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ABSTRACT
We search Dark Energy Survey (DES) Year 3 imaging data for galaxy–galaxy strong
gravitational lenses using convolutional neural networks. We generate 250 000 simulated
lenses at redshifts > 0.8 from which we create a data set for training the neural networks with
realistic seeing, sky and shot noise. Using the simulations as a guide, we build a catalogue of
1.1 million DES sources with 1.8 < g − i < 5, 0.6 < g − r < 3, r mag > 19, g mag > 20,
and i mag > 18.2. We train two ensembles of neural networks on training sets consisting of
simulated lenses, simulated non-lenses, and real sources. We use the neural networks to score
images of each of the sources in our catalogue with a value from 0 to 1, and select those with
scores greater than a chosen threshold for visual inspection, resulting in a candidate set of
7301 galaxies. During visual inspection, we rate 84 as ‘probably’ or ‘definitely’ lenses. Four
of these are previously known lenses or lens candidates. We inspect a further 9428 candidates
with a different score threshold, and identify four new candidates. We present 84 new strong
lens candidates, selected after a few hours of visual inspection by astronomers. This catalogue
contains a comparable number of high-redshift lenses to that predicted by simulations. Based
on simulations, we estimate our sample to contain most discoverable lenses in this imaging
and at this redshift range.

Key words: gravitational lensing: strong – methods: statistical.

1 IN T RO D U C T I O N

Gravitational lensing, a phenomenon arising from the relativistic
curvature of space-time around massive objects (Einstein 1936;

� E-mail: colinjacobs@swin.edu.au

Zwicky 1937), is a subject of increasing importance in astrophysics
and cosmology. Where a large lensing potential and a close
alignment of the lens mass and source coincide, strong lensing
can produce highly magnified images of distant sources. When
studied, they can serve as a unique probe of both lens and source
properties (see Treu 2010 for an overview). Since the detection of the
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first strongly lensed quasar in 1979 (Walsh, Carswell & Weymann
1979) a growing catalogue of strong lenses has been discovered,
now numbering in the hundreds.1

Individual strong lenses can be highly valuable scientifically. By
magnifying distant sources by a factor of tens to ∼100, lensing
can allow us to examine sources otherwise too distant to detect, for
instance (Stark et al. 2008; Quider et al. 2009; Newton et al. 2011;
Zheng et al. 2012; Ebeling et al. 2018), even a single star at redshift
1.5 (Kelly et al. 2017). In quantity, strong lenses can be valuable
cosmological probes; the many applications include an independent
measure of H0 via time delays between multiply-imaged quasars
(Bonvin et al. 2016), or testing Warm Dark Matter models through
the statistics of perturbations in a large sample of Einstein rings
and arcs (Vegetti et al. 2012; Li et al. 2016), including by line-of-
sight substructure (Despali et al. 2018). For the latter, lenses at high
redshift are particularly valuable.

Because of their high surface mass density, early-type galaxies
(ETGs) represent the vast majority of galaxy–galaxy lenses. ETGs
contain most of the stellar mass in the local universe, and so an
understanding of their star formation and assembly histories is
key for building an accurate picture of the evolution of structure
in the Universe. Strong lensing can act as a probe of lens mass
with precision at great distances, and is thus a crucial tool in
understanding the history of these galaxies at early times.

Observations have shown that the total density profiles of
elliptical galaxies can be well-described by a power law, with
ρ(r) ∝ r−γ ′

. Observationally, most galaxies demonstrate roughly
isothermal profiles, i.e. γ

′ ∼ 2; however, reproducing the observed
isothermality has proven challenging for simulations. Magneticum
and EAGLE simulations both predict slopes significantly shallower
than observed in local galaxies (Bellstedt et al. 2018). Simulations
also predict that γ

′
becomes shallower over time (Remus et al.

2017), whilst observations suggest the opposite (Sonnenfeld et al.
2013; Shankar et al. 2018). This tension implies that our under-
standing of the mechanisms by which galaxies evolve, such as the
role of dissipationless dry mergers at later times, is incomplete. At
the present time, the redshift leverage of existing observations is
insufficient to settle this question; only five lenses at redshift >0.8
have been available for this analysis.

Locally, the mass density profiles of ETGs have been probed
using tools such as stellar dynamics (notably Tim de Zeeuw et al.
2002; Cappellari et al. 2011) and the dynamics of H I gas regions
(e.g. Weijmans et al. 2008) and globular clusters (e.g. Oldham &
Auger 2018); however, beyond the local universe, lensing is the
most practical tool. The Einstein radius of a lens system is an
observable quantity and is proportional to the mass within that
radius; combined with a measurement of velocity dispersion and
source and lens redshifts, a robust measurement of the Einstein
radius can constrain γ

′
, the mean total density slope, to under

5 per cent (Treu & Koopmans 2004; Treu 2010; Ruff et al. 2011).
This analysis has been carried out at local redshifts, for instance
by Collier, Smith & Lucey (2018) (two galaxies at z = 0.03 and
z = 0.05); on 16 Sloan Lens ACS Survey (SLACS) galaxies in
the redshift range 0.08–0.33 by Barnabè et al. (2011); and on 25
Strong Lensing Legacy Survey (SL2S) galaxies at redshifts 0.2–
0.8 by Sonnenfeld et al. (2013), constraining γ

′
to ∼5 per cent in

that range. A bigger sample of lenses at redshift >0.8 is needed to

1L. A. Moustakas & J. Brownstein, private communication. Data base of
confirmed and probable lenses from all sources, curated by the University
of Utah. http://admin.masterlens.org

confirm the evolution of gamma with redshift and thereby constrain
simulations and our corresponding understanding of the physics of
galaxy evolution.

Finding strong lenses, especially at higher redshifts, remains a
significant challenge. Currently several hundred examples of con-
firmed or likely galaxy–galaxy strong lenses have been discovered
(the Masterlens data base2 Collett 2015), with several hundred more
awaiting spectroscopic or high-resolution follow-up. Modelling
such as Collett (2015) and Treu (2010) predicts that several thousand
lenses should be detectable in current surveys such as the Dark
Energy Survey (DES; The DES Collaboration 2005) and tens of
thousands in next-generation surveys such as the Large Synoptic
Survey Telescope (LSST; Ivezic et al. 2008) and Euclid (Amiaux
et al. 2012).

In the past, entire surveys could be searched by eye, but the
data sets are now of a scale that makes this impractical. Previous
strategies for automating the lens search have included searching
images for characteristic features such as arcs and rings (Lenzen,
Schindler & Scherzer 2004; Alard 2006; Estrada et al. 2007;
Seidel & Bartelmann 2007; More et al. 2012; Gavazzi et al. 2014),
searching for red-near-blue sources (Bolton et al. 2006; Diehl et al.
2017), applying machine learning to survey catalogues (Agnello
et al. 2015), and modelling sources as lenses and testing the quality
of the residual for a match (Marshall et al. 2009; Chan et al.
2015). Citizen scientists have also been recruited, with 30 000
volunteers helping to search the Canada-France-Hawaii Telescope
Legacy Survey (CFHTLS) for strong lenses (Marshall et al. 2016;
More et al. 2016). Some recent efforts have focused on machine
learning techniques, in particular ‘Deep Learning’, involving the use
of large artificial neural networks (ANNs). These techniques have
already proved effective at finding lenses. Neural nets can effectively
distinguish between simulated lenses and non-lenses (Avestruz et al.
2017; Hezaveh, Levasseur & Marshall 2017; Jacobs et al. 2017;
Lanusse et al. 2018). Applying the technique to surveys, Jacobs
et al (2017) used an ensemble of convolutional neural networks
(CNNs) to find several hundred previously known lenses and 17
new candidates in CFHTLS in under an hour of astronomer review
time, and Petrillo et al (2017) used CNNs to identify 56 new lens
candidates in the Kilo Degree Survey (KiDS).

In DES, previous searches have relied heavily on the inspection
of many thousands of candidates chosen from catalogue photometry
(see Section 5.6). Collett’s (2015) simulation suggests that approx-
imately 8 per cent of detectable lenses (∼110 lenses) should lie at
redshifts >0.8. It is these lenses that are the target of the search
detailed in this work.

In this paper, we describe a first search for high-redshift lenses in
the DES using machine learning techniques. The paper is structured
as follows. In Section 2, we provide some brief background on
the machine learning technique employed in the search, namely
ANNs. In Section 3, we outline the methodology for constructing
simulations to train the neural networks, building a catalogue of
sources to search, and employing the trained networks on survey
data. In Section 4, we present the results of the search. In Section 5,
we consider ways to evaluate the performance of the lens-finding
method and improve future searches, and some prospects for follow-
up science and further development of the technique, the summarize
our conclusions in Section 6.

2L. A. Moustakas & J. Brownstein, private communication. Data base of
confirmed and probable lenses from all sources, curated by the University
of Utah. http://admin.masterlens.org
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Figure 1. Overview of artificial networks. Top left: An artificial neuron. The element-wise weighted sum of a vector input is passed through a non-linear
activation function (such as the logistic function, arctangent, or ReLU) to produce a scalar output. Top right: An example of a small fully-connected ANN,
consisting of layers of artificial neurons. Blue: Input layer, equal in size to dimensionality of input data. Green: Hidden layers. Purple: Output layer; the outputs
are interpreted according to the problem domain. Bottom: Prototypical convolutional neural network. Convolutional kernels are scanned across the input to
build up so-called feature maps; pooling layers subsample the preceding layer to reduce the spatial extent. This process is repeated some number of times, then
the resulting feature maps are passed to one or more fully-connected layers, followed by the output (yes/no) as the last layer.

2 A RT I F I C I A L N E U R A L N E T WO R K S

Here, we employ a machine learning technique to automatically find
galaxy–galaxy strong lenses in DES image data. Whilst traditional
approaches to data problems rely on algorithms developed by
subject-matter experts who define key features in the data and
their relative contributions to the problem space, machine learning
techniques extract features and their importance from data alone.
See (Jordan & Mitchell 2015) for an overview of the theory and
applications of machine learning. ANNs are a machine learning
technique first developed in the 1950s (Rosenblatt 1957) and more
heavily researched in the 1980s and 1990s (Fukushima 1980)
as non-trivial networks became computationally more tractable.
ANNs are constructed to loosely mimic the structure of the brain,
with a network of interconnected ‘neurons’, the strengths of the
connection influencing how each neuron responds to a signal from
its peers. Each artificial neuron takes an input vector; calculates
the dot product with a vector of weights (i.e. real numbers that
weight the contribution of each input value); and passes the resulting
scalar through a non-linear function such as a logistic function or
hyperbolic tangent. Neurons are arranged in layers, with an input
layer at one end, an arbitrary number of ‘hidden layers’ and an

output layer interpreted appropriately to the problem domain, such
as the probabilities a given input lies in one of N classes (see Fig. 1).
In theory, the connections between the neurons/layers can represent
a highly non-linear decision boundary in many dimensions. The
process of finding optimal values for the weights – the training – is
data driven (see below).

The combination of improved technique, widely-available GPU
computing, and the availability of large, labelled data sets means
that large ANNs with many layers (‘deep’ ANNs) are now practical.
This ‘Deep Learning’ resurgence has revolutionized several fields
such as computer vision and speech recognition that were able to
make breakthroughs in accuracy exceeding the performance of the
best hand-engineered algorithms by large margins (Schmidhuber
2015; Guo et al. 2016).

CNNs (LeCun et al. 1989) in particular have proven highly
effective at discovering patterns in image data. Unlike a standard
ANN, where each layer is fully connected to the previous layer,
a convolutional layer connects only small groups of neighbouring
neurons, and shares the weights between groups. This has the effect
of vastly reducing the number of trainable weights whilst at the same
time taking advantage of the fact that in visual data neighbouring
inputs – i.e. pixels – are highly correlated in meaningful ways.

MNRAS 484, 5330–5349 (2019)
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In effect, the network uses (usually square – e.g. 5x5 pixels)
‘convolutional kernels’ that are convolved with the input image
or outputs of a previous layer, and act as feature detectors. Outputs
are then pooled, taking the mean or maximum value of groups of
pixels, reducing the spatial extent of the data as the number of feature
maps increases. At earlier layers, raw features such as edges and
patches of colour are detected; at later layers, the network detects
patterns in an increasingly abstract and high-level feature space.
Thus, at early layers the network activates on lines and curves;
at intermediate layers on combinations of these into semantically
meaningful features; then at later layers, combining these semantic
features into a representation of the input in a classification space.

A CNN large enough to, for instance, distinguish between objects
in hundreds of categories or decipher audio data into speech contains
millions to hundreds of millions of parameters to be trained. This
requires a large (i.e. up to millions of examples) training set of
labelled data with which to optimize the weights to achieve the
desired output semantics. The full process for training a neural
network, including the back-propagation algorithm, is detailed in
LeCun et al. (1998). In brief, we construct a loss function L such that
L = 0 if the network classifies the training set perfectly, and increases
as performance accuracy decreases. A typical loss function, and the
one employed here, is a cross entropy loss function (Cao et al.
2007).3

For each training example or batch of examples, and for each
of the trainable weights wi in the network, we calculate the
gradient δi = ∂L/∂wi. Then, following the standard gradient
descent paradigm, we update the weights by Rδi where R is a
free parameter, the learning rate. In this way, with each iteration
the weights become more optimal to producing a low L and thus
more accurate classifications. Assuming a network of sufficient
complexity to encode significant patterns and key features in the
data, this performance will generalize to examples outside of the
training set. If the dimensions of the network are not optimal, or
the training set is too small, overfitting can occur where low loss
is achieved on the training set but is not reflected in performance
on examples not seen by the network during training. Typically,
training examples are divided up into training, validation and test
sets, where the training set is used to train the network and update
the weights, validation is used to measure progress during training
and assist in tuning parameters such as the learning rate, and the
test set is reserved for a final estimate of network accuracy using
labelled examples blinded from the network.

3 ME T H O D

Constructing a neural network-based system for lens-finding re-
quires the following steps. First, we assemble training sets. Due
to the limited number of known galaxy–galaxy lenses available,
these consist of simulated strong lenses and non-lens systems (see
Section 3.2). We use the training set to iteratively train two CNNs
using the KERAS Deep Learning framework (Chollet 2015) on a
GPU machine. We then take a catalogue of 1.1 million sources
selected to match the simulations in g − i and g − r colour space
and evaluate postage stamp images of each galaxy with the neural
networks, producing a score in the interval (0, 1) for each image.
We manually examine images with scores greater than a chosen

3H (y, ŷ) = − ∑
i −ylogŷ − (1 − y)log(1 − ŷ), where y ∈ 0, 1 are the

ground-truth categories and (̂y) are the predicted probabilities. H (y, ŷ) = 0
if ŷ = y.

threshold and grade them 0–3, where 0 = not a lens, 1 = possibly
a lens, 2 = probably a lens, and 3 = definitely a lens.

3.1 Choosing the target source population

Our science goal for the lens search is to assemble a population of
lenses with measurable Einstein radii at redshifts �0.8 in order to
probe their total mass profiles in this redshift range. Examining the
spectral energy distribution (SED) of a typical lensing galaxy, i.e. a
red, quiescent elliptical, we see that at redshift ≈0.8 the rest-frame
UV drop-off is pushed almost entirely redward out of the DECam
g-band filter. Thus in this redshift range we expect that a galaxy-
galaxy lens with sufficient magnification to be detectable would
exhibit bright source flux in the g-band but would lack a bright
lens counterpart in the centre of the image. This morphological hint
is something we hypothesize will be utilized by the CNNs (see
discussion in Section 5).

In this section we describe the method used to choose a subset
of sources in the DES to search for lenses. We use catalogue values
to make these cuts, then test postage stamp images of selected
sources taken from DES Y3A1 coadd imaging. We restrict our
search to a subset of sources in the survey catalogue for two reasons.
Firstly, it reduces the amount of computational resources required, a
significant consideration for a survey with around ∼10TB of image
data. Secondly, even a hypothetical, extremely accurate lens finder
with a 0.1 per cent false positive rate would be expected to identify
300 000 false positives across a survey of this size, a number 2-3
orders of magnitude greater than the number of lenses we expect to
discover (see Section 5.3). We therefore seek to increase the purity
of the sample by restricting the search to sources we know are much
more likely to be lenses than the average catalogued galaxy.

In catalogue space, ellipticals at these redshifts are very red
and the vast majority will lie at colours g − i > 3 and g −
r > 2. This serves as a starting point for our search for likely
candidates. However, the presence of a magnified lensed source,
most commonly a compact, blue, star-forming galaxy, will shift
the system in colour space to a degree difficult to predict from
first principles given the range of source and lens colours and
magnifications we expect to see. In order to constrain our catalogue
search we use simulated lenses, the production of which is detailed
below in Section 3.2. We find that for a population of 10 000
simulated high-redshift elliptical galaxies with simulated lensed
sources superimposed, the distribution of colours is as depicted in
Fig. 2. We depict the colours of our simulations with and without the
lensed source. As the simulated ellipticals are faint or undetectable
in g, there are large errors in the measured g-band magnitudes; this
scatter is visible in the figure, compared to the raw colours of our
synthetic 10 Gyr SED. Unlensed spirals are possible false positives.

The addition of a lensed source shifts the simulated systems
towards the blue end of the spectrum by up to three magnitudes.
The colours used are the intrinsic colours of the simulated lens
systems, with shot noise but without sky or any contaminants such
as nearby objects. Looking at the area of colour space where the
majority of simulated lenses lie, we build a catalogue as follows: We
choose sources with colours 2 < g − i < 5, 0.6 < g − r < 3, allowing
for a large errors in measured g-band magnitudes for faint sources.
In order to test the diminishing returns predicted by the simulations
outside this region, we supplement the catalogue with sources where
1.8 < g − i < 2, 0.8 < g − r < 1.2, as depicted in Fig. 3. We also
restrict ourselves to sources where rmag > 19, gmag > 20, imag >

18.2 again following the distribution of simulated lens luminosities.
This represents less than 0.5 per cent of the total survey catalogue.
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Figure 2. The colours (in g − i and g − r) of simulated lenses at redshifts > 0.8, showing simulations without lensed source (blue/cyan) or with (green).
As the simulated ellipticals are faint or undetectable in g by design, there are large errors in the measured g-band magnitudes; this diagonal scatter (i.e. along
the g axis) is visible in the figure, compared to the raw colours of our LENSPOP synthetic 10 Gyr SED (redshifts 0.8–1.5 depicted in magenta). Simulated
lenses with photometric g-band magnitude errors <0.2 are depicted in dark blue, the rest in cyan. We depict a set of red through blue PEGASE.2 (Fioc &
Rocca-Volmerange 1999) template tracks, with progressively increasing amounts of recent star formation to illustrate where normal z<1.5 unlensed galaxies
are expected to lie. The red dashed line is the PEGASE 10 Gyr simple stellar population model (similar to our synthetic SED); the arrows point out kinks in the
colour track at redshifts 0.4 and 1. A random selection of DES catalogue sources is depicted as red points, indicating where the denser parts of the catalogue
lie; our colour cuts are depicted as black boxes.

As we move bluer than this region of colour space, the number of
sources in the DES catalogue to examine increases rapidly, and the
number of simulated lenses decreases just as sharply. We expect
rapidly diminishing returns and so limit our search to this region,
which includes 93.4 per cent of the simulated lenses. We discuss
this further in Section 5.2.

We discard sources with undefined magnitude errors or flux errors
in gri bands, or where more than 400 pixels are masked out in the
100 × 100 postage stamps. We assemble a catalogue to search of
831 056 and 230 812 in the supplementary catalogue, for a total of
1061 868 sources selected from the complete DES catalogue.

3.2 Generating simulations

In order to optimise a neural network with millions of trainable
parameters (‘weights’) we require a training set of sufficient size.
State-of-the-art neural networks used in general computer vision
applications require of order 106 training examples for robust
training (e.g. Krizhevsky, Sutskever & Hinton 2012). Given that
the number of discovered lenses across all surveys and instruments
is in the hundreds, we must simulate lenses in order to create a
training set of sufficient size. We use a modified version of the
LENSPOP code described in Collett (2015) for this purpose.

LENSPOP generates a population of synthetic galaxies with a
singular isothermal ellipsoid (SIE) mass profile and redshifts,
masses and ellipticities drawn from realistic distributions following

the LENSPOP methodology (Collett 2015). Deflector masses are
drawn from the velocity dispersion function of SDSS (Choi,
Park & Vogeley 2007) without redshift dependence and a constant
comoving density out to redshift 2. Lens colours assume a 10
Gyr-old quiescent SED. Sources are elliptical exponential discs
with redshifts sizes and colours drawn from the COSMOS sample
(Ilbert et al. 2009). Lens light is added to the resulting image using
the Fundamental Plane relation (Hyde & Bernardi 2009) assuming
a de Vaucolours profile and the SED of an old passive galaxy.
We shift the brightness profile of the sources by one magnitude
brighter in all bands to create a larger sample of detectable lenses.
This makes the process more efficient in terms of detectable lenses
generated per second; generating an unrealistically rich sample of
bright, detectable lenses is not problematic when our goal is simply
to train our CNN and not constrain lensing statistics in the real
universe.

The LENSPOP code generates our synthetic population of lenses
and sources. The simulations are then pruned as follows. First,
lenses with redshifts >2 and <0.8 are discarded. Lens images are
then simulated using GRAVLENS (Keeton 2001) raytracing code.
Images in g, r, and i bands are produced with seeing drawn from
the DES Year 1 science verification data with a floor of 0.9 arcsec
in all bands; typical seeing of 1.1–1.2 arcsec.

Simulated shot noise is added. Lenses with signal-to-noise ratio
< 3, Einstein radii < twice seeing and magnifications less than
3 are discarded, as they are unlikely to be detectable in DES
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Figure 3. Catalogue sources (green) and new lens candidates (blue). Green contours indicated where simulated strong lenses lie. The dashed lines show a best
fit colour–colour relation for the simulated lenses, with 3σ lines shown. We choose sources from the catalogue that are within the boxes depicted, where 2 < g
− i < 5, 0.6 < g − r < 3, and where 1.8 < g − i < 2, 0.8 < g − r < 1.2.

imaging. We generate two sets of images, as FITS files 100 pixels
(30 arcsec) on a side, the first with both the flux from the lensed
source – positive examples (‘a strong lens’) and secondly, without –
negative examples (‘no lensing depicted’). These simulated lenses
are combined with randomly chosen tiles from the DES imaging to
add sky and read noise, stars, realistic background and foreground
objects, artefacts, and so on. We assembled a training set of 250 000
images as depicted in Fig. 4. A histogram of the redshifts of the
simulations is depicted in Fig. 5.

3.3 Training CNNs

The CNNs were architected with four convolutional layers with
kernel sizes 11, 5, 3, and 3, respectively, and one fully connected
layer of 1024 neurons. The non-linearity function is the rectified
linear unit (ReLU)4; a dropout (see Hinton et al. 2012) of 0.25
is added after the last convolutional layer, and 0.5 between fully
connected layers. This network architecture is similar to industry
standard network architectures such as AlexNet (Krizhevsky et al.
2012), but much simpler than the most complex networks used for
computer vision [e.g. ResNet (He et al. 2016), up to 1000 layers].
The network contains a total of 8833 794 trainable weights. The
number of layers and their dimensions are free parameters, and
an optimal architecture is still a matter of some guesswork. This
network architecture was chosen based on previous experience
(Jacobs et al. 2017) and was deemed fit for purpose based on the high
accuracy realized during the training process. A deeper network

4f(x) = max(x, 0).

could potentially result in higher training accuracy; however, the
practical limitation appears to be the translation from simulations
to real sources (see Section 5.4). A similar network to the one
presented here was used by the authors to enter the Bologna Lens
Finding Challenge (Metcalf et al. 2018) and placed third in the
detection of simulated lenses in multiband imaging.

The networks were implemented, trained, and run using code
employing the KERAS deep learning library and Theano numerical
library (Team et al. 2016). Fig. 6 depicts the network architecture;
the description of the KERAS model is also included in the Appendix.

In total, 20 CNNs with these dimensions are trained, with differ-
ences as outlined below. We create two training sets, as summarized
in Table 1. Training set 1 consists of 125 000 simulated lenses and
the same number of non-lensing elliptical galaxies. Training set 2
consists of 80 000 simulated lenses and 80 000 postage stamps of
sources chosen at random from our search catalogue (Section 4.2
as negative examples). With the first training set, we ensure the
network learns to reject simulations that do not exhibit detectable
strong lensing, forcing it to learn from the morphology of lensing
and not merely a characteristic of our simulations that inadvertently
distinguishes the simulations from real galaxies. With the second
training set, the networks will learn that objects we have not
simulated – spirals, mergers, stars, and so on – are to be considered
non-lenses. Since we expect only of order one lens in 104 sources,
this negative training set may be ‘contaminated’ by a few actual
lenses, but this will not have a discernible impact on training since
the contribution of each training example to the weight updates is
equal.

The use of two training sets with different non-lens images, as
opposed to a single larger training set combining both, has the
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Figure 4. Simulated lenses for the training set (RGB images from g, r, i bands). Left: With lensed source. Right: Without lensed source (negative examples).

Figure 5. Redshift distribution of lens galaxies and lensed sources for
simulations used in training the networks. This includes only lenses at
redshift >0.8 and the associated sources.

advantage that we can tune the weighting given to the contribution
of the two training sets when assembling a candidate set by choosing
different score thresholds for the two networks. This gives more
fine-grained control in exploring the trade-off between purity and
completeness and tuning the size of the candidate set to examine.

For each of these two training sets, we divide each into 10
equally sized subsets (folds). For each fold, we train a network
reserving that fold of the data as a validation set – not used for
training, but used to measure training progress – and the remainder
as the training examples. We thus obtain 10 networks trained on
different subsets of the training examples to hand. This process is
known as k-fold cross-validation (see Refaeilzadeh, Tang & Liu
2009 for a detailed description). There is some stochasticity in the
training process; the initial weights are randomized, the order in
which the training set is fed to the network is also random, and by
using slightly different training sets, each network thus trained will
score candidates slightly differently. Using an ensemble allows us

to smooth out the effects of outlier scores; we use the mean score
from the 10 trained networks in selecting candidates. More than 10
networks per ensemble are unlikely to add additional information,
but require GPU time to train. It has been shown (Hansen & Salamon
1990; Krogh & Vedelsby 1995) that using an ensemble of neural
networks in this way can provide a significant boost to the accuracy
of the system, e.g. a 2 per cent increase in classification accuracy
over the best performing network by an ensemble (Ju, Bibaut &
van der Laan 2017) – particularly, if the networks are trained with
different training data (Giacinto & Roli 2001).

The networks are trained on FITS data in three bands (g, r, i),
passed to the networks as 32-bit floating point values. The FITS
data, which is background-subtracted, is further normalized so that
across the training set, the mean value is zero and 99.7 per cent of
the values lie between −2.5 and 2.5.5 This is shown to optimize
convergence by the training algorithm (LeCun et al. 1998).

We train the networks until further iterations no longer decrease
the loss value on the validation set. At each epoch (iteration through
the training set), we test the accuracy of the network on the training
and validation sets, and calculate the loss for each. We halt training
when the loss on the validation set has decreased by less than a
parameter ε = 0.0001 for six epochs. Further training beyond this
point is likely to lead to overfitting to the training set.

3.4 Scoring and sorting candidate sources

Our target data set for the lens search is DES (Diehl et al. 2014;
Flaugher et al. 2015; Diehl et al. 2016) Year 3 coadd images (Abbott
et al. 2018; Morganson et al. 2018). This imaging consists of 10 346
tiles over 5000 deg2 of sky. The number of epochs is ∼4–6 per coadd
object per band, with a limiting magnitude in r of 24.9 and a pixel
scale of 0.263 arcsec pixel−1. The mean seeing is 1.06 arcsec in g
(Diehl et al. 2018). We generate postage stamps in g, r, i and bands

5X
′ = (X − μ)/σ .
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Figure 6. Architecture of neural networks used: four convolutional layers with kernel sizes 11, 5, 3, and 3, and two fully-connected layers of 1024 neurons
each.

Table 1. Training sets used to train neural networks.

Training set Positive examples Negative examples Size

TS1 Simulations Simulations 250 000
TS2 Simulations Real galaxies 160 000

of dimensions 100x100 pixels for each of the million sources in
our target catalogue. Each of the postage stamps is scored using
the pre-trained CNNs to produce two scores in the interval (0, 1)
corresponding to the two different training sets. We then examine
the distribution of scores, and choose thresholds for each score
to produce a subset of our catalogue for visual examination by
human experts. We choose the threshold such that the candidate
set is of a size that can be examined in a few hours, i.e. a few
thousand images. RGB images of each source are examined by
eye (by authors CJ, KG, and TC) and graded using software,
LensRater, developed for this purpose.6 We rate the candidates as
(0) unlikely to contain a lens: (1) possibly containing a lens, (2)
probably containing a lens, and (3) almost certainly containing
a lens. We then take the mean grade and assemble our final
candidate catalogue from those graded 2 and above. In this paper,
we define false positives as any candidates that we judge to be below
grade 1. We then estimate the completeness of our sample of lens
candidates.

3.5 Estimating photometric redshifts

The objects we discover in our search are lens candidates. In the
absence of spectroscopic follow-up, we cannot know how many
of them are genuine strong lenses, and of those that are, how
many are in our target redshift range. In order to make a first-
order approximation regarding the second question, we calculate
photometric redshifts of the lens galaxies. We use the Bayesian
Photometric Redshifts (BPZ) photo-z package.7 As inputs to the
photo-z code we use colours measured from the DES Y3 coadd
images in griz with apertures fit manually to the galaxies (excluding
blue source flux), with mag errors taken from the DES catalogue.
We quote the best fit and 2σ uncertainties output by BPZ.

6https://github.com/coljac/lensrater.
7http://www.stsci.edu/ dcoe/BPZ/.

3.6 Estimating the completeness of the sample

Our workflow involves the evaluation of machine-selected candi-
dates by human astronomers for follow-up. The optimal sample
would therefore include all sources that a human astronomer would
grade as probable or definite lenses, and not those that would
be graded otherwise, whether or not they are, in reality, strong
lenses. The completeness of our sample, as a measure of what
can realistically be detected in the imaging we are searching, is a
function of what an astronomer can discern with confidence from a
composite RGB image used for evaluation.

Collett (2015) used simulations to estimate the number of strong
lenses discoverable in DES coadd imaging. Simulating the survey
sky, using detectability criteria of signal-to-noise ratio in g greater
than 20, magnification greater than 3, and an Einstein radius greater
than the seeing (∼1 arcsec), Collett predicts ∼1300 lenses should
be discoverable by inspection of the images. These detectable
lenses had a mean lens redshift of 0.42; 8 per cent (∼110) were at
redshift 0.8–2.

How many of these theoretically detectable lenses would actually
be selected as good candidates by a human astronomer following our
lens-finding pipeline is a testable question. To better understand this
threshold, we collect one further piece of data. We assembled a set of
5000 postage stamps containing 2500 real galaxies, 1000 simulated
lenses, 1000 simulated ellipticals, and 500 simulated ellipticals
with unlensed blue sources nearby (‘phonies’) and presented these,
blinded, to authors TC and KG to evaluate. We then examine the
number of simulated high-redshift lenses graded highly by the
inspectors. Measuring the fraction of simulated lenses that were
rated highly assists us in making an estimate of the true number
of lenses we can expect to find in the survey using our automated
pipeline. Of high-redshift simulated lenses examined, 51 per cent
were given grade 0, indicating that estimates of detectability are
highly dependent on image quality and grading methodology, and
can easily be overestimated. We discuss this further in Section 5.3.

4 R ESULTS

4.1 Training neural networks

Two ensembles of neural networks were trained as described in
Section 3.3. For the first ensemble, trained on simulated lenses
with and without lensed sources, the training converged after
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Figure 7. Training of a neural network, demonstrating convergence on high
accuracy and low loss. The dashed lines show the value of loss function,
evaluated over the image set, and the solid line the classification accuracy.
Blue: Loss/accuracy on the training set. Red: Loss/accuracy on validation
set of images not used for training. The curves for other networks are similar
and so are not shown.

Figure 8. Receiver Operating Characteristic curve for the CNN trained on
training set 1, consisting of simulated strong lenses and simulated elliptical
galaxies without visible lensing. This curve shows the trade-off between a
desired true positive rate and the number of false positives produced by the
network for different values of the score threshold. The area under the curve
(AUC) for this network is 0.9993. For training set 2, the AUC is 0.9998, so
the curve is not shown.

30 ± 1 epochs in each case. The accuracy (the fraction of a
sample classified correctly: true positives+true negatives divided
by number of items tested) on the respective validation sets of
the 10 networks in the ensemble was 98.6 ± 0.1 per cent. The
training progress for a single network is depicted in Fig. 7; after
a single epoch, the training accuracy was 87 per cent, converging
slowly on the final value. On the second training set, composed of
simulated lenses and random sources from the catalogue, training
converged in fewer epochs, 20 ± 2, with a validation accuracy of
99.4 ± 0.1 per cent.

In Fig. 8, we depict the Receiver Operating Characteristic curve
for the first network, trained on simulated lenses and non-lenses,
when evaluated on examples not used during training. This figure
depicts the trade-off between the true positive rate and the false
positive rate achieved for different values of the score threshold. A
perfect system would include the point at (0, 1), namely zero false
positives and all true positives, and have an area under the curve

Table 2. Distribution of CNN scores for the two
ensembles.

Score Ensemble 1 Ensemble 2

<0.01 576 025 967 348
>0.5 156 776 9328
>0.99 35 332 433
>0.999 10 847 97

Figure 9. Distribution of scores of sources scored by CNNs. For the first
ensemble, of 1.1 million sources, 3144 had a score of 1.0 (definitely a lens),
668 408 had a score < 0.01. For the second, there were no perfect 1.0 scores,
and 810 604 scored < 0.01. There are 358 sources in the final bin with score
> 0.98.

(AUC) of 1. The AUC is for the first network is 0.9993; for the
second, it is 0.9998 and so the curve is not shown.

The total training time was approximately 40 h for the first
ensemble and 24 h for the second, trained on an NVidia K80 GPU
and Intel Xeon E5-2698 cpu with 12GB RAM and a batch size of
128 images.

4.2 Scoring catalogue sources and selecting a candidate set

Scoring a batch of 128 100x100 pixel FITS images in three bands
took ∼3 ms. With the overheads of loading the files into memory,
and scoring with 20 networks, scoring the 1 million sources in our
catalogue took approximately 6 h. The 254 GB of images were
stored in HDF5 data bases in 15 GB chunks and the CNNs were
able to load the images in batches using the HDF5 files directly, a
faster process than working with 1 million or more individual files.

We scored each of the 1.1 million postage stamps with all of
the 10 trained networks in each of the two ensembles. We took the
mean score from each ensemble to produce two scores for each
image. Of the 1061 868 sources scored by the first ensemble of
networks, 576 025 (54 per cent) were scored less than 0.01; and
by the second ensemble 967 348 (91 per cent). The first ensemble
scored 35 332 sources above 0.99; the second, only 433. The scores
are summarized in Table 2 and a histogram depicting the distribution
of scores is presented in Fig. 9.

Due to the subtleties of lensing morphology in this redshift
range, and the large number of sources evaluated, false positives
are a concern. We wish to produce a candidate set for visual
inspection that is as small (pure) as possible whilst containing
the majority of the detectable strong lenses in the survey (high
completeness). As the discoverable lenses are not known a priori,
evaluating completeness is only possible in approximation and after
evaluation by eye has been completed (see Section 5).

MNRAS 484, 5330–5349 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/4/5330/5301418 by Institute of C
hild H

ealth/U
niversity C

ollege London user on 15 April 2019



ConvNets and high-z DES lenses 5339

Table 3. Summary of candidate sets examined. These candidate sets were selected by the neural
networks with scores greater than the thresholds t1 and t2 and examined by the authors. New
candidates indicates candidates that are unique to that search; search 4 contained 22 candidates, but
only four that were not found in the other searches, demonstrating the rapidly diminishing returns.
Searches 1, 2, and 4 were applied to the larger source catalogue, search 3 was applied to the extended
catalogue only, as described in Section 3.1.

Search Size t1 t2 Candidates ≥ 2 New candidates Purity (per cent)

Search 1 3582 0.65 0.1 11 43 1.2
Search 2 1841 0.9999 0.0 5 15 0.8
Search 3 1878 0.95 0.55 6 21 1.1
Search 4 9428 0.999 0.0 3 4 0.04

We choose candidates for visual inspection by selecting score
thresholds and examining candidates that scored higher than this
number by the networks. The thresholds t1 and t2 are free parame-
ters: the scores s1 and s2 are output by the two CNN networks for
each source tested. We examine candidates where, for that source,
s1 > t1 and s2 > t2. This filters many sources scored highly by one
network but not the other.

We examine candidate sets as per Table 3. With thresholds (0.65,
0.1), we obtain 3582 images to examine; with threshold (0.9999,
0), a further 1841 candidates; and in the area of the extended
catalogue, 1878 images with thresholds (0.95, 0.55) for a total of
7301 images. We choose these candidate sets so as to explore the
relative contribution of the two CNN ensembles whilst returning a
manageable number of candidates. Following inspection of these
candidates, author CJ examines a further 9428 candidates with
scores above thresholds (0.999, 0) for a total of 16 729 images.
The set with scores (0, 0.999) contained only 49 images, all false
positives.

4.3 Examining candidate lenses

Of 16 729 examined candidates, 250 had a grade > 0, 87 ≥1, and
29 ≥ 2. With grade 0 candidates, we have an overall false-positive
rate (false positives = highly scored non-lenses) of 98.5 per cent
amongst the candidates we reviewed. Of the candidate sets we
reviewed, the purest was the 3582 candidates with scores s1 >

0.65 and s2 > 0.1, which yielded 43 candidates with grades >

1 for all examiners. Overall time taken to examine candidates
is approximately 5 h of astronomer time. Of the 87 candidates
identified with scores ≥1, 4 are known from a previous search
(Diehl et al. 2017).

The lenses with a grade ≥2 are presented in Fig. 10 and those
with 1 ≥ grade < 2 are shown in Figs 11 and 12. The candidates are
summarized in Table 4, including with the photometric redshifts for
the lenses with 2σ errors estimated by BPZ.

The scores the candidate lenses received from the networks
are presented in Fig. 13. Most candidates received scores of
approximately 1.0 from the CNN trained on simulations, but were
more evenly distributed in their scores from the second CNN
trained on simulations and real galaxies. There is no significant
difference in CNN scores by grade of lens candidate. The mean
scores for candidates of grade 2+ were 0.97 and 0.39 for the
two networks; for grade <2, the mean scores were 0.87 and 0.42,
respectively.

Our catalogue was selected by examining the combined lens and
source colours of simulated lenses (Section 3.1). Fig. 3 depicts the
position in g − r and g− i colour space of the new lens candidates,
as well as the simulations and sources from our search catalogue.

We include one candidate, DESJ0003-3348, discovered serendip-
itously in the control sample inspected in Section 3.6. It received
scores of 0.59 and 0.00 from the two networks, respectively.

5 D ISCUSSION

5.1 Efficiency of the method

CNNs have proven themselves in a variety of computer vision
problems both broadly and within astronomy, including in other
lens finding applications. Here, we also find that they performed
well on a more targeted lens search, producing dozens of high-
quality candidates with a few hours of astronomer inspection time.
Inspecting the lenses with LensRater (Section 3.4), we find that
examining 3000 candidate images per hour is a sustainable rate. We
examined approximately 7300 postage stamps, or 2.5 h, in selecting
the catalogue of new lens candidates presented in Section 4. Thus,
assuming all candidates are genuine lenses, we discover ∼30
genuine lenses in our redshift range per hour of astronomer time
and achieve completeness close to 100 per cent (see below) in a few
hours. In comparison, examining the entire catalogue of 1 million
lenses would take over 13 d at this rate, and 11 yr for all sources in
the survey.

We can almost certainly increase the completeness of our cat-
alogue by examining more potential candidates. However, as we
reduce the neural network score threshold to examine, the size of the
candidate set increases exponentially, as does the time investment
required for each additional candidate. As the candidates become
less obvious to the human eye (fainter, arc-like features more subtle),
so does the number of false positives increase. We examined 7301
candidates and identified 83 probable or definite lenses (four of
which are previously known). Examining a further 9428 candidates
uncovered only four more credible lenses in addition to those
already identified. We conclude that these diminishing returns
indicate our sample is relatively complete at this point.

5.2 Catalogue selection

We restrict our search to postage stamps of a subset of sources in
the DES survey catalogue. The catalogue cuts in g − i and g − r
colour space (Section 3.1) were chosen by reference to the integrated
colours of our simulated strong lenses in the desired redshift range.
Fig. 3 depicts the locations of both the simulations and the new
lens candidates in this space. We find good agreement between the
new candidates and the colours predicted by the simulations. The
candidates we present are significantly closer to the area in the
space where the simulations reside as opposed to the catalogue
sources more generally that exhibit greater scatter. Searching a
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Figure 10. 26 new lens candidates, with a grade ≥2, discovered in DES imaging data using CNNs. The scores from the two CNNs are shown in yellow text.
The candidates are described in Table 4.

smaller catalogue that conformed more closely to the contours of
the simulated lenses would therefore seem like a promising avenue
to yield a purer sample without sacrificing completeness. Of our
total catalogue of 1.1 million sources, 36 per cent lie >3σ from

the line best fit to the lenses. Although the CNNs perform some
of this pruning for us (of our candidate sets examined, 85 per cent
lie within this region), sometime saving is achievable here. Of the
candidates in our catalogue, all lie within the 3σ limit.
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ConvNets and high-z DES lenses 5341

Figure 11. 58 new lens candidates, with a grade 1 ≥ grade > 2, discovered in DES imaging data using CNNs. The CNN scores are shown in yellow text. The
candidates are described in Table 4.

The density of lens candidates increases towards the bluer end of
the cuts we made in both colour dimensions. This suggests widening
our search may yield further candidates. However, this area of the
colour space contains a much greater density of catalogue sources;

for instance, whilst a million sources exist in the range we chose, an
additional 2.5 million sources are present if we go 0.5 mag bluer,
and 10 million sources at 1 mag bluer in each axis. Thus, assuming
a constant rate for false positives, we would expect our purity to
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Figure 12. (Continued) 58 new lens candidates, with a grade 1 ≥ grade > 2, discovered in DES imaging data using CNNs. The CNN scores are shown in
yellow text. The candidates are described in Table 4.

drop by a factor of 2.5–10, yielding rapidly diminishing returns.
The density of simulated lenses was lower in this part of colour
space; 91 per cent of simulations are in the original catalogue area
and 5 per cent in the supplementary catalogue. Blueward of the
catalogues we searched, many spiral galaxies are to be found, and
we expect that a higher false-positive rate would accelerate the
diminishing returns in extending the search in this direction.

5.3 Completeness of the candidate sample

In Jacobs et al (2017), we used CNNs to search CFHTLS, which
had been the subject of several fruitful lens searches previously,
including visual inspection of the entire survey area (171 deg2) by
citizen scientists. Using a catalogue of lenses discovered in previous
searches, we were able to estimate a completeness of 21–28 per cent
in a candidate set of 2465 sources. Estimating completeness of our
current sample is more difficult, as we have no pre-existing reference
sample of high-redshift lenses in the survey footprint against which
to compare, and must rely on simulations to estimate the number of
discoverable lenses.

The number of detectable lenses in a survey is a function of both
the depth and seeing of the imaging, and the methodology used to
examine sources. Collett (2015) modelled the number of detectable
lenses in DES, and estimated up to 1300 could be found, of which
110 are in our target redshift range. This estimate assumes an
optimal stacking strategy, and inspection of lens-subtracted images,
which we were unable to perform due to difficulties in modelling
the point spread function of the coadd imaging.

We used LensRater, the candidate ranking pipeline described in
Section 3.6, to evaluate a mixture of simulated lenses, potentially
confusing chance alignments, and real galaxies. For simulations at
all redshifts, only 20 per cent received a grade > 0 by a human
inspector. Of 500 simulated high-redshift lenses in the sample with
Einstein radii > 2 arcsec, 247 (49 per cent), 99 (19.8 per cent),
and 24 (4.8 per cent) received grades 1, 2, and 3, respectively.
Detectability is aided at higher redshifts as the effective radius
and apparent luminosity of the lens are smaller, allowing for greater
image separation between source and lens. The estimate of 130
lenses from (Collett 2015) includes lenses with smaller Einstein
radii (59 per cent are smaller than 1.25 arcsec), so this gives us
an upper bound on the number of lenses we expect to find. 247
(49 per cent) received a grade ≥0, 99 (19.8 per cent) received a

grade >1, and 24 (4.8 per cent) received a grade of ≥2. Detectability
is aided at higher redshifts as the effective radius and apparent
luminosity of the lens are smaller, allowing for greater image
separation between source and lens. The estimate of 130 lenses
from Collett (2015) includes lenses with smaller Einstein radii
(59 per cent are smaller than 1.25 arcsec), so this gives us an upper
bound on the number of lenses we expect to find. We therefore
conclude that in DES in the order of a few tens of high-redshift lenses
have the signal-to-noise ratio and image separation required to be
selected confidently by a human inspector. Our test on simulations
can also give us some indication of the reliability of inspection
grades. Of those with grade 3, 100 per cent were simulated lenses;
for grade 2, 98 per cent; and for grade 1, 93 per cent. Conversely,
only 2 per cent of the ‘phonies’ received a grade > 0.

To estimate the completeness of our search, we also need to know
how many of the discovered lenses lie in the targeted redshift range.
The reliability of the photometric redshifts is limited by the number
of bands, contamination with flux from the blue lensed sources, and
the Bayesian priors used by the code. Due to the comparative rarity
of massive galaxies, the prior on the redshift distribution in BPZ

strongly penalizes elliptical galaxies with i ∼ 18 being beyond z >

∼0.8. However, since our galaxies are selected as strong lenses, they
must be massive and likely live in the bright tail of the luminosity
function. We therefore expect that the BPZ prior is biasing the
photometric redshifts low, but we have not quantified this effect.
Of our sample of 84 candidates, 76 are within the targeted redshift
range within the quoted 2σ errors, and 28 (33 per cent) within 1σ .
From this, we conclude that a sizeable fraction of our candidate set
are within the right redshift range, independently of whether they
are in fact strong lenses.

Of the lens candidates presented in Diehl et al. (2017), a previous
search of the DES imaging (see Section 5.6), 102 fall within out
catalogue. Of these, 33 are galaxy-scale lenses consistent with our
grading scheme but were not detected in our CNN-based search.
This may indicate that our completeness estimate is high. Another
possible explanation is that the CNNs have correctly filtered for
redshift. None of these 33 candidates have published photometric
redshifts greater than 0.8, and only 2 have redshifts less than two
times the stated redshift error below 0.8.

Here, we present a catalogue of 84 candidate lenses; 26 have a
grade ≥2. Based on the above, we expect that the majority of our
sample will be confirmed as lenses, but spectroscopic follow-up will
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Table 4. New candidates from visual inspection of the neural network-selected sources, sorted by grade.

Candidate Object id RA Dec. Grade imag zphot

DESJ0003-3348 139823797 0.8183 − 33.8012 3.00 19.77 0.56 ± 0.31
DESJ0347-2454 378100572 56.9356 − 24.9087 3.00 19.77 0.51 ± 0.30
DESJ0203-2338 67920213 30.7667 − 23.6340 3.00 19.15 0.58 ± 0.31
DESJ2216-4419 76102671 334.1592 − 44.3222 3.00 19.05 0.53 ± 0.30
DESJ2014-5757 166130477 303.5808 − 57.9504 2.67 20.64 0.76 ± 0.34
DESJ0143-0850 266637953 25.8622 − 8.8392 2.67 20.48 0.58 ± 0.31
DESJ0142-1831 266036534 25.7203 − 18.5211 2.67 19.62 0.57 ± 0.31
DESJ0124-1443 223066247 21.2211 − 14.7174 2.67 18.88 0.44 ± 0.36
DESJ0543-3752 443873820 85.7586 − 37.8770 2.67 20.06 0.54 ± 0.30
DESJ0415-4143 402556256 63.9363 − 41.7295 2.33 18.92 0.75 ± 0.34
DESJ0101-4917 290048397 15.4918 − 49.2939 2.33 20.31 0.68 ± 0.33
DESJ0357-5810 482065451 59.4035 − 58.1815 2.33 18.69 0.53 ± 0.30
DESJ0354-1609 386476783 58.5761 − 16.1645 2.33 19.34 0.53 ± 0.30
DESJ0212-0852 90442652 33.1051 − 8.8697 2.33 20.23 0.59 ± 0.31
DESJ0038-2936 157799078 9.6926 − 29.6019 2.33 21.13 0.71 ± 0.34
DESJ0058-5201 283879328 14.6447 − 52.0332 2.33 19.67 0.59 ± 0.31
DESJ0120-1820 354176405 20.1074 − 18.3338 2.33 20.77 0.71 ± 0.34
DESJ0305-1636 337847674 46.3197 − 16.6037 2.00 19.30 0.51 ± 0.30
DESJ2125-6504 191159999 321.3001 − 65.0741 2.00 19.88 0.73 ± 0.34
DESJ0024-3400 204184446 6.2373 − 34.0148 2.00 20.01 0.58 ± 0.31
DESJ0422-2132 496451011 65.5759 − 21.5461 2.00 20.23 0.54 ± 0.30
DESJ0327-3246 361760653 51.7973 − 32.7762 2.00 19.55 0.52 ± 0.30
DESJ0413-2344 400295190 63.4213 − 23.7395 2.00 20.17 0.58 ± 0.31
DESJ0412-1954 401080425 63.1615 − 19.9023 2.00 19.07 0.57 ± 0.31
DESJ0418-1817 405038616 64.6387 − 18.2982 2.00 22.13 0.86 ± 0.36
DESJ0508-2144 413900270 77.2053 − 21.7419 2.00 19.58 0.65 ± 0.32
DESJ2300-4454 106547800 345.0133 − 44.9065 1.67 20.01 0.51 ± 0.34
DESJ0546-2000 445925268 86.5211 − 20.0071 1.67 19.18 0.53 ± 0.30
DESJ2218-4504 75469120 334.7402 − 45.0738 1.67 19.83 0.55 ± 0.30
DESJ0109-0455 295037190 17.2945 − 4.9195 1.67 20.33 0.68 ± 0.33
DESJ0125-3645 266734513 21.2646 − 36.7664 1.67 19.99 0.59 ± 0.31
DESJ0332-1325 365125003 53.0106 − 13.4195 1.67 21.07 0.80 ± 0.48
DESJ0213-2413 90786519 33.2886 − 24.2292 1.67 21.35 0.65 ± 0.32
DESJ0557-2913 450317573 89.3717 − 29.2196 1.67 22.46 0.49 ± 0.46
DESJ0301-4426 337812631 45.4638 − 44.4405 1.67 21.29 0.75 ± 0.38
DESJ0313-3610 382872932 48.4060 − 36.1777 1.33 20.86 0.66 ± 0.38
DESJ0030-0426 207264051 7.6017 − 4.4478 1.33 20.25 0.63 ± 0.32
DESJ0530-6109 437004264 82.5136 − 61.1618 1.33 19.84 0.47 ± 0.29
DESJ0148-2251 254368847 27.1313 − 22.8577 1.33 19.64 0.58 ± 0.31
DESJ0110-2652 300525303 17.5715 − 26.8684 1.33 18.84 0.49 ± 0.29
DESJ0543-5825 446307824 85.7667 − 58.4196 1.33 21.47 0.66 ± 0.40
DESJ0533-2536 436520077 83.4555 − 25.6151 1.33 20.73 0.67 ± 0.33
DESJ0141-1303 264803099 25.2541 − 13.0509 1.33 20.74 0.63 ± 0.32
DESJ0521-5252 425857481 80.2896 − 52.8744 1.33 19.37 0.66 ± 0.33
DESJ0308-2106 343364859 47.2000 − 21.1039 1.33 22.28 0.77 ± 0.36
DESJ0332-5136 367575834 53.0118 − 51.6127 1.33 19.65 0.49 ± 0.34
DESJ0307-3444 342189632 46.8973 − 34.7414 1.33 20.28 0.55 ± 0.30
DESJ0202-2445 69413913 30.5277 − 24.7511 1.33 19.88 0.60 ± 0.31
DESJ0450-5044 483404421 72.5878 − 50.7436 1.33 20.80 0.55 ± 0.30
DESJ0440-5841 500132356 70.2452 − 58.6915 1.33 20.25 0.58 ± 0.31
DESJ0617-4033 464681328 94.3907 − 40.5590 1.00 20.71 0.49 ± 0.29
DESJ0535-5320 441369380 83.7508 − 53.3384 1.00 18.84 0.66 ± 0.33
DESJ0250-4104 324571256 42.6208 − 41.0717 1.00 19.37 0.55 ± 0.30
DESJ0226-3231 118076009 36.5643 − 32.5263 1.00 20.09 0.54 ± 0.30
DESJ2338-5101 138566300 354.5403 − 51.0208 1.00 20.42 0.58 ± 0.31
DESJ2245-4042 99179537 341.3828 − 40.7098 1.00 20.49 0.55 ± 0.30
DESJ0544-2509 443586921 86.0440 − 25.1584 1.00 19.89 0.46 ± 0.29
DESJ0400-2226 507569548 60.1166 − 22.4452 1.00 18.79 0.43 ± 0.28
DESJ0202-4105 68398953 30.6211 − 41.0887 1.00 19.67 0.66 ± 0.33
DESJ0624-4709 467288040 96.0659 − 47.1617 1.00 20.49 0.77 ± 0.35
DESJ0432-6002 470184935 68.2249 − 60.0451 1.00 20.62 0.71 ± 0.34
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Table 4 – continued

Candidate Object id RA Dec. Grade imag zphot

DESJ2222-5611 81574849 335.6330 − 56.1856 1.00 19.30 0.49 ± 0.29
DESJ0203-6322 66052645 30.8980 − 63.3693 1.00 19.42 0.53 ± 0.30
DESJ0603-4054 459178468 90.9654 − 40.9125 1.00 20.72 0.58 ± 0.31
DESJ0613-4509 464432181 93.3574 − 45.1528 1.00 20.30 0.61 ± 0.32
DESJ0546-4739 449145933 86.6012 − 47.6626 1.00 20.37 0.64 ± 0.38
DESJ0305-1024 341195944 46.2731 − 10.4032 1.00 21.10 0.63 ± 0.32
DESJ0150-0304 253888373 27.5379 − 3.0773 1.00 21.65 0.65 ± 0.32
DESJ0339-3914 373803496 54.8580 − 39.2375 1.00 20.11 0.53 ± 0.30
DESJ0038-2550 155609778 9.5932 − 25.8422 1.00 19.82 0.58 ± 0.31
DESJ2248-4955 101317774 342.2277 − 49.9234 1.00 19.35 0.49 ± 0.29
DESJ0315-2644 346529251 48.9752 − 26.7443 1.00 19.92 0.50 ± 0.36
DESJ2023-6457 163065099 305.8781 − 64.9653 1.00 19.98 0.51 ± 0.30
DESJ2337 + 0040 136806695 354.4976 0.6778 1.00 19.84 0.43 ± 0.28
DESJ0010-4315 182452355 2.6268 − 43.2541 1.00 20.65 0.79 ± 0.35
DESJ0408-2056 391106806 62.1010 − 20.9368 1.00 21.11 0.69 ± 0.33
DESJ0408-3956 390200758 62.1022 − 39.9407 1.00 20.20 0.54 ± 0.30
DESJ2352 + 0006 161118112 358.0487 0.1040 1.00 20.48 0.48 ± 0.29
DESJ0328-4714 364286007 52.1101 − 47.2339 1.00 22.57 0.71 ± 0.38
DESJ0155-1040 260575550 28.9336 − 10.6677 1.00 20.48 0.49 ± 0.29
DESJ2244-5903 97171633 341.0313 − 59.0510 1.00 18.82 0.50 ± 0.30
DESJ2319-5644 126893048 349.9322 − 56.7405 1.00 19.82 0.58 ± 0.31
DESJ0327-3312 364890268 51.9400 − 33.2036 1.00 21.19 0.72 ± 0.42
DESJ0314-2523 346534444 48.6681 − 25.3870 1.00 20.85 0.72 ± 0.42

Figure 13. Scores received from the CNNs by the most highly graded lens
candidates. Red: Graded 2–3 (‘probably’ or ‘definitely’ lenses). Blue: Scores
below 2 (‘possibly’ lenses). Some of the best candidates were scored as low
as 0.2 by the network trained on simulations and real galaxies.

be required to constrain the fraction that are in the correct redshift
range. Based on the photometric redshifts, we expect a at least few
tens of candidates to be confirmed, which is of a similar order to the
expected number of discoverable lenses. Although it is not possible
to constrain the error on this estimate until follow-up is undertaken,
the search seems likely to increase the number of known lenses at
high redshift by a factor of a few.

If this result is confirmed, this also represents an improvement
in purity and completeness over previous searches. Although there
is still room to improve the method, we attribute the improved
performance [compared to Jacobs et al. (2017)] to the use of CNN
ensembles, improved training set simulations, and the targeted
search, which constrains the morphological variety of the lenses
sought, particularly in lens colour.

We note our candidates include one, DESJ0543-3752, with a red
arc. This indicates that whilst the CNNs clearly make use of both

colour and morphology, a clear signal in only one can still produce
a high score.

5.4 False positives

After testing trained networks on simulated lens images, the
neural networks are able to distinguish lenses from non-lenses
with high accuracy. Selecting images with scores greater than
0.5 as lenses, the trained networks have accuracy between 98.6
and 99.4 per cent (for networks 1 and 2, respectively). If this
performance translated perfectly to the real survey imaging, we
would expect that for 1 million sources examined, we would achieve
a completeness of ∼99 per cent of the lenses in our catalogue
– approximately 100 – and 10 000 false positives (a purity of
1 per cent). Setting aside candidates that could be lenses but are
of low quality (score 1), we examined 7301 sources to find 52
lens candidates, a purity of 0.7 per cent. By that measure, the
CNN search results roughly reflect the performance expected from
training. The majority of the sources in this candidate set can
be immediately rejected by human astronomers. This implies a
significant reduction in false positives ought to be possible. Since
real-world performance now approximates the training perfor-
mance, we conclude that investigating the use of deeper and more
complex networks, as well as improving the simulations, may be
warranted.

The false positives in the sample, i.e. sources we rate as very
unlikely to be a lens/having no discernible features of strong lensing,
exhibit a wide variety of morphologies, but we can identify a few
clear trends:

(i) Blue near red: Sources of plausible colours but no obvious
morphology that would suggest strong lensing (∼10 per cent).

(ii) Low signal-to-noise ratio: Faint sources with apparent blue
flux but insufficient information present to clearly indicate lensing
(∼25 per cent).

MNRAS 484, 5330–5349 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/484/4/5330/5301418 by Institute of C
hild H

ealth/U
niversity C

ollege London user on 15 April 2019



ConvNets and high-z DES lenses 5345

Figure 14. False positives amongst candidate lenses. Left: Blue near red objects. Second from left: Low signal-to-noise ratio objects. Second from right: False
arcs. Right: Objects with no clear confusing feature.

(iii) Imposters: Blue spiral arms and other features that mimic
lensing arcs (∼5 per cent).

(iv) Unclear: Some irregular sources do not resemble typical
examples from either category, and so the CNNs’ best guesses are
undefined (∼60 per cent).

A representative sample is depicted in Fig. 14. In searches aimed
at finding lenses at other redshift ranges, we find that spiral and ring
galaxies form a large fraction of false positives, as (for instance)
blue star-forming regions in the arcs of spiral arms can trigger the
arc-detection features of the neural network strongly. In this search,
although spirals are present in the false positives, they form a smaller
fraction of the false positives we examined. Given the colours and
morphology of lenses at the higher redshift range, we expect fewer
spirals – morphological similarities notwithstanding – will activate
the networks strongly enough to achieve a high probability score.

The false positives suggest two deficiencies in the training
set. First, there may be too many simulated lenses that whilst
theoretically detectable would not be graded highly on inspection
by a human expert. Since such lenses, when detected in the survey
imaging, make poor candidates for follow-up, we may wish to
train networks instead to reject them. Secondly, we are training
the networks to place all candidates in one of only two categories,
lens or non-lens. Highly irregular objects, which do not resemble
typical examples of either lensing or non-lensing objects, receive
unpredictable scores. Despite their rarity, a future training set
could include a greater proportion of irregular galaxies; however,
by their nature it is uncertain how successful a CNN would be
at learning features from these objects. Training the networks
to place objects in more than two categories may improve the
situation.

Internally, the neural networks create a highly non-linear decision
boundary in the parameter space of all possible images, in this case
30 000 dimensions (100 × 100 pixels in three bands). Nguyen et al

(2015) demonstrated that in traditional computer vision applications
using deep neural networks, it is possible to construct images that
appear to be white noise to a human observer but strongly activate
the networks for a particular image category. This implies that if we
examine enough noisy images, as we will with large surveys, we will
encounter some which, despite their appearance to a human being,
contain a configuration of values that activate a part of the network
strongly indicative of one of the two or more defined categories. To
enhance the purity of lensing searches in future surveys, we seek
false-positive rates of order 1 in 100 000 or better – an ongoing
challenge when noisy images may activate by chance particular
parts of a trained network that indicate lensing. Further use of
ensembles of networks may mitigate this problem.

In the preceding discussion, we have considered false positives to
be candidates that a human inspector deems unlikely to be a strong
lens. However, some of these false positives are likely to be strong
lenses, only of a sort a human inspector would not grade highly. It
is possible that with improved inspection tools to aid the inspector,
such as lens-subtracted images, a human would be better able to
identify lenses that the networks score highly but are difficult to
spot in the RGB images of the sort we use here.

5.5 Choosing a candidate set

All automated lens searching methods ultimately rely on visual
inspection to confirm the quality of potential lens candidates. The
neural networks provide a score representing a probability that a
source is a strong lens. The output of a probability score by neural
networks, if provably consistent and robust, is of some value in an
astronomy context as it allows a more fine-grained allocation of
follow-up resources than the course-grained and highly stochastic
‘yes-no-maybe’ grades produced by human inspectors.

How to use this information to choose sources to examine is up to
the user. Our methodology involved examining the size of candidate
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sets that satisfied various score criteria, and visually inspecting
several of these of a manageable size (i.e. a few thousand). Beyond
this size, the law of diminishing returns makes visual inspection less
efficient as candidate sizes increase exponentially and the quality
of candidates decreases. Without a reference sample of lenses, it is
difficult to know what the optimal threshold for a candidate set is
in terms of the trade-off in purity and completeness.

We train networks with two different training sets (simulated
non-lenses, and real galaxies as non-lenses). We do this because
real galaxies that do not match the parameters of the simulated
ETGs have a high potential to confuse the network trained only
on simulations; this follows, as the network will have never seen
anything resembling (say) a spiral galaxy and thus its response
to that morphology is undefined. Beyond this intuition, the con-
tribution of the two neural network scores is a free parameter
without real constraints. Inspection of candidate sets of a similar
size from each network suggests comparable purity. To assist future
searches, examining a much larger set of candidates, perhaps by
citizen scientists, could assist in constraining the optimal settings.

In grading candidates, we discover many sources that could
possibly be a lens, where flux from a potential lensed source could be
discerned above the noise and in a plausible configuration. However,
these sources are neither bright enough nor distinct enough to the
human eye to grade higher. These candidates, although not false
positives in the usual sense, may not be of a quality that warrants
the expensive spectroscopic follow-up required to do subsequent
science. A future training set could include simulated lenses with
low signal-to-noise ratio as negative examples, to heighten the
chance of activating on only the strongest and most interesting
discoverable lenses.

We reject many candidates offered by the lens-finder with high
scores due to insufficiently strong lensing features. However, we
examine the candidates as RGB images; the neural networks operate
directly on the calibrated Flexible Image Transport System (FITS)
images and so are not as limited in dynamic range as the human
eye. We cannot be certain that the CNN is seeing something that
strongly indicates lensing that we cannot. This also suggests that
improvements in the tools used by the human vetters, such as a range
of contrast settings and single-band imaging or lens-subtracted
images, may improve the grading process.

5.6 Comparison to other DES strong lens searches

Diehl et al (2017) conducted a search of the DES science verification
(SV) and Year 1 (Y1) observations and identified 374 candidate
strong lens systems of which the authors designate 47 of high qual-
ity. The candidates were selected using several techniques including
colour-based searches (‘Blue Near Anything’) and searches of a
known catalogue of massive ETGs. Assembling this candidate set
required visual inspection of approximately 400 000 cutout images.
Nord et al. (2016, 2018 in prep) searched DES SV and Y1 data
for group and cluster-scale strong lenses, inspecting 250 square
degrees of the SV and over 7000 catalogued clusters, identifying
53 lens candidates in the former and 46 in the latter, of which
21 were confirmed spectroscopically. Whilst the comparison is
complicated by the fact that our networks were trained specifically
for lenses at high redshift, we were able to obtain high completeness
after visual inspection of only ∼17 000 candidate images (and
only slightly less complete at 7301). This suggests that our neural
network-based algorithm is considerably more efficient (in terms of
human inspection time if not in terms of GPU resources). This is
consistent with the intuition that the morphological information
learned by the CNNs (but absent in the colour-based search

methods) contains information of high value in identifying strong
lenses.

5.7 Future work

The method detailed in this work is readily applicable to lens
searches at other redshifts and in other surveys. Improvements for
future searches will include expanding the variety of galaxies repre-
sented in training sets, realistic variations in seeing in simulations,
and simulating lenses using models fit to real potential lens galaxies.
The number and architecture of the neural networks trained are still
free parameters. As more lenses are discovered in the survey these
parameters may be more easily constrained.

In this paper, we have estimated completeness against lenses a
human expert can confirm through visual inspection. Understanding
the detectability criterion better may enable the development of
improved inspection tools or mechanisms such as displaying lens-
subtracted images. If the human thresholds are understood better
training sets, that exclude real strong lenses that fall below this
threshold, will produce more useful candidate sets. Future work
will use simulations to better constrain the lensing parameters that
best facilitate human certainty.

Realizing the scientific potential of this catalogue will require
confirmation of the lenses and the measurement of lens and source
redshifts. Higher resolution imaging could also confirm lenses. With
improved seeing at or below 0.6 arcsec, a robust measurement of
the Einstein radius would be possible, sufficient for mean total
density profile slope measurement using the method employed by
Sonnenfeld (2013) and others.

6 C O N C L U S I O N

Here, we present a catalogue of 84 new high-quality strong lens
candidates from the DES Year 3 coadd imaging. For our target
population of lenses at redshift >0.8 in DES coadd images, we
estimate this sample to include the majority of those detectable
in this imaging, pending follow-up spectroscopy to confirm our
candidates. If confirmation is forthcoming, this will increase the
sample of strong lenses at these distances by a factor of 3–5. To
achieve this across the 5000 deg2 of the DES footprint required
only 4–5 h of candidate inspection time by lens experts.

In recent years, CNNs have proven a promising technique in lens-
finding and other astronomical classification applications. Some
tens of new candidate strong lenses have been identified using deep
learning already. With thousands or tens of thousands waiting to
be discovered in upcoming surveys, further development of this
method remains a promising area of research.

Here, we apply CNNs to a search targeting lenses at redshifts
>0.8. The search is motivated by the small sample of lenses known
at these distances (<10) and the strong potential for a confirmed
sample to impact our understanding of the formation histories of
elliptical galaxies at early times, in particular by helping to constrain
the evolution of the total density slope with redshift. At the targeted
redshift range, the lenses have a particular morphology, where the
central deflector is very faint in g band, which may be learned by
the ANNs during training and reduce the number of false positives.

This method, and the pipeline developed in this work, can be
readily adapted to other surveys. Adjusting simulations to match the
filters, seeing and resolution of the target survey is likely necessary
to achieve good results. Future work will focus on increasing the
purity of samples further by discarding a greater proportion of
false positive or sub-optimal candidates. Our simulations can be
improved, with more realistic variations in colour and morphology
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(e.g. groups, mergers, or spiral galaxies) possible. The simulated
seeing values were drawn from DES Y1 Science Verification values,
and was not matched to the DES Y3 coadd tiles used to construct
the simulations. This should be eliminated as a possible source of
error. Trained networks could also be improved with online learning
using the information gained by inspecting candidates; this would
complement e.g. citizen science initiatives, with human volunteers
helping networks re-train by learning from false positives labelled
by expert inspection.
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A P P E N D I X : K E R A S M O D E L SU M M A RY

Table A1. Output of the KERASmodel summary for the CNNs used in this
lens search.

LAYER ( TYPE)
OUTPUT
S H A P E

PARAMETER
COUNT

CONV2D 13 (CONV2D) (NONE, 96 ,
50 , 50 )

34 944

M A X POOLING2D 10
( M A X P O O L I N G

(NONE, 96 ,
24 , 24 )

0

CONV2D 14 (CONV2D) (NONE, 128 ,
24 , 24 )

307 328

ACTIVATION 19
(ACTIVATION)

(NONE, 128 ,
24 , 24 )

0

M A X POOLING2D 11
( M A X P O O L I N G

(NONE, 128 ,
11 , 11 )

0

CONV2D 15 (CONV2D) (NONE, 256 ,
11 , 11 )

295 168

ACTIVATION 20
(ACTIVATION)

(NONE, 256 ,
11 , 11 )

0

CONV2D 16 (CONV2D) (NONE, 256 ,
11 , 11 )

590 080

D RO P O U T 13 (DRO POUT) ( NONE, 256 ,
11 , 11 )

0

ACTIVATION 21
(ACTIVATION)

(NONE, 256 ,
11 , 11 )

0

M A X POOLING2D 12
( M A X P O O L I N G

(NONE, 256 ,
5 , 5 )

0

D RO P O U T 14 (DRO POUT) ( NONE, 256 ,
5 , 5 )

0

FLATTEN 4 ( FLATTEN) ( NONE, 6400 ) 0
DENSE 10 (DENSE) ( NONE, 1024 ) 6554 624
ACTIVATION 22
(ACTIVATION)

(NONE, 1024 ) 0

D RO P O U T 15 (DRO POUT) ( NONE, 1024 ) 0
DENSE 11 (DENSE) ( NONE, 1024 ) 1049 600
ACTIVATION 23
(ACTIVATION)

(NONE, 1024 ) 0

D RO P O U T 16 (DRO POUT) ( NONE, 1024 ) 0
DENSE 12 (DENSE) ( NONE, 2 ) 2050
ACTIVATION 24
(ACTIVATION)

(NONE, 2 ) 0

TOTAL PARAMETERS:
8833 794

– –

TRAINABLE
PARAMETERS: 8833 794

– –

NON-TRAINABLE
PARAMETERS: 0

– –
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