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Abstract. The application of near-infrared spectroscopy (NIRS) to assess microvascular function has shown
promising results. An important limitation when using a single source-detector pair, however, is the lack of depth
sensitivity. Diffuse optical tomography (DOT) overcomes this limitation using an array of sources and detectors
that allow the reconstruction of volumetric hemodynamic changes. This study compares the key parameters of
postocclusive reactive hyperemia measured in the forearm using standard NIRS and DOT. We show that while
the mean parameter values are similar for the two techniques, DOT achieves much better reproducibility, as
measured by the intraclass correlation coefficient (ICC). We show that DOT achieves high reproducibility for
muscle oxygen consumption (ICC: 0.99), time to maximal HbO2 (ICC: 0.94), maximal HbO2 (ICC: 0.99),
and time to maximal HbT (ICC: 0.99). Absolute reproducibility as measured by the standard error of measure-
ment is consistently smaller and close to zero (ideal value) across all parameters measured by DOT compared to
NIRS. We conclude that DOT provides a more robust characterization of the reactive hyperemic response and
show how the availability of volumetric hemodynamic changes allows the identification of areas of temporal
consistency, which could help characterize more precisely the microvasculature. © The Authors. Published by SPIE
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1 Introduction
Atherosclerosis and resulting cardiovascular diseases such as
stroke and myocardial infarction are a major cause of death
in developed countries. These account for more than 32% of
mortality worldwide,1 and in England and Wales cardiovascular
disease was responsible for almost 30% of deaths in 2011.2

Many noninvasive methods have been developed to assess
the peripheral vascular system and identify signs of athero-
sclerosis at an early stage. Optical methods, in particular,
have received attention due to their capability of measuring tis-
sue oxygenation and blood perfusion3,4 and because they offer
several attractive features, such as portability, compactness, fast
data acquisition, and noninvasiveness.

Near-infrared spectroscopy (NIRS) can determine changes in
tissue hemodynamics and oxygenation5,6 by measuring tissue
absorbance at several wavelengths in the near-infrared range
of the electromagnetic spectrum (650 to 950 nm). Typically,
NIRS employs a few source-detector pairs to carry out measure-
ments. As a consequence, the spatial resolution of NIRS, which
is dictated by the optode separation, is relatively low.7 Diffuse
optical tomography (DOT) overcomes this limitation by
employing a larger number of sources and detectors to enable
three-dimensional (3-D) volumetric reconstruction8 of changes
in tissue hemodynamics.

NIRS and DOT have been used in a wide range of applica-
tions including functional imaging of the brain,9 assessment of

muscle oxygenation,10 and cancer detection. It is widely
accepted that DOT outperforms NIRS.8,11 For example, local-
ized changes in hemodynamics due to motor tasks in adults
and motor-sensory brain activation in neonates were accurately
measured using DOT, while NIRS could not even detect relative
changes11 because of low spatial sampling. In another study,
DOT could discriminate the somatosensory activation of two
fingers, while in the same experiment, a 12-channel NIRS set-
ting failed to resolve the activation.12 Among the factors affect-
ing the accuracy of NIRS concentration calculations are the
differences in the pathlength factor: location, spatial extent,
and heterogeneous distribution of absorption changes, e.g.,
multiple absorption foci. Although these sources of error
could be minimized,13 DOT accounts for these problems
implicitly.7

DOT requires solving two distinct problems: the forward
problem and the inverse problem. The forward problem requires
solving of the equation governing the photon transport in tissue
to predict the detector measurements; typically this involves
solving a diffusion equation over a 3-D spatial domain using
the finite element method. The inverse problem involves esti-
mating the optical properties of tissue to minimize the difference
between experimental and model-predicted measurements; this
is achieved by solving a nonlinear optimization problem, which
can take hours to complete even on a high-end workstation.
However, as we have recently demonstrated,14 it is possible
to significantly speed up reconstruction of hemodynamic
changes in complex tissue structures by using reduced order
models of photon transport in tissue. This makes it possible*Address all correspondence to: Daniel Coca, E-mail: d.coca@sheffield.ac.uk
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to perform real-time monitoring of hemodynamic responses
even with relatively modest computing resources.

NIRS, like other methods of measuring microvascular func-
tion, can detect significant differences in microvascular function
between groups of healthy controls and patients with peripheral
vascular diseases,15–17 peripheral artery disease (PAD), and coro-
nary heart disease.17–19 However, these techniques are highly var-
iable and have not been shown to be helpful in predicting an
individual’s risk of future cardiovascular disease. Therefore,
from a clinical point of view, refinements that improve reproduc-
ibility and reduce variability are highly desirable.

Typically, the evaluation of microvascular function by NIRS
relies solely on a few measuring channels, and although repeat-
ability and accuracy of results are promising,18,20,21 there has not
been a direct comparison of the parameters obtained during and
after arterial occlusion by NIRS versus DOT. Furthermore,
while multichannel systems for analysis of microvascular func-
tion are available,22–25 studies on repeatability are lacking.

This study aims to evaluate and compare, using experimental
data collected from healthy volunteers, the intrasubject repro-
ducibility of key parameters of the hemodynamic response dur-
ing postocclusive reactive hyperemia, obtained using DOT and
NIRS, and to highlight the potential advantages of DOT in
assessing endothelial function.

2 Methods

2.1 Subjects

This study was approved by the Research Ethics Committee of
the University of Sheffield. A group of 17 subjects was
recruited, after giving informed consent. The group consisted
of 11 men and 6 women. Baseline characteristics are listed
in Table 1. Smokers or those with a history of cardiovascular
disease were excluded.

It is known that measurement of vascular function is greatly
influenced by external factors such as recent activity, diet, time
of day, and so on. These influences greatly reduce the applicabil-
ity of vascular function measurement to clinical practice since in
the real world it is difficult or impossible to control these factors.
For this reason, we did not ask participants to fast or refrain from
physical activity or caffeine for either of their visits.

2.2 Instrumentation

DOT and NIRS measurements were obtained using a dynamic
near-infrared optical tomography (DYNOT) instrument (NIRx).
The system illuminates the tissue with four laser diodes at wave-
lengths λ ¼ 725, 760, 810, and 830 nm.

The diodes are modulated at distinct frequencies and then
coupled with 30, 1 mm multimode optical fibers—optodes—
acting both as sources and detectors. Synchronous detection
allows parallel measurement at a sampling frequency of
1.8 Hz.26 The optodes were organized in a hexagonal pattern
with an interoptode spacing of 8 mm as shown in Fig. 1(a)
and placed in a solid plastic holder to avoid movement artifacts
[Fig. 1(b)]. For simplicity, hemoglobin concentration was calcu-
lated using only the wavelengths at 760 and 830 nm, chosen
based on their symmetry with respect to the isobestic point
of the extinction coefficients of hemoglobin.

2.3 Near-Infrared Spectroscopy

NIRS employs the modified Beer–Lambert law (MBLL)

EQ-TARGET;temp:intralink-;e001;326;590OD ¼ − log
I
I0

¼ εCLBþ G (1)

to convert from changes in absorption to changes of de/oxy-
hemoglobin.5,27 In Eq. (1) OD is the optical density and I0
and I are incident and detected light intensities, respectively.
ε represents the extinction coefficient of the tissue, and C is
the concentration of the chromophore. L denotes the mean
path length of detected photons. B is the path length factor,
which accounts for the compensation of the increase of path
lengths at various wavelengths caused by the scattering phe-
nomena. G is defined as a geometric factor used to compensate
the objective with different geometrical shapes. Typically, L, B,

Fig. 1 Experimental setup for NIRS and DOT measurement of reac-
tive hyperemia. (a) Array with 30 optodes placed 8 mm apart in a hex-
agonal pattern. Optodes in red were used for NIRSmeasurements. All
optodes were used for DOT reconstructions. (b) Placement of
optode array on volar forearm of subject. (c) Rectangular finite
element mesh used to model forearm tissue with dimensions
92 mm × 35 mm × 24 mm (W × L × D). Blue circles at z ¼ 0 mm indi-
cate the location of the 30 optodes.

Table 1 Baseline characteristic of study subjects (n ¼ 17).

Characteristic Values

Age (year) 33� 7.5

Weight (kg) 70.5� 14.1

Height (cm) 172.1� 8.3

BMI (kg∕m2) 23.6� 3.4

Smokers 0

Journal of Biomedical Optics 066012-2 June 2016 • Vol. 21(6)

Vidal-Rosas et al.: Reproducibility of parameters of postocclusive reactive hyperemia. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 16 Apr 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



andG are constants with monochromatic illumination in a turbid
media with unchanging geometry.

A change in the concentration of the chromophore causes a
change in the intensity measured. The parameters ε and L
remain constant, and it is assumed that B andG remain constant.
Under this assumption, Eq. (1) can be written as

EQ-TARGET;temp:intralink-;e002;63;686ΔOD ¼ ODFinal − ODInitial ¼ − log
If
Ii
¼ εΔCLB; (2)

whereΔOD is the change in optical density.ODFinal andODInitial

are the detected optical density and the optical density of inci-
dent light. If and Ii are the measured intensities before and after
the change in concentration; ΔC is the change in concentration.
In Eq. (2), B is often referred to as the differential pathlength
factor28 (DPF). DPF was determined experimentally for a num-
ber of tissues including forearm, calf, adult, and infant head.29

Changes in detected light are dominated mainly by oxygenated
(HbO2) and deoxygenated hemoglobin (HbR) such that

EQ-TARGET;temp:intralink-;e003;63;544ΔODλ ¼ ðελHbO2
Δ½HbO2� þ ελHbRΔ½HbR�ÞBλL; (3)

where ελHbO2
, ελHbR, B

λ are the extinction coefficients for oxy-
hemoglobin and deoxyhemoglobin and DPF at a given wave-
length. By measuring the change in intensity at two
wavelengths, it is possible to determine the concentration
changes in HbO2 and HbR
EQ-TARGET;temp:intralink-;e004;63;456

Δ½HbR� ¼ ελ2HbO2

ΔODλ1

Bλ1 − ελ1HbO2

ΔODλ2

Bλ2

ðελ1HbRελ2HbO2
− ελ2HbRϵ

λ1
HbO2

ÞL ;

Δ½HbO2� ¼
ελ1HbR

ΔODλ2

Bλ2 − ελ2HbR
ΔODλ1

Bλ1

ðελ1HbRελ2HbO2
− ελ2HbRε

λ1
HbO2

ÞL : (4)

Typical source-detector separations in NIRS studies in reflec-
tance mode are in the range 20 to 50 mm. NIRS measurements
taken with the DYNOT equipment for separations larger than
45 mm were noisy (CV > 5%), therefore this study was limited
to a source-detector separation of L ¼ 32 mm obtained by
selecting the central fibers indicated with red circles in Fig. 1(a).
Although DPF depends on inter-optode spacing and wave-
length, experiments carried out in the forearm suggest that
this parameter becomes constant for distances larger than
25 mm.29–31 For this study, DPF ¼ 4.0 was used for the calcu-
lation of concentration changes.

2.4 Diffuse Optical Tomography

Photon transport in tissue was modeled using the diffusion
approximation of the radiative transport equation.32,33 This is
a more accurate description of photon transport than the
MBLL because it takes into account the random scattering of
light produced by tissue. Consider the medium Ω ⊂ R3 with
boundary ∂Ω, the diffusion equation in the steady-state
domain is

EQ-TARGET;temp:intralink-;e005;63;144 − ∇DðrÞ∇ϕiðrÞ þ μaðrÞϕi ¼ qiðrÞ; r ∈ Ω; (5)

where ϕiðrÞ is the spatially varying photon fluence at r due to
source qi, μa is the absorption coefficient, D ¼ ½3ðμa þ μ 0

sÞ�−1 is
the diffusion coefficient, and μ 0

s is the reduced scattering coef-
ficient. The source term represents an isotropic point source

qiðrÞ ¼ δðr − riÞ located at a depth of one scattering length
inside the medium (d ¼ 1∕μ 0

s). The boundary condition is usu-
ally of Robin type34

EQ-TARGET;temp:intralink-;e006;326;719DðξÞ ∂ϕiðξÞ
∂n

þ 1

2A
ϕiðξÞ ¼ 0; ξ ∈ ∂Ω; (6)

where the term A accounts for the refractive index boundary
mismatch at the interface. The quantity measured by a detector
located at ξj ∈ ∂Ω, given the point source qiðrÞ, is the outward
flux ΓiðξjÞ, and it is calculated from Fick’s law

EQ-TARGET;temp:intralink-;e007;326;633ΓiðξjÞ ¼ −DðξjÞ~nðξjÞ · ∇ϕiðξjÞ; ξj ∈ ∂Ω; (7)

where ~nðξjÞ denotes the direction of the normal vector to the
boundary at the detector location ξj. Equations (5)–(7) consti-
tute the forward problem in DOT, which can also be represented
by a scalar operator mapping35 between the space of optical
parameters of interest, μa in this case, and the space of measure-
ments as

EQ-TARGET;temp:intralink-;e008;326;535yi;j ¼ ΓiðξjÞ ¼ Pi;j½μaðrÞ�; r ∈ Ω; (8)

where yi;j is the output of the j’th detector given the source i.

2.4.1 Image reconstruction

3-D volumetric reconstruction of the absorption coefficient was
carried out using a modified version of the normalized differ-
ence approach proposed by Pei et al.36 At each sampling
time tk, the 3-D absorption coefficient map μaðr; tkÞ ¼
μaref ðrÞ þ Δμaðr; tkÞ, discretized over the 3-D mesh, is deter-
mined by minimizing, using a nonlinear conjugated-gradient
algorithm,37 the following cost function38

EQ-TARGET;temp:intralink-;e009;326;385F ¼
X
rl∈Ω

XNs

i¼1

XNd;i

j¼1

8<
:

yi;jðtkÞ
y0i;j

P̂i;j½μaref ðrlÞ� − P̂i;j½μaðrl; tkÞ�
yi;jðtkÞ
y0i;j

P̂½μaref ðrlÞ�

9=
;

2

:

(9)

The first summation in the right side of Eq. (9) is over the vol-
ume elements of the 3-D mesh. In Eq. (9), Ns is the total number
of sources, Nd;i is the number of detectors for the i’th source,
yi;jðtkÞ is the flux measured by the j’th optode given the source i
at time tk, y0i;j is a reference state defined as the mean of the
baseline measurements, and P̂i;j½μaref ðrÞ� and P̂i;j½μaðr; tkÞ� are
the model predicted measurements for the reference and esti-
mated absorption coefficient at time tk. Essentially, for each
time sample, the initial guess in the optimization process is
the reference state μaref ðrÞ. The conjugate gradient descent algo-
rithm is applied iteratively for n steps to compute the estimate
μaðr; tkÞ. Note that the optimized image from a previous time
sample can be used also as the initial guess. However, in this
paper, concentration calculations were carried out independently
of previous or subsequent samples.

2.4.2 Calculation of hemoglobin concentration

The absorption coefficient is related to the extinction coefficient
and concentration as μa ¼ ϵC. Assuming that the primary source
of absorption changes is a combination of hemoglobin chromo-
phores
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EQ-TARGET;temp:intralink-;e010;63;752Δμa ¼ ελHbO2
Δ½HbO2� þ ελHbRΔ½HbR�; (10)

where ελHbO2
and ελHbR are the extinction coefficients for oxy-

hemoglobin and deoxyhemoglobin at a given wavelength.
Reconstruction of absorption changes at two different wave-
lengths provides two independent equations, which can be
solved simultaneously to calculate deoxyhemoglobin and oxy-
hemoglobin concentration changes as

EQ-TARGET;temp:intralink-;e011;63;662Δ½HbR� ¼ ελ1HbO2
Δμλ2a − ελ2HbO2

Δμλ1a
ελ1HbO2

ελ2HbR − ελ2HbO2
ελ1HbR

Δ½HbO2� ¼
ελ2HbRΔμλ1a − ελ1HbRΔμλ2a :
ελ1HbO2

ελ2HbR − ελ2HbO2
ελ1HbR

(11)

2.4.3 Finite element modeling

A simplified finite element model of the skin and muscle tissue
was used to implement the DOT reconstruction algorithms.
The tissue was modeled as a rectangular cuboid with two
layers [Fig. 1(c)] with dimensions 92 mm × 35 mm × 24 mm
(length × width × depth). A tetrahedral mesh with 6900 elements
and 1848 nodes [Fig. 1(c)] was generated for this domain. Each
layer was assigned realistic optical parameters within the range of
clinically normal tissue: μa ¼ 0.01 mm−1 and μ 0

s ¼ 1.00 mm−1

for skin39 and μa ¼ 0.02 mm−1 and μ 0
s ¼ 0.50 mm−1 for

muscle.40

A simulation study was carried out to calculate the photon
measurement density functions for different source-detector
configurations. PDMFs characterize the regions of the tissue
that contribute to the measurement signal and can be used to
determine a suitable combination of measurements to recon-
struct optical properties of tissue within a region of inter-
est (ROI).

It is well known that the sensitivity in the reflectance mode is
higher at the surface and diminishes as function of the depth.41,42

The study confirmed that for the chosen optode arrangement,
depths larger than ∼12 mm contributed less than 5% to the sen-
sitivity function. As a result, the ROI used in the analysis was a
rectangular cuboid with dimensions 80 mm × 20 mm × 12 mm
(length × width × depth) as shown in Fig. 2.

Yu et al.43 showed through experiments and simulation stud-
ies that for source–detector separations larger than 1 cm, the
hyperemic response is mainly influenced by the autoregulation
of muscle tissue, while smaller separations are primarily
affected by subcutaneous tissue layer. For this reason, first-
and second-nearest neighbor source–detector pairs were not
used in the reconstruction.

3-D maps of absorption changes were obtained by minimiz-
ing the cost function in Eq. (9). To minimize the occurrence of
artifacts, a two-step sign constraint algorithm was used during
the reconstruction process.44 Positivity/negativity constraints
were imposed after each iteration in separate reconstructions,
and then the final absorption value was calculated as the sum
of the two partial solutions. Positivity/negativity constraints
force the algorithm to seek only positive/ negative changes in
order to minimize the cost function given in Eq. (9). In each
case, convergence was usually achieved after 5 to 10 iterations.
Pei et al.44 demonstrated theoretically and experimentally that
by using sign constraints, the quality and specificity of the
recovered images improved significantly.

Finally, Eq. (11) was used to compute HbO2, HbR, and HbT
(HbO2 þ HbR). Near-infrared parameters of postocclusive reac-
tive hyperemia (PORH) were calculated on a nodal basis and
then averaged on the ROI.

2.5 Study Protocol

The weight, height, and age for each subject were recorded. The
baseline characteristics of the subjects are summarized in
Table 1. Microvascular function during forearm PORH was
assessed on two different occasions 1 to 2 weeks apart. In
order to assess “real-world” performance, subjects were not
asked to fast or abstain from exercise, and the time of day of
assessment was not standardized. Subjects were requested to
sit comfortably on a chair and to locate the right arm on a plat-
form such that the dorsal-ventral axis of the elbow was held par-
allel to the surface of the platform [Fig. 1(b)]. The hand was
placed such that the palm was facing upward. A manual pneu-
matic blood pressure cuff was placed above the elbow, and the
tomographic probe was placed on the ventral side of the forearm
on the brachioradialis muscle and attached with tape [Fig. 1(a)].

The test consisted of 3 min baseline, followed by 5 min of
arterial occlusion (induced by inflating the cuff to 180 mmHg).
After 5 min, the cuff was rapidly deflated and the response mea-
sured for a further 5 min (13 min total measurement time). Light
attenuation changes were recorded at the four wavelengths, but
only the data at 760 and 830 nm were used for processing.
Hemodynamics changes were calculated using NIRS and
DOT techniques. The former uses the MBLL to convert absorp-
tion changes into de/oxyhemoglobin5,27 [Eq. (4)], while the lat-
ter is based in the diffusion process of light [Eqs. (5) and (6)].35

The parameters measured during and after the arterial occlu-
sion test are (Fig. 3):

(i) mVO2 (mlO2∕min ∕100 g), muscle oxygen consump-
tion: calculated from the gradient of the HbO2 at the
beginning of the arterial occlusion and converted into
ml O2∕min ∕100 g.10

(ii) 1∕2 THbO2 (s), 1∕2 time of recovery of HbO2: time
needed for half recovery of HbO2 from maximum deox-
ygenation at the end of the occlusion period to maxi-
mum reoxygenation during reactive hyperemia.

Fig. 2 The ROI is indicated with the volume in green. The location
of the optodes in relation to the ROI is indicated with the blue
circles. The dimensions of the ROI are 80 mm × 20 mm × 12 mm
(length × width × depth). The ROI is located directly under the array
of 30 optodes.

Journal of Biomedical Optics 066012-4 June 2016 • Vol. 21(6)

Vidal-Rosas et al.: Reproducibility of parameters of postocclusive reactive hyperemia. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 16 Apr 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(iii) THbO2 (s), time to maximal HbO2: time interval after
cuff release until maximum HbO2 value is reached.

(iv) MaxHbO2 (μM), maximal amplitude of HbO2: maxi-
mal hyperemic response reached by HbO2.

(v) MaxHbT (μM), maximal amplitude of HbT: maximal
hyperemic response of HbT.

(vi) THbT (s), time to maximal HbT: time to peak value of
HbT after cuff release.

(vii) Increase rate to maximal HbO2 (μM∕s), reoxygenation
rate of HbO2: calculated by dividing Max HbO2 by the
time to maximal HbO2.

(viii) Increase rate to maximal HbT (μM∕s), reoxygenation
rate of HbT: calculated by dividing Max HbT by the
time and maximal HbT.

(ix) AUC HbO2 (a.u.), area under the curve of HbO2 after
cuff release.

(x) AUC HbR (a.u.), postocclusion area under the curve
of HbT.

(xi) AUC HbT (a.u.), area under the curve of HbT after cuff
release.

The reproducibility was assessed using the intraclass correla-
tion coefficient (ICC) and the standard error of measurement
(SEM)45 based on NIRS parameters measured on two separate
occasions. ICC provides the degree to which individuals maintain
their rank order across repeated tests, and SEM is a measure of
absolute repeatability. To interpret repeatability based on ICC val-
ues, the following guidelines were considered:46 ICC ≥ 0.8 indi-
cates “excellent,” 0.6 ≤ ICC < 0.8 is defined as “good,”
0.4 ≤ ICC < 0.6 indicates “moderate,” 0.2 ≤ ICC < 0.4 indicates
“fair,” and ICC < 0.2 is defined as “poor.” On the other hand,
SEM is expressed as a percentage and the ideal value is zero.
In general, the smaller the SEM, the smaller the variability

between individual repeated measurements. ICC was calculated
for near-infrared parameters derived using DOT and NIRS, and
this is denoted by ICCDOT and ICCNIRS, respectively (similarly
for SEM: SEMDOT and SEMNIRS).

3 Results

3.1 Microvascular Function Reproducibility

Table 2 lists the mean and standard deviation of near-infrared
parameters, calculated using DOT, during and after the arterial
occlusion test, together with ICC and SEM repeatability mea-
sures. Similarly, Table 3 displays mean and standard deviation
of near-infrared parameters measured using NIRS. Mean val-
ues in both tables are very similar; however, the standard
deviation for near-infrared parameters derived using DOT is
smaller in most cases. More importantly, the ICCDOT is higher
in all but one case, and the repeatability is extremely high (∼1)
for mVO2, THbO2, Max. HbO2, and THbT. In comparison,
only one parameter (mVO2) measured with NIRS reached
the “excellent” ICC category. The least repeatable parameter
is AUC HbR, and this is consistent in the two measuring
approaches.

SEM calculated for tomographic imaging showed consis-
tently smaller values across all parameters. This suggests that
region-wise averaged measurements provide more robust and
repeatable measurements than point-wise measurements, as typ-
ically measured in NIRS.

4 Discussion
Our results are in agreement with similar studies using NIRS;20,47

however, the main finding is that tomographic imaging provides
more robust and repeatable results. Figure 4 shows the mean and
SEM of de/oxyhemoglobin and total hemoglobin across all

Fig. 3 Typical hemodynamic response before, during, and after 5 min
brachial arterial occlusion measured by NIRS. Some characteristic
parameters are indicated: oxygen consumption (mVO2), maximal
amplitude of HbO2 (Max. HbO2), time to maximal of HbO2 (THbO2),
and area under the curve of HbO2 (AUC).

Table 2 Intrasubject reproducibility of PORH parameters obtained
using DOT.

Parameter Test 1 Test 2 ICC SEM

mVO2 0.07� 0.02 0.07� 0.03 0.99 3.90

1∕2THbO2 14.34� 2.33 15.17� 1.82 0.72 7.50

THbO2 36.50� 10.44 36.81� 7.70 0.94 6.09

MaxHbO2 19.99� 6.06 20.01� 7.31 0.99 2.85

MaxHbT 19.21� 5.24 20.09� 6.92 0.69 17.31

THbT 21.63� 13.35 21.71� 7.98 0.99 5.98

Inc. rate to
max HbO2

1.53� 0.51 1.46� 0.55 0.70 19.60

Inc. rate to
max HbT

0.72� 0.39 0.62� 0.47 0.51 45.16

AUC HbO2 1461.79� 572.51 1625.32� 900.88 0.54 32.22

AUC HbR 708.47� 586.48 611.91� 551.93 0.63 52.11

AUC HbT 1313.68� 963.06 1741.28� 775.31 0.22 45.11
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subjects computed using NIRS and DOT. NIRS calculations are
noisier than DOT reconstructions, despite using the same filtering
techniques in both methods. One reason might be that single-
channel measurements are more susceptible to systematic errors,
such as position-dependent differences in muscle oxygenation or
probe localization and interobserver reproducibility. On the other
hand, DOT samples a larger tissue volume. Averaging over a large
number of voxels also smooths the response. Furthermore, the
image reconstruction method for DOT implements regularization
that further improves the SNR.8

Figure 5(a) shows the volume averaged HbO2, HbR, and
HbT for a representative subject while Fig. 5(b) shows a tomo-
graphic reconstruction for HbO2 at its maximum value
(t ¼ 516 s). The heterogeneity of tissue is evident, and this

has been reported in similar studies involving two-dimensional
images of venous occlusion tests.48 Furthermore, spatial depend-
ence of the hemodynamic responses in the forearm has also been
reported in nerve stimulation studies49 and in exercising hand in
the reflectance50 and transmittance51 modes. This variability that
occurs in all three spatial directions may contribute to dimin-
ished repeatability if the probe location is not consistent across
examinations.

NIRS and DOT calculations have clear methodological
differences, both prone to systematic errors. For NIRS, the
key parameter is the DPF, which corrects for the effect of
scattering in tissue and therefore is wavelength and tissue depen-
dent. This variable has been the subject of several investigations,
and there is an agreement on its main characteristics at popula-
tion levels.29–31,52 However, in most of the cases, DPF is not
calculated as part of the arterial/venous occlusion protocol,
and calculations are based on data and tables available in the
literature.

The techniques used in DOT are more complex and also sus-
ceptible to systematic errors such as parameterization of optical
parameters, initial guess, or reconstruction convergence criteria.
In this study, a differential approach was followed, which has
demonstrated to be insensitive to boundary effects and the medi-
um’s initial guess.36 On the other hand, the major disadvantage
is that it is not possible to determine the absolute distribution of
optical parameters, but only the change of absorption or diffu-
sion from a given baseline.

In general, our results show time-based parameters have
excellent repeatability. These parameters have shown great
promise in distinguishing between healthy volunteers and
patients with PAD and diabetes.16,17 For these patient groups,
the reactive hyperemic response showed delayed times of recov-
ery. Parameters derived from HbO2 are also the most repeatable,
and this has been observed by different groups.16,20,21

4.1 Regions of Hemodynamic Consistence

The availability of 3-D maps allows the selection of more spe-
cific areas of interest. Selection techniques, either manual or
automatic, are available and have been shown to enhance the
response by improving the signal-to-noise ratio. Wang53 used

Table 3 Intrasubject reproducibility of PORH parameters obtained
using NIRS spectroscopy.

Parameter Test 1 Test 2 ICC SEM

mVO2 0.08� 0.06 0.08� 0.04 0.97 10.98

1∕2THbO2 16.57� 11.18 15.64� 3.29 0.64 26.82

THbO2 45.90� 18.63 47.79� 17.56 0.77 18.55

MaxHbO2 16.56� 4.66 15.85� 4.46 0.67 16.29

MaxHbT 17.72� 6.08 16.01� 4.42 0.37 24.70

THbT 19.90� 2.88 20.69� 6.38 0.71 12.25

Inc. rate to
max HbO2

1.06� 0.52 0.85� 0.38 0.21 41.94

Inc. rate to
max HbT

0.73� 0.40 0.60� 0.45 0.40 50.17

AUC HbO2 1053.21� 740.53 1131.97� 838.85 0.78 33.89

AUC HbR 810.67� 657.29 1016.41� 840.48 0.45 61.01

AUC HbT 1385.63� 929.66 1897.82� 836.57 0.19 48.47

Fig. 4 Average (solid lines) and standard deviation (vertical bars) of HbO2, HbR, and HbT responses
across all subjects in the first experiment obtained using (a) NIRS spectroscopy and (b) DOT.
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Fig. 5 (a) Typical hemodynamic responses of oxygenated (HbO2), de-oxygenated (HbR) and total
hemoglobin (HbT) and (b) HbO2 ðx; y; z; tÞ at t ¼ 516 s, i.e., the time average HbO2 reaches maximum.

Fig. 6 (a) Total hemoglobin curve (HbT) for a healthy subject; the point at maximal HbT (t ¼ 467 s) is
marked with a point. (b) 3-D map of HbTðx; y; zÞ at the time of maximal HbT. The node with maximum
contribution to the HbT response, HbTðxM ; yM ; zM Þ, is indicated by the arrow and its time response is
denoted with HbTmaxðtÞ. (c) 3-D map of correlation coefficients ρðx; y; zÞ computed between HbTi ðtÞ at
each node location (x i , y i , zi ) and HbTmaxðtÞ. (d) 3-D map of correlation coefficients ρðx; y; zÞ computed
between HbTi ðtÞ at each node location (xi , yi , zi ) and HbTmeanðtÞ.
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a binarized segmentation technique to select the regions with the
dominant response, while in another study by Cuccia et al.,54

regions with large vessels were avoided to focus on regions con-
taining only microvasculature. Recently, Khalil et al.55

employed correlation analysis to define regions of temporal con-
sistency that correlate significantly with the averaged HbT.
Their results showed some differences in the evolution of
HbT between a healthy volunteer and a patient with PAD,
which were not evident from the average signals alone.

The best selection strategy is likely to be disease-dependent,
and for this reason, we did not attempt to develop one based only
on healthy volunteer subjects. However, to illustrate the poten-
tial advantages of DOT compared with NIRS, we carried out the
following simple analysis:

Step 1. Compute the average total hemoglobin time series
over the ROI, denoted by HbTROIðtÞ, and determine
the time point satisfying

EQ-TARGET;temp:intralink-;sec4.1;326;719HbTROIðtmaxÞ ¼ max½HbTROIðtÞ�:
This point is located at tmax ¼ 467 s [Fig. 6(a)].

Step 2. Determine the node ðxM; yM; zMÞ satisfying
EQ-TARGET;temp:intralink-;sec4.1;326;666HbTðxM; yM; zM; tÞ ¼ max½HbTðx; y; z; tÞ�
for t ¼ 467 s [Fig. 6(b)].

Step 3. For each node ðxi; yi; ziÞ within the ROI, compute
the cross-correlation between HbTðxM; yM; zM; tÞ ¼
HbTmaxðtÞ and HbTðxi; yi; zi; tÞ ¼ HbTiðtÞ using

EQ-TARGET;temp:intralink-;e012;63;579ρðxi; yi; ziÞ ¼
P

N
k¼1½HbTiðkÞ − ¯HbTi�½HbTmaxðkÞ − ¯HbTmax�P

N
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½HbTiðkÞ − ¯HbTi�2

p P
N−1
t¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½HbTrefðkÞ − ¯HbTmax�2

p ; (12)

where N is the total number of samples and the bar over each
variable denotes the time average over the duration of the experi-
ment. The analysis was done on the entire experiment to illus-
trate the different dynamic signatures that can be obtained when
different reference signals are used. Note also that HbTmaxðtÞ is
not necessarily the time series with the highest HbT across the
experiment.

The resulting 3-D correlation map ρðx; y; zÞ, shown in
Fig. 6(c), indicates very strong correlation (ρi > 0.9) with the
reactive hyperemic response HbTmaxðtÞ for nodes located at a
depth > ∼ 2 mm, which largely correspond to muscle tissue.

In contrast, the correlation coefficients for nodes located in
the superficial layer (skin) are very low (ρi ≤ 0.4). A different
correlation map was computed using as a reference the averaged
HbT signal over the ROI, denoted HbTROIðtÞ.

The corresponding 3-D correlation map, shown in Fig. 6(d),
also exhibits strong correlation for nodes (ρi > 0.9) located bel-
low the skin layer. The correlation maps can be used to define
tissue compartments with similar hemodynamic profiles. For
example, regions of hemodynamic consistency (RHC) can be
defined based on the correlation maps shown in Fig. 6(c)
and 6(d) by selecting all nodes with correlation coefficient
ρ ≥ 0.9.

The resulting RHCs are shown in Fig. 7(a); the red and
green volumes indicate the regions with high correlation
(ρ ≥ 0.9) with the HbTmean and HbTmaxðtÞ, respectively.
The blue volume represents the intersection between the two
RHC. The average HbT time series for each RHC are shown in
Fig. 7(b) together with the averaged HbT over the entire ROI
½HbTROIðtÞ�.

Interestingly, while the three signals are different before the
end of the occlusion period, after the cuff is released only the
region correlated to HbTmaxðtÞ is still distinct compared with the
average signal over the entire ROI. This tissue “compartment”
identified by our analysis [Fig. 7(a)] appears to exhibit extensive
reactive hyperemia both in terms of significantly increased
blood flow relative to the baseline as well as duration of
hyperemia.

The DOT-estimated MaxHbT and MaxHbO2 also have good
reproducibility (ICC ¼ 0.69 and ICC ¼ 0.99, respectively),
suggesting that an RHC identified based on HbTmaxðtÞ could

Fig. 7 (a) Compartments defined by the two RHC: the A and B vol-
umes indicate the regions with high correlation (ρ ≥ 0.9) with the
HbTmeanðtÞ and HbTmaxðtÞ, respectively. The AB represent the inter-
section between the the A and B regions. The boundaries of the ROI
are denoted with the black box. (b) Total hemoglobin averaged over
the entire ROI ½HbTmeanðtÞ� is indicated with the solid line. The dashed
and dotted lines denote the average HbT response of all the nodes
with high correlation (ρ ≥ 0.9) with HbTmeanðtÞ and HbTmaxðtÞ,
respectively.
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be a good candidate to focus on in future studies that aim to
distinguish between healthy volunteers and patients with vascu-
lar disorder.

In contrast, the relatively poor reproducibility of MaxHbT
measured using NIRS (ICC ¼ 0.37), which clearly limits its
diagnostic potential, highlights the challenges posed by the spa-
tial and temporal heterogeneity of tissue oxygenation and hemo-
dynamics when assessing endothelial function.

To further illustrate the advantage of using DOT to resolve
the spatiotemporal properties of the hemodynamic response, we
created a short movie (Fig. 8) showing the reconstructed HbT
changes in different slice planes along the x axis.

5 Conclusions
This study shows that DOT achieves excellent reproducibility of
key PORH parameters. These parameters include muscle oxy-
gen consumption (mVO2), time to maximal HbO2 (THbO2),
maximal HbO2 (MaxHbO2), and time to maximal HbT
(THbT). Although a direct comparison of these parameters
may be enough to distinguish between healthy volunteers
and patients with vascular disease, our analysis suggests that
obtaining reliable signatures of vascular disease may require
first the identification of an appropriate RHC. This is only pos-
sible if a full volumetric reconstruction of hemodynamics, as
that provided by DOT, is available for the particular ROI.
The choice of an appropriate RHC is beyond the scope of
this study, and it is the subject of future research.

The availability of volumetric hemodynamic parameters
clearly offers more opportunities for the analysis and charac-
terization of PORH and warrants further efforts to evaluate
DOT’s potential to measure endothelial function in a clinical
environment.

Despite the increased complexity of the instrumentation and
reconstruction algorithms used to implement DOT, there are
many examples of inexpensive portable and wearable DOT
instruments.56 The availability of freely available software
such as NIRFAST57 and TOAST58 also encourages the devel-
opment of DOT-based technology. The use of reduced-order

models14 to speed up the reconstruction process makes it
now possible to perform analyses in real-time using mobile
devices with modest computational resources.

Overall, the inherent advantages of DOT compared with
other imaging modalities, combined with the availability of
algorithms and portability of the instrumentation, makes DOT
an ideal method for routinely and noninvasively assessing the
cardiovascular function, inside and outside the hospital.
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