibiting growth factor properties (Pedersen, 2000). These findings are
in line with the present results where we also see an increase in plasma
IL6 in the exercise group, compared to controls, suggesting that exercise
have similar effects on IL6 in AD as in healthy subjects.

IFNγ is a key player in the adaptive immune system, in promoting
T1-helper cells and clear infections (Zhu and Paul, 2010). IFNγ has been
shown to increase Aβ and tau pathology in a mouse model for AD
(Janelsins et al., 2008), but on the other hand to improve cognition in
AD patients (Tobinick et al., 2006). We found a significantly higher
concentration at follow up in IFNγ among the APOE ε4 carriers in the
control group. However, this result should be interpreted with great
caution, due to the very small sample number, as it could be a false
positive result. We would assume that if IFNγ is suppressed by PA in
AD, we would see a change in both APOE ε4 carriers as well as non-
carriers. However, studies in apoE−/− mice models, have shown that
these mice have an increased immune response including increased
IFNγ production (Getz and Reardon, 2009). Human APOE ε4 carriers
have low plasma apoE protein levels (Rasmussen et al., 2015), similar
to the apoE−/− mice, and studies have shown apoE to be tightly related
to the immune system response (Zhang et al., 2010), suggesting that
apoE protein helps suppress the activity of natural killer t-cells (NKT)
cells, and the IFNγ release (Zhang et al., 2010). In other words, lower
levels of apoE protein could result in elevated levels of IFNγ. This, it
seems, is inhibited by exercise, displaying an anti-inflammatory effect
of PA in APOE ε4 carriers, but not in non-carriers.

Table 3
The effect of exercise on biomarker concentrations, stratified according to ApoE genotype. Group differences in mean change from baseline high exercise versus
control depending of ApoE ε4 carrier status (0 alleles versus 1 or 2 alleles). ¥ Given as mean ± (standard deviation). # A positive value means greater positive mean
change from baseline in the exercise group.

APOE e4 non-carriers APOE e4 carriers

Mean relative change from baseline, ((16 week follow up – baseline) / baseline) ∗ 100¥,#

pg/mL Controls Exercise p-Value Controls Exercise p-Value

(n=9) (n=5) (n=13) (n=17)
sTREM2, CSF 3.5 (8.1) 2.5 (3.89) 0.81 −6.4 (15.5) 5.7 (14.4) 0.037

(n=12) (n=4) (n=14) (n=15)
IFNγ, CSF 12.6 (38.1) −2.4 (42.2) 0.52 5.8 (31.1) 9.4 (51.1) 0.82
IL10, CSF 25.4 (66.5) 23.6 (74.6) 0.96 3.3 (36.3) 16.5 (68.2) 0.53
Il13, CSF 29.1 (73.8) 62.3 (117) 0.31 −10.3 (61.0) 46.3 (103.4) 0.08
IL2, CSF 45.2 (129.9) 18.1 (40.4) 0.69 −17.0 (40.0) 1.0 (75.9) 0.44
IL6, CSF 39.3 (59.2) −14.7 (26.8) 0.11 5.6 (36.3) 6.3 (27.9) 0.98
IL8, CSF 1.9 (21.8) −11.6 (21.4) 0.30 3.4 (27.7) −3.3 (15.5) 0.43
TNFα, CSF 16.2 (38.8) −9.1 (33) 0.26 −5.6 (21.0) 2.9 (33.3) 0.42

(n=10) (n=5) (n=9) (n=16)
IFNγ, plasma 13.5 (72.1) 67.9 (100.2) 0.24 114.7 (188.4) 7.8 (42.8) 0.038
IL10, plasma −3.6 (45.5) 35.46 (68.4) 0.21 17.1 (71.7) 29.8 (104.4) 0.75
IL6, plasma −17.15 (47.4) 1.4 (71.3) 0.56 17.0 (47.7) 53.4 (76.4) 0.21
IL8, plasma 31.2 (80.6) 3.0 (23.3) 0.46 24.2 (48) 26.2 (41.6) 0.91
TNFα, plasma 26.6 (68.3) 1.3 (46.3) 0.47 40.5 (101.1) 1.1 (39.2 0.17

(n=10) (n=5) (n=10) (n=17)
8‑Isoprostane, CSF 9.7 (94.9) 139.0 (143.8) 0.058 56.5 (101.5) 62.8 (204.9) 0.93

(n=19) (n=31) (n=56) (n=55)
8‑Isoprostane, plasma 279.0 (492.1) 179.9 (479.4) 0.48 191.8 (612.9) 71.0 (255.9) 0.18
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In the gene encoding TREM2, SNPs have been linked to AD risk, and
studies have found conflicting results in the analysis of sTREM2 in CSF,
some with higher amount of sTREM2 in CSF in patients with AD, and
some with lower levels, compared to healthy controls (Suárez-Calvet
et al., 2016; Heslegrave et al., 2016; Kleinberger et al., 2014; Finelli
et al., 2015). We found that exercise increased levels of sTREM2, and
that non-exercise controls had a decrease in sTREM2 levels over the
16 weeks of intervention. This difference was driven by the APOE ε4
genotype, as seen in our sub-analysis according to APOE genotype. As
with the results found with IFNγ, the stratification in APOE genotype
generates very small sample sizes, and the results should be interpreted
with caution. Considering the conflicting findings of the previous stu-
dies, it is hard to conclude if the increase seen in sTREM2 in the APOE
ε4 exercise group, is beneficial or harmful.

TREM2 expressed on the cell surface acts as an immune receptor, a
soluble form of the protein sTREM2 can be cleaved from the cell surface
under conditions of microglial activation and stress (Wunderlich et al.,
2013). It has been found in mice studies that sTREM2 acts as a mi-
croglia activator through the Akt-GSK3β-β-cetenin pathway (Zhong
et al., 2017). The elevated levels seen in AD, may be due to the need for
an acute survival response for the microglia. However, later in the
process of AD sTREM2 might be more harmful than useful. In addition
to its proinflammatory function, sTREM2 has been shown to induce IL6
transcription in a mouse model (Zhong et al., 2017). One study even
suggests that modulating sTREM2 levels could be an efficacious ther-
apeutic approach to treat AD (Zhong et al., 2017). This is further un-
derlined with the finding that loss of function mutation in the gene for
TREM2, leads to the early onset dementia disease Nasu-Hakola disease
(Piccio et al., 2016). In that case we could postulate that exercise may
in fact be such a therapeutic approach, since the exercise group displays
increased sTREM2 in CSF after 16 weeks of physical exercise.

A general limitation of this study is the size of the CSF group, and
subgrouping these patients according to APOE ε4 genotype generated
even smaller groups. The very small group sizes increase chances of a
statistical type II error (Banerjee et al., 2009). This is only solved by
having big sample sizes or very small variations in data (Biau et al.,
2008). However, variations in biomarkers were high, due to biological
or analytical variations. In addition, the disease stage may have im-
pacted our results. Certain biomarker profiles may be abnormal in MCI
stages and may change towards normal values as the disease progress
into dementia stages (Duits et al., 2018), more over the level of in-
flammation may vary throughout the disease. This could indicate that
physical exercise intervention studies should have the MCI stage as the
target, as pathophysiological events may be more amenable to change
at this stage. This is further emphasized by the findings from studies of
PA, where effects on cognition generally have been larger in MCI sub-
jects than in AD subjects (Öhman et al., 2014).

5. Conclusion

In conclusion, IL6 and sTREM2 were modulated in patients with AD
by 16weeks of PA. In addition, IFNγ was increased in APOE ε4 carriers
who exercised. However, most other inflammatory markers in plasma
and CSF remained unchanged following PA. The use of PA as a ther-
apeutic approach for AD and other dementias is an attractive add-on to
conventional medical treatment (Groot et al., 2016), but the underlying
biochemical effects remain largely unknown (Jensen et al., 2015). Our
study addresses part of this and reports promising pilot data on a
number of inflammatory/microglia-related biomarkers from a hypoth-
esis-generating explorative analysis, not corrected for multiple com-
parisons. More studies, preferably also examining effects of type and
length of the physical exercise, are needed to replicate these findings
and elucidate more of the molecular effects of PA in AD. In larger pa-
tient cohorts, it would be relevant to stratify according to disease se-
verity and analyze the impact of PA on inflammation in subgroups with
subjective cognitive impairment MCI, mild, moderate and severe AD.
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