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Abstract

Background: Agent-based models provide a formidable tool for exploring complex

and emergent behaviour of biological systems as well as accurate results but with the

drawback of needing a lot of computational power and time for subsequent analysis. On

the other hand, equation-based models can more easily be used for complex analysis

in a much shorter timescale. Methods & Objective: This paper formulates an

ordinary di�erential equations and stochastic di�erential equations model to capture

the behaviour of an existing agent-based model of tumour cell reprogramming and

applies it to optimization of possible treatment as well as dosage sensitivity analysis.

Results: For certain values of the parameter space a close match between the equation-

1



based and agent-based models is achieved. The need for division of labour between the

two approaches is explored.
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1 Introduction

1.1 Motivation

The research concerns a particular cancer-related clinical setting. The basic research aim was

to formulate two di�erent types of continuum models, ordinary di�erential equations (ODE)

and stochastic di�erential equations (SDE), that could match the qualitative and quantitative

behaviour of an agent-based model (ABM) in that setting. Furthermore, connecting these

models parametrization-wise is not usually trivial but we will show the parametrization we

have done allows us to move from the agent-based to the continuum view for optimization

and sensitivity analysis. When a clinically relevant setting is considered then each model

has advantages and disadvantages. Speci�cally ABMs provide more realistic results which

can be used by both the researcher and the clinician but systematic and rigorous analysis of

the system simulated by the ABM is very time-consuming. Continuum models by contrast

allow for complex analysis and exploration of the underlying system with the trade-o� of

realism and accuracy. Matching between the two types of models would mean that one

could use the continuum model for analysis, such as optimization and sensitivity analysis.

These procedures could be extremely time-consuming if performed directly in ABMs for two

reasons. The �rst is that ABMs are in a way in-silico experiments which have to be run a

great number of times for each set of parameter values in order to be able to draw a sensible

conclusion. Moreover and speci�cally in the case of cell biology scenarios, realistic numbers

of cells in a system could reach the order of millions. Such numbers would mean that

huge computational power is needed to run simulations, in contrast to continuum equations

which usually can be handled numerically very fast. On the other hand, ABMs provide a

more realistic representation of the real system and can prove very valuable to clinicians.

Hence the main idea here is to move from an ABM to a continuum model for analysis and

understanding of the system and dynamics and then move back to the ABM in order to use

the conclusions of the analysis to obtain realistic data.
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Creating a rigorous connection between the two aforementioned types of models for a

generic system is a di�cult task, depending on the system under consideration. Therefore,

we approach our main idea on a case-by-case basis. To this end we reproduce the agent-based

model found in the recent paper by P.M. Biava et al.1 based on a recently developed tumour

paradigm which is supported experimentally. Attempts to connect agent-based models to

equation-based models in order for one of them to act as a complementary model to the

other have been done previously in a number of di�erent papers.2�4

1.2 Cancer cell model

Several experimental studies exploring the interaction between a tumour and the embryonic

micro-environment have shown a delay or even stopping of the proliferation of di�erent hu-

man cancer lines when development and more speci�cally organogenesis is at work5 . In 2002

the same group that developed the ABM model1 showed that factors taken from speci�c de-

velopmental stages of the zebra�sh embryo decreased the proliferation rate of several human

cancer lines signi�cantly.6 In addition to in-vitro, an in-vivo study revealed a slowdown of

the Lewis lung cancer carcinoma in mice when administered with developmental factors.7

Moreover, recent experimental results have demonstrated that embryonic and cancer cells

share some of the molecular signal and pathways.

The above has led to the development of a new tumour paradigm in which cancer is con-

sidered a developmental deviation of normal undi�erentiated cells.5 Cancer cells are viewed

as undi�erentiated cells that are stuck in the proliferative stage between two di�erentia-

tion stages. As a result the same molecular factors that di�erentiate cells during embryonic

development could help the cancer di�erentiate and even become a healthy cell. A less dif-

ferentiated stem cell di�ers from a more di�erentiated one in the fact that a greater number

of genes are expressed in the latter and in reality all the developmental factors have to work

in a complete network to induce the expression of many genes.5 In this paradigm there are

�ve malignancy stages, from more to less malignant, in accordance with the �ve steps of
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a stem cell, i.e. pluripotent (most malignant), multipotent, oligopotent, di�erentiating and

di�erentiated (healthy).

1.3 Aims

The rest of our study is divided into four main sections and some into further subsections.

Section 2 is material and methods. Initially we present the ABM we developed which is

very similar in nature to the model developed in.1 We build on this model to explore dosage

optimization and sensitivity analysis. We explain how the model works, its agents as well

as the parameter values being derived from empirical and experimental data. Following the

development of the ABM we formulate two new models, an ordinary ODE and a SDE to

capture the dynamics of the ABM. We justify the form of our models and explain the �tting

to the ABM procedure. Then, we extend the ODE to two more complex and realistic forms

that will be used for further analysis. Section 3 presents the results and discussion. Here

we show how well the two continuum models match the ABM and present the rest of the

analysis which is related to a hypothetical therapy based on the cancer cell theory. Namely,

we conduct an optimization of the dosage of molecular factors as well as an analysis of a

patient missing some dosages. Section 4 is the further discussion, where we summarize

our work and �ndings. Finally, in section 5, the conclusion, we raise possible issues and

areas left unexplored as well as further work towards making a more realistic agent-based

and continuum model.
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2 Material and methods

2.1 Agent-based model of cancer cell di�erentiation

2.1.1 Form of the agent-based model

Purpose. The purpose of the ABM is to simulate the temporal evolution of the total popu-

lation of �ve cancer-cells di�erentiation stages, going from most malignant to healthy cells,

induced by interaction with four distinct types of molecular factors, found in embryonic

development, each characteristic to the di�erentiation stage. This model could potentially

advise a clinician on the progress of the cancer treated by administration of these factors.

Grid cells, temporal and spatial scale. The world is a rectangular grid of discrete patches

and it is also toroidal, meaning that both the horizontal and vertical edges are wrapped.

Spatial units are abstract. Since we do not model volume-exclusion e�ects there can be

many cells in the same patch; that can be interpreted as patches being large compared to

individual cells. The time units (time-steps) are minutes since the therapy time-frame is days

and hence smaller times would require a huge simulation time. Simulation occurs through

the passing of discrete time-steps.

Cancer cells. As mentioned before there are �ve cancer stages named after the respective

stem-cell stages in order of malignancy: pluripotent, multipotent, oligopotent, di�erentiating

and di�erentiated (healthy) cells. At each time step cells might grow according to a prob-

ability representing their growth rate and interact (or not), depending upon �tness, with

factors in the same patch as the cells. To account for the fact that cancer cells are relatively

static and di�use much slower than factors (1000 times slower1), each cancer cell moves by

a unit one (jumping to one of the 8 neighbour patches) every 1000 time-steps.

Molecular factors. There are four types of factors each representing a di�erent di�er-

entiation stage and a�ecting the corresponding cancer di�erentiation stage. There are no

factors for healthy cells. At every time-step factors move a distance of one (one of the eight

neighbour patches) and interact with cells according to their �tness, which is characteristic
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of the stage.

Dosage. Doses of factors are administered every 8 hours (480 minutes). Every dose

includes 2000 factors of each type which are randomly distributed in the ABM world. This

dosage strategy is chosen as a simplistic way of killing all malignant cancer cells.

Growth. At each time step each cell has a probability of dividing into two daughters.

The probability is given by the growth rate per minute of that di�erentiation stage of cancer

derived from empirical data. Daughters are cancer cells of the same stage. We are not

interested in the dynamics of the healthy population and hence the growth rate is kept at

zero.

Interaction. If a factor and a cell are in the same patch they might interact with some

probability called �tness. Fitness is a 4x4 matrix since factors could potentially interact with

all di�erent malignant cancer stages but both in the original ABM and here we consider

a diagonal matrix where each type of factor only interacts with cancer cells of the same

di�erentiation-stage type. If a factor interacts with a cell then that factor dies and the cell

moves to the next di�erentiation stage.

Initialization. The model is initialized with 1000 randomly distributed pluripotent cancer

cells and zero for the other four populations and 2000 factors of every type.

2.1.2 Parameters

Fitness values were taken from the original ABM paper1 where they were derived by �tting

the simulation to experimental data from.6 We derived growth rates for each stage by �t-

ting exponentials to the proliferation curves of kidney adenocarcinoma cells found in6 The

growth rates used in the original ABM might have been found by �tting to di�erent cancer

proliferation curves from the same paper as there were many cancer lines and there was no

mention as to the speci�c ones used. The coe�cients of the exponentials correspond to the

growth rates for each cancer stage and are used for all three model types as we will see.

Tables 1,2 show the values for both the �tness and growth rates. Despite not knowing some
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speci�cs of the ABM in1 like the world dimensions, movement pro�les of agents and exact

growth rates �tted and used we tried to reproduce the two plots of Fig3. shown in1 for the

two dosing strategies mentioned in that paper. The plots can be seen in the appendix.

Table 1: Fitness of molecular factors.

Stage I factors Stage II factors Stage III factors Stage IV factors
Pluripotent 4% 0 0 0
Multipotent 0 5% 0 0
Oligopotent 0 0 2.5% 0
Di�erentiating 0 0 0 1%

Table 2: Growth rates of cancer stages.

Stage Pluripotent Multipotent Oligopotent Di�erentiating Healthy
Growth rate (min−1) 3.9 ∗ 10−4 3.3 ∗ 10−4 3.1 ∗ 10−4 2.8 ∗ 10−4 0

Figure 1 shows a stopped frame of a random run of the ABM after a few thousand

time-steps with the parameter values given in the aforementioned tables.

Figure 1: Single frame of a random run of the ABM with the parameter values found in
table 1 and 2.
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2.2 Deterministic continuum model

Despite the fact that the ABM provides a more realistic representation of the real system,

performing complex analysis and optimization can prove extremely time-consuming as results

may need to be obtained by running the model several times with many parameter values.

Formulating and solving numerically a continuum model that matches the ABM allows that

analysis to be done much faster and more rigorously. We do not need the continuum model

to match every aspect of the ABM, only the parameter/behaviour space that is of interest.

As mentioned before, in1 an ABM was formulated to represent the biological system

without any continuum analog. Here, we describe an ordinary di�erential equations system

(ODE) to capture the main dynamics of our ABM. The ODE has the form of coupled

equations, identical to chemical reaction kinetics with the addition of growth. This means

that the interaction of cells and factors is proportional to their concentration. This choice

is justi�ed by the form of the ABM where no exclusion phenomena are considered and cells

and factors are positioned randomly in the whole space, giving an almost homogeneous mix.

In this ODE system each variable represents one of the �ve cell and four factor populations

represented by the initial letter of the type of cell or factor, e.g. P for pluripotent cells and

Fp for the factors. The model equations are given below:

Ṗ (t) = gpP (t)− βP (t)Fp(t)f1, (1a)

Ṁ(t) = gmM(t)− βM(t)Fm(t)f2 + βP (t)Fp(t)f1, (1b)

Ȯ(t) = goO(t)− βO(t)Fo(t)f3 + βM(t)Fm(t)f2, (1c)

Ḋ(t) = gdD(t)− βD(t)Fd(t)f4 + βO(t)Fo(t)f3, (1d)

Ḣ(t) = ghH(t) + βD(t)Fd(t)f4, (1e)

Ḟp(t) = Ds− βP (t)Fp(t)f1, (2a)
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Ḟm(t) = Ds− βM(t)Fm(t)f2, (2b)

Ḟo(t) = Ds− βO(t)Fo(t)f3, (2c)

Ḟd(t) = Ds− βD(t)Fd(t)f4. (2d)

Here gi represents the growth rates of di�erent cancer cell stages, where i = {p,m, o, d, h},

and fj is the �tness, where j = {1, 2, 3, 4}. The values for these parameters are exactly the

same as the ABM and are given by Tables 1 and Table 2 respectively. Ds is the dosage.

In the ODE the dosage is modelled by constant value, instead of discrete steps. The value

is given by the size multiplied by the frequency. Hence,

Ds = Size ∗ f = 2000/480 = 4.1666factors ∗min−1.

Moreover, it should be noted that the interaction term, i.e. β[CancerCells][Factors] is

the same in both the cancer cell equations and the respective factor equations. This can be

understood again by taking as an example chemical reactions. A typical reaction has the

form:

a[A] + b[B]→ c[C]

Where a, b, c are called the stoichiometric coe�cients. The reaction rate is given by r =

− 1
a
d[A]
dt

= −1
b
d[B]
dt

= 1
a
d[C]
dt
. In our case since one cell interacts with one factor to produce one

di�erent type of cell we have a = b = c = 1 hence the reaction rate, given by the reaction

term, is the same for both cells and factors.

In the ODE system there is an extra parameter, β, which is the rate of interaction per

cell per minute. This parameter is the same for all interaction terms since it is dependent on

external conditions such as the size of the world or the di�usive speed of the cells and factors.

It is the most important parameter since it is the one that needs to be calibrated in order for

the two models to match. Its calibration is conducted by the use of the NonLinearModelFit
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function found in Mathematica. To produce the data set the ABM was run 100 times with

the same parameter values and a total time of 8000 minutes which allowed for all malignant

cells to die out. Then, the 100 runs were averaged to give mean population evolution curves

for each cell population.

Following calibration, the ODE model will work as a stepping stone for more complex

models that will be used for our analysis. It is worth mentioning that β is the only �ttable

parameter as the growth parameters for all our models are found from �tting exponential

to cancer proliferation curves and hence there is no doubt as to which model parameter

corresponds to which experimental parameter.

2.3 Stochastic continuum model

In addition to the deterministic ODE model used to describe the agent-based model, a

stochastic di�erential equations (SDE) model was also formulated. Here we compare it to

the deterministic model as well as the ABM.

The SDE model is of the Langevin kind and its derivation as well as justi�cation can

be found in.8 In Appendix A we include the basic theory behind the derivation as well as

the case-speci�c values that are used to create our model. The equations for the cancer cell

populations are:

Ṗ (t) = gpP − βPFpf1 +
√
gpPΓ1 −

√
βPFpf1Γ10, (3a)

Ṁ(t) = gmM − βMFmf2 + βPFpf1 +
√
gmMΓ2 +

√
βPFpf1Γ10 −

√
βMFmf2Γ11, (3b)

Ȯ(t) = goO − βOFof3 + βMFmf2 +
√
goOΓ3 +

√
βMFmf2Γ11 −

√
βOFof3Γ12, (3c)

Ḋ(t) = gdD − βDFdf4 + βOFof3 +
√
gdDΓ4 +

√
βOFof3Γ12 −

√
βDFdf4Γ13, (3d)

Ḣ(t) = ghH + βDFdf4 +
√
ghHΓ5 +

√
βDFdf4Γ13. (3e)

Here, both population variables (P,M,O,D,H) and Gaussian white (Γ1-Gamma13) noise
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are time-dependent see Appendix A, e.g. P means P (t).

The numerical simulation of the SDE model was conducted with Mathematica, using the

Euler-Maruyama method found in.9

2.4 Extension of the ODE model

After calibration of our initial ODE system with the ABM, it can be used as a cornerstone

to build more complex models that can be used for further analysis of the system of interest.

Speci�cally, two new models were created, both being di�erent from the �rst in the dosage

term and in the fact that factors die out. The latter comes from the fact that an administered

drug is metabolised by the organism and after the passing of a few hours its quantity drops

exponentially. This provides a much more realistic system for clinically relevant analysis

since otherwise a single dose can last for many days or even weeks until all factor molecules

have interacted with the cancer. So in both of the following models the factors decay with

a rate of 90% decrease in 8 hours. The ODE for the factor population becomes:

Ḟi(t) = dosage− βFi(t)Ci(t)− γFi(t)

where C is the respective cancer population and γ is the decay rate of factors due to

metabolism with a value of 4.8 ∗ 10−3min−1.

2.4.1 Step doses

In the initial model the dosage is constant and all four doses are administered from the

beginning of the simulation and are also given even after the extinction of the respective

cancer stage. This scenario is unsuitable for clinical analysis; hence a new model was created

where the doses were given in a step-like manner, meaning that the dosing of a factor type

starts after the creation of the respective cancer type and stops immediately after extinction.

This is achieved by multiplying the initial dose term, Ds, by an inverse tangent function as
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this gives a smooth transition from zero to Ds. The function has the following form:

dosage = Ds ∗ arctan(100 ∗ C)
2

π

where C represents a cancer cell population. When C goes to zero the dosage goes to zero

and when C goes above zero the function increases rapidly to a steady value which is given

by Ds. The coe�cient of 100 is used to make the increase or decrease faster.

Now this model is used in order to explore how the time of complete cancer extinction is

a�ected by the increase of the dosing and what is the best distribution of the total dosage for

the four di�erent doses. That is to provide insight as to the importance of each of the four

factors. The time of cancer extinction is speci�ed as the time when all numerical solutions

for the four malignant cancer populations go below 1. As in the ABM the initial condition

for the �rst factor population is 2000 but zero for the rest and 1000 for the pluripotent cancer

cells and zero for the other populations.

2.4.2 δ function doses

In the second additional model doses are administered in a way similar to the ABM, in the

form of an injection. Here, doses are given in full every 8 hours. To achieve this we used a

sum of Dirac delta functions multiplied by the size of the dose (the total factor count). The

dosage function is as follows:

dosage = Size ∗
n−1∑
i=1

αiδ(t− i ∗ 480).

Here, n is the total number of dosages depending on the number of days of the treatment

and αi is the intake coe�cient which takes the value of zero or one depending on whether a

particular dose was taken or missed by the patient. The �rst dose is taken at time zero and

it is given as initial conditions for the factors-population ODE. That allows for a sensitivity

analysis of missed doses, concerning how the time of cancer extinction is a�ected by a missed
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dose as well as the importance of the dose timing.

3 Results and Discussion

3.1 Fitting of ABM and ODE and comparison with SDE

Using NonLinearModelFit we found that the β which gives the best match between the ABM

and the initial ODE has the value 6.857 ∗ 10−6agent−1min−1. Figure 2 shows the variation

of the populations for 100 runs of the ABM model. We can see that there are no unexpected

behaviours and that for these parameters values a mean approximation should work well.

For subsequent analysis the value was rounded to 6.9∗10−6agent−1min−1. The value as well

as the basic statistics for β-value �tting are:

Estimate Standard Error t-Statistic P-Value

β 6.85734 ∗ 10−6 1.44617 ∗ 10−9 4741.74 1.63450391131 ∗ 10−55019

We can see the variation of the 100 ABM runs in Figure 2.

Figure 2: Variation of the 100 ABM runs for the parameter values found in Table 1.
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Figure 3 demonstrates the comparison of the ODE and the mean ABM proliferation

curves.

Figure 3: Comparison of the average of 100 runs of the ABM, with the parameter values
found in Table 1 and 2, and of the ODE with the same values for the growth rates and
dosage and a β = 6.9 ∗ 10−6agent−1min−1 . The dashed lines are the populations of the
ODE model and the full lines are for the ABM.

The match of the two models for the speci�c, experimentally obtained, parameter values

is very close. There is both a qualitative and quantitative matching between the two which

hints towards using the continuum model for further analysis by extending it as mentioned

in the previous section.

Using the same β we plot the average of 50 SDE runs against the same 100-runs average

of the ABM, as used in the ODE �tting; this gives us again a very good �tting between the

two models. The behaviour of the SDE is almost indistinguishable from that of the ODE

for these parameter values. Figure 4 shows the comparison between the SDE and ABM.

Finally, Figure 5 shows the range of variation for the �ve populations for these 50 runs.

The healthy cell population shows a larger variation but this can be accounted for by the

variation of the di�erentiating cancer cell population especially close to the turning point.
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Figure 4: Comparison of the average of 100 runs of the ABM, with the parameter values
found in Table 1 and 2, and of the SDE with the same values for the growth rates and dosage
and a β = 6.9 ∗ 10−6agent−1min−1 . The dashed lines are the populations of the SDE model
and the full lines are for the ABM.

Figure 5: Range of variation of 50 runs for the �ve types of cells for the SDE model.
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So small variation throughout the simulation can lead to signi�cant di�erences in the total

amount of cells (healthy population) but without any other consequences. Due to the small

variations observed in both the ABM and the SDE for the parameter values used we conclude

that the dynamics of the system can be well approximated by a mean �eld approach hence

we will use the ODE for the subsequent analysis.

3.2 Dosage optimization

Using the �rst of the additional models (step-like dosage) we can optimize the treatment by

administrating di�erent doses for the four factors (scheme 1) and compare the results with

the scheme where doses are the same (scheme 2).

3.2.1 Optimal distributions

To �nd the optimal distribution of the doses we �rst pick a total dosage, meaning the sum of

the individual doses (Ds = Ds1 +Ds2 +Ds3 +Ds4), then we produce all the combinations

of four integer numbers that add up to D and from these we pick the one that gives the

shortest time of cancer extinction (ToCE). This procedure is repeated a number of times

for other total dosage values. The results are summed up in Table 3 and are illustrated in

Figure 5.

Table 3: Optimal distribution of doses for a �xed total dosage.

Total dosage Stage I dose Stage II dose Stage III dose Stage IV dose ToCE (mins)
60 10 8 13 29 107280
70 11 9 16 34 64800
80 13 10 18 39 46368
90 14 12 20 44 36144
100 16 13 22 49 29520
110 18 14 24 54 25056
120 19 16 27 58 21600

Looking at the values we can see a pattern in how the dosage is distributed every time

we add an extra 10. More speci�cally almost every time 5 goes to the last dosage, except
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when going from 110 to 120 where the increase is by 4. So we have 40− 50% going to Ds4.

We also have 20 − 30% going to Ds3 and the rest 20 − 30% distributed at Ds1 and Ds2.

There was no case where we had 40% going to the �rst two doses. From Table 3 we can see

that the last dose is the most important in a�ecting time of cancer extinction by far followed

by the third dose, but then we see a turnover where the �rst dose is more important than

the second. That order is evident in all total dosage values we selected.

To further explore this pattern of distribution we wanted to see whether it is present if

we move to the second and third best distributions. Tables 4 and 5 show the second and

third best combinations respectively along with the mins of cancer extinction for each.

Table 4: Second optimal distribution of doses for a �xed total dosage.

Total dosage Stage I dose Stage II dose Stage III dose Stage IV dose ToCE (mins)
60 10 7 13 30 108144
70 12 9 15 34 64800
80 13 11 17 39 46656
90 15 12 20 43 36144
100 17 13 22 48 29664
110 18 15 24 53 25056
120 19 16 26 59 21600

Table 5: Third optimal distribution of doses for a �xed total dosage.

Total dosage Stage I dose Stage II dose Stage III dose Stage IV dose ToCE (mins)
60 10 7 14 29 109440
70 11 9 15 35 64944
80 13 10 17 40 46656
90 15 11 20 44 36288
100 16 13 23 48 29664
110 18 14 25 53 25056
120 20 16 26 58 21600

The �rst point we notice is that the ToCE is very slightly di�erent between optimal

distributions, one to three. The di�erence is only signi�cant in the smallest total dosage

(60). Moreover, we can see again the same ordering as well as overall pattern. Again, the

highest amount of dosing goes to Ds4 then Ds3 then Ds1 and �nally Ds2. When extra
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dosage is provided again the most of it goes to Ds4, this time 40− 60%. 20− 30% goes to

Ds3 and 10−20% to Ds1, Ds2 individually. So, the overall pattern is preserved. That gives

an indication indeed of how a clinician could distribute not only their initial total dosage

but also any extra they administer.

To explore how changes in β might a�ect the pattern of optimal dosage we performed

the same optimization for β′ = 2β and β′′ = β/2. Other than changes in the time of cancer

extinction and the total dosage needed, the patterns seemed to remain almost exactly the

same with again the greatest dosage given on the last does followed by the third, �rst and

second.

Table 6: Optimal distribution of doses for a �xed total dosage and β′ = 0.000014.

Total dosage Stage I dose Stage II dose Stage III dose Stage IV dose ToCE (mins)
60 10 8 13 29 21225
70 11 9 16 34 16708
80 12 11 18 39 13785

Table 7: Optimal distribution of doses for a �xed total dosage and β′′ = 0.00000345.

Total dosage Stage I dose Stage II dose Stage III dose Stage IV dose ToCE (mins)
140 23 18 31 68 63666
150 25 19 33 73 53496
160 12 11 18 39 13785

3.2.2 Comparison to Scheme 2

Furthermore, we compare the optimal distribution to a scheme where all four dose values

are the same (total dosage divided by 4), for the same total dosage. These values are the

square markers of Figure 6. There are only three points as for the total dosage values of 90,

80, 70 and 60 the cancer survived. In addition we can see a very big di�erence in the ToCE,

pointing towards the e�ciency of the optimal distribution.

Finally, in scheme 1 we can see that increasing the total dosage results in a plateau after

some value, meaning that the further you increase the total dosage the less bene�t you get.
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Figure 6: Total dosage versus time of cancer extinction for the optimal distribution of doses.

This needs to be taken into consideration for choosing the appropriate dosage by considering

both the ToCE as well as cost of dosing or side e�ects.

3.3 Missing doses sensitivity analysis

Using the discrete dosing model we can explore what happens when a patient misses some

doses and how the results are a�ected by the timing of those doses. To do that we �rst

need to pick speci�c dosage size values for the four doses as well as the number of days for

administration. We can make an informed decision using our previous analysis. Table 3

shows that for a total dosage/frequency ratio of 120 cancer dies out at 21613 mins or 15

days. To make sure that the cancer is dead a clinician would probably need to add one

more day and not stop administration of drug at the exact time predicted here. Further-

more, this optimum result is achieved by distributing the dosage/frequency ratio in the four

doses as {19, 16, 27, 58}. That gives size values of {9120, 7680, 12960, 27840} for the four

doses respectively with a �xed frequency of 8 hours. Again this number is rounded up to

{10000, 8000, 13000, 28000}. The error between the rounded up and the exact values is less

than 10% in all cases. That accuracy error is consistent with the measurement accuracy of

the concentration of complex biologial drugs (e.g. monoclonal antibodies). Hence a clinicial
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could potentialy increase the actual dosage to make sure that even with the error di�erence

the doses remain close to the exact values.

In Figure 7 we see the results of missing one dose. Here 16 days correspond to 48 doses

and we explore the e�ect of missing either of them. We observe that the later the missing

dose is, the better it is for the patient but the di�erences are small and there is no danger

of the cancer surviving. The continuous line is the ToCE when all doses are administered.

20500 21000 21500 22000 22500 23000
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10

20

30

40

Figure 7: Time of cancer extinction with respect to the position of one missed dose. The
red line is the ToCE when all 48 doses are taken normally.

Also interesting is the contour plot of two missed doses. In that case we see that there

is a region where if two doses are lost then cancer survives. This is the white region of

Figure 8 above the dotted line, which shows how the plot should normally be. Figure 9 is

the complete plot whereas in Figure 8 we have zoomed to the interesting area. Here we still

see that the best case scenario is when doses are missed close to the end of the treatment

period, which is as expected. There is a large region where the position of the missed doses

does not a�ect ToCE signi�cantly (orange contour). But as we move missed doses one or

two close to the end we can see sudden jumps to other contours of smaller ToCE. Finally,
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the blank region above the dotted line shows all the possible combinations of the two missed

doses. This sensitivity analysis can be potentially very useful in order to either warn the

patient or possibly increase the duration of the treatment period such that there is no blank

region at least for two doses. For example adding one more day (3 doses) gives us a contour

plot showing no cancer-surviving region (Figure 9).

Figure 8: Contour plot of ToCE versus the position of two missed doses for 23040 mins
or 16 days of treatment. White region above the dotted line indicates region where cancer
survives. (Cropped)
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Figure 9: Contour plot of ToCE versus the position of two missed doses for 23040 mins or
16 days of treatment.(full)

4 Further discussion

A crucial parameter to the ABM is the di�usivity, i.e. how fast factors and cancer cells di�use

which in our captured in the ABM by the how often and how far agents move. According

to1 due to their size di�erence factors and cells must have a di�usion speed di�erence of the

order of 1000, meaning that the factors di�use 1000 times faster than cells. Of course that
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Figure 10: Contour plot of ToCE versus the position of two missed doses for 24480 mins or
17 days of treatment.

is a relative di�erence and the actual speed in the ABM a�ects the results signi�cantly, as

discussed below.

We initially tried the following scenario. Cells have unit speed, meaning that they move

randomly to one of their neighbour patches at each unit of time and factors can move 1-1000

units of distance (patches). At each time step a random integer number between 1-1000 is

chosen for the distance covered by factors. There are two issues with this scenario. The �rst
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is that factors simply jump that distance without having the chance to interact with cell

in between. This is not realistic but necessary as otherwise the computational time needed

just for a single time step would be large. In addition this scenario appears, for our world

dimensions, well-mixed (factors and cells are everywhere). Although that gives a better

match with our ODE, which is expected since chemical-kinetics equations are mainly used

for well-mixed cases of chemicals, it is unrealistic for a cancer case especially since cancer is

more static.

The second scenario we tried, and the one we �nally used, is that factors move a distance

1 every time-step and cancer cells move 1 every 1000 time steps. This has the following

advantages: a) factors can now interact in every time-step, b) the cancer is much more

static and grows out of its initialization positions. That scenario also gives rise to a di�erent

phenomenon. Since factors move slower and cancer cells are almost static there appears to be

a critical over-density phenomenon, meaning that if the cancer cell in a single location exceeds

a certain number then factors cannot kill them and that local population keeps increasing. In

the cases were the over-density mentioned above appears in the ABM we wanted to see if the

ODE can capture that behaviour to that end we tried changing the value for β which gave

a qualitative behaviour similar to the ABM but not a close quantitative match. That e�ect

cannot be captured correctly by the ODE model since the parameter β, although dependent

on the agent speeds, cannot capture the full dynamics introduced by di�usion which would

require a spatial model. Despite the mismatch in that particular case if the malignant cancer

dies out completely then the two models match well, meaning that if the parameters are such

that the over-density is never achieved we can see a good �t and that is the case for which

we �tted β and performed the subsequent analysis. For the growth values found in Table

1 and an administration of 2000 factors every 8 hours the over-density never occurred and

hence cancer never survived (Figure 2), all malignant cancer died and the two models have

both a qualitative and quantitative match as we saw in Figure 3. That justi�es the use of an

ODE model. For di�erent parameter values and more general exploration there is probably
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the need for an alternative model of the form of a PDE in order to capture spatial e�ects

as well. Moreover, if exclusion e�ects are included then some of the over-densities can be

averted as cancer would be unable to grow without space.

From the above it is clear that the ODE cannot capture the ABM in its entirety, nor

does it need to since we do not need a full description of the ABM via an ODE: achieving

that would be very hard due to the di�erent nature of these models. We only need them

to be complementary and the continuum model to capture just the features and parameter

spaces we are interested in further exploring.4

1000 cells were selected for the simulation of the ABM. An increase or decrease of this

number would not have signi�cant e�ects to the analysis performed, other than changes

in the total dosage, as long as we remain in the "well-mixed" regime were the chemical

kinetics-like ODE captures well. So as long as we avoid very small number of cells which in

the ABM and SDE can lead to unexpected extinction or very large number which can cause

the overdensity mentioned above the analysis holds.

The most important parameter in our continuous ODE model is β. It is a parameter

not controlled by the experimentalist/modeller that re�ects some intrinsic properties of the

environment (size) and of the agents (speed, reaction type) and needs to be calibrated

according to the available data. Changes in that parameter re�ect how often cells and

factors meet and hence have a change of interaction. As a result, an increase in β would

keep the qualitative behaviour the same as the one explored and the only di�erence would

be shorter timescales due to the fact that increased β means more factors interact with

cancer cell per minute. That could potentially lead to decreased total dosage or frequency of

administration. On the other hand decreasing β could even lead to cancer surviving in some

cases depending on the dosage which would mean that there needs to be a higher or a more

frequent dosage in order to kill cancer. We believe that as long as we are in the parameter

regime where the ODE provides a sound approximation of the ABM, β does not a�ect the

pattern of optimal dosage as evident by the distributions found for half and double the
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original value of β used. That leads to the conclusion that the pattern is mainly dependent

on the growth rates and hierarchy of the cancer cells.

The SDE model provides a more realistic alternative and we observed that it captures

the variation observed in the ABM for the speci�c parameter values. Despite the fact that

there was some noticeable variation in the healthy cell population, noise had little e�ect to

the malignant populations which are the important ones for the optimization and sensitivity

analysis performed. Due to that very narrow variation in these populations we are con�dent

that a mean �eld approach (ODE) provides a sound approximation and would give very

similar results to the SDE, on top of making numerical simulations less challenging.

Dosage distribution optimization was conducted via exhaustive search of the possible

dose combinations for a particular total dosage. This brute force approach to optimizing the

dosage was selected due to the fact that we only have four di�erent cases so the number of

combination for a speci�c total dosage is not very high. In addition to determining optimum

distribution, which can potentially be used to reduce either ToCE or amount of dosage, there

can be further exploration in order to �nd both the best timing for administration of each

of the four doses as well as the best dosing scheme. A dosing scheme would mean a varying

dose size which would be a function of the respective cancer size rather than a constant

dosage size as in this paper. This additional exploration was not conducted here as the main

aim of the paper was to show that a connection between agent-based and continuum models

can be achieved in the cancer-related clinical setting.

5 Conclusion

Based on experimental evidence and a previously developed agent-based model we built a

very similar model which was used as our basis for attempting a connection between discrete

and continuous models. To this end we formulated two continuous models, one ODE and

one SDE, in order to capture the behaviour of the ABM for speci�c, experimentally derived
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parameters. The match between both models and the ABM was close both qualitatively

and quantitatively which allowed for an extension of the ODE so that it can be used for

more complex analysis, speci�cally optimization and sensitivity analysis. Through dosage

optimization the pattern of optimum distribution for the four doses was found which shows

signi�cant gains in comparison to equal distribution of the four doses. Finally, a sensitivity

analysis was conducted for a patient missing some doses which clearly demonstrated that

the position of the dosage in the course of therapy is important. Future work can move in

two directions, either towards the development of a new type of model (PDE) in order to

capture the ABM better or towards more systematic optimization of doses using the already

derived ODE. The latter is possible as we already mentioned that for a speci�c parameter

space (when cancer dies out) the two types of models have a close �t. Further optimization

would be necessary in order to �nd not only the right timing for administration of a certain

dosage but also a varying-size scheme which could signi�cantly reduce the overall amount

and yet keep the ToCE to an acceptable range.
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Appendix

Comparison of original ABM to the one developed in this paper

Here we present two plots, �gure 11 and �gure 12, similar to the ones found in Fig.31 for the

hypothetical case of 100% �tness. The �rst �gure is for a constant dosage of 1000 factors for

all 4 doses and a frequency of 8 hours whereas the second in for a dosage of 250 factors for all

4 doses and the same frequency. The time unit here is minutes whereas in the original plot it

is days more speci�cally the plots range from 0 to 1.75 and 0 to 3.75 days which correspond

to 0 to 1800 and 0 to 5400 respectively in our case.

Langevin representation of reaction systems

According to Gillespie,8 in a system of chemical reactions we can use the Master equation to

describe its evolution. The Master Equation is an ODE describing the probabilistic change
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Figure 11: Simulation results for the hypothetical case of 100% factor �tness. For the case
where Fp = Fm = Fg = Fd = M(0) = 1000.

of the state of the system. If two conditions are satis�ed then according to that paper the

Master Equation can be approximated by the Langevin equation, an SDE describing the

evolution of the reactants population due to deterministic and stochastic events. The two

conditions are:

(A) We require that there exists an in�nitesimal interval dt, such that the change in the

propensity. i.e,

αj(Xt′) = αj(Xt),

where t′ = t+ dt and αj(X) = cjhj(X). Here h(X) is equal to the product of the concentra-
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Figure 12: Simulation results for the hypothetical case of 100% factor �tness. For the case
where Fp = Fm = Fg = Fd = 250.

tion of the reactants in bimolecular reactions or equal to the concentration of one reactant

in monomolecular reactions.

(B) We require that this dt is large enough that the expected number of interactions is

large.

These two conditions might seem contrasting but in the case of large populations they

are both satis�ed as (i) more than one reaction will occur in dt and (ii) the change of the

populations in that interval will be insigni�cant compared to the total population and hence
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the propensity will be almost constant.

If these two conditions are satis�ed then it can be shown that a random variableK(X(t), t)

can become a statistically independent Poisson variable P (a(X(t)), t) and then a normal ran-

dom variable N(a(X(t))dt, a(X(t))dt). Following that one can use the linear combination

theorem for normal random variables,

N(m,σ2) = m+ σ ∗N(0, 1),

to write the normal random variable in the following form:

a(X(t))dt+ (a(X(t))dt)1/2.

Using the procedure explained in8 one can �nd the Langevin equation satisfying the

system and that equation will be a good approximation of the Master equation. Furthermore,

one can �nd the Fokker-Plank equation but here we concentrate on the Langevin. The general

formulation is as follows:

dXi

dt
=

∑
j=1

νj,iαj(X(t)) +
∑
j=1

νj,iα
1/2
j (X(t))Γj(t),

Here, νj,i describes the change in the population Xi due to reaction j and Γj is Gaussian

white noise. The above formula was formulated by its discretized version which we use to

simulate the model in Mathematica. The discretized version, which can be recognized as the

Euler-Maruyama method, is:

Xi(t+ dt) = Xi(t) +
∑
j=1

νj,iαj(X(t))dt+
∑
j=1

νj,iα
1/2
j (X(t))Nj(0, 1)dt1/2.

N(0,1) is a random number of a normal distribution with mean zero and unit variance.
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.1 Application to present ABM

Let us consider our cells and factors reaction model. We have the following reactions:

1. �ve reproducitons of the form X → 2X with rates gp, gm, go, gd, gh respectively

2. four productions ∅ → Fi with rate D

3. four interactions of the form X + Fx → ∅ with rate β.

So in total there are thirteen reactions. That gives the following vector and matrix for α

and ν:

α = {gpP, gmM, goO, gdD, ghH,D,D,D,D, βPFp, βMFm, βOFo, βDFd},

ν =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1

−1 1 0 0 0 −1 0 0 0

0 −1 1 0 0 0 −1 0 0

0 0 −1 1 0 0 0 −1 0

0 0 0 −1 1 0 0 0 −1



.
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We can then formulate the Langevin equations for the populations using the formula men-

tioned above.
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