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Abstract

This thesis is built on the idea of modeling episodes of multiple time series which

can be briefly defined as multivariate time series whose individual dimensions vary

in time and nature. This kind of data arises naturally when we observe repeatedly

scenarios where collections of individual elements that may or may not take part in

the collective observed behaviour. We illustrate the ideas constructed around this

kind of data making use of datasets related to crowdfunding and video-on-demand.

These datasets are prolonged periods of observation of these scenarios and provide

natural examples to the ideas we develop. How to relate seemingly disconnected

individual episodes and how to incorporate information from them into the general

view of the multiple episodes is the main goal of this thesis. We focus on con-

structing this two-way flux so that even more complex models than the ones present

in this work can be constructed using the proposed features. We describe models

and algorithms that mix supervised and unsupervised tasks. Specifically, we con-

struct models that connect Topic Models, unsupervised learning models that aim

to summarize big corpora of texts with regression models on time series. We also

discuss how summaries of past episodes may be helpfull in predicting future series

of observations of same category.
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Chapter 1

Introduction

We are living in the age of data collection, where every single step of our digital

lives is collected, stored, treated and used by entities that we even does not know

they exist. Social networks make use of information related to one individual in

order to construct models that can predict the behaviour of this individual’s friends

and even (seemingly) unrelated people. Search engines collect data on our quest

for online shopping in order to try to advertise that brand new 4k TV you may have

bought (but still gets the ad every single website you visit). Companies developing

autonomous vehicles collect data on driving events of volunteers and employees in

order to feed embed neural networks in cars that eventually will drive by themselves

would be some examples of this massive collection of data that is part of our daily

routine.

This scenario may make us concerned about privacy issues, about the limits on

which third-parties can directly and indirectly get to know about our lives, but in

the majority of times it performs two-way transactions that are beneficial to every

part engaged in these transactions: individuals contribute with their individual ac-

tions, ideas and behaviors, to say a few, and in exchange get from the collection

of other individuals contributions trends on important piece of news by discussions

that show on the front page of online forums, the discovery of new music by the

automatic examination of other people’s “exquisite” taste for unknown bands, the

collective action towards those in need via donations of money and goods that in-

dividually are not relevant but when made by a gigantic group of people (a crowd)
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turns into something that is certainly relevant.

This thesis will revolve around ideas connected to such scenarios. We aim to

describe, model and understand how what we observe in individuals in one scenario

may affect the general view of all the individuals in this scenario and vice versa,

how this general view can influence and be used in understanding the behavior of

future individuals in this same scenario. What we call here individuals can be actors

that willingly make part of a collection of actors (individuals) of passive elements

which are composition of actions by other actors in the collection. Also, we try

to understand these relations in unstable environments, in the sense that the set of

individuals may vary in time and their active time - time in which they are part of

the collection - may vary as well.

All these philosophical ideas are brought to real life in scenarios where these

two-way transactions seem to be part of the dynamics of them, while it is unclear

how they relate. We study the market of Crowdfunding[2], the ever alternative way

of funding independent projects in several areas of knowledge, with its increasing

number of projects, increasing number of individuals donating money and creating

both niche products and ideas that are relevant to a greater public. We also study

YouTube, the number one online video-on-demand platform, whose catalog of con-

tent can only be sorted and summarized automatically with models constructed on

the behavior of people watching a only small fraction of this catalog.

We construct statistical models in these scenarios making use of Graphical

Models[3] formalism, which allow us to easily simulate data and make use of

generic algorithms such as the Expectation Maximization algorithm[4] in a very

easy and straightforward way in order to make inference and estimation tasks in the

statistical models proposed. We also rely heavily on Topic Models[1], a beautiful

and important model that easily summarizes and explains in very low dimensional

features the very high and sparse textual data that is found in large corpora of texts.

Finally, given the discussed temporal and pervasive flow of information from indi-

viduals to the collection of them, we make use of classical time series models that

are adapted to the nature of data we observe in crowdfunding and video-on-demand
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datasets.

1.1 Thesis outline
The remainder of this thesis is constructed as follows: Chapter 2 deals with the

main general concepts used in this thesis, presenting relevant literature to support

the ideas built in the following chapters. It discusses relevant statistical models to

the thesis such as topic models, time series and latent variable models and presents

the Expectation-Maximization algorithm and its Variational Bayes variations that

are used and adapted throughout the whole thesis.

Chapter 3 illustrates the main ideas concerning the connection this thesis

makes to different elements of the literature present in chapter 2, constructing a

latent state-space model that connect topics and time series through episodes of

multiple time series, which is illustrated in a dataset composed of crowdfunding

data.

Chapter 4 extends the work of the previous chapter in order to accommodate

different elements of the market that were not taken into consideration in chapter

3 while presenting variations of the inference and estimation algorithm that can

handle the new elements of the enhanced model. These elements allow us to have

a better picture of individual and collective information related to crowdfunding

projects.

Chapter 5 presents a different view of the elements related to time series and

latent variables discussed in this work, where we aim to make use of individual

episodes of time series as inputs that can impact a whole community of interests.

We illustrate such ideas using a dataset of YouTube videos.

Chapter 6 summarizes the whole work and introduces future discussions and

improvements to the present work and additional results and discussions are shown

in Appendix. Throughout this thesis we going to make use of the following sym-

bols:
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Symbol Explanation
xxxTyyy Inner product of vectors x and y

xxx⊗ yyy Outer product of vectors x and y
xxx� yyy Element-wise products of vectors x and y, zzz = [x1y1,x2,y2, ...]
M′ Transposition of matrix M
a..b Refers to an interval [a,a+1,a+2, ...,b]

M = [xxx,yyy] Construction of matrix M by joining the column vectors x and y
σ(x) sigma function σ(x) = 1/1+exp(−x)

Table 1.1: List of Symbols



Chapter 2

Literature review

This chapter provides a comprehensive foundation on the models, methods and

techniques that are important to the development of this thesis. Each component

is explained in a self-contained session and the structure of the discussion in this

chapter is taken to the following parts of the thesis, where the concepts here pre-

sented are used in the context of the applications studied.

In a Statistical Inference setting, we are usually faced with quantities of interest

that involve integrating over a subset of random variables of the ones in hand. For

instance, given the vector of random variables zzz = [xxx,yyy] composed by the concate-

nation of the vectors xxx and yyy that we are using to model a problem and the vector

yyy = [y1.y2, ...,yn] is observable while xxx = [x1,x2, ...,xm] is unobservable (latent), we

may be interested in evaluating parameters θθθ = [θ1,θ2, ...,θo] related to this model

in a maximum likelihood (ML) fashion. In order to do so, we are are required to

evaluate the equation

θθθ
? = argmax

θθθ

∫
X

p(yyy,xxx;θθθ)dxxx

on which θ ? is the ML estimate of the parameters of the model and X is the do-

main of integration (domain of the variables xxx). On the other hand, in a maximum

a posteriori (MAP) setting or full Bayesian setting, we must deal with different

equations such as



17

θθθ
? = argmax

θθθ

∫
X

p(yyy,xxx|θθθ)p(θθθ)dxxx

on which p(θθθ) refers to the prior distribution over θθθ . Finally, in a full Bayesian

setting, we are interested in the posterior distribution of random variables of interest,

which in this case would be θθθ while marginalizing (integrating) over some possibly

nuisance variables, leading to1

p(θθθ |yyy) =
∫
X p(yyy,xxx|θθθ)p(θθθ)dxxx∫

X ,Θ p(yyy,xxx|θθθ)p(θθθ)dxxxdθθθ

All these equations express some of the basic elements found in statistical mod-

eling and for all them, we may face difficulties of different nature in the process of

their evaluation. One common problem is the impossibility of evaluating the inte-

grals via algebraic expressions, which can occur even in simple calculations such

as

∫
log
(

1
1+ exp−(θ0 +θ1x1)

)
p(θ0,θ1)dθ0dθ1

which relates to a simple Logistic Regression with prior distribution on the param-

eters of the model[5].

So far we have talked about distributions over random variables but we have

not tried to encode any conditional dependence structure among them, which is

commonly done via Probabilistic Graphical Models[6] (PGM). PGMs make use of

graph formalism to encode these conditional dependence structures. Graphs can be

defined as mathematical elements describing pairwise relationships between enti-

ties. A graphs G is described as G = (V ,E ) where V = {v1,v2, . . . ,vn} is the set of

nodes (entities) represented and E = {(va,vb)|va ∈ V ∧ vb ∈ V } is the set edges or

of pairwise relationship between entities. These edges can be undirected, in which

the relationship has no direction, or directed, in which the relationship has a direc-

tion from one vertex to the other, commonly from the first vertex to the second in

the pair, in our case from va to vb. In the PGM setting, random variables are the

1From now on we are skipping the domain of the integral wherever it is clear to the reader.
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X1

X2 X3

X4

X1

X2 X3

X4

Figure 2.1: Markov Network (left) and Belief Network (right)

nodes and direct dependencies are represented by the edges.

Markov networks, also know as Markov Random Fields, represent distribu-

tions in undirected graphs via cliques, which are subsets of nodes such that there

is an edge connecting every pair of nodes. Let us suppose we have four random

variables for which we are constructing a graphical model. One possible Markov

network representation is the one shown in the graph on the left of Figure 2.1. The

joint probability distribution of these for variables represented by this graph could

be written

p(x1,x2,x3,x4) =
1
Z

φ(x1,x2)φ(x1,x3)φ(x2,x4)φ(x3,x4)

where Z =
∫

φ(x1,x2)φ(x1,x3)φ(x2,x4)φ(x3,x4)dx1dx2dx3dx4 is the normalizing

constant for the distribution, ensuring the it integrates to 1. Generally speaking,

every φ function describes a form of coupling between the variables belonging to

the clique it represents.

All the models constructed in this thesis are based in belief networks, also

known as Bayesian networks or probabilistic directed acyclic graphical models,
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which are models for representing sets of random variables and conditional de-

pendencies among them via a directed acyclic graph, i.e., the modeler decides to

directly encode a generative schema to the observation of the random variables be-

longing to the model. This kind of decision is usually made due to prior knowledge

of the domain of the problem under study or to impose constraints that allow better

interpretability of the models or ensure better computational costs to the inference

and estimation processes.

Let us study the belief network described by the graph on the right of Figure

2.1. Its joint probability distribution can be written as

p(x1,x2,x3,x4) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2,x3)

where the joint is decomposed into different conditional probability distributions.

This representation is more suitable for generative models, algorithms that describe

the hypothetical natural process that generates data.

These two representations possess distinct features and belief networks can be

transformed into Markov random fields via the moralization algorithm[6]. They are

also the main representation of graphical models, but alternatives are also possible

and provide suitable representations to different sets of problems. Mixed graphs

construct joint probability distributions by making use of both directed and undi-

rected connections between random variables. Cumulative distribution networks

[7] take a different approach. While maintaining undirected graph representation,

they encode the functions in the cumulative probability distribution functions space

instead of the usual probability density space. When picturing these graphical mod-

els, it is common to use white nodes representing latent variables, grey nodes repre-

senting observed variables and labeled rectangles defining groups of variables that

repeat in the model the number of times the label of the rectangle express.

2.1 Variational inference
Variational inference (VI) is a general deterministic approximation to intractable

integrals or expectations which appear in these complex models[8, 9]. In this work,
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we construct complex high-dimensional graphical models, for which direct Markov

chain Monte Carlo (MCMC) is practical only in small instances of the proposed

models. To avoid this enormous computational costs, we make use of VI procedures

in exchange of cruder approximations to the distributions of interest. Specifically in

this thesis, we make an explicit separation between model parameters θθθ and latent

random variables xxx so MCMC techniques would fit only as one component of the

learning procedure, in a Monte Carlo Expectation Maximization fashion [10].

Let us return to the setting where our model of interest is composed of the

random variables xxx which are latent, the observed random variables yyy and model

parameters θθθ 2. We are interested in estimating parameters based on the marginal

likelihood of the observed variables yyy in a graphical model also containing the latent

variables xxx. By using Jensen’s inequality, we can approximate such marginal via

log p(yyy;θθθ) = log
∫

p(yyy,xxx;θθθ)dxxx≥∫
log p(yyy,xxx;θθθ)q(xxx)dxxx−

∫
q(xxx) logq(xxx)dxxx

log p(yyy;θθθ)≥ E[log p(yyy,xxx;θθθ)]q(xxx)−E[logq(xxx)]q(xxx)

= E[log p(yyy,xxx;θθθ)]q(xxx)+H[q(xxx)]

where the construction of this lower bound is the root of variational inference meth-

ods. This bound is constructed using the auxiliary distribution q(xxx), E[ f (xxx)]q(xxx)

refers to the expected value of function f (xxx) under the distribution q(xxx) (we may

use the shorthand version < f (xxx) > wherever it is clear which distribution we are

taking the expectation from) and H[q(xxx)] refers to the differential entropy of the

q(xxx) distribution. This approximation is called the Evidence Lower Bound (ELBO)

and provides an optimal approximation (in terms of KL-Divergence) to the desired

log-marginal likelihood log p(yyy). Equality is achieved at q(xxx) = p(xxx|yyy), which is

2So far, we are making use of frequentist terminology, making a clear distinction between random
variables and model parameters but the discussion presented may be brought to the Bayesian world
if we understand the latent variables as also the parameters of the model and the model parameters
as hyperparameters that we may be interested in optimizing. We will follow the frequentist point of
view but it is important to understand that they are similar in a broad sense
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usually intractable to compute.

Given this bound, we must find a tractable representation of the distribution of

interest. A tractable approximation to this posterior is obtained by forcing q(xxx) to

impose extra independence constraints than the ones implied by original graphical

model. As we have freedom to choose q(xxx) it can be shown that the problem turns

into an optimization of the ELBO within a space of tractable distributions and if we

split the set xxx of latent variables into disjoint sets xxx = [x1,x2, ...,xn] where xi∩ x j =

/0,∀i 6= j and n≤ |x|, optimizing the ELBO regarding to q(xi) can be performed via

coordinate ascent algorithm where every step is

logq(xi) ∝ E[log p(yyy,xi,x j)]q(xxxi−) (2.1)

where xxxi− = [x1, . . . ,xi−1,xi+1, . . . ,xn] is the distribution of all the sets of variables

in x but xi. Depending on the complete distribution under study, the direct form of

2.1 provides a direct parametric form of q(xi) which can then be used as the vari-

ational distribution to the random variable xi. Usually, this is not the case and one

fixes the parametric form of the distributions, i.e. Gaussian and Dirichlet, and di-

rectly optimize their parameters via maximizing the ELBO. When picking the extra

independence constraints to the latent variables, one can go extreme and enforce to-

tal independence n = |x|, which is called mean-field variational inference or impose

less restrictive independence constraints, in a structured way [11].

2.1.1 Stochastic variational inference

Usually, when using VI procedures, one may develop model-based algorithms, tak-

ing into consideration all the unique elements of the graphical model proposed, the

latent and observed variables and so on. This model dependent approach is effective

although costly and generic software cannot be constructed in order to be reused to

different models and instances.

In order to construct reusable and generic algorithms to handle different graph-

ical models, several approaches make use of stochastic versions of variational infer-

ence in order to approximate distributions of interest. It may seem counter intuitive
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to resort on sampling-based approaches to approximate distributions but stochas-

tic variational inference and MCMC (and other sampling-based) methods are very

different in nature. In short, MCMC methods construct a Markov chain whose equi-

librium distribution is the distribution of interest, usually the posterior of the set of

latent variables given the observed values, while stochastic variational inference de-

parts from a given fixed-form q distribution and stochastically optimize its parame-

ters through an interative process of sampling from q, evaluating the noisy gradient

of the ELBO and optimizing the parameters of the distributions accordingly.

Let us return to the motivating model we are discussing from the beginning

of the chapter, now assuming that, for some reason, we are not able to evaluate

in closed-form the ELBO of the model and we define q(x;λ ) the variational dis-

tribution of the latent variables which is parameterized by λ , we can theoretically

optimize λ via a first-order gradient descent method with α as learning rate and

λi+1 = λi +α× ∂ f (λi)

∂λi
(2.2)

where

f (λ )≈ E[log p(y,x;θ)]q(x;λ )+H[q(x;λ )]

=
1
N

N

∑
j=1

{
log p(y,x j;θ)− logq(x j;λ )

}
and x j ∼ q(x;λ )

being f a sampling approximation of the ELBO of the model. Unfortunately, the

variance of this approximation is usually high making the simple first-order proce-

dure unreliable. Different approaches try to tackle this problem in several different

ways, be it Rao-Blackwalization or control variates [12], neural networks as estima-

tors of the variables of the model [13], mini-batches of data [14] and reparametriza-

tion tricks [15]. In equation 2.2 we present a simple first-order stochastic gradient

descent method but different approaches which adapt this basic equation are com-

mon and try to optimize the performance of such algorithm [16]



2.1. Variational inference 23

2.1.2 Variational expectation maximization

Throughout this thesis we are going to make use of Variational Expectation Maxi-

mization algorithms so it is appropriate to explain this approach in greater detail.

Expectation maximization (EM) is a general algorithm designed as an iterative

method to estimating parameters of a statistical model in a maximum likelihood

fashion when there are latent random variables involved in the model [4]. The basic

EM algorithm consists of alternating two separate steps, the called E-step which

constructs the posterior distribution of the latent variables given the observations

and the parameters in a fixed value and the called M-Step which optimizes the pa-

rameters of the model making use of the expected marginal log likelihood given the

posterior distribution constructed in the previous E-Step.

In our explanation, let us use the same terminology used so far: let us assume

a model composed of a vector zzz = [yyy,xxx] of random variables composed of the con-

catenation of the vectors yyy= [y1.y2, ...,yn] of observable variables, xxx= [x1,x2, ...,xm]

of latent ones and the parameters vector θθθ = [θ1,θ2, ...,θo]. Let us also assume that

evaluating p(xxx|yyy;θθθ) is not feasible and we must make use of variational distribution

q(xxx) in order to approximate this distribution of interest. Let us also assume that

we impose some structure in this q distribution, i.e., we split the vector xxx into m′

groups q(x) = q(x1)q(x2)...q(xm′) which are composed of non-overlapping subsets

of the elements of xxx - x1 = [x1,x3,x5] for example -, (m > m′) such that the posterior

distribution of each separate group is independent of each other while the variables

within each group keep dependence among them.

Algorithm 1 Variational Expectation Maximization

Require: Initial guesses θθθ
? and q(x)

while termination criteria not met do
for i = 1 to m′ do . E-Step

Update q(xxxi) = argmaxq(xxx)i E[log p(yyy,xxx;θθθ
?)]q(xxx)+H[q(xxx)]

end for
θθθ
? = argmaxθθθ E[log p(yyy,xxx;θθθ)]q(xxx) . M-Step

end while
return θθθ

? and q(x)

In this setting, the algorithm runs as expressed in Algorithm 1. We must pro-
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vide initial guesses to both the variational distribution and the parameters of the

model. Then we perform the E-Step in which every subset of latent variables has

its distribution updated according to the optimization of the ELBO. This is done

in a coordinate-ascent fashion until all the components of the distribution is up-

dates. After that in the M-Step the parameters θθθ of the model are updated though

the optimization regarding only the expected log-likelihood of the model, given that

the entropy part of the ELBO does not relate to the model parameters. The algo-

rithm does not force any termination criteria but number of iterations or norm of

the update of the model parameters are usual criteria. This procedure is guaranteed

to achieve a local maximum of the log-likelihood function and must be run with

several initial values for the parameters and distributions such that convergence is

tested.

2.2 Topic models

Topic models (TM) are a class of mixture models for discrete data, where each mix-

ture component describes a distribution over a possible set of discrete outcomes, it is

“a branch” of latent Dirichlet allocation generative models[1], where each mixture

component is itself random, following a Dirichlet prior. Topic models are gener-

ative statistical tools that allow sets of high dimensional observations (texts) to be

explained by lower dimensional latent groups (topics). The idea behind this gener-

ative model in the context of text data is that topics define distributions over vocab-

ulary, and texts are generated via a choice of topics proportions and words picked

in the different topics. The generative process may be written as

where τ and α are model parameters on the Dirichlet priors of per-topic word dis-

tribution and per-document topic distributions, respectively.

Topics can be defined as sets of distributions over vocabularies. In this sense, a

vocabulary is a set of individual unique words and a topic is a Dirichlet distribution

placed over this set. Then, a text is composed by a mixture of words sampled from

a set of topics, in an unstructured (bag-of-words) process [17]. An example of a text

viewed in a Topic Model sense can be seen in Figure 2.2 (from the seminal paper
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Algorithm 2 Basic Topic Model Generative Model
Require: model parameters τττ,ααα

for all Topic k do
Sample βββ k ∼ Dirichlet(τττ)

end for
for all Text document p do

Sample topic proportion θθθ p ∼ Dirichlet(ααα)
for all Word wi in the text do

Sample topic allocation zi,p ∼Multinomial(1,θθθ ppp)
Sample word wi,p ∼Multinomial(1,βββ zi,p

)
end for

end for

Figure 2.2: Topics and a text - Source [1]

[1]).

The ability that Topic Models have to summarize big corpora has led to the

development of several variations over the basic model. Dynamic Topic Models

[18, 19], whose graphical description can be seen at Figure 2.3, are constructed to

accommodate topic proportions and topic distributions that evolve over time. Such

dependency is performed by transforming ααα into a random variable and model-

ing both variables topics βββ and topic proportion prior ααα as chains of multivariate
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Figure 2.3: Dynamic Topic Model Graphical Description

normal distributions that evolve via a Markov process. Dynamic Topic models are

meant to model sets of texts which rapidly change in vocabulary or which include

data from a large spam of time ([18] uses 120 years of documents from Science

magazine) .[20, 21] tries to relax the strict negative correlation between topics in a

text by replacing the Dirichlet distribution these topic proportions are sampled by

the logistic normal distribution, which then can express a much richer set of cor-

relations. Also, other works [22, 23] try construct approximations to the learning

procedure of topic models that are less expensive than full MCMC or variational

inference while maintaining “good enough” (up to the practitioner) estimates.

All Topic Models variations discussed so far focus on constructing elements

that allow flexible expression of quantities related to texts and topics but several

different models try to add numerical observations based on the textual and topical

variables of Topic Models. [24] constructs Supervised Topic Models which aim to

model univariate numeric variables connected to texts such as movie ratings (pre-
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dicted from reviews) and site popularity [24]. It defines a vector zzz which is the

empirical frequencies of topics in a given document to use as independent variables

in a generalized linear regression step.

[25] adds numeric elements to Topic Models in a different sense, it tries to

model the impact of scholarly documents in future documents via an adaptation of

a basic Dynamic Topic model. In a DTM, topics (represented by the βββ variable in

our discussion) of time t+1 depend on topics of time t. [25] adds more components

in this dependence by adding regression components using document’s words and

topic allocations and also a random effect component, which it calls an influence

score.

[26, 27] go in a different direction. Departing from basic Dynamic Topic

Model representation as well, they connect numerical variables to the ααα variables

(instantaneous topic distribution priors) aiming to model a general relationship be-

tween texts existing in a given time-point and a general perception (numeric re-

sponse) over a given subject. Both papers study the models using finance related

datasets.
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Figure 2.5: Document Influence Topic Model Graphical Description

[28] presents supervised topic models related to classification tasks and discuss

concepts on the difficulties of learning topic models and doing classification simul-

taneously. While these works go in the direction of regressing numerical variables

based on textual information, [29, 30] go in the opposite direction, making use of

text meta-data as inputs that influence word distribution in texts but [30] does not

follow Topic Models theory but construct similar low-dimensional representations.

2.3 Latent state-space models

Time-series Models are another important area to the development of this thesis.

We are going to make use of Latent State-Space Models (LSSM) which are the

workhorse of an enormous variety of models in different fields such as signal pro-

cessing and econometric studies.



2.3. Latent state-space models 29

N

W

N

W

N

W

θ1

z

w

β1

θ2

z

w

β2

θ3

z ...

w

β3

y1

α1

y2

α2

y3

α3

Figure 2.6: Supervised Dynamic Topic Model Graphical Description

LSSM provide a framework which assumes the observed sequence was gen-

erated from an underlying sequence of continuous latent states that possesses the

Markov property. For a sequence of states x1:T = {xxx1, . . . ,xxxT} in which every state

is a vector xxxi = [xi,1, . . . ,xi,n] composed of n elements and a set of observations

y1:T = {yyy1, . . . ,yyyT} in which every observation is a vector yyyi = [yi,1, . . . ,yi,m] com-

posed of m elements (usually m≥ n), we may write its generative model as

Algorithm 3 Basic Latent State-Space Generative Model
Require: Model parameters θ

Sample x1 ∼ p(x1;θ)
Sample y1 ∼ p(y1|x1;θ)
for t = 2 to T do

Sample xt ∼ p(xt |xt−1;θ)
Sample yt ∼ p(yt |xt ;θ)

end for
return x1:T and y1:T

which provides conditional independence for the observations y1:T |= x1:T . One pos-

sible interpretation of this modeling is that it aims to construct a smoother process

in x - compared to the one observed in y - that is capable of expressing rich sets
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Figure 2.7: Example of multiple episodic time series

of observations in y. Whenever the parameterization for this system is fully Gaus-

sian, the computation of quantities of interest such as the posterior distribution of

the latent variables is facilitated via message parsing algorithms which constructs

the distribution via a dynamic programming schema, that can be performed due to

the sequential (tree-shaped) form of the belief network of the LSSM. Kalman filters

[31] and its variations are some of the most traditional algorithms to dealing with

this kind of system. As said previously, usually the observations at every time-point

are of fixed size, i.e., at two different time-points yi and y j, both elements will have

same dimensionality.

In the models developed in this thesis we make use of relaxations of these

characteristics, via what we call episodic and multiple time series. Episodic time

series can be defined as time series that, given a window of time on which we are

observing a phenomena, occur in subsets of this window. Multiple time series [32]

refer to the fact that in a given time-point, there might be a different number of

time series occurring simultaneously. These concepts may be better explained by

examining Figure 2.7. There, we observe a time window of 12 points in which

there is the occurrence of 6 episodic time series. At different time points there is

a variable number of multiple time series being observed, ranging from one time

series up to three simultaneously. Each episode may be of different nature, like

independent crowdfunding projects or episodes of the same nature, disciplines that

occur in a course every term and whose length is variable, for example.
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2.4 Auxiliary concepts

2.4.1 Sentiment Analysis

Sentiment analysis is the task of unveiling subjective ideas such as opinions, eval-

uations, and attitudes of people about specific elements [33] usually presented in

textual format [34]. Taking as example a set of reviews of a product on a website,

the task of sentiment analysis may be defined as the task of processing this corpus

of texts, making use of Natural Language Processing (NLP) tools in order to extract

linguistic resources such as the vocabulary and the structure of the text such that

these elements are then used in extracting the sentiment expressed in the corpora.

By sentiment, we can define the general perception (positive/negative - classifica-

tion task) or a numerical value (0 to 5 stars - ordinal regression task) belonging to a

whole document level or in each of its sentences [35]. Among the ideas presented in

the literature, [36, 37] have deeper connections to the proposed work. Both pieces

of works, while mainly focusing Twitter data, try to relate the sentiments expressed

in tweets to different observations.

[36] constructs a time-varying sentiment score, which is a daily ratio of positive

versus negative messages regarding one topic. Keywords are split into two different

groups, positive + and negative −) and the sentiment score of a topic k in a given

day t is a positive value

xk,t =
count(+words)
count(−words)

assuming that the count of negative words is positive. Due to the daily volatility of

this score, this amount is smoothed using a fixed-size moving average, and these

smoothed observations are utilized in a linear model to regress the output of tradi-

tional public opinion polls.

[37] projects tweets into what it call mood vector, a six-dimensional vector

of ratios by counting the number of terms of tweets that can represent six differ-

ent dimensions of mood, named Tension, Depression, Anger, Vigour, Fatigue, and

Confusion, as measured via the Profile of Mood State (POMS) psychometric in-
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strument. Once again, due to the variability the number of tweets in a given day

and consequently the score, they perform a z-score transformation to the sequential

score observations and then perform a comparison of their dynamics to the happen-

ing of marked events during the studied period.

Works on sentiment analysis are an important area with different findings, and

the field of understanding time-dynamics of sentiments is still an open problem

[38, 39].

2.4.2 Information Diffusion

One field closed related to sentiment analysis is the field of information diffusion,

which contemplates the idea of modeling the the process by which a piece of in-

formation (knowledge) is spread and reaches individuals through interactions [40],

which requires the idea of senders, receivers and a media which allows these inter-

actions.

Depending on the observability of these interactions, this diffusion can be clas-

sified into four different types [40]. When the network of connections between

individuals is important for the process, the diffusion may be of the type herd be-

havior which occurs when all individuals observe other one’s behavior, i.e., there is

a complete graph or information cascade, in which individuals only observe their

immediate neighbors. When dealing with unobserved/unexisting network, one may

refer to diffusion of innovations in which only the total volume of the spread of an

element is observed and epidemic in which one individual does not decide whether

joining the process or not. Definitions may vary a little, but when dealing with

online social networks specifically, the main elements are also existing [41].

It is of interest to model the dynamics in which information evolves. Works in

this field usually set a reasonable window in which the diffusion might evolve and

construct different functions to approximate the observed dynamics. In a continuous

time setting, [42] proposes a flexible family of functions to model the propagation

of news in social media, for cases in which one knows the number of participants of

the network. Several different works try to model such evolution but also including

the network (and its evolution) on which the information diffuses [43, 44, 45].
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2.5 Summary
In this chapter we present the basic elements that compose the puzzle of this the-

sis: latent variables, topic models, episodic and multiple time series and auxiliary

concepts, elements connected to sentiment analysis and information diffusion, that

allow all of these areas to be consistently glued together. Our main interest in this

work is to study the dynamic of sentiments and information attached to latent vari-

ables, such as topics, given the observation of multiple episodic time series whose

observations of single episodes are apparently unrelated to each other. In order to

perform inference and estimation in models constructed by these ideas, via graph-

ical models - especially belief networks, we make use of Variational Inference, a

reliable and fast inference - although not optimal in terms of accuracy - procedure

for graphical models in the presence of latent random variables.



Chapter 3

Topics based latent state-space model

for crowdfunding data

In this chapter, we showcase ideas related to collections of multiple time series. In

order to do so, we present the market of crowdfunding and propose an algorithmic

approach to the problem of modeling the amount of money donated to projects

throughout time and assessing the general state of the market to these projects.

Unlike existing methods, the proposed approach makes use of time-dependent latent

features derived from the textual description of the projects as explanatory variables

of project success. These features capture the current importance donors give to

the different topics addressed by existing projects. The experiments on this paper

show empirically the importance of inferring latent information in the regression

model we use, improving its performance and making a clear contribution to the

explanation of the observed data. The proposed approach connects topic models

which model the descriptions of projects to state-space time-series models which

describes the dynamics of donations to projects.

Online platforms such as Kickstarter and Indiegogo have amplified the range

and impact of crowdfunding projects around the world. The removal of geographic

barriers between independent entrepreneurs and a multitude of possible donors (the

crowd) enables the funding of a larger range of possible projects compared to tra-

ditional markets, a novel kind of exchange that is still not fully understood. Such

a market has gained much interest from the general public and the scientific com-
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munity, which aims to understand the dynamics of these projects and to create tools

that help creators to maximize the odds of success of their enterprises.

Crowdfunding in general and its specific features in Kickstarter are gaining

significant interest from the Machine Learning, Statistics and Business research

communities recently. Exploratory papers[46, 47] discuss and measure the corre-

lation in between different descriptors of projects in the crowdfunding market and

their likelihood of success. Several other papers try to understand the dynamics

of the lifetime of a project and its final outcome. In the Machine Learning and

Statistics literature, we can cite [48] constructs models using k-Nearest Neighbours

and Markov Chains as tools for classifying projects outcomes, [49] makes use of

decision trees to model the likelihood of new backers (donors) to projects, [50]

uses features collected mainly from social media sources (Facebook and YouTube)

in their Support Vector Machine model and others [51, 52, 51, 53] showcase the

necessity of understanding and modeling this emerging market.

Kickstarter is one of the world’s largest crowdfunding companies1. It works as

a platform for both advertising and supporting independent projects. Crowdfund-

ing is a growing option for entrepreneurs to gain access to resources they require

to develop their projects, which is characterized by collecting small funding contri-

butions from a large group of donors/investors. The donors then gain rewards and

access to privileges on the early development of a product or a service.

Projects on Kickstarter are usually drafts of ideas of a product or a service

which independent entrepreneurs do not have enough resources to develop. The

entrepreneurs who create projects, called creators, have to set a period in which

their projects will be available for donations. After this period, if the project gathers

at least the amount requested, then the creator of the project receives the total money

pledged. If not, then donations are sent back to the donors, here called backers.

This works as a safety regulation for both creators and backers, by first making sure

creators will have at least the amount of money they planned for their projects, and

by mitigating the chance that backers waste their money on projects that will not be

1https://www.kickstarter.com/help/stats
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finalized. There are however several other platforms with variations of this rule in

the market2.

Kickstarter allows for projects to be on their website by up to 60 days. Creators

describe their projects textually, including images and videos, also providing a list

of rewards to boost the possibility of high-value donations. Creators are allowed to

keep updating their projects throughout the project’s lifetime and afterward.

3.1 Model Definition
We assemble all the previous ideas to come up with a model that 1. predicts the

amount of money a project will receive in a given time-window; 2. predicts the

likelihood of success of a project within a few steps into the future; and 3. explain

these predictions in terms of the “popularity” of particular topics as they evolve in

time. A discrete-time process is used.

In order to achieve these, the model takes into consideration time-dependencies

and latent factors related to the topics of the projects. Topics are inferred using

topic models, and extra latent factors are introduced to account for the degree of

attention a topic is receiving at any given time. We call these latent time-dependent

factors ”topic heats.” The motivation for introducing these factors is illustrated in

the context of movie projects as follows: there may be periods in which people are

primarily interested in projects that involve cinema and environmental questions,

but in other periods of time the mix could be cinema and politics. These “interests”

are not directly recorded in the data, but we indirectly capture them by modeling

on-going dependencies between the amount of money people donate to projects

and the topics inferred from the (e.g. Kickstarter) web pages of the projects. These

are direct analogies to the sentiment (positive/negative) and a suitable/interpretable

measure for situational interest of a crowd to the topics describing projects. We are

unable to observe any contagious that may bring more people to make donations

and so we have a setting of diffusion of innovations.

In the following, let p index any particular project and let t index time. Given a

2http://marketingmoxie.biz/the-big-list-of-crowdfunding-sites/
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predefined number K of topics {β1, . . . ,βK}, let θp,k be the corresponding k-th topic

proportions of p, regardless of time, and αk,t be the topic heat for topic k at time t.

We denote as αt the vector formed by [α1,t . . .αK,t ]. Let zi,p and wi,p be the topic

allocation and word for position i in project p as in a standard topic model.

By following this process we have that the random variables “topic heats” are

sampled via the sampling procedure

ααα t ∼ Normal(Aααα t−1, I)

which defines a multivariate Normal first-order Markov chain with parameters

A for the load matrix and I for the covariance matrix of the multivariate normal

distribution. Based on Section 2.2, we remember that the topic proportion of each

text is sampled via

θθθ p ∼ Dirichlet(ηηη)

and along with ααα t variables, these elements compose a form of latent state-

space model for the observations of y.

Finally, let cp,t and yp,t be, respectively, fixed covariates (such as the amount

pledged by the project) and donations received (in e.g. dollars) for project p at time

t. Projects start and end at different time-points, with the fixed covariates and the

times of birth/death of a project assumed to be given instead of random.

Given all the elements ααα t , θθθ p and the possibly time-dependent covariates cp,t ,

the observed yp,t variables are sampled via a two-step hurdle model. First, an aux-

iliary y?p,t normal random variable is sampled. If the value of y?p,t is greater than

zero, another normally distributed random variable is sampled and then yp,t value is

defined. All this can be summarized in the generative algorithmic procedure 4 and

diagram 3.1.

In Algorithm 4 all new symbols are model parameters, λy? , λy, λc? and λc are

vectors of parameters and ρy? and ρy are intercept elements. By project active at

time t, we mean any project p which is open to receiving donations at time-point t.
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Figure 3.1: Graphical description of the proposed Model

Algorithm 4 Topics Based Latent State-Space Model for Crowdfunding

Require: model parameters τττ,ηηη ,A, all λ and ρ

for all Topic k do
Sample βββ k ∼ Dirichlet(τττ)

end for
for all Project description p do

Sample topic proportion θθθ p ∼ Dirichlet(ηηη)
for all Word slot i do

Sample topic allocation zi,p ∼Multinomial(1,θθθ ppp)
Sample word wi,p ∼Multinomial(1,βββ zi,p

)
end for

end for
for all time-point t do

Sample αt ∼ Normal(Aαt−1, I)
for all project p active at time t do

evaluate m?
p,t = λ T

y?(θp�αt)+ρ?
y +λ ?T

c cp,t

np,t = λ T
y (θp�αt)+ρy +λ T

c cp,t
Sample yp,t according to the hurdle model definition with parameters

(m?
p,t ,np,t ,δy)
end for

end for
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As said before, projects can last up to 60 days on Kickstarter and for different time-

points, there will be a different number of projects running. Inference in our model

means capturing this information of variable dimensionality at time t, reducing it to

the fixed-size latent elements, and transferring such information across time.

Hurdle Model

Our definition of a hurdle model is based on a two-stage model that defines a dis-

tribution on non-negative variables. In our case, each variable Y is continuous for

Y > 0 but with a positive probability for the event Y = 0. The mixture component

that generates the choice between Y = 0 and Y > 0 is given by a model for Bernoulli

outcomes based on the sign of a latent Gaussian variable. If the sign of the latent

Gaussian is positive, this is followed by generating a numeric positive value follow-

ing a log-Normal distribution:

y? ∼ N(m?,1) , y = 0 if y? ≤ 0 else exp(z) (3.1)

where z ∼ N(n,δ ). This model is going to be used to model the amount of money

pledged for a given project p at time t. m? and n are the location parameters of the

Normal distributions and in this work they are going to be random variables defined

accordingly. Specifically in this work, the hurdle model we propose is composed of

the following variables and parameters. The first element y?p,t is sampled via

y?p,t ∼ Normal(λ T
y?(θp�αt)+ρ

?
y +λ

?T
c cp,t ,1)

which is a normal distribution with fixed unitary variance and mean defined by

the sum of a bias term ρ?
y , the attached covariate vector cp,t and their respective

parameters λ ?
c plus the element-wise product of the project’s topic proportion and

the instantaneous topic heat values θp�αt times their respective parameters λy? .

Provided that y?p,t sampled value is greater than zero, a new sampling for the yp,t

value occurs via the equation

yp,t ∼ Normal(λ T
y (θp�αt)+ρy +λ

T
c cp,t ,δ

2
y )
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which stands for a different normal distribution with variance parameterized by δ 2
y

and similar construction to the mean element, having only the parameter set λy, ρy

and λc being different.

To finish the definition of the model, let F be the full set of projects, Np the

length of the text description of project p, At the set of active projects at time t, and

1 : T the whole history of observations. We then define the complete log-likelihood

of the model as

`(η ,λ ,ρ,δ ) = ∑
p∈F

[log p(θp;η)+

Np

∑
n=1

log p(zp,n|θp)+ log p(wp,n|zp,n)

]
+

log p(α1)+
T

∑
t=2

log p(αt |αt−1;λα ,δα)+

T

∑
t=1

∑
p∈At

log p(yp,t ,y?p,t |θp,αt ;λy?,ρy?,λc?,λy,ρy,λc,δy).

This assumes and conditions on the idea that topics {β1, . . . ,βK} have been prede-

fined by first fitting the standard variational latent Dirichlet allocation algorithm of

[1] which can either be done with the text of all projects or a separate set of projects,

which was the solution used in this paper due to the availability of such separate set

and preliminary tests that showed the need for such conditioning. Further details

are discussed in the following sections.

We must complete the definition of the model by stating that the first α

variables starting at time 1 follow p(α1) = N(0, I) where I is the identity ma-

trix. For each element k of αt , we define the evolution of the independent chain

p(αk,t |αk,t−1) = N(λα,k×αk,t−1,δα,k) and, as shown, we also borrow the idea of

time-varying elements but model the description of projects using traditional TM.
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3.2 Inference and Estimation

Given the definition of the complete model and the characteristics of it, we turn our

focus to defining the procedures for inference of the latent variables and estimation

of the unknown parameters of the model.

The key quantity of interest is the posterior distribution of the latent variable,

including topic heats αt . Unfortunately this posterior is intractable to compute due

to the non-linearity of the observation distribution in the time-series part of the

model and to the Dirichlet structure of the TM. On the top of that, the parameters of

the model are unknown and must be estimated from data. To obtain these quantities

we develop a Variational Bayes Expectation-Maximization (VBEM) algorithm [54]

in which a structured approximation to the posterior distribution is considered:

log p(θ ,y?,α,z|y,w)≈ q(α1:T ) ∏
p∈F

q(θp)q(zp)
T

∏
t=1

∏
p∈At

q(y?p,t)

By doing so, we maintain the temporal dependency among the topic heats,

preventing the loss of crucial temporal dependency of these latent variables. This

structure and the Gaussianity of the explicit dependency of y and y? on α allows us

to perform exact (given the structure defined) forward-backward passes to infer the

variational parameters of q(α) in a similar way to the Variational Kalman Smoother

(VKM) algorithm [55].

We provide a thorough explanation of the VBEM algorithm starting by de-

scribing the more complicated E-Step and following the M-Step, which is straight-

forward to derive and makes use of expectations of the latent variables as replace-

ments for their actual values. The explanation of the message-parsing algorithm

is highly based on [55] but the differences in the model due to the existence of

different random variables are stressed.

3.2.1 Topic heat variational distribution

In order to derive the variational distribution of the α variables, we must focus on

equation 2.1. Bringing it to the model under scrutiny, we have that:
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logq(α1:T ) ∝ E

[
log p(α1)+

T

∑
t=2

log p(αt |αt−1)+

T

∑
t=1

∑
p∈At

log p(yp,t ,y?p,t |θp,αt)

]
q(θp)q(y?p,t)

(3.2)

The given approximation allows us to make use of forward-backward mes-

sages to calculate the marginal variational distributions q(αt) and pairwise ones

q(αt ,αt−1), adapting the VKM algorithm, given that the only dependency and ex-

pectation taken in this equation takes place in the elements of log p(yp,t ,y?p,t |θp,αt),

where expectations of the θ and y? variational distributions are taken. We briefly

explain the message parsing schema, focusing that the major differences of it to the

algorithm presented in [55] are that instead of taking expectations with respect to the

parameters of the model, we take expectations on the values of y? and θ variables

and the emission component of the model contains two parts.

Also, log p(yp,t ,y?p,t |θp,αt) = log p(y?p,t |θp,αt) when y?p,t < 0 and yp,t = 0,

namely yp,t is not random in this case. We make this clear so that we can perform

the derivations without having to explicit this fact.

Although unorthodox, the following derivation general ideas in Variational In-

ference and Latent State-Space Models. Considering \α the set of latent variables

different than α , the best approximation to the sequence α1:T as3

3usually the derivation takes into consideration a single latent variable but it is straightforward to
prove its equivalence to sets of variables
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logq(α1:T ) ∝ E [log p(α1:T ,y?1:T ,y1:T )]q(\α)

logq(α1:T ) = log p(α1:T )+E

[
T

∑
t=1

∑
p∈AT

log p(y?p,t ,yp,t |θp,αt)

]
q(\α)

logq(α1:T ) = log p(α1:T )+E
[ T

∑
t=1

∑
p∈At

log p(y?p,t |θp,αt)+

T

∑
t=1

∑
p∈At+

log p(yp,t |θp,αt)

]
q(\α)

(3.3)

where At+ is the set of projects with non-zero yp,u observations. With this in hand,

we can perform traditional message parsing algorithms in the log-space of the latent

state-space model to capture the uni and bivariate marginals of interest q(αt) and

q(αt ,αt+1). To derive the marginals, we can define

logq(αt) = f (αt)+b(αt)+ const., where

f (αt) =
∫

log p(αt |αt−1)+E
[

log p(y?t−1|θt−1,αt−1)+

log p(yt−1|θt−1,αt−1)

]
q(\α)

dαt−1+

E [log p(y?t |θt ,αt)+ log p(yt |θt ,αt)]q(\α)

and

b(αt) =
∫

log p(αt+1|αt)+

E
[ T

∑
u=t+1

log p(y?u|θu,αu)+
T

∑
u=t+1

log p(yu|θu,αu)

]
q(\α)

dαt+1:T

(3.4)

where we called y?t the sets {y?p,t∀p ∈ At} to condense the notation (same for yt and
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thetat). If we pay close attention, we can realize that the messages are basically con-

structed by the composition of three Normal distributions, p(α1:t−1|y1:t−1), p(αt |yt)

and p(αt+1:T |yt+1:T ) which are composed via p(αt : αt−1) and p(αt+1|αt). These

messages are in turn of same complexity of the Kalman Smoother recursive equa-

tions in the complete Gaussian setting. In the following subsections, we are going

to develop these messages and distributions.

Forward messages

Given the definitions in 3.4, we can then develop the message-parsing algorithm.

For the first time-point t = 1, the forward message can be seen as:

f (α1) = log p(α1)+E [log p(y?1|θ1,α1)+ log p(y1|θ1,α1)]

f (α1) = logN(α1,0, I)+[
∑

p∈A1

logN(y?p,1,m
?
p,1,1)+ ∑

p∈A1+

logN(yp,1,np,1,δy)

]
q(\α)

from which we can derive that

f (α1) = logN(α1,µ1,Σ1) where Σ1 = (A1 + I)−1 and µ1 = Σ1b1

(3.5)

where the matrices A1 and b1, and also all other elements for general time-points t’s

are constructed:

At = (λy⊗λy)� ∑
p∈At+

< θp⊗θp >q(θp) /δ
2
y +

(λy?⊗λy?)� ∑
p∈At

< θp⊗θp >q(θp)

(3.6)

and
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bt = λy� ∑
p∈At+

< θp > (yp,t− (λ T
c cp,t +ρy)>)/δ

2
y +

λy?� ∑
p∈At

< θp > (< y?p,t >−(λ T
c?cp,t +ρy?))

(3.7)

Having the base case of this recursion fixed, i.e., the elements of this message,

the mean and covariance matrix, we can perform the general cases

f (αt) =
∫

f (αt−1)+ log p(αt |αt−1)dαt−1+

E [log p(y?t |θt ,αt)+ log p(yt |θt ,αt)]

f (αt) =
∫

logN(αt−1; µ1,Σ1)+ logN(αt ,λααt−1, I)dαt−1+[
∑

p∈At

logN(y?p,t ,m
?
p,t ,1)+ ∑

p∈At+

logN(yp,t ,np,t ,δy)

]
q(\α)

which in turn becomes

f (αt) = logN(αt ; µt ,Σt) where

Σ
?
t−1 =

(
Σ
−1
t−1 +λ

T
α λα

)−1

Σt =
(
At + I−λαΣ

?
t−1λ

T
α

)−1

µt = Σt
(
bt +λαΣ

?
t−1Σ

−1
t−1µt−1

)

(3.8)

This is the usual derivation of the VBKM as seen in the literature [55] and the

basic difference is that the expectations of topic proportions θ are absorbed in the

matrices At and vectors bt .
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Backward messages

The backward messages procedure follows the same scheme as previous equations

and we follow the definition on 3.4. Starting with the definition that b(αT ) = 0, we

have

b(αt) =
∫

log p(αt+1|αt)+

E
[ T

∑
u=t+1

log p(y?u|θu,αu)+
T

∑
u=t+1

log p(yu|θu,αu)

]
q(\α)

dαt+1:T

b(αt) =
∫

log p(αt+1|αt)+b(αt+1)dαt+1

(3.9)

which give rises to:

Ψ
?
t+1 =

(
At+1 + I +Ψ

−1
t+1
)−1

Ψt =
(
λ

T
α λα −λ

T
α Ψ

?
t+1λα

)−1

ηt = Ψtλ
T
α Ψ

?
t+1
(
bt+1 +Ψ

−1
t+1ηt+1

)
(3.10)

and, by definition, ΨT = 0 and ηT = 0.

Marginals, Pairwise Covariance and Entropy

Given this message-parsing setting, the marginal distributions of αt can be easily

written as:

Φt = (Σ−1
t +Ψ

−1
t )−1

ωt = Φt(Σ
−1
t µt +Ψ

−1
t ηt)

−1

(3.11)

The Markov structure of the α sequence allows us to calculate only the pair-
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wise covariance matrices Cov[αt ,αt+1] which are simply:

Φ1,2 = (I +Ψ
−
2 1)−1λ

T (Σ−1
1 +λ

T
λ −λ

T (I +Ψ
−1
2 )−1

λ )−1

Φt,t+1 = Σ
?
t λ

T (At + I +Ψ
−1
t+1−λΣ

?
t λ

T )−1for t > 1

(3.12)

Ending this derivation, we are able to explicit the entropy of the α distribution

via:

q(α1:T ) = q(α1)
T

∏
t=2

q(αt |αt−1) = q(α1)
T

∏
t=2

q(αt ,αt−1)

q(αt−1)
(3.13)

of which we are only interested in the covariance matrices, which take the block

matrix form of

 Φt Φt,t+1

Φ′t,t+1 Φt+1


making it easy to compute the entropy of the complete chain of latent variables.

3.2.2 Derivation of the other variables

The definition of the inference procedure for the auxiliary variables q(y?), q(θ) and

q(z) also need to be defined and they follow a straightforward and easy process. The

Probit bit of the hurdle model we define in this word provides partial information

about the states y?p,t given the observation of yp,t . If yp,t = 0, then y?p,t has got to

be negative and it must be positive provided that yp,t > 0. By joining this fact with

equation 2.1 we observe that
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logq(y?p,t) ∝E
[
log1sign(yp,t)=sign(y?p,t)N(y?p,t ,mp,t ,1)

]
q(y?p,t) ∝1sign(yp,t)=sign(y?p,t)N(y?p,t ,< mp,t >,1)

=

rT N(y?p,t ,< mp,t >,1) if yp,t > 0

lRN(y?p,t ,< mp,t >,1) if yp,t = 0

(3.14)

where 1 is the indicator and sign is the signal function and rT N and lT N stand for

right-truncated and left-truncated Normal distributions [56] (chapter 19), respec-

tively. All of this is a direct derivation of Bayesian Probit Regression [57, 58].

We define the variational distributions of the topic proportions θp as Dirichlet

with parameterization γp. In order to infer the γ variational parameters, we must

optimize the fragment of the ELBO in which θp takes part. If we call Vp the time

sequence in which project p is open, the objective function of the optimization

procedure can be written as

q(θp) =
∏

K
i=1 Γ(γi)

Γ(∑K
i=1 γi)

K

∏
i=1

θ
γi−1
i

γt = argmax
γ

Np

∑
n=1

< log p(zp,n|θp)>q(zp,n)q(θp;γ) +

∑
t∈Vp

< log p(yp,t ,y?p,t |θp,αt)>q(y?p,t)q(α)q(θp;γ) −

< logq(θp;γ)>q(θp;γ)

(3.15)

The distributions of the topic allocation variables z follow standard TM-based

optimization. For a given project p and word wn, if we parameterize q as a Multino-

mial distribution using φ , we can write the distribution of the n-th topic allocation

as [1]
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q(zp,n) =
exp{logβwn+< logθp >}

∑
K
k=1 exp{logβwn,k+< logθp,k >}

(3.16)

where k indexes the k-th element of the parameter vector.

3.2.3 M-Step

The derivation of the M-Step is straightforward. We start by defining the equation

that optimizes λα parameters and follow by writing the equations that need to be

optimized to update the other parameters.

Given the diagonal construction of the parameter matrix λα , each element of

this diagonal matrix may be updated via:

λαi,i =
∑

T
t=2 < αt−1,(i,i)�αt,(i,i) >

∑
T
t=2 < α2

t,(i,i) >
(3.17)

The optimization of η follows

η = argmax
η

(η−1)T
∑
p∈F

< logθp >−|F |

[
Γ(

K

∑
k=1

ηk)−
K

∑
k=1

Γ(ηk)

]
(3.18)

where Γ is the gamma function. To optimize λ?, ρ? and λc? we maximize

λ?, ρ?,λc? = argmax
λ?, ρ?,λc?

T

∑
t=1

∑
p∈At

< log p(y?p,t |θp,αt ;λy?,ρy? ,λc?)>q(αt)q(θp)q(y?p,t)

(3.19)

and the procedure to optimize the parameters related to the y observations is analo-

gous, one having to replace y? elements for y and the set At for the set At+. These

elements are optimized independently to δy, which is then optimized in closed form

trivially.

3.2.3.1 Identifiability Issues

Due to the latent nature of the topic heats, their usage in the Hurdle part of the

model turns out to be unidentifiable, unless we enforce constraints into the parame-

ters domain. We enforce the parameters λy and λy?to be ≥ 0 by setting a constraint
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in the optimization process. By doing so we define that the more “warm” a topic is,

the more important it is to have great chunks of projects’ definitions taken by that

topic, and vice-versa, the “colder” a topic is at a given moment the less it is going

to contribute for a project to obtain donations. Enforcing these restrictions is one

of different ways to ensure identifiability and assure a meaningful model given that

both these model parameters and the elements connected to them (topic propor-

tion and topic heat) are latent unobserved quantities. Provided that these random

variables were observed, it would not be necessary to enforce such constraints. A

similar result could be achieved by enforcing the topic heat variables to be positive

only (> 0) either by turning them into Log-Normal random variables or making use

of the exp(ααα) values in the expression shown in Algorithm 4. This solution is eval-

uated in Chapter 4. Connecting all the pieces of the model definition and inference

and estimation procedures, the complete VBEM algorithm is present in Algorithm

5.

Algorithm 5 VBEM algorithm for learning model described in algorithm 4

1: initialize q(α), q(θ), q(y?) and q(z)
2: initialize η , λy? , ρy? , λc? , λy, ρy, λc, δy
3: while not converged do . VBEM convergence
4: while not converged do . VBE-Step convergence
5: optimize q(α) according to 3.11 and 3.12
6: optimize q(θ) according to 3.15 using L-BFGS-B
7: optimize q(y?) according to 3.14
8: optimize q(z) according to 3.16
9: end while

10: . M-Step
11: optimize η according to 3.18
12: optimize λα according to 3.17
13: optimize λy? , ρy? , λc? according to 3.19
14: optimize λy, ρy, λc, δy according to the adaptation to 3.19
15: end whilereturn all variational distributions and model parameters

For those elements in which there is no closed-form equation to perform the

optimization, we make use of the L-BFGS-B algorithm, which is a quasi-Newton

optimization method which allows the variables to be optimized to be constrained.

In this work we implemented this solution using the Python language and the
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Scipy/Numpy framework, along with a library of auto-differentiation. The EM al-

gorithm guarantees only local-optima solutions and every single test was run differ-

ent times until solutions converged to close-enough ELBO values.

3.3 Experiments and Results

For our experiments, we scraped a first dataset containing 100K projects from Kick-

starter for which we used to construct the topics used in the modeling. We prepro-

cessed the data and ended with 9086 different terms that stemmed, generating 2740

terms in total. These terms and these texts were used to construct the topics, which

were then fed into the model and kept fixed. By doing so we condition the remain-

ing of the model upon the expected values of the topics (β variables) as if they

were observed. This procedure was defined and used after preliminary simulations

in artificial data and runs using real data indicated the need for this sequential pro-

cedure and it provided a two-fold improvement in the learning process. Firstly, it

improved the running time of the learning procedure greatly. Secondly, it was ob-

served in the artificial data that the algorithm was unable to recover similar topics

to the ones generated artificially due to what seemed to be an analogous character-

istic to the one present in Generative Adversarial Networks (GAN’s) [59] in which

there is a generative and discriminative parts that compose a complete model. In

our proposed model, the topics β played the role of the generative part and the y

regression the discriminative elements. It was observed in these preliminary simu-

lations that whenever the Variational EM algorithm was performed in the complete

model that the construction of the generative topics and the utilization of them in

the regression part (via the topic proportion variables) was not able to be performed

satisfactorily specially due to the different nature of the unobserved components.

Neither the topics constructed were not meaningful or similar to the artificial topics

nor the generated regression let to stable estimations. It was not tested during the

period of this work but it is expected that the feasibility of a joint scheme could be

achieved had the learning procedure followed similar ideas to the learning schema

proposed in [59].
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The second and most important dataset was obtained throughout 7 contigu-

ous months, from April 2014 to November 2014, in which we collected data of

approximately 45K projects, which were collected regularly at every 12 hours to

get snapshots of these projects. We collected only project-related features, such as

goal, duration, number of rewards and textual description. We also constructed

a time-varying feature which we call ∆p,t that represents the scaling (unity-based

[0,1] normalization) of the duration of a project, e.g. a project p which starts at

time-point 31 and ends at time-point 60 will have features ∆p,45 = 0.5, ∆p,60 = 1

and so on. This feature is added twice in the covariate set, one time in a square

form, to simulate the U-shape format of the donations to projects observed in [60].

We evaluated the proposed model by separating the projects according to the

categories defined by Kickstarter and by learning the model making use of half of

the time-points and performing all the estimations on the projects that were active at

this time cut. We fixed the number of topics K to 10 (picking the number of topics

of a model is usually an ad-hoc task depending on the domain of the instances of

the problem, although there are algorithms that automatically estimates an optimal

number of topics [61]). We set the convergence criteria as the relative improvement

of the ELBO, stopping the algorithm whenever a complete EM-Step does not im-

prove the ELBO by 1% and set the same criteria plus a maximum of 50 iterations

on the VBE-Step of the algorithm to maintain low computational costs.

Early experiments, not discussed in the following sections, tried to make the

variational distributions of α1:T variables independently in a mean-field way, i.e.,

q(α1:T ) = ∏
T
t=1 q(αt), which turns the learning procedure to be less complex but

resulted in subpar variational distributions and results. It was observed that the

elements in log p(y?1|θ1,α1) and log p(y1|θ1,α1) densities placed much more infor-

mation into the ELBO than the Markov dependency of the likelihood log p(αt |αt−1)

meaning that the α variables ended up working as “free parameters” that only pro-

vided more adjustment to the regression part of the ELBO while not giving any

extra structure to the latent variables of meaningful information. By enforcing this

dependency - which is a must in the current literature, the α elements did not pro-
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vide such tight adjustment but provided more structure to the data and by doing so,

it was not necessarily acting as an adjustment to the y values of each time-point.

Additionally, to this maintained structure the birth and death process characteris-

tic of this data did not allow the topic heats to act as adjustments to the individual

auto-correlation of y’s of a given project.

3.3.1 Results

For each category, we present in 3.2 the scaled expected value of α given all do-

nations (smoothing distribution) for every data point in the training dataset. We

can interpret these graphical descriptions as follows: positive values for topic heats

mean that projects containing a big chunk of text referring these topics will likely

get more donations, while negative values for topic heats imply having big chunks

of the descriptions devoted to these topics will negatively influence the likelihood

of getting more donations.

With this understanding in hand, we observe some interesting relations in this

figure. First of all, we observe a difference in the heat of the topics for each different

category, which is a natural observation due to the diverse nature of these categories.

For some categories, such as Art, Technology, Games, and Photography, there is a

clear tendency of some topics having consistent more importance and others, while

in Music and Comics there is a variability and change in the most important topics.

We then used the remaining part of the dataset to construct features for black-

box algorithms in a test to understand if the topic heats variables add any sort of

information to the individual projects. In order to do so, for those projects which

started after the ending date existing in the training data, we estimated separately

each topic proportion θθθ p using only the textual description of these projects. By do-

ing so, we maintained a clear separation between the textual data and the numeric

data that would be available only in the future, be it by design as in this testing

procedure or if it was used by a manager in an online setting (data regarding do-

nations coming every 12 hours). For the numeric data we performed forecast on

the topic heat variables using a sliding window scheme. For a given time t + 1,

the expected values of αt+1 were estimated given the distribution of αt and the ob-
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Figure 3.2: Scaled topic heat through time. (Best seen in color - Each color represents a
specific topic)

served values yyyt . Then these expected values were used as inputs to estimate the

numeric responses (donations) yyyt+1 and finally the distribution of topic heats αt+1

was updated given the yyyt+1 values in a filtering fashion. This process was repeated

for every time-point t in the testing dataset.

Using the filtered distribution (forward message of the algorithm) for the ααα

variables of the remaining 200 time-points, we inputted along with the other pre-

vious covariates a new vector of covariates < θθθ p�ααα t > in order to predict every

observation yp,t . For this regression task we use the original covariates in the lin-

ear regression model we call baseline (B) and add the new vector of covariates

< θθθ p�ααα t > in the setting we call complete (C). For each new time in the testing

set, we update the filtered distribution of the ααα t variables, separately infer the distri-
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Film and Video Music Art Design
RMSE 473.8124 222.58390 140.93211 562.3657
MAE 116.4483 74.92392 44.03222 176.6190

RMSE 472.6523 222.17493 143.09378 555.2242
MAE 102.3413 69.29326 39.99157 124.7995

Publishing Technology Games Food
RMSE 216.08103 368.8366 679.5713 270.90690
MAE 48.39902 187.7912 227.7411 62.69218

RMSE 216.13318 354.1419 672.7153 272.85313
MAE 46.77517 129.2110 204.0611 61.52649

Photography Fashion Theater Comics Dance
RMSE 98.02709 189.13682 216.70607 120.64323 220.32350
MAE 34.82984 62.73192 89.88659 59.32592 93.79268

RMSE 96.38986 188.72441 216.02921 132.40438 222.0048
MAE 26.34658 57.94165 84.96142 65.82996 93.5107

Table 3.1: Average (over time) RMSE and MAE regression values for Linear Regression -
Test set (White rows for baseline model and Grey rows for complete model)

bution of θp of the description of new projects and update the Linear Model adding

the new data in the time-point in the training set and predicting the data in the fol-

lowing time point. This sort of short window (actually, the shortest possible) allow

us to maintain a good estimate of the topic heat filtered distributions. A summary

of the results is presented in Table 3.1.

As we can observe, when adding the information of the latent topic heats, the

simple linear regression algorithm achieves better average results of RMSE and

MAE in some of the categories. This provides empirical evidence that adding the

topic heat information into black-box models may provide them valuable data to

regression tasks even in the cases where there was not a clear structure evident in the

topic heat visualization, such as in the categories of Music and Design. These results

provide evidence that the α variables could be used as input for more complex

prediction models which aim to model the amount of donations projects are going

to receive in a short time-window.

The structure proposed in this model is similar to and could be used in com-

mon Multivariate Time Series instead of Collections of Episodic Time Series, it is

basically a State-Space Model for which the latent space variables are common to

all observed time-series no matter the dimension of these elements, be them vari-
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able in time or not. In Chapter 04 and Chapter 05 we enhance the proposed model

by adding dependence in episodes that occur simultaneously and by adding depen-

dence on episodes that happened in the past and no longer exist, an element that can

only be represented in episodic time series data. Alternative models to the Markov

dependency of the proposed topic heat α process can also be utilized in this frame-

work, depending on the nature of the observed data. We believe in this specific

case this was the best possible model given that the number of active projects varied

drastically throughout the observed period but its variation followed a smooth path

of increase and decrease.

3.4 Summary
In this chapter we showcase a model for dealing with multiple episodic time se-

ries. This model constructs a structure that connects topic models to these multiple

episodic time series and through this connection, a set of latent random variables

work as explanatory variables to the collection of different behaviors exhibited in

the time series elements. We chose the crowdfunding market as focus of our study

given the nature of the data collected in this market. Results present in this chap-

ter show empirically that the constructed features θ �ααα add information to both

understanding the general state of the crowdfunding market as a whole, via the con-

nection of the description of projects and the money they get donated and also add

information to the task of predicting future donations to projects.



Chapter 4

Accommodating competition through

composition of random variables

The discussion presented in chapter 3 showcases the construction of a model that

connects the textual descriptions of crowdfunding projects and the amount of money

they receive. This connection is constructed by connecting topic proportions, which

stand for the textual description part, and random variables attaching sentiments to

topics, i.e., how in vogue these topics are in a given time-point and though simple

composition, topic proportions and topic sentiments, which we call heat, are the

driving process of the amount of money received by projects.

The market constructed by crowdfunding sites are expressions of the main

problem focused in this thesis, the problem of modelling collections of multiple

episodic time series. Projects consists of description elements that can be summa-

rized via latent low-dimensional variables, they occur for a fixed period of time, the

number of projects existing in a given time-point is highly variable and the categor-

ical separation existing in these sites indicates the existence of elements that persist

throughout time and extend longer than the lifespan of any given project.

In this chapter, we expand the ideas presented in the previous chapter in or-

der to accommodate other characteristics that the previous model could not handle

properly. The proposed modifications allow the model to express the existence of

competition among projects whose lifespan overlap and accommodate in a smooth

a posterior estimation of the topic heats in the presence of very successful projects
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while maintaining the state-space representation of topic heats. The modifications

proposed add an extra layer of difficulty to the inference process and stochastic

variational inference is used in order to overcome these difficulties.

4.1 Model Definition
The generative model proposed in chapter 3 builds up the numeric observations of

multiple time series in a traditional way, at a given time-point t, we observe that

yp1,t |= yp2,t |ααα t for every pair of projects (episodes) p1 and p2. This is a common in-

dependence assumption due to the nature of episodic time series, for which it is not

straightforward to construct a covariance matrix that will both encode dependencies

among the multiple time series and at the same time maintain a compact and easy

to compute representation. Also, given that the ααα random variables are latent and

we make inference of its distribution a posteriori of observing the y values, the pro-

posed model may overestimate the importance of some topics given the existence

of extremely successful projects (those whose donations are of orders of magnitude

higher than “the average” donation received by other projects), turning the existence

of outliers (in terms of donations) the projects that are the most representative of the

general state of topic heats, which is contrary to the aim of the model. In the pro-

posed model we aim to model the process of diffusion of information, as described

in Section 2.4.2, i.e., the process on which more people donate to different projects

whose topics are similar resulting in an increase in volume (total of donations) to

these projects. In order to construct solutions to these concerns, we try to addressed

them via:

1. Project quality random variable: To every project, we attach a random latent

variable that represents the individual quality of a given product. We aim to

use these variables as elements that answer questions related to how projects

compare to each other and how dependent of the general state of the market

the donations it receives is. In order to do so, given the multiple episodic

nature of the problem, project quality variables are then composed so that

their interpretation and influence in the stochastic process of the model is
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dependent on the collection of other projects that are simultaneously active at

any given time-point t.

2. Project quality X topic heat: Given the existence of variables that aim to

compare projects, we restructure how topics and projects relate to each other.

In chapter 3 we compose topics and projects via the multiplication of topic

heats times projects topic proportions in order to calculate a score that would

be part of the evaluation for the donations of projects. In this chapter, this

relation is also controlled by the relative importance of a project given all the

others active simultaneously.

Algorithm 6 Topic Based Latent State-Space Model with competition

Require: model parameters τττ,ηηη ,µs,δs,A,wb,bb,wg,bg,δg
for all Topic k do

Sample βββ k ∼ Dirichlet(τττ)
end for
for all Project description p do

Sample topic proportion θθθ p ∼ Dirichlet(ηηη)
for all Word slot i do

Sample topic allocation zi,p ∼Multinomial(1,θθθ ppp)
Sample word wi,p ∼Multinomial(1,βββ zi,p

)
end for

end for
for all Project p do

Sample project quality sp ∼ Normal(µs,δ
2
s )

end for
for all time-point t do

Sample αt ∼ Normal(Aαt−1, I)
for all project p active ate time t do

Sample yp,t ∼ Bernoulli(σ(wbvp,t +bb))LogNormal(wgvp,t +bg,δ
2
g )

where vp,t = (θ T
p αt)π(sp,St) and

St = {q| project q active in t}
end for

end for

These modifications establish the generative model described in Algorithm 6,

which maintains the textual-temporal structure of Algorithm 4 and adds the de-

scribed modifications to the generative structure. These modifications add a clean

and straightforward way to enhance the model to accommodate the characteristics
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of the crowdfunding markets cited previously. The key element is the interaction

between project quality variables and topic heats, which is done in the construction

of vp,t , which is

vp,t = (θ T
p αt)π(sp,St)

where π(sp,St) =
log(1+ exp{sp})

∑sq∈St log(1+ exp{sq})

and controls the important properties to the model.

Firstly, the normalization procedure of the project quality variables, performed

by the π function, addresses the concerns present in the Project quality discussion

point. In this procedure, which is composed of two projection steps, one that brings

the project quality values to the positive real space and other that brings these values

to the simplex space, via the re-normalization of the previous value by the sum of all

project quality values of active projects. This double-projection element constructs

the relative project quality of projects given all the projects active simultaneously.

In this implementation these variables are treated similar to a free parameter but

are regularized by their prior distribution with fixed parameters. In order to project

these variables to the space of positive real values, we make use of the softplus

function due to it smoothness and slow growth, compared to the exponential func-

tion, for example. By doing so, we make a non-linear transformation of the project

quality variable and add dependency among all of the projects active in a time point

t without having to resort in pairwise comparison between all pairs of projects.

Secondly, the result of this re-normalization works as a multiplicative effect

to the result of the inner-product θ ′pαt , acting as a controller to the effect of the

topic heats on the expected value of the amount of donations in time t for all ac-

tive projects. Projects that are relatively more important than others will be more

affected by the fluctuation of the market (topic heats) as a hole, stretching their ex-

pected value of donations the more important they are and the more the market is

hot.

Joining these two elements, we construct a new hurdle model whose two parts
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Figure 4.1: Simplified Graphical Model (to maintain readability) of the Generative Process
shown in Algorithm 6

are defined by a Bernoulli trial times a sampled log-normal variable. Calling this

Bernoulli trial y?p,t , it is sampled via

y?p,t ∼ Bernoulli

(
σ

(
wb(θ

T
p αt)

log(1+ exp{sp})
∑sq∈St log(1+ exp{sq})

+bb

))

on which we apply the logistic function to the resulting value of the product be-

tween parameter wb, the inner product of the θp and αt variables and the normal-

ized project quality value plus a bias term bb. Calling this log-normal term y+p,t , its

sampling procedure is defined as

y+p,t ∼ LogNormal

(
wg(θ

T
p αt)

log(1+ exp{sp})
∑sq∈St log(1+ exp{sq})

+bg,δ
2
g

)

where in a similar manner of the previous step, the mean of the proposed distribution

is composed by the product between parameter wg, the inner product of the same

latent variables θp and αt and the normalized project quality value plus a bias term

bg - keep in mind that this sampling step is only required once the Bernoulli trial

results in 1. All these elements can be best described visually in Figure 4.1.
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4.2 Inference and Estimation

In the previous model, we were able to perform a closed-form model-based ap-

proach, on which, given the proposed joint distribution of the latent α variables,

the observations y and functions of choice of the variational distributions of all the

latent variables. In the current model, we are unable to perform such approach due

to the impossibility of evaluating the ELBO of the model with the modifications in

place. The use of the re-normalization step and log-likelihood of the Bernoulli dis-

tribution are the key elements that prevent this closed-form approach and we make

use of stochastic variational inference to overcome this difficulty.

In general, inference in the current model follows the same principles of the

inference procedure for model in Algorithm 4 present in section 3.2. We maintain

the temporal structure of the ααα1:T variables while splitting the other variables as

done in the previous chapter.

q(α1:T ,θ
P, lP) = q(α1:T )∏

p
q(θp)q(lp)q(zp)

where we are using the superscript P to represent the whole set of projects. In this

setting, as discussed in Chapter 3, for the step of performing the optimization of

the variational parameters of q(α1:T ), we are faced with three different elements

that composed make the message-parsing algorithm: p(αt−1|y1:t−1), p(αt |yt) and

p(αt+1|yt+1:T ), which are combined in order to construct the optimal parameters of

q(α1:T ). The message-parsing algorithm can be constructed in closed-form when-

ever these three distributions are Normal probability distributions but if we pay

closer attention to the equation that constructs p(αt |yt), according to equation, we

can see that
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log p(αt |yt)≈ E[log p(yt |αt ,θp,sp,St)]q(St) =

∑
p∈St∧yp,y=0

logBernoulli(0|αt ,θp,St ;wb,bb)+

∑
p∈St∧yp,y>0

{
logBernoulli(1|αt ,θp,sp,St ;wb,bb)

+ logLogNormal(yp,t |αt ,θp,sp,St ;wg,bg)
}

which does not resemble any approximation to the Normal distribution and we

cannot even evaluated this element in closed form due to the logistic func-

tion of the Bernoulli distribution density and the softplus function of the re-

normalization of the project quality variables. Given that the other two elements

of the message-parsing schema are kept the same, we overcome this difficulty

by isolating the approximation of p(ααα t |yt), parameterizing this approximation as

q(ααα?
t ) = Normal(µµµ t ,Λt)

1 where Λt = CC′ and C is a lower diagonal matrix that

simplifies the optimization process of the covariance matrix of this distribution.

With all of that, we are able to separately stochastically optimize q(ααα?
t ) using

1
N ∑

i=1
N ∑

p∈St

log p(yp,t |α i
t ,θ

i
p,s

i
p,S

i
t) where

αt ∼ q(α?
t ) , θ

i
p ∼ q(θp) and sq ∼ q(sq)∀project q ∈ St

as the f function of equation 2.2 and the superscript refers to the i-sample. With

this approximation in hand, we plug it to the message-parsing algorithms as the

approximation of p(ααα ttt |yt) and proceed similarly as previously, as described the

message-parsing section of Chapter 3. As initial values to q(α?
t ) = Normal(µt ,Λt)

optimization, we make use of the current smoothed parameters of the αt elements

and perform the Cholesky decomposition of the covariance matrix of it in order to

transform this matrix into a lower diagonal matrix that will be used in the stochastic

1Do not mistake this distribution and q(ααα t), which is the marginal distribution of ααα t after the
message-parsing algorithm is run.
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step.

4.3 Experiments and Results

The experiments performed in this section followed the same structure discussed in

section 3.3. Given the similar nature of the proposed models, we focus on aspects

that were not discussed in the previous chapter. We start by describing the relative

importance of topics, in a similar way of the relative importance of projects. In

Figures 4.2 and 4.3 we show the expected temporal relative importance of topics

for every category on Kickstarter. These figures show the variation in time in which

topics become more or lest important (comparing to the other topics) to a given

category in a normalized form, i.e., relative to the interval 0-1 or 0% to 100%. So,

for the given topic set and a time-point t , topic heats numerical values for time-point

t are normalized and to the 0-1 scale.

An initial visual evaluation of these pictures shows the different relative impor-

tance every topic possesses to different categories of Kickstarter projects. This is an

expected output given that it is natural to suppose that people donating to projects

in the category Design pay attention to different topics when compared to people

donating to the Music category and vice versa. For instance, it is observed in Fig-

ure 4.2 that Topic 09 - the one represented by the dark blue color, which discuss

ideas on artwork, stories and means of publishing as seen in Table 4.1 is continu-

ously a very important topic for projects which are placed in the Design category

on Kickstarter. On the other side, this topic has barely no relative importance to the

projects placed on the Music category, as the dark blue color is not seen in the fig-

ure regarding Music. For this category, Topic 08, which discuss elements regarding

music production itself, placing record, album and studio among its top-10 words

is continuously a relative important topic for the Music category. Additionally, it is

observed for both categories and also the rest of the other ones that Topic 1, which

is a topic regarding general ideas for all projects on Kickstarter is an important topic

throughout the whole observed period. These elements are also seen in the concept

of Most Important Words which is developed and presented further in this section.
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Figure 4.2: Expected topic relative importance for 6 Kickstarter categories. (Best seen in
color - Each color represents a specific topic)

In topic model literature, there is the concept of top words (TW), which are

lists of words that are most probable for every topic. In table 4.1 we can observe

the top 10 words of each of the 10 topics constructed in the models discussed in

Chapter 03 and Chapter 04. This concept is important for defining topics and their

nature given that topic labels are named by human analysis after the evaluation of

these lists. Topics top words are important for eliciting how generic texts can be

constructed and help explain the main characteristics/label of each topic.

Here, we expand this concept by construct time-varying most important words
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Figure 4.3: Expected topic relative importance for 7 Kickstarter categories. (Best seen in
color - Each color represents a specific topic)
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Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
help updat design food game
ask last product help card

question use shirt busi play
get edt reward make player

make pm us local get
challeng app make ask add

risk devic color us level
time work get product goal
want product ship need one
go develop custom question backer

Topic 5 Topic 6 Topic 7 Topic 8 Topic 9
film help product music book

product commun use record print
work challeng design album art

produc question one song publish
stori learn manufactur help stori
show creat materi studio reward

us ask prototyp ask page
new work water question artist

festiv fund work time edit
director need need make work

Table 4.1: Top words - 10 Topics

(MIT). MITs are defined as the words that, in a given time-period, are the most

important having in order to obtain higher amounts of donations. For a given topic

k, β k = [β1,β2, ...,βW ], one constructs the top words of it by ordering the respective

vector and extracting the index of the words with higher values. We then con-

struct most important words by making a weighted sum of the β k topics by their

relative importance at a given time-point. Assuming that we store the topics in

column-matrix β = [β 1,β 2, ...,β K] and their relative instantaneous importance a

column-matrices i = [i1, i2, ..., iT ] where it = [i1,t , i2,t , ..., iK,t ] is the column vector

of importance of all topics at time-point t, the MITs can be collect from the result-

ing vector

s = [s1,s2, ..,sT ] = β
T i′
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Range 0 - 50 Range 50 - 100 Range 100 - 150 Range 150 - 200
us us us use

time use one one
use time time time
one one product product

game ask question work
get get work question

work work get get
help product ask ask
make make make make

product help help help

Table 4.2: 10 Most Important Words - Category Publishing

where st = [s1,s2, ...,sW ] is the vector containing scores for the W words of the

vocabulary at time t. We present the top words for periods 1-50, 51-100, 101-150

and 151-200 in tables 4.2 and 4.4 for the categories Publishing and Film and Video

and the instantaneous most important words for time-points 25, 75, 125 and 175 in

tables 4.3 and 4.5 for the same categories to illustrate the concept. Interestingly,

the two tables with the averaged results show a certain degree of stability in the

most important words and basically the same words repeat in both tables while

the instantaneous tables show a complete different picture (doing the 26 tables for

the 13 categories would be tiring to the reader but observe the same phenomena in

different categories). This may show that while some elements catch the attention of

the crowd at different time points, the general good practice for projects in different

categories is to construct descriptions that thoroughly explain the aim of the project

(that is, assuming that the most important words present in the tables reflect this

idea). The Most Important Words concept is a byproduct of the proposed model

and as such, it suffers the same problems encountered presented in Section 3.3.

Fortunately, stable results for this are achieved by achieving stable results for the

proposed model in this chapter.

In the model presented in this chapter, it is all important to discuss the posterior

distribution of the project quality variables, given that they can be used as elements

to try to explain the general behaviour of the crowdfunding market we study. Fig-

ures 4.4 and 4.5 show a scatter plot of all projects’ project quality (lp variables of
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Time 25 Time 75 Time 125 Time 175
expos challeng credit nearli
age due coffe link

contact school click becom
section outsid around know
account stay nearli goal
might credit shot octob
school finger alon soldier

citi take goal product
challeng around octob alon

finger visit adult shot

Table 4.3: 10 Most Important Words - Category Publishing

Range 0 - 50 Range 50 - 100 Range 100 - 150 Range 150 - 200
question one use question

use use time game
time time question time
one get one one
ask question get ask
get work ask get

work ask work work
product product product product
make make make make
help help help help

Table 4.4: 10 Most Important Words - Category Film and Video

Time 25 Time 75 Time 125 Time 175
final goal escap big
actor good secret better

tri novemb fun stay
novemb enjoy see apart

huge nearli huge bit
link need question sun
next link extra take
hope huge interview secret
need hope take see
page page shoot shoot

Table 4.5: 10 Most Important Words - Category Film and Video
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the model described in Algorithm 6) by the ratio of the donated money / requested

by project (we exclude projects whose ratio > 5 to focus the graphs on the majority

of projects).

By examining these figures we observe interesting findings. In all figures, we

may say there are big cluster of projects and the remaining projects dispersed in the

graphs. These clusters located roughly at ratios 0 to 0.5 and just above 1 and are

known in the literature of crowdfunding. Crowdfunding projects, in general, either

fail by getting less than half of the money they ask or get just a little more than asked.

Also, we expect that better projects are, in general, getting more money than worse

ones. This trend is correctly captured by the inference of the lp variables. We expect

a positive connection in these graphs and that is what is shown, Design, Games and

Comics being the clearest examples of this expressiveness. More interesting than

these visual characteristics, it is important to try to understand the effect of the

general market (topic heat) in the individual behaviour of projects.

Let us pick the general view provided by picture (f) in Figure 4.2. From

around time-point 75, topic 2 (green) becomes relative important to the Technol-

ogy category. In a painstaking process, we tried to find projects that are not great

by themselves but which may have been influenced by this surge in the impor-

tance of this topic2. We select projects South Paw Protector3, which starts at

time-point 80, received more than 2x the amount required (100 USD) and whose

E[lp] = −0.5604590072130357 and project mBuino, a programmable mbed key-

chain4 which starts at time-point 127, received more than 5x the amount required

(2000 USD) and whose E[lp] = −0.5531430194260134. Both projects have the

topic 3, among their top 3 topics. Such analysis may lead to a better understanding

of the general unobserved importance that donors give to different subjects (topics)

presented in Projects descriptions and the effect of it in the amount of money they

get throughout their lives (episodes).

2It is important to note that we are not making any causal assumption of the kind surge in the
market→ these projects succeed because of that, but we try to bring up elements that, upon further
analysis can construct such claim

3https://www.kickstarter.com/projects/1199752982/south-paw-protector
4https://www.kickstarter.com/projects/1359959821/mbuino-a-programmable-mbed-keychain
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Figure 4.4: Expected topic relative importance. X-axis = E[lp], Y-axis = $ pledged / $
requested
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Figure 4.5: Expected topic relative importance - Part 2. X-axis = E[lp], Y-axis = $ pledged
/ $ requested
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Appendix A presents the same structure of results for a model containing 20

topics instead of 10 we present here.

4.4 Summary
In this chapter we propose an extension of the model discussed in chapter 03. This

model accommodates a greater variety of elements that the previous one and is built

on ideas that allow us to express and capture competition among projects, creating

a model that ranks projects given their individual quality and that conditions the

expected numeric variables in the relative quality of the projects. This gives us a

clearer view of the general importance of topics and allow us to examine in greater

detail their influence in the success of projects. Additionally, we also construct

ideas that extend the idea of top words, giving us a view of the words that winning

projects make use of.



Chapter 5

Influence of arbitrary number of

episodes in the trending YouTube

videos

So far, we have focused on applying the constructed ideas in the crowdfunding mar-

ket. We now turn our focus on discussing elements of these ideas in the video on-

demand market. YouTube and its competitors are now some of the most important

entertainment tools for millennials, cable-cutters and digital natives.

Such markets and datasets are connected to some of the ideas present in pre-

vious chapter. Provided we collect data the way we described in Chapter 03 and

make some reasonable assumptions, we are going to observe similar behaviors in

YouTube: assuming that we can observe the list of videos (market) on YouTube in

a daily-basis, we may observe a variation on the number of daily views of videos,

new videos (episodes) are uploaded everyday, videos die - let us assume an arbi-

trary minimum number of views for videos and call them dead if they are bellow

this threshold, they may return to the interest of the public given some kind of dis-

cussions brought by a third video and so on.

Up to this point in the thesis, we were interested in the information diffusion

process of elements occurring at a given time-point. In Chapter 03 we constructed

a set of latent variables that were able to represent the diffusion of information pro-

cess of the collective interest of an unknown number of donors to the topics existing
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in the description of crowdfunding projects. In Chapter 04 we improved upon this

idea and through different elements in the model could accommodate the presence

of outliers and inner qualities of projects that are unattached to their descriptions

through topics. This kind of modeling had as hypothesis that there is a process by

which information was passed to donors, be it by digital social networks or word of

mouth, that ended up bringing more donations to a certain group of projects. In this

chapter we are concerned to a different view on this process of information diffu-

sion: are individual observations (in this case, videos) important enough so that they

generate in the near future after their death a change in the usual balance between

videos of different categories on the top trending videos of YouTube? This could be

seen as a form of contagion between videos and also adds direct dependencies from

past observations to the future elements of the latent space in the Bayesian Network

of the proposed model, something that is missing in the models of Chapters 3 and

4.

With this in mind, we make use of a publicly available dataset on YouTube

Trending Videos 1 to try to understand the effect of individual videos in the pro-

portion of videos for each YouTube category. Contrary to the previous dataset re-

lated to crowdfunding, on this one we do not observe the multiple episodes but try

to model how the summary of an important episode (a video that has been in the

Trending Videos) can affect future elements in the Trending mixture. We aim to do

it in a similar way to the ideas of propagating latent features through connections

of networks[62] where past observations are summarized and are used as inputs to

the next-step latent driver of the process of observations. In our case, videos stay

in the YouTube Trending list for a variable amount of time and so we summarize

this information into a fixed-size feature vector that is then fed into the model as

explanatory variable for future observations of the Trending Videos list.

This chapter follows the same structure as previous ones, starting with the

model definition, then passing to the inference and estimation procedures and final-

izing with the experiments and results.

1https://www.kaggle.com/datasnaek/youtube-new
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5.1 Model Definition
The generative model proposed in this section is present in Algorithm 7. The gen-

eral idea is the following: we observe daily the proportion of videos of each cate-

gory on YouTube in the Trending site. Videos may enter and leave the list in any

arbitrary day. We then assume that a minority of videos is influential and, upon their

departure of the Trending list, it will influence a new wave of videos in the same

category, making the proportion of videos in the Trending list to have a different

expected mix of videos of different categories.

Algorithm 7 Generative model for Influence of multiple videos in the Trending
Videos of YouTube
Require: model parameters wc,wn,σn,µx,Σx

for all t in 1..T do
for all category c in 1..C do

Sample bt,c ∼ Bernoulli(σ(∑v∈Dc
t−1

wT
c cv))Normal(∑v∈Dc

t−1
wT

n cv,σ
2
n )

where Dc
t−1 is the set of videos of category c that

left the Trending videos in t−1
end for
Make bt = [bt,1, ...,btC ]
Sample xxxttt ∼ Normal(µx +bt ,Σx)
Sample yyyt ∼Multinomial(n,π(xt ))
where π(x) = exp(x)/∑exp(x)

end for
return

It is straightforward to read the generative process shown in Algorithm 7 but we

need to clarify two points: first, as constructed, the videos leaving the Trending list

are only potentially influential to videos of the same category and secondly, we need

to define cv, the vector created just after a video leaves the list. Let us assume that

there are two videos leaving the Trending list that are of category 01, one has been in

the list for 10 days while the other for 2 only. The easiest way of transforming these

individual videos whose observation differs a lot is by summarizing such individuals

in features of fixed dimensionality. The collected dataset presents four covariates

(views, likes, dislikes, comments) for every observation. With this in hand, we

calculate the mean of these covariates and transform the resulting vector into the cv

covariate/variable, which is obviously of same dimensionality no matter how long
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a video stayed in the Trending list. Also, the proposed model may seem to be an

over-parameterized Multinomial-Logit regression model but we wanted to maintain

the direct influence of videos in their own categories. In other words, for a given

video v that has been in the Trending list for a period of n observations, we define

cv as

cv =
1
n

n

∑
i=1

[viewsi, likesi,dislikesi,commentsi]

where the summary of the period the video v has been in the Trending list is defined

is the means of its views, likes, dislikes and comments throughout the period. With

that in hand, for every category c and time-point t, we sample the variable bt,c which

is the latent variable that defines if the videos on category c that left the Trending list

at t−1 had influence on changing the mean number of videos of the same category

existing in the list at t. This bt,c random variable is sampled a by a hurdle model

defined via

bt,c ∼ Bernoulli(σ( ∑
v∈Dc

t−1

wT
c cv))Normal( ∑

v∈Dc
t−1

wT
n cv,σ

2
n )

where Dc
t−1 is the set of videos of category c that left the Trending videos in t−1.

This variable is then used to perturb the expected value of the number of videos of

category c in the Trending videos list at time t, which is defined by the model param-

eter µx, a time-invariant vector parameter whose c-th component regards category

c. Joining all bt,c elements into the vector bt , the random variable xt is sampled via

xxxttt ∼ Normal(µx +bt ,Σx)

for which Σx is the Covariance Matrix for this multivariate normal distribution, an-

other model parameters to be estimated (it is simplified in the experiments to the

identity matrix). The sampled xt elements are then normalized so that the mix of

videos in the Trending list yyyt is sampled using

yyyt ∼Multinomial(n,π(xt )) where π(x) = exp(x)/∑exp(x)
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where n is the fixed number of videos in the Trending list, usually 200. This is

assumed to be given and fixed and is not object of study in this work.

5.2 Inference and Estimation
The learning procedure of this model follows the same guidelines of the procedures

constructed in the previous chapters. The unknown quantities of the model are

the random latent variables of the unormalized expected number of videos in each

category xxx and the influence of past videos bt,c for each category and also the model

parameters wc,wn,σn,µx,Σx. We can not evaluate the posterior p(x,b|y) in closed-

form, neither we can evaluate the expected marginal E[p(y|x)]p(x,b|y) in a vanilla

EM algorithm, so we resort on the stochastic Variational Expectation maximization

in order to perform the learning procedure of this model.

We start by constructing the structured variational distribution of the latent

variables. The logistic-Normal step can be divided in two different elements, what

we call b?t,c and bt,c. By doing so, we construct the variational distributions of these

elements as

q(xxx,b) = q(xxx)
T

∏
t=2

∏
p∈dct−1∀c

q(b?t,c)q(bt,c)

where we maintain the stochastic dependence between all the xi elements and sep-

arate all the other random variables in the model. The parameterization for q(x) in

a similar way to q(α) in Chapter 4, by using a variational distribution of the form

q(x) = Normal(mx,Λx), where the variational parameter Λx = CC′ is constructed

using the composition of a lower diagonal matrix C times its transpose C′. This

construction allows for easy use of stochastic gradient descent and guarantees a

suitable covariance matrix for the proposed multivariate normal parameterization.

For the individual b?t,c variables we propose their variational distributions to take the

form q(b?t,c) = Bernoulli(σ(µ?
t,c)), where the variational parameter µ?

t,c is defined in

the space of the Real line so that it is easily optimized by stochastic gradient descent

as well. The remaining bt,c variables have their variational distributions defined via

q(bt,c) = Normal(lt,c,λt,c)).
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Once again, we may resort on stochastic Variational Inference due to the step

E[log p(yt |x)] for which we cannot make use of closed-form optimization to infer

the variational parameters of the related latent distributions. Similar to how we did

in Chapter 04, the function to be stochastically optimized is constructed as

1
N ∑

i=1
N log p(yt |xi

t) where

xi
t ∼ Normal(mx,Λx =CC′)

where N is the number of samples to be simulated. The other elements of the

ELBO are straightforward to write and can be computed in closed form, so the

only noisy part of the computation of the ELBO is this expectation. The complete

log-likelihood of the proposed model on which the ELBO is evaluated is

log p(y,x,b) =
T

∑
t=1

{
C

∑
c=1

log p(bt,c|Dc
t−1)+ log p(xxxt |bbbt)+ log p(yyyt |xxxt)

}
(5.1)

for which we must keep in mind that the set Dc
t−1 is actually making the condi-

tioning of bt,c on the videos belonging to yt−1 and leaving the Trending list at that

time-point.

5.3 Experiments and Results
The public dataset collected for these experiments is composed of daily observa-

tions of the top 200 (it actually varies a little in very few observations, something

that does not affect this model - this is taken as given, not estimated) videos in the

Trending section of YouTube. These sections may vary by the location of the viewer

and the data collected is related to the USA and other countries.

We then split the bases in half, 100 time-points for training and 100 for testing.

All model parameters are estimated using the training set and the variational distri-

butions of the latent variables are inferred using this part of the dataset. Following

this procedure, we performed the inference of the latent variables of the remaining
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Figure 5.1: Observations (dots), Expected values (grey line) and 95% predictive interval -
Training set Part 01
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100 time-points through a sliding window of size 1. For each time-point t, distribu-

tions of all bt,c and xxxt were evaluated and the distribution of yyyt was derived. Then

for time-point t+1, the observation of yyyt was taken into consideration for the restart

of the process regarding the latent variables and the distribution of the number of

videos in the list at time t. In figures 5.1 and 5.2 we present the 95% predictive

intervals for the proportion of videos in each category in the training dataset.

As expected, the predictive intervals for the training test comprise the majority

of the observations and in some cases are relatively tight. Unfortunately, specially

due to sampling bias, there are some problems in the fitting of the model. First, there

is no video of the category Film & Animation observed in the dataset, so the data

did not support any learning on the behavior of this specific category. In despite

of that, some other categories such as Travel & Events have their data quite well

adjusted.

One important aspect of the proposed model is to look at distribution of the

b?t,c latent variables. In this modeling, they were the key elements that “decided”

if videos that left the Trending list at a past time-point were influential to the dis-

tribution of videos in the list at a future time-point. In Figure 5.3 we take a look

at the expected values of b?t,c for the data in the US. In this histogram we observe

that videos leaving the Trending list are lightly likely to influence the future list of

videos in the short term.

Additionally, in Figure 5.4 we observe the expected values of b?t,c ∗ bt,c vari-

ables, i.e., the expected contribution of previous videos to the mean number of

videos on each category in near future Trending lists. Surprisingly, it is observed

that, although counter-intuitively, for some cases it was expected a negative contri-

butions of previous videos to the future number of videos of the same category in

the Trending list. On the other hand, it was estimated that the vast majority of time,

the contributions were expected to be near zero, meaning that the equilibrium of

the number of videos of every category in the Trending list is not usually changed

drastically and are expected to remain stable over time.

Although interesting, current results need further investigation in future work.
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Further detailing of the data under scrutiny needs to be done in order to understand if

the contributions of previous videos really occur or the model is adjusting the errors

of the estimators via the latent variables. Current data did not provide means to these

detailing but the small number of cases where it was expected some influence via

b?t,c ∗ bt,c may help further investigation. In the Appendix we provide more results

for the testing data but the general behaviour of the model remains. The adjustment

of the model is less effective but this happens due to the simpler learning procedure.

5.4 Summary
In this chapter we proposed a model to encode the diffusion of information via con-

tagion the moment after an episode occurs in the scenario of videos in the Trending

list on YouTube. This contagion was meant to be enclosed to the videos in the same

category as the episode that had just occurred. It adds a different element to the

models studied in the previous chapters, which is the characteristic of post mortem

contribution. This feedback mechanism has been studied in different settings [62]

and may contribute to the enhancement of models containing episodic time series

in general.



Chapter 6

General Conclusions

Throughout this thesis we have considered, discussed and constructed exploratory

studies on information diffusion in multiple episodic time series. Here we are going

to discuss the main characteristics of the models proposed in the thesis.

Firstly, we defined what multiple episodic time series are and discussed their

existence and importance. When dealing with datasets composed of multiple

episodes, it is important to construct a model that allows a flow (in a very generic

definition) of information between past and future episodes, in a way that this flow

of information is relevant to every different instant of observations, be it an instant

in which there are few episodes occurring or many simultaneously.

Also in Chapter 2 we continued defining the elements we would use in the

thesis. Topic Models were discussed in details given that some elements of its

generative model, the topic proportion, would be part of the main feature space

described in the work, in which we plugged both variables that allowed sentiment

to be expressed by and information to be diffused through time. We also defined

latent state-space models on which the temporal processes were defined and Vari-

ational Inference, the technique that allowed us to implement the graphical models

we proposed and perform inference and estimation on them using reasonable com-

putational resources.

In Chapter 3 we construct a first model that connects textual descriptions and

numeric observations, via the random variables topic proportions and topic heats,

which varies temporally and aims to measure positive sentiments people may have
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towards topics. Via diffusion of innovations, projects that - probably by chance -

created in the correct moment, enjoy higher likelihood of receiving donations. Also

the features constructed by the topic proportions and topic heats may be used in

a regression model trying to predict future amounts of donations to projects. This

chapter showed some empirical evidence that 1 - we can connect these elements in

a reasonable sense and 2 - they can be used as elements to describe both individual

and multiple observations. The key element of this chapter is the simplicity of the

composition between variables which allows us to get a straightforward explanation

of the elements present in the composition. On the other hand, bringing the sim-

plicity of the composition of the elements to the emission process (the observation

of donations) may lead us to sub optimal results. Relaxing the assumptions made

in this part of the model could possibly give us better explanatory and predictive

results.

Chapter 4 continues the study proposed in Chapter 3 by allowing a more com-

plex interaction between the elements of the model. Previous model assumed in-

dependence between numeric observations of episodes (projects) occurring simul-

taneously given the state of the topic heat and, which is a very strong assumption

to make, given that donors in crowdfunding projects usually only donate to one

project only. In order to accommodate this competition among projects, we con-

struct a variant of the previous model by adding a new latent random variable which

is used in an improved version of the composition of variables. Fortunately, the

inference and estimation process is capable of capturing the idea of the added latent

variable and, given that, we can explore different ideas in the dataset. Once again,

on the other hand, relaxing the emission structure may allow us to improve in the

results. The structure of the latent state-space topic heat seems to be a good choice

for the flow of information that we aim to build but the very high variability of the

projects is something to be addressed.

Chapter 5 takes a different approach to the diffusion of information process,

aiming to model post mortem influence of episodes. This possibility of diffusion

is characteristic of collections of episodic time series and can be used to enhance
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the information contained in the latent space driving the process that generate the

observed values for the collection under scrutiny.

6.1 Future work

After working in this thesis, I firmly believe that the construction of features that

explain both individual and multiple observations simultaneously is of interest in

several different areas. With the popularization of Deep Learning approaches [63],

feature engineering has become an automatic task for models to tackle but I be-

lieve man-made features can still be interesting to work with. A clear example

in the Educational Field, where the framework (pedagogues would call it differ-

ently) proposed by Paulo Freire[64], the patron of Brazilian education constructs,

among many other things, a summary of human relations (not necessarily textually)

in a low dimensional vector of latent sentiments and then construct future relations

based on the previous summary elements. That is a good example of man-made

feature whose usage is interesting enough to base further improvements in the ac-

tual models. This opens doors to applying the same ideas in scenarios where texts

are not the main information source, but where well-defined psychological traits are

the driving force of diverse episodes in different contexts.

Another area where future works may be of interest is in generating a flexible

enough model for texts and numbers that accommodate a wider range of scenarios.

All the models studied in this thesis have strong statistical assumptions and work in

a very specific scenario. With the kind of interactions introduced in this work and

the enormous variety of contexts the studied papers present, it may be of interest to

construct a body of work that brigs all the scenarios under a similar construction and

relax the strong assumptions the models make. With all the theory developed and

good utilization in different datasets and scenarios, this kind of model may become

basis upon more complex work can be made.

Another interesting line of research may be post mortem analysis and model-

ing, in which the episodes influence the driving process of multiple time series after

their own episodes end, something that we tried to scratch in the model proposed
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in Chapter 5. Crowdfunding projects are a good example of this kind of analysis.

After they close for donations, they continue to exist if the succeed in getting the

donations they required, being open for comments by donors and updates by cre-

ators. Given the lack of maturity the crowdfunding market has, a high number of

projects fail to deliver what they promised[65] and modeling and understanding the

reasons and effects of such failures may help in maturing the market. One again, all

the difficulties of episodes and multiple time series arise in such environment.

Models proposed in Chapters 3 and 4 mix supervised and unsupervised learn-

ing in a single generative models. This construction has given us many problems

while learning the model parameters and latent variable distributions and we ap-

plied a “brute-force” solution to minimize these effects (which are already naturally

present in the EM framework), so we run several different copies of the same in-

stance of dataset, random restarting them in different areas of the parameters and

hyperparameters spaces. This introduces an enormous computational burden to our

algorithms and clever ways of training the models should be considered. One in-

teresting element to solve this problem may be the use of a similar approach to the

one present in Generative Adversarial Networks [59]. Note that we do not aim to

construct yet another version of GAN’s, but we aim to make use of the learning

algorithm/approach it uses to train the network in our kind of models.



Appendix A

Additional results for chapter 04

We now explore the results of the same experiment shown in chapter 04 but now

making use of 20 topics instead of 10. Although there are Latent Dirichlet algo-

rithms in the literature that automatically estimate the number of topics that best

describe a corpora, I do believe that in a real-world application, picking the number

of topics in a model is a management task and, as such, depends on specialized

knowledge. In general, topic models better fit (and overfit) the data they are trained

on the more topics you allow in the model, so either one makes use of Informa-

tion Criteria to evaluate the quality of models or make use of this prior specialized

knowledge,

Figures A.1 and A.2 show the relative importance of the 20 topics in this model,

tables A.1 and A.2 show the top 10 words in the model, tales A.3 and A.5 show the

most important words categories Publishing and Film and Video and the instanta-

neous most important words for time-points 25, 75, 125 and 175 in tables A.4 and

A.6 for the same categories.
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Figure A.1: Expected topic relative importance - Part 01. (Best seen in color - Each color
represents a specific topic)
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Figure A.2: Expected topic relative importance - Part 02. (Best seen in color - Each color
represents a specific topic)
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Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
game art music print app
player artist record reward use
play work album art develop

charact perform song backer user
world new studio page devic

develop show band comic softwar
team event cd pledg phone
make danc releas goal work
new commun time get need
creat citi help includ video

Topic 5 Topic 6 Topic 7 Topic 8 Topic 9
card get local food product
game make build make use
play go food product design
ship like commun beer manufactur
deck want busi coffe prototyp
add one need recip power

pledg peopl year cook test
set time locat flavor light

player us space ingredi work
backer thing help dog need

Table A.1: Top words - 20 topics. Part 1
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Topic 10 Topic 11 Topic 12 Topic 13 Topic 14
ask student book updat product

question school publish last market
help educ stori edt busi

challeng commun write pm compani
risk learn read est fund
learn de first pledg websit

creator help author get cost
info world children us us

directli state illustr make provid
account program work want success

Topic 15 Topic 16 Topic 17 Topic 18 Topic 19
life piec print film design
one color photo product product
time design imag produc shirt
stori one photograph stori size
peopl use x work bag
would wood camera movi color
love reward photographi make made
like made anim crew us

world make work director make
live materi paint short fit

Table A.2: Top words - 20 topics. Part 2

Range 0 - 50 Range 50 - 100 Range 100 - 150 Range 150 - 200
get question product use

question get get question
time time one time
one ask use ask
ask one time get
use use question one

product product work work
work work ask make
make help make help
help make help book

Table A.3: 10 Most Important Words - Category Publishing
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Figure A.3: Expected topic relative importance. X-axis = E[lp], Y-axis = $ pledged / $
requested
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Figure A.4: Expected topic relative importance - Part 2. X-axis = E[lp], Y-axis = $ pledged
/ $ requested
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Time 25 Time 75 Time 125 Time 175
colleg colleg need due
mine edt link spring
actor age quick book
credit actor shot children
afford advanc adult chang
death afford shoot credit

advanc death star offer
day day take campaign
age credit secret movi

decemb decemb see much

Table A.4: 10 Most Important Words - Category Publishing

Range 0 - 50 Range 50 - 100 Range 100 - 150 Range 150 - 200
us last question book
use use use us
ask product ask get

product us product time
time time time product
get one get use
one get one one

work help work help
help work make make
make make help work

Table A.5: 10 Most Important Words - Category Film and Video

Time 25 Time 75 Time 125 Time 175
put soldier door movi
take tip offer forward
write track passion pay
well age reach much
job today section two
art aka two contact
aka better start upon

internet mysteri self age
today dream mysteri page
better offer age film

Table A.6: 10 Most Important Words - Category Film and Video



Appendix B

Additional results for chapter 05
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Figure B.1: Observations (dots), Expected values (grey line) and 95% predictive interval -
Test set Part 01
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Figure B.2: Observations (dots), Expected values (grey line) and 95% predictive interval -
Test set Part 02
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